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ABSTRACT
Multi-task learning (MTL) aims to enhance the performance and
efficiency of machine learning models by simultaneously training
them on multiple tasks. However, MTL research faces two chal-
lenges: 1) effectively modeling the relationships between tasks to
enable knowledge sharing, and 2) jointly learning task-specific and
shared knowledge. In this paper, we present a novel model called
Adaptive Task-to-Task Fusion Network (AdaTT)1 to address both
challenges. AdaTT is a deep fusion network built with task-specific
and optional shared fusion units at multiple levels. By leveraging
a residual mechanism and a gating mechanism for task-to-task
fusion, these units adaptively learn both shared knowledge and
task-specific knowledge. To evaluate AdaTT’s performance, we
conduct experiments on a public benchmark and an industrial rec-
ommendation dataset using various task groups. Results demon-
strate AdaTT significantly outperforms existing state-of-the-art
baselines. Furthermore, our end-to-end experiments reveal that the
model exhibits better performance compared to alternatives.

CCS CONCEPTS
• Computing methodologies → Multi-task learning; • Infor-
mation systems→ Recommender systems.
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1 INTRODUCTION
Online recommendation systems aim to generate personalized high-
quality recommendations to users. The effectiveness of these sys-
tems often depends on their ability to accurately learn user pref-
erences, which typically requires optimizing multiple objectives
simultaneously. For example, a short video recommendation sys-
tem should consider both the likelihood of users watching a video
and the likelihood of them liking it. Multi-task learning (MTL)
is a typical solution for such use cases. By jointly training multi-
ple tasks within a single framework, MTL offers several benefits.
Firstly, it increases computational efficiency, which is important
for large-scale online recommendation systems. Additionally, it en-
hances model performance through cross-task regularization and
knowledge sharing.

However, MTL also poses unique challenges. One of the main
challenges is modeling the relationships between tasks. Since each
task may have varying degrees of correlation with others, merely
modeling general commonalities shared by all tasks is insufficient.
The complexity of this problem increases with the number of tasks.
Effective task relationship modeling is the key to efficient task-
adaptive knowledge sharing. For example, knowledge shared for
the task "sharing a video" can be heavily weighted on similar tasks
such as "liking a video", while also drawing on different aspects
of knowledge from other tasks with abundant examples, such as
"watching a video." On the other hand, it would minimize the shared
learning with tasks that are highly irrelevant. Prior works [2, 19]
often resort to static shared representations. Other works like cross-
stitch networks [24], shown in Figure 2 (c), learn matrices to model
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relationships between multiple sub-networks. Yet, the weights re-
main fixed for all the examples and the sub-networks are only
loosely task-specific. Recent approaches like MMoE [22] shown
in Figure 2 (b) and PLE [29] shown in Figure 2 (e) use specialized
gating networks to dynamically combine shared sub-modules for
flexible sharing, but the relationships between tasks modeled by
these methods are obscure and indirect.

In addition to shared learning, task-specific learning is an inte-
gral part in multi-task learning. Striking the right balance between
the two is important for resolving task conflicts and achieving
cross-task regularization. On the one hand, MTL can suffer from
negative transfer, where the optimization for one task negatively
impacts the performance on another task, particularly when the
tasks have conflicting objectives. In such scenarios, MTL models
should adaptively emphasize task-specific learning. On the other
hand, excessive task-specific learning and insufficient sharing can
lead to overfitting, diminishing the benefits of cross-task regular-
ization. The quantity and distribution of training data for each task
also impacts the focus of learning: tasks with more data can rely
more on their specific learning, while those with less data or highly
skewed data can concentrate more on shared learning. Taking ex-
ample differences into account can make the tradeoff between the
two even more dynamic. Therefore, it is important to automatically
learn to balance these two types of learning. Many soft parameter
sharing models can accomplish this without the need for tedious
manual tuning [2] or learning static structures for all examples with
simplified assumptions [23, 28, 30]. However, further research is
needed to understand how to model the interaction between shared
and task-specific learning to improve performance.

To jointly tackle these challenges, we propose a novel MTL
model, Adaptive Task-to-Task Fusion Network (AdaTT). To im-
prove shared learning and interpretability, we propose to introduce
task-specific experts, shared experts and gating modules to explic-
itly model the task-to-task interaction at both the task-pair and
all-task levels. For synergistic task-specific learning and shared
learning, we distinguish and model them in separate fusion mod-
ules, with different experts and fusion strategies applied in each.
The fused results are then combined by a residual mechanism [12].
Furthermore, we employ multiple levels of fusion, each specialized
for different functionality, to enhance learning performance.

To assess the performance of AdaTT, we conduct experiments
on a real-world short video recommendation system. We vary
the experiment groups to examine its adaptability to different
task relationships. Additionally, we use a public benchmark to
further demonstrate its generalizability. In all these experiments,
AdaTT consistently outperforms the baseline models across differ-
ent datasets and task groups.

To evaluate AdaTT’s performance at scale, we conduct stud-
ies on its hyperparameters, specifically focusing on the number
of fusion levels and experts. Additionally, we design an ablation
study and a visualization analysis to gain insight into AdaTT’s
internal mechanism. The ablation study validates the effectiveness
of the residual design, with separately modeled fusion modules, in
achieving complementary task-specific and shared learning. The
visualization of expert weights at deep and shallow fusion levels
provides a deeper understanding of the distinct and meaningful

sharing patterns learnt across different fusion levels, tasks, and task
groups.

In summary, the contributions of this paper are as follows:

• We propose a novel MTL model, Adaptive Task-to-Task Fu-
sion Network (AdaTT), that simultaneously achieves adap-
tive task-to-task knowledge sharing and robust task-specific
learning.

• With thorough experimentation on real-world benchmark
data and a large-scale video recommendation system, we
evaluate the effectiveness of AdaTT compared to various
baselines.

• We demonstrate the interpretability of the model by con-
ducting ablation studies on its individual fusion modules
and investigating the operation of its fusion units for both
shallow and deep knowledge.

2 RELATEDWORK
Multitask learning has broad applications in various fields, includ-
ing computer vision [16, 19, 24, 34], natural language processing
[5, 11], speech recognition [6], robotics [32], and recommenda-
tion systems [10, 22, 29, 35]. Many research studies have focused
on developing innovative MTL architectures. These models can
be divided into two categories: hard parameter sharing and soft-
parameter sharing. Hard parameter sharing involves using a
predefined model architecture in which certain layers are shared
among all tasks, while other layers are specific to individual tasks.
The shared-bottommodel [2] is one of the most widely used models
of the hard parameter approach. The model utilizes shared lower
layers for representation learning and has task-specific layers on
top of it. Multilinear Relationship Networks [20] improve on this
structure by imposing tensor normal priors on parameters of task
specific layers. Another example is UberNet [16], which solves di-
verse low-, mid-, and high-level visual tasks jointly using an image
pyramid approach. It processes each resolution in the pyramid with
both task-specific layers and shared layers. Hard parameter sharing
models typically have a compact structure, but require significant
manual efforts to determine what to share and lack adaptability.
Also over-sharing across irrelevant or conflicting tasks can lead to
negative transfer, which can negatively impact model performance.

To better address these challenges, many soft parameter shar-
ing MTL models have been proposed. Cross-stitch network [24]
and sluice network [26] use trainable parameters to linearly com-
bine the outputs of each layer. However, the linear combination
they apply is fixed and hence doesn’t fully reflect task relation-
ship distinction on individual examples. Other works have been
proposed to use attention or gating modules, conditioned on in-
puts, to dynamically combine or extract knowledge for each task.
For example, MTAN [19] employs attention modules to produce
elementwise masks which extract task-specific knowledge from a
shared representation. MMoE [22] introduces a mixture of experts
and employs gating networks to dynamically fuse them for each
task. More recently, PLE [29] is proposed to further enhance the
flexibility of knowledge sharing. PLE explicitly introduces task-
specific experts in conjunction with shared experts. Moreover, PLE
proposes progressive separation routing with gating modules to
fuse knowledge selectively and dynamically. Among this line of
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works, PLE is the most relevant to ours. Differently, our work intro-
duces two kinds of complementary fusion modules to separately
model task-specific learning and shared learning. Also, in addition
to explicitly introducing shared modules for learning commonali-
ties across all tasks, we leverage direct task-pair fusion, based on
the input, to maximize the flexibility of knowledge sharing.

Neural Architecture Search (NAS) [8, 17, 18, 25, 36] methods
have been applied to Multi-Task Learning (MTL) to automatically
learn model structures. Branched Multi-Task Networks [30] gen-
erate a tree structure by clustering tasks based on affinity scores
and assigning dissimilar tasks to the different branches. [9] utilizes
Gumbel-Softmax sampling for the branching operation instead of
pre-calculated affinity scores, enabling end-to-end training. The
Soft Layer Ordering technique [23] identifies the limitations of
traditional fixed-order sharing approaches in MTL models and pro-
poses learning task-specific scaling parameters to enable a flexible
ordering of shared layers for each task. AdaShare [28] learns a task-
specific policy to select which layers to execute for every particular
task. Sub-Network Routing (SNR) [21] splits shared layers into
sub-networks and learns their connections with latent variables.
NAS methods eliminate a significant amount of manual work and
improve the flexibility of sharing patterns in MTL models. How-
ever, as an exhaustive search of all possible model configurations is
combinatorially complex, these methods often rely on simplified
assumptions such as branching [9, 30], routing [21], layer ordering
[23], layer selecting [28], etc. to limit the search space. Additionally,
the generated structures don’t adjust to individual examples.

In addition to works focusing on MTL architecture design, an-
other line of works aims to improve MTL optimization. Uncertainty-
based weighting [15] learns each task’s weight based on task uncer-
tainty. GradNorm [3] controls different tasks’ gradient magnitudes
to balance their training rates. GradDrop [4] probabilistically selects
a sign and removes gradients of the opposite sign. Gradient surgery
(PCGrad) [33] projects conflicting task gradients to each other’s
normal plan. RotoGrad [14] manipulates both the magnitude and
direction of task gradients to alleviate conflicts. [27] treats multitask
learning as a multi-objective optimization problem with the goal
of finding a Pareto optimal solution. [31] introduces self-auxiliary
losses with under-parameterized small towers to balance Pareto ef-
ficiency and cross-task generalization. While these approaches can
bring improvements, relying solely on themwithout a strong model
architecture may limit the upper bound of model performance.

3 MODEL ARCHITECTURE
To learn adaptive shared representations and enhance task-specific
learning jointly, we propose a new model, Adaptive Task-to-Task
Fusion Network (AdaTT). AdaTT leverages gating and residual
mechanisms to adaptively fuse experts in multiple fusion levels.
Consider a multi-task learning scenario with two prediction tasks.
We illustrate the architecture of AdaTT in Figure 1 using two fusion
levels. AdaTT consists of a multi-level fusion network and task
towers. The fusion networks are constructed with task-specific
and optional shared fusion units, while the task towers are built
on top of the fusion network and connected to the task-specific
units in the final fusion level. Our framework is generic, supporting
flexible choices of expert modules, task tower networks, gating

modules, and a configurable number of experts and fusion levels.
In the following sections, we will first introduce a special case of
AdaTT, named AdaTT-sp, that uses only task-specific fusion units
(as depicted in Figure 1 (a)). Then, we will describe the general
AdaTT design, as shown in Figure 1 (b).

3.1 AdaTT-sp
The detailed design of AdaTT-sp is presented as follows. Given
input 𝑥 for 𝑇 tasks, the prediction for task 𝑡 (𝑡 = 1, 2, . . . ,𝑇 ) is
formulated as:

𝑦𝑡 = ℎ𝑡 (𝑓 𝐿𝑡 (𝑥)), (1)
where 𝐿 is the number of fusion levels, ℎ𝑡 represents task 𝑡 ’s task
tower, and 𝑓 𝐿𝑡 denotes the function to produce the output of task
𝑡 ’s fusion unit at the 𝐿-th fusion level. Here, 𝑓 𝐿𝑡 (𝑥) is computed
by applying fusion layer(s) from bottom to top using Equations 2
and 3:

𝑓 01 (𝑥) = 𝑓 02 (𝑥) = · · · = 𝑓 0𝑇 (𝑥) = 𝑥 (2)

𝑓 𝑙𝑡 (𝑥) = 𝐹𝑈 𝑙
𝑡 (𝑓 𝑙−11 (𝑥), 𝑓 𝑙−12 (𝑥), . . . , 𝑓 𝑙−1𝑇 (𝑥)), 𝑙 = 1 . . . 𝐿 (3)

Here, FU represents a fusion unit.

3.1.1 Fusion Unit. Below we detail the construction of 𝐹𝑈 𝑙
𝑡 intro-

duced in Equation 3. For task 𝑡 , after receiving all the outputs from
the previous fusion level, we first construct𝑚𝑡 native experts for
this task, denoted by 𝐸𝑙

𝑡,𝑖
, using a function 𝑒𝑙

𝑡,𝑖
and input 𝑓 𝑙−1𝑡 (𝑥).

That is,
𝐸𝑙𝑡,𝑖 = 𝑒𝑙𝑡,𝑖 (𝑓

𝑙−1
𝑡 (𝑥)), (4)

where 𝑖 = 1, 2, . . . ,𝑚𝑡 and 𝐸𝑙
𝑡,𝑖

∈ R1×𝑑𝑙 . Each expert network at
level 𝑙 produces a vector of length 𝑑𝑙 . For easier notation, at level
𝑙 , we use 𝐸𝑙𝑡 and 𝐸𝑙 to denote the vertical concatenation of the
experts belonging to task 𝑡 and all experts across tasks, respectively.
Concretely, 𝐸𝑙𝑡 and 𝐸

𝑙 are represented as:

𝐸𝑙𝑡 = [𝐸𝑙𝑡,1, 𝐸
𝑙
𝑡,2, . . . , 𝐸

𝑙
𝑡,𝑚𝑡

], (5)

𝐸𝑙 = [𝐸𝑙1, 𝐸
𝑙
2, . . . , 𝐸

𝑙
𝑇 ], (6)

where 𝐸𝑙𝑡 ∈ R𝑚𝑡×𝑑𝑙 and 𝐸𝑙 ∈ R(𝑚1+𝑚2+...+𝑚𝑇 )×𝑑𝑙 . In the above
equations, [, ] represents operation of vertically stacking vectors
or sub-matrices into a larger matrix.

As a task can have different degrees of correlation to other tasks,
𝐹𝑈 𝑙

𝑡 directly models task-to-task knowledge fusion with a gating
module𝐴𝑙𝑙𝐸𝑥𝑝𝑒𝑟𝑡𝐺𝐹 𝑙𝑡 which combines all tasks’ experts 𝐸𝑙 . In addi-
tion, we leverage a lightweight linear combination𝑁𝑎𝑡𝑖𝑣𝑒𝐸𝑥𝑝𝑒𝑟𝑡𝐿𝐹 𝑙𝑡
to fuse task 𝑡 ’s native experts, 𝐸𝑙𝑡 . Conceptually, the gating module
models shared learning and the linear combination of native ex-
perts models task-specific learning. Concretely, the output of task
𝑡 ’s specific unit at layer 𝑙 is formulated as:

𝑓 𝑙𝑡 (𝑥) = 𝐴𝑙𝑙𝐸𝑥𝑝𝑒𝑟𝑡𝐺𝐹 𝑙𝑡 (𝐸𝑙 ,𝐺𝑙
𝑡 ) + 𝑁𝑎𝑡𝑖𝑣𝑒𝐸𝑥𝑝𝑒𝑟𝑡𝐿𝐹 𝑙𝑡 (𝐸𝑙𝑡 ), (7)

where gate weights 𝐺𝑙
𝑡 is used to combine 𝐸𝑙 . Relative to the repre-

sentations in Equation 3,𝐸𝑙 depends on all 𝑓 𝑙−11 (𝑥), 𝑓 𝑙−12 (𝑥), . . . , 𝑓 𝑙−1
𝑇

(𝑥),
while 𝐺𝑙

𝑡 and 𝐸
𝑙
𝑡 solely depend on 𝑓 𝑙−1𝑡 (𝑥).

Specifically, in Equation 7, the experts are fused as follows:

𝑁𝑎𝑡𝑖𝑣𝑒𝐸𝑥𝑝𝑒𝑟𝑡𝐿𝐹 𝑙𝑡 (𝐸𝑙𝑡 ) = 𝑣𝑙𝑡
⊺
𝐸𝑙𝑡 , (8)
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Figure 1: AdaTT-sp and general AdaTT with 2 fusion levels. Task A and B’s specific and shared modules are differentiated by
color: yellow for A, purple for B, and blue for shared. For the purpose of illustration, we use 2 experts for each task-specific
unit. In general AdaTT, we add a shared fusion unit which has a single expert as an example. Note that the shared modules in
general AdaTT are not necessary and are therefore depicted using dotted lines. When there are no shared modules present,
general AdaTT falls back to AdaTT-sp.

𝐴𝑙𝑙𝐸𝑥𝑝𝑒𝑟𝑡𝐺𝐹 𝑙𝑡 (𝐸𝑙 ,𝐺𝑙
𝑡 ) = 𝐺𝑙

𝑡

⊺
𝐸𝑙 , (9)

where 𝐸𝑙 is multiplied by gates 𝐺𝑙
𝑡 ∈ R(𝑚1+𝑚2+...+𝑚𝑇 )×1 gener-

ated by a function 𝑔𝑙𝑡 in 𝐴𝑙𝑙𝐸𝑥𝑝𝑒𝑟𝑡𝐺𝐹 while 𝐸𝑙𝑡 is combined sim-
ply by a learnt vector 𝑣𝑙𝑡 ∈ R𝑚𝑡×1 in 𝑁𝑎𝑡𝑖𝑣𝑒𝐸𝑥𝑝𝑒𝑟𝑡𝐿𝐹 . When
𝑚1 =𝑚2 = . . . =𝑚𝑇 = 1, i.e., all fusion units only have one expert,
𝑁𝑎𝑡𝑖𝑣𝑒𝐸𝑥𝑝𝑒𝑟𝑡𝐿𝐹 𝑙𝑡 (𝐸𝑙𝑡 ) falls back to 𝐸𝑙𝑡 , assigning a unit weight to
the native expert for simplicity. There are many design options
for 𝑔𝑙𝑡 . A common one is to use a single-layer MLP activated by
softmax:

𝑔𝑙𝑡 (𝑓 𝑙−1𝑡 (𝑥)) = 𝑠𝑜 𝑓 𝑡𝑚𝑎𝑥 (𝑊 𝑙
𝑡 𝑓

𝑙−1
𝑡 (𝑥)⊺) . (10)

Here,𝑊 𝑙
𝑡 ∈ R(𝑚1+𝑚2+...+𝑚𝑇 )×𝑑𝑙−1 is a learnt matrix.

3.1.2 Simplification. For implementation efficiency, given Equa-
tion 8 and Equation 9, we can actually pad 𝑣𝑙𝑡

⊺ with zeros to match
the size of𝐺𝑙

𝑡

⊺ , add the weights, and perform a single multiplication
to combine all experts. Thus, Equation 7 can be simplified as:

𝑓 𝑙𝑡 (𝑥) = (𝑝𝑎𝑑 (𝑣𝑙𝑡
⊺) +𝐺𝑙

𝑡

⊺)𝐸𝑙 . (11)

As we can see, the inclusion of the linear fusion module leads to a
minimal increase in computation.

3.2 General AdaTT
In its general form, as shown in Figure 1 (b), AdaTT employs op-
tional shared fusion units. Conceptually, the fusion between task-
specific module pairs models fine-grained sharing, while the fusion
of task-specific and shared modules transfers broad knowledge that
applies to all tasks. This leads to efficient and flexible task-to-task
knowledge sharing. The computation of general AdaTT is similar
to AdaTT-sp, except for the final fusion level, where the shared
fusion units don’t perform any fusion operations and only produce
expert outputs for task-specific fusion units to process.

In summary, AdaTT explicitly learns task specific knowledge
and adaptively fuses it with shared knowledge. The fusion is task-
adaptive as: 1. The gating modules learn the residual with respect
to the tasks’ native experts. 2. Each task-specific unit fuses experts
using a specialized gating module conditioned on input (which is
unique starting from the second fusion level). By allowing each
task to directly and flexibly learn shared knowledge from other
tasks, AdaTT offers greater flexibility compared to PLE which only
relies on shared expert(s) as the media. Additionally, AdaTT can
opt to use task-specific experts only. Unlike PLE, which processes
all selected experts in a single gating module, AdaTT separately
fuses native experts in a different linear fusion module within each
fusion unit. This design enhances the robustness of task-specific



AdaTT: Adaptive Task-to-Task Fusion Network for Multitask Learning in Recommendations KDD ’23, August 6–10, 2023, Long Beach, CA, USA

learning after each level of fusion. Despite its simplicity, our exper-
iments reveal that it outperforms PLE, which applies selection to
experts in different fusion units and uses different routing paths to
differentiate these experts.

4 EXPERIMENTS
In this section, we present comprehensive experimental results
to highlight the effectiveness of our proposed AdaTT model and
provide a better understanding of it.

This section is divided into four parts. We first briefly describe
baseline models in Section 4.1. Secondly, we evaluate the effective-
ness of AdaTT against state-of-the-art multi-task learning models
through experiments on real-world industrial and public datasets.
For the industrial dataset, we use three different groups of predic-
tion tasks to examine the performance of these multi-task learning
models in various scenarios. Results are shared in Section 4.2 and
Section 4.3. Next, we present individual component studies in Sec-
tion 4.4 and Section 4.5. We ablate the 𝑁𝑎𝑡𝑖𝑣𝑒𝐸𝑥𝑝𝑒𝑟𝑡𝐿𝐹 module to
validate the importance of AdaTT’s residual design which incorpo-
rates separate modules to fuse different experts. We also visualize
the expert weights learned in each task-specific unit to demonstrate
how AdaTT learns proper interactions between tasks, which is es-
sential for effective knowledge sharing. Finally, in Section 4.6, we
conduct studies on AdaTT’s hyperparameters to understand the
relationship between the number of fusion levels and experts, and
the performance of AdaTT.

4.1 Baseline Models
We employ Shared-bottom, MMoE, Multi-level MMoE (an extension
of the original single-level MMoE), PLE, and Cross-stitch Networks
as our baselines. Of these models, MMoE, PLE, and Cross-stitch
Networks all utilize the soft-parameter sharing technique.

• MMoE [22]: This model learns a specialized gating module
for each task to fuse multiple shared experts. Given 𝑛 expert
modules 𝑒1, 𝑒2, ..., 𝑒𝑛 , task 𝑡 ’s task towermoduleℎ𝑡 and gating
module 𝑔𝑡 , the prediction of task 𝑡 is computed as:

𝑦𝑡 = ℎ𝑡 (𝑓𝑡 (𝑥)), (12)

where

𝑓𝑡 (𝑥) = 𝑔𝑡 (𝑥) [𝑒1 (𝑥), 𝑒2 (𝑥), ..., 𝑒𝑛 (𝑥)] . (13)

Here, [,] represents vertically stacking vectors into a matrix.
• Multi-level MMoE (ML-MMoE): This model extends the
original single-level MMoE by incorporating multiple levels
of fusion. In ML-MMoE, higher level experts use the lower
level experts that are fused by different gating modules as
inputs. Similar to the original MMoE, all gating modules are
conditioned on the same raw input.

• Cross-Stitch [24]: This model introduces cross-stitch units
to linearly combine different tasks’ hidden layers with learnt
weights.

• PLE [29]: This model explicitly introduces both task specific
and shared experts with a progressive separation routing
strategy. Gating modules are used to fuse selected experts in
both task-specific and shared units. In PLE, shared units can
fuse all experts at the same level, while task-specific units

only fuse their native experts and shared experts. This model
is the closest to AdaTT.

All the models discussed above are shown in Figure 2 for com-
parison.

4.2 Evaluation on Large-scale Short Video
Recommendation

In this section, we present experimental results on a short video rec-
ommendation system. The system displays a list of recommended
videos that are ranked based on scores from various tasks. These
tasks can broadly be classified into two categories: engagement
tasks, which take into account users’ explicit feedback, such as
commenting on a video, and consumption tasks, which reflect users’
implicit feedback, such as video views.

4.2.1 Task groups. We create three groups of tasks to thoroughly
assess these models’ performance in different task relations.

• The first group includes one engagement task and one con-
sumption task, which are expected to have a relatively low
correlation.

• Group two is made up of two consumption tasks that are
more correlated. The first task is the same as the consump-
tion task in group one. The second task is chosen to have
a comparable positive event rate to the engagement task in
group one. Both group 1 and group 2 are composed of binary
classification tasks only.

• In the third group, we increase the number of tasks to five
and select highly diverse tasks. Out of these, three are con-
sumption tasks, and two are engagement tasks. One of the
consumption tasks is a regression task, and the remaining
four tasks are binary classification tasks. In terms of user
sentiments, we include one task reflecting users’ dislike and
four tasks for positive events. One of the engagement tasks
with extremely sparse positive events is used as an auxiliary
task.

When reporting results for all task groups, we present the regression
task first (if present), followed by the classification tasks in the order
of decreasing rate of positive examples.

4.2.2 Experiment setup. We collect a dataset of approximately 70
billion examples for training the models and test their performance
on a test set of approximately 10 billion examples. In feature pro-
cessing, we convert all sparse features to dense embeddings and
concatenate them with dense features. All tasks use the same input.
All models are trained and tested using the same framework, with
the same optimization settings such as the optimizer, learning rate,
and batch size. For training, we use Cross Entropy loss for binary
classification tasks and MSE loss for the regression task. The losses
for all tasks are summed and optimized with equal weights. For test-
ing, we use Normalized Entropy (NE) [13] for binary classification
tasks and MSE for the regression task.

4.2.3 Model Hyperparameters. In our experiments, all models have
3 hidden layers activated by ReLU. For each group of experiments,
we conduct two comparisons.

First, we compare MMoE, PLE, and AdaTT to the shared-bottom
model. For fair comparison, PLE, ML-MMoE, and AdaTT all have
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Figure 2: MTL models used in our experiments. In multi-level MTL models, two fusion levels are used to illustrate their design.
Modules are represented using different colors: shared modules are in blue, task A’s specific modules are in yellow, and task B’s
specific modules are in purple.

2 levels of fusion. We use single-layer MLP experts with hidden
dimensions of 256 and 128 for these 2 levels of fusion respectively.
MMoE is constructed with 2-layer MLP experts with hidden dimen-
sions of [256, 128]. We also set a limit on the total number of experts
per level of fusion. All gating modules in these models use a 1-layer
MLP with softmax activation. It’s worth noting that the computa-
tion required for gating modules is significantly lighter compared
to expert modules. Although both types of modules share the same
input dimension, gating modules have a total output dimension
that is nearly two orders of magnitude smaller. The task towers of
all models have a single hidden layer of 64 units. With this setup,
all models have comparable computation as the task towers and
expert modules dominate the computation. In our experiments, we
tune the number of task-specific and shared experts for PLE and
AdaTT, while for MMoE, we tune the total number of experts.

In a separate experiment, we compare the performance of AdaTT
and the cross-stitch model with the shared-bottom model. AdaTT
uses similar hyperparameters as in the previous experiment but
with 1 expert per task and no shared expert for comparability with
the cross-stitch model. The cross-stitch model has 2 cross-stitch
units and the same hidden layers as AdaTT.

4.2.4 Experiment on the task group of engagement and consumption
tasks. For this group of tasks, we present the results of the NE dif-
ference for each model relative to the shared-bottom model, after
training on 10 billion, 30 billion, and 70 billion examples. We also
provide the test results. Table 1 and 2 show the results for the con-
sumption and engagement tasks respectively. The results indicate
that AdaTT outperforms all other models in both tasks, achieving
not only faster convergence but also higher quality. After training
on 10 billion examples, the two AdaTT models already demonstrate
a significant NE improvement for both tasks. As for the baseline

models, PLE takes much longer to converge on the consumption
task. The cross-stitch model, on the other hand, is outperformed
by AdaTT by a large margin, demonstrating the vital importance
of adaptive fusion in task relationship modeling. Notably, PLE and
AdaTT show greater improvement on the engagement task, which
has fewer positive events, compared to the consumption task. How-
ever, this trend is not evident in MMoE and ML-MMoE, which
highlights the importance of task-specific learning. Interestingly,
despite havingmore flexibility through additional fusion operations,
ML-MMoE performs worse than MMoE in both tasks, indicating
its inferior performance in expert fusion. This is likely due to the
lack of distinction and imposed prior knowledge in ML-MMoE’s
design. The shared experts are highly symmetric, which are all used
by each gating module, and there are no explicitly modeled task
specific experts. Additionally, all the gating modules receive the
same raw input. The increase in fusion levels results in more routes,
making it more challenging for ML-MMoE to learn different weight
combinations for predicting each particular task.

4.2.5 Experiment on the task group of two consumption tasks. As
MTL models’ performance can be sensitive to task correlations, we
design an experiment group to evaluate their performance on two
related consumption tasks in contrast to task group 1, where the
correlation between tasks is lower. The results, as shown in Table 3,
reveal that all models in this group have more similar improvements
on both tasks compared to the baseline. This is unsurprising, as
when tasks are more closely related, negative transfer is less severe,
and both tasks benefit from a higher level of shared knowledge.
Even MTL models with simpler sharing mechanisms can achieve
good performance, resulting in less prominent differences in NE.
However, AdaTT still shows the best results among all the MTL
models.
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Table 1: Performance on the consumption task in consumption + engagement task group

Models NE diff @10B examples NE diff @30B examples NE diff @70B examples Test NE diff

Shared-bottom - - - -
MMoE -0.334% -0.421% -0.498% -0.481%

ML-MMoE -0.307% -0.400% -0.480% -0.463%
PLE -0.162% -0.385% -0.482% -0.448%

AdaTT -0.391% -0.464% -0.526% -0.508%

Cross-stitch -0.024% -0.133% -0.166% -0.140%
AdaTT-sp (single task expert) -0.259% -0.261% -0.277% -0.231%

Table 2: Performance on the engagement task in consumption + engagement task group

Models NE diff @10B examples NE diff @30B examples NE diff @70B examples Test NE diff

Shared-bottom - - - -
MMoE -0.370% -0.436% -0.542% -0.532%

ML-MMoE -0.260% -0.386% -0.496% -0.494%
PLE -0.360% -0.627% -0.698% -0.691%

AdaTT -0.677% -0.795% -0.845% -0.863%

Cross-stitch -0.046% -0.197% -0.232% -0.225%
AdaTT-sp (single task expert) -0.393% -0.367% -0.397% -0.362%

Table 3: Performance on the consumption task group

Models task 1 NE diff task 2 NE diff

Shared-bottom - -
MMoE -0.343% -0.372%

ML-MMoE -0.415% -0.372%
PLE -0.446% -0.368%

AdaTT -0.487% -0.443%
Cross-stitch -0.170% -0.136%

AdaTT-sp (single task expert) -0.233% -0.194%

4.2.6 Experiment on five diverse tasks. In this group of tasks, we
evaluate the models’ abilities to handle complex cross-task relation-
ships by utilizing 5 highly diverse tasks. We tune the models for the
4 main tasks and present the results in Table 4. We do not include
the auxiliary task with sparse positive events due to its high level of
noise and inconsistent performance. The results demonstrate that
AdaTT outperforms all comparison models by a significant margin
in all main tasks, indicating its superiority in handling complex
task relationships.

4.3 Evaluation on a Public Dataset
4.3.1 Dataset description. We use the Census Income dataset [7]
extracted from the 1994 and 1995 current population surveys. The
dataset has 40 features and 299,285 instances, including 199,523
training examples and 99,762 test examples. We randomly split the
test examples into validation and test sets in equal ratio. The tasks
are: 1) predicting whether the income exceeds 50K; 2) predicting

whether the marital status is never married; 3) predicting whether
the education is at least college.

4.3.2 Model hyperparameters. This experiment employs a frame-
work, adapted from [1], to train and test ML-MMoE, PLE and AdaTT.
Model structures are similar to those in Section 4.2.3, but the hidden
dimensions and number of experts are changed. The experiments
are conducted in two groups with 6 and 9 experts per fusion level,
respectively.𝑚𝑠 , the number of shared experts for PLE and AdaTT,
is tuned. The number of task-specific experts is calculated as 6 −𝑚𝑠

and 9 −𝑚𝑠 . To ensure fairness, all other hyperparameters are kept
equal across the models. After tuning𝑚𝑠 , each model is trained 100
times with different initializations, and the mean AUC in the test
set is reported.

4.3.3 results. Results are presented in Table 5. AdaTT outperforms
the baseline models in all the tasks.

4.4 Ablation study of the 𝑁𝑎𝑡𝑖𝑣𝑒𝐸𝑥𝑝𝑒𝑟𝑡𝐿𝐹

module
In this section, we examine the effect of the residual mechanism
with the 𝑁𝑎𝑡𝑖𝑣𝑒𝐸𝑥𝑝𝑒𝑟𝑡𝐿𝐹 module in fusion units. We ablate the
𝑁𝑎𝑡𝑖𝑣𝑒𝐸𝑥𝑝𝑒𝑟𝑡𝐿𝐹 module and only utilize the𝐴𝑙𝑙𝐸𝑥𝑝𝑒𝑟𝑡𝐺𝐹 module
to combine the outputs of all experts at each fusion unit. We adopt
a model structure similar to that of Section 4.2.3, and use a fixed
number of three experts per task and no shared expert. Both models
are trained on 70 billion examples and tested on 10 billion examples.
The results are displayed in Table 6.

While the 𝐴𝑙𝑙𝐸𝑥𝑝𝑒𝑟𝑡𝐺𝐹 module can theoretically learn flexible
expert combinations, our experiment nevertheless shows it is im-
portant to separately combine native experts and add the output of
𝐴𝑙𝑙𝐸𝑥𝑝𝑒𝑟𝑡𝐺𝐹 as a residual. Specifically, ablating the𝑁𝑎𝑡𝑖𝑣𝑒𝐸𝑥𝑝𝑒𝑟𝑡𝐿𝐹
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Table 4: Model performance on the group of 5 tasks

Models Consumption task 1 Consumption task 2 Consumption task 3 Engagement task 1
MSE diff NE diff NE diff NE diff

Shared-bottom - - - -
MMoE -0.770% -0.632% -0.708% -1.182%

ML-MMoE -0.697% -0.608% -0.685% -1.013%
PLE -0.697% -0.599% -0.698% -1.221%

AdaTT -0.873% -0.738% -0.815% -1.346%

Cross-stitch -0.520% -0.454% -0.486% -0.818%
AdaTT-sp (single task expert) -0.613% -0.543% -0.589% -0.930%

Table 5: Performance on 3 tasks of UCI Census income dataset. We compare PLE, ML-MMoE and AdaTT using 2-level fusion.
Expert and task tower networks are single-layer MLPs and their hidden dimensions are listed. The AdaTT-sp setup, which
solely utilizes task-specific experts, enables AdaTT to achieve its optimal results.

Model total experts expert hidden dimensions task tower hidden dimension task 1 AUC task 2 AUC task 3 AUC

ML-MMoE 6 128, 64 32 0.8729 0.9178 0.9731
PLE 6 128, 64 32 0.8683 0.9164 0.9697

AdaTT 6 128, 64 32 0.8766 0.9202 0.9783

ML-MMoE 9 96, 48 32 0.8688 0.9139 0.9730
PLE 9 96, 48 32 0.8645 0.9134 0.9680

AdaTT 9 96, 48 32 0.8744 0.9174 0.9786

term would incur a loss on all tasks, with a 0.107%-0.222% increase
in NE for classification tasks and a 0.158% increase in MSE for the
regression task.

4.5 Visualization of gating module expert
weight distribution

In Figure 3, we visualize the distribution of expert weights after
adding weights from both 𝑁𝑎𝑡𝑖𝑣𝑒𝐸𝑥𝑝𝑒𝑟𝑡𝐿𝐹 and𝐴𝑙𝑙𝐸𝑥𝑝𝑒𝑟𝑡𝐺𝐹 mod-
ules to investigate AdaTT’s internal fusionmechanisms. To evaluate
the expert utilization, we select three tasks: two consumption tasks
and one engagement task. Specifically, we choose one regression
task among consumption tasks and two classification tasks with the
highest positive event rate among engagement and consumption
tasks. We implement two levels of fusion, each with one expert
per task and no shared expert. The experts are single-layer MLPs
with hidden dimensions of 256 and 128 in the two fusion levels,
respectively. After training the model, we apply it to the test dataset,
calculate the mean weights across all test examples, and visualize a
3x3 weight matrix for each fusion level. There are some noteworthy
observations:

First, at the lower level of fusion (level 0), our model is able to
discern relationships between tasks. There is a clear distinction be-
tween the consumption and engagement task groups. Additionally,
there is an asymmetric sharing pattern among the two consump-
tion tasks: the classification consumption task mostly uses expert 2
and the classification regression task roughly uses expert 1 and 2
equally.

At the higher level of fusion (level 1), where supervision is closer
and rich semantic information is captured, our model demonstrates

the advantage of soft-parameter sharing through a shared pattern
across tasks. While native experts play a significant role for task-
specific learning, all experts are utilized flexibly, contributing to
shared learning. At this level, the consumption classification task
aims to diversify learning by utilizing expert 3, specific to the en-
gagement classification task, as well as expert 1, specific to the
consumption regression task. Meanwhile, the engagement task
which has fewer positive signals benefits from knowledge trans-
fer from both consumption tasks. In contrast, the consumption
regression task primarily relies on its native expert 1 and the expert
specific to the other consumption task. Among all experts, expert
1, which has the most diverse learning from a mixture of experts 1
and 2 from level 0, is heavily weighted across all tasks.

In general, we can see clear specialization, where distinct weight
distribution patterns are learned at each task, task grouping, and
level of fusion.

4.6 Hyperparameter studies
We conduct hyperparameter studies to investigate the impact of the
number of experts and the number of fusion levels. Both studies use
5 prediction tasks similar to Section 4.2.6, with 70 billion examples
for training and 10 billion examples for testing. In both studies, we
employ AdaTT-sp as the model.

4.6.1 Effect of number of task-specific experts. In order to examine
the effect of the number of task-specific experts, we keep the num-
ber of task-specific experts consistent across all tasks for simplicity
and vary it between 1 and 4. These experts are constructed using
one-layer MLPs with hidden dimensions of 256 and 128 across two
fusion levels. The results of this analysis can be found in Table 7. We
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Table 6: Ablation study on the𝑁𝑎𝑡𝑖𝑣𝑒𝐸𝑥𝑝𝑒𝑟𝑡𝐿𝐹 module. The performance degradation on every task demonstrates the importance
of residual mechanism with separate fusion.

Models Consumption task 1 MSE diff Consumption task 2 NE diff Consumption task 3 NE diff Engagement task 1 NE diff

AdaTT - - - -
AdaTT (ablated) +0.158% +0.107% +0.107% +0.222%

Table 7: AdaTT’s performance with different number of experts per task.

Number of experts Consumption task 1 Consumption task 2 Consumption task 3 Engagement task 1
per task MSE diff NE diff NE diff NE diff

1 - - - -
2 -0.171% -0.150% -0.159% -0.075%
3 -0.248% -0.203% -0.239% -0.296%
4 -0.260% -0.230% -0.273% -0.398%

Table 8: Results of AdaTT’s performance as the fusion level increases. We denote each fusion level’s expert hidden dimensions
in the first column.

expert Consumption task 1 Consumption task 2 Consumption task 3 Engagement task 1
hidden dimensions MSE diff NE diff NE diff NE diff

256, 128 - - - -
512, 256, 128 -0.225% -0.242% -0.284% -0.409%

1024, 512, 256, 128 -0.503% -0.448% -0.522% -0.619%
2048, 1024, 512, 256, 128 -0.664% -0.587% -0.655% -0.766%

Figure 3: Visualization of the distribution of expert weights
learned at each fusion level in a two-level AdaTT-sp. Tasks
and experts are arranged in the order of consumption regres-
sion task, consumption classification task and engagement
task. Note this figure shows the sum of weights from the
𝑁𝑎𝑡𝑖𝑣𝑒𝐸𝑥𝑝𝑒𝑟𝑡𝐿𝐹 and 𝐴𝑙𝑙𝐸𝑥𝑝𝑒𝑟𝑡𝐺𝐹 modules. As there is only
one native expert per task, 𝑁𝑎𝑡𝑖𝑣𝑒𝐸𝑥𝑝𝑒𝑟𝑡𝐿𝐹 module assigns
unit weights to them (mapped to diagonal grids in the figure).

can observe that all tasks have improved performance, as the num-
ber of experts increases. Nevertheless, the improvements are not
consistent: in this study, when the number of experts is increased
to 2, the engagement task only exhibits a minor improvement in
NE compared to the consumption tasks. However, as the number
of experts further increases to 3 and 4, the trend reverses, and
the engagement task demonstrates a more noticeable difference in
metrics.

4.6.2 Effect of fusion levels. We also examine various configura-
tions of fusion levels by utilizing a single expert per task. We incre-
mentally increase the number of fusion levels and use single-layer
MLPs for each level. We train four models with hidden dimensions
of [256, 128], [512, 256, 128], [1024, 512, 256, 128], and [2048, 1024,
512, 256, 128] for each MLP expert at different fusion levels. For
task towers, each model utilizes single-layer MLPs with a hidden
dimension of 64. The results are presented in Table 8. As expected,
addingmore fusion levels results in greater performance gains. Even
when the number of fusion levels is increased to five, considerable
improvements are still observed across all tasks.

5 CONCLUSION
In this work, we propose a new MTL model called Adaptive Task-
to-Task Fusion Network (AdaTT). By leveraging its adaptive fusion
mechanism, AdaTT effectively models complex task relationships
and facilitates the joint learning of task-specific and shared knowl-
edge. Through comprehensive evaluations on both a real-world
industrial dataset with diverse task groups, as well as a public
dataset, we demonstrate the effectiveness and generalizability of
AdaTT. Our results show that AdaTT outperforms state-of-the-art
multi-task learning models by a significant margin. We hope to see
our work benefits a broader range of applications beyond multitask
learning, where different relevant specialized modules can learn
synergically.
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