
Controllable Multi-Objective Re-ranking with Policy
Hypernetworks

Sirui Chen∗
School of Information,

Renmin University of China
chensr16@gmail.com

Yuan Wang∗†
Alibaba Group

wy175696@taobao.com

Zijing Wen
Alibaba Group

wzj267727@taobao.com

Zhiyu Li
Alibaba Group

tuanyu.lzy@taobao.com

Changshuo Zhang
Gaoling School of AI (GSAI)
Renmin University of China

lyingcs@foxmail.com

Xiao Zhang†
Gaoling School of AI (GSAI)
Renmin University of China

zhangx89@ruc.edu.cn

Quan Lin
Alibaba Group

tieyi.lq@taobao.com

Cheng Zhu
Alibaba Group

xize.zc@taobao.com

Jun Xu
Gaoling School of AI (GSAI)
Renmin University of China

junxu@ruc.edu.cn

ABSTRACT
Multi-stage ranking pipelines have become widely used strategies
in modern recommender systems, where the final stage aims to
return a ranked list of items that balances a number of require-
ments such as accuracy, diversity etc. Typically, linear scalarization
is used to merge these requirements into a single optimization
objective by summing them with preference weights. However, ex-
isting final-stage rankingmethods often rely on static models where
preference weights are determined during offline training and re-
main unchanged during online serving. Adjusting these weights
requires retraining the models, which can be time-consuming and
resource-intensive. Moreover, the most suitable weights may vary
significantly for different user groups or at different time periods,
such as during holiday promotions. In this paper, we propose a
framework called controllable multi-objective re-ranking (CMR)
which incorporates a hypernetwork to generate parameters for a
re-ranking model according to different preference weights. In this
way, CMR is enabled to adapt the preference weights according to
the environment changes in an online manner, without any retrain-
ing. Moreover, we classify practical business-oriented tasks into
four main categories and seamlessly incorporate them in a new pro-
posed re-ranking model based on an Actor-Evaluator framework,
which serves as a reliable real-world testbed for CMR. Offline ex-
periments based on the dataset collected from Taobao App showed
that CMR improved several popular re-ranking models by using

∗These authors contributed equally to this work.
†First corresponding author: Xiao Zhang. Second corresponding author: Yuan Wang

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
KDD ’23, August 6–10, 2023, Long Beach, CA, USA
© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0103-0/23/08. . . $15.00
https://doi.org/10.1145/3580305.3599796

them as underlying models. Online A/B tests also demonstrated
the effectiveness and trustworthiness of CMR.

CCS CONCEPTS
• Computing methodologies → Multi-task learning; Rein-
forcement learning; • Information systems→ Recommender
systems.

KEYWORDS
multi-objective learning, re-ranking, reinforcement learning

ACM Reference Format:
Sirui Chen, Yuan Wang, Zijing Wen, Zhiyu Li, Changshuo Zhang, Xiao
Zhang, Quan Lin, Cheng Zhu, and JunXu. 2023. ControllableMulti-Objective
Re-ranking with Policy Hypernetworks. In Proceedings of the 29th ACM
SIGKDD Conference on Knowledge Discovery and Data Mining (KDD ’23),
August 6–10, 2023, Long Beach, CA, USA.ACM, New York, NY, USA, 10 pages.
https://doi.org/10.1145/3580305.3599796

1 INTRODUCTION
Multi-stage strategies are prevalent in today’s industrial recom-
mender systems, featuring high scalability and low response la-
tency, retrieving relevant items from billion candidates within tens
of milliseconds. Early recommender systems [3, 41, 46] estimate
the relevance of each item to a user and rank items according
to their relevance scores. In recent years, recommender systems
have placed more emphasis on other important objectives of the
results, such as diversity [36], fairness [27], serendipity [15], and
unbiasedness [43, 44] etc. It requires the system to be able to cap-
ture the relationship between items and balance multiple objec-
tives, where re-ranking models excel. Therefore, the final-stage
re-ranking model [1, 34] is gaining its popularity as a solid supple-
ment of the traditional systems.

Linear scalarization [2] is the most widely used technique to
mergemultiple optimization objectives into a single one, byweighted
summing the objectives. Existing multi-objective re-ranking mod-
els conduct the linear scalarization in a static way: the trade-off

ar
X

iv
:2

30
6.

05
11

8v
3

 [
cs

.I
R

]
 1

8
Ju

l 2
02

3

https://doi.org/10.1145/3580305.3599796
https://doi.org/10.1145/3580305.3599796

KDD ’23, August 6–10, 2023, Long Beach, CA, USA Sirui Chen et al.

between tasks, or the set of preference weights, is predefined and
fixed during the training and testing phases, resulting in a solution
corresponding to a single preference combination. To obtain the per-
formances of different preference weights, in principle, one needs
to train the model multiple times, each for a single combination.

In real-world applications, however, dynamic adjustment of the
preference weights without model retraining is strongly favored.
First, it enables fast hyperparameter tuning. Even with prior knowl-
edge, it is still not trivial to pick the most appreciated preference
weights. Tuning methods like grid-search and trail-and-error can
be greatly accelerated if repeated model training can be avoided.
Second, it enables fast system response to environmental changes.
Modern recommender systems such as Amazon need real-time flow
control during Black Friday, adjusting their recommendation strate-
gies based on users’ behavior. Ideally, the adjustments should take
effect immediately. In industrial applications, re-training a model
takes hours or even days. Last but not the least, different groups
of users may have diverse preferences. As a result, the best set of
preference weights varies from group to group. Training multiple
models for different user groups is often prohibitively expensive in
industrial applications. Dynamic weight adaptation helps to serve
diverse groups with a single model.

To achieve online dynamic preference adjustment with a single
model, we propose a new controllable multi-objective re-ranking
framework (CMR). Inspired by recent studies on multi-task lean-
ing [18, 26, 28], CMR is designed to consist of a hypernetwork and
a normal re-ranking model, where the hypernetwork generates
special parameters of the re-ranking model for a given set of prefer-
ence weights. With the generated parameters, the re-ranking model
can produce suitable recommended lists for different preference
weights. During the offline training, the preference weights are
randomly sampled from a feasible distribution to simulate the dif-
ferent environment changes. The parameter generation policy of
the hyper network and the re-ranking model are jointly optimized.
During the online serving, the preference weights can be specified
in real time as desired, without the need for model retraining.

Besides, many business-oriented issues need to be considered
in industrial e-commerce recommender applications. For exam-
ple, to increase sellers’ engagement, a recommender system may
place more seller-generated contents in results rather than auto-
generated contents, even with a certain expense of lowering the
relevance. To ensure the functional positioning of a scene, an e-
commence recommender system may prioritize new contents in-
stead of old ones. We conducted a practical review of real-life
business-oriented tasks and classify them into four main types:
fixed-position insertions, flow control, diversity, and group order-
ing. Many real-life complex business problems can be broken down
into these tasks or their combinations. In traditional recommender
systems, these tasks are handled separately in a pipeline fashion,
leading to sub-optimal performance. Apart from simplicity and
feasibility, it is mainly due to the absence of any joint optimal solu-
tion. In this paper, we devise a new re-ranking model based on the
Actor-Evaluator (AE) framework which can decently incorporate
all four types of business-oriented tasks, offering an end-to-end
optimal solution. It also serves as a sound realistic test bed for CMR.

We evaluated CMR with various re-ranking models and demon-
strated its applicability across different models. The evaluations

were conducted on a large-scale dataset from the Taobao app. Online
experiments showcased the flexibility of CMR and the effectiveness
of the proposed AE re-ranking model specifically for Taobao.

The main contributions of the paper are:
(1) Problem and framework. We propose the controllable multi-
objective re-ranking framework (CMR) to address the online real-
time preference adjustment of multi-objective modeling. It consists
of a hyper network and a customizable re-ranking model.
(2) A controllable re-ranking model for business-oriented
tasks. We classify real business-oriented tasks into four types and
propose an AE-based re-ranking model that integrates all these
task types. It provides an end-to-end optimal solution, replacing
the previous pipeline approach and serving as a realistic test bed
for CMR.
(3) Evaluation. Through extensive online and offline experiments,
we validate the effectiveness and flexibility of CMR and demonstrate
the capabilities of the proposed model on the Taobao App.

2 RELATEDWORK
Re-ranking is the final stage of a Multi-stage Recommender Sys-
tem (MRS) that re-ranks top candidates to improve recommenda-
tion performance. Re-ranking models explicitly consider list-wise
context, distinguishing them from earlier ranking stages. Early
approaches used maximum marginal relevance to add items to
the list [5], while recent works have adopted deep Neural Net-
works (NN) [6, 16]. Re-ranking works can be classified based on
objectives, such as accuracy [13, 14], diversity [11, 20, 35, 36],
and fairness [12, 27, 38, 48]. Re-ranking models have two training
paradigms: learning by observed signals and learning by counterfac-
tual signals. Models trained by observed signals require specifying
the best list as labels, which can be challenging due to the large list
space [1, 49]. In contrast, models trained by counterfactual signals
are based on the AE framework and evaluate lists instead of speci-
fying the best list [7, 9, 33]. Multi-task modeling based on the AE
framework has not been well explored [21].

Multitask Learning (MTL) seeks to learn a single model to si-
multaneously solve several learning problems while sharing in-
formation among tasks [29, 45]. In recent years, a variety of deep
MTL networks with hard or soft parameter sharing structures have
been proposed [22, 25, 40]. Another set of works treats MTL as a
multi-objective optimization problem that aims to identify Pareto
stationary solutions across various tasks [19, 23, 37] and applied
in recommender system [10, 17, 47]. These studies employ differ-
ent approaches: some alternate between optimizing the joint loss
and adjusting the weight of each loss [19], while others frame the
dynamic weight optimization process as a personalized sequen-
tial decision-making problem and propose a solution using the RL
paradigm [37]. Notably, these works prioritize the identification
of optimal weights that can achieve Pareto efficiency across multi-
ple objectives, rather than solely focusing on generating optimal
results for specific preference weights. More recently, several stud-
ies [18, 26, 28] propose to learn the entire trade-off curve for MTL
problems via hypernets, which has advantages in terms of runtime
efficiency at the training phase for multiple preferences and real-
time preference control at the inference phase. Inspired by the work
of [18, 28], we propose to use hypernets to construct CMR.

Controllable Multi-Objective Re-ranking with Policy Hypernetworks KDD ’23, August 6–10, 2023, Long Beach, CA, USA

3 PRELIMINARY
Given a set of 𝑀 candidate items C = {𝑐𝑖 }1≤𝑖≤𝑀 , a user 𝑢 ∈ U,
and a list reward function 𝑅𝒘 (·) parameterized by the preference
weights 𝒘 , our goal is to find the optimal item list 𝐿∗𝒘 among all
possible lists composed by items from C:

𝐿∗𝒘 = arg max
𝐿

𝑅𝒘 (𝐿(𝑢, C)),

where each list is of length 𝑁 and it is obvious that 𝑁 ≤ 𝑀 . In this
paper, we assume that 𝑅𝒘 takes a linear form:

𝑅𝒘 (𝐿(𝑢, C)) =
𝑛𝑈∑︁
𝑖=1

𝑤𝑖𝑈𝑖 (𝐿(𝑢, C)),

where 𝑈 stands for utility for a certain objective and 𝑛𝑈 is the
number of objectives of concern. Since 𝒘 indicates the relative
importance of utilities, it is called the preference weight. In previous
multi-task learning works, 𝑅𝒘 is fully predefined with a fixed𝒘 and
a model parameterized by 𝜽 is trained to approximate the mapping
from (𝑢, C) to 𝐿∗𝒘 for the specific 𝒘 . Although the calculation of
the utility functions remains predefined, we treat the preference
weight 𝒘 as a variable, which can take any value from a feasible
set, and we hope to find the optimal list 𝐿∗𝒘 for any given 𝒘 . A
brute force solution is to train a model for each feasible value of
𝒘 . It can be prohibitively time and resource consuming even for a
small number of𝒘 . One feasible solution is to enable one trained
re-ranking model to serve all feasible values of𝒘 , as will be shown
in our CMR framework.

We represent each user𝑢 as an embedding vector 𝒙𝑢 ∈ ℝ𝑑𝑢 . Sim-
ilarly, a candidate item is represented by a feature vector 𝒙 ∈ ℝ𝑑𝑖 .
A candidate set is represented as a bag of embeddings {𝒙𝑖 }𝑀𝑖=1 and
a list of 𝑁 items can be represented as a matrix 𝑋 ∈ ℝ𝑑𝑖×𝑁 , which
is a stacking of individual item embeddings 𝑋 = [𝒙1, 𝒙2, · · · , 𝒙𝑁].
A user-item engagement is represented by 𝒚 ∈ ℝ𝑑𝑒 where each
element in the engagement vector 𝒚 could be, for example, expo-
sure, click, purchase, or video viewing time, etc., depending on the
specific applications. The user-list engagement is represented by
the matrix 𝑌 = [𝒚1,𝒚2, · · · ,𝒚𝑁] ∈ ℝ𝑑𝑒×𝑁 . Note that we do not
have the engagement of all 𝑀 candidate items, since only 𝑁 of
them are in the final recommended list and a user does not have
access to the rest. An offline log sample is a tuple of (𝑢, C, 𝑋,𝑌)
and a log data set D is {(𝑢𝑖 , C𝑖 , 𝑋𝑖 , 𝑌𝑖)}𝑛𝐷

𝑖=1 where 𝑛𝐷 is the size of
the data set. A utility function is a mapping from (𝑢,𝑋) to a scalar,
𝑈 : ℝ𝑑𝑢 ×ℝ𝑑𝑖×𝑁 → ℝ. Scalars 𝑑𝑖 , 𝑑𝑒 , and 𝑑𝑢 denote the respective
embedding dimensions.

4 OUR PROPOSAL
In the following sections, we will introduce the overall framework
of CMR, our re-ranking model design, the business-oriented tasks,
and the model training algorithm, respectively.

4.1 The CMR Framework
Fig. 1 shows the basic structure of the CMR framework, which con-
sists of a hypernetwork and an arbitrary multi-objective re-ranking
model. The hypernetworkℎ(𝒘 ; 𝝓) takes in the preference weights𝒘
as inputs and generates parameters for the re-ranking model, which
helps the re-ranking to generate recommendation lists according

Figure 1: The proposed CMR framework.

to the specific preference weights𝒘 . A re-ranking model based on
modern deep neural networks can be as large as 50GB in size with
tens of billions of parameters. It is infeasible for the hypernetwork
to generate all of them. To circumvent this issue, one can split the
parameter of the re-ranking model into 𝒘-sensitive ones 𝜽𝒘 and
𝒘-insensitive ones 𝜽 𝒘̄ . The majority of 𝜽 belongs to 𝜽 𝒘̄ which may
include item embedding layers and representation learning layers.
In contrast, 𝜽𝒘 can be a very compact part of 𝜽 , such as the last
a few layers of a re-ranking model. Moreover, significant invasive
structure modifications of a model usually require retraining of the
entire model, which can be prohibitively expensive in industrial
applications. By splitting 𝜽 , one can only modify the part involv-
ing 𝜽𝒘 and keep the 𝜽 𝒘̄ part intact, which helps to accommodate
existing deployed models into the CMR framework.

Inspired by Conditional GAN [24], we use conditional training
in the CMR framework as shown in Algorithm 1. For each training
sample or batch, a preference weight𝒘 is sampled from its prede-
fined feasible distribution P𝒘 . Then it is fed into the hypernetwork
to generate 𝜽𝒘 and the re-ranking model is invoked to generate a
list 𝐿 with parameters [𝜽𝒘 , 𝜽 𝒘̄]. The reward function 𝑅𝒘 evaluates
𝐿 with the sampled𝒘 . Finally, the parameters of the hypernetwork
𝝓 are updated according to the value of 𝑅𝒘 . Optionally 𝜽 𝒘̄ can be
updated jointly if the re-ranking model is not fully trained. Various
optimization methods can be used to update 𝝓 and 𝜽 𝒘̄ , from simple
gradient descent to complex reinforcement learning algorithms. In
principle, lists with high rewards should be generated with high
probability. The feasible distribution of the preference weight P𝒘
can be derived from domain knowledge, business considerations, or
practice experience. For example, relevance is typically considered
more important than diversity, resulting in a higher weight for rele-
vance utility than diversity utility. To test the generalization ability
of CMR, we attempt to minimize our reliance on prior knowledge in
the experiments and simply sample the preference weight of each
utility function from a uniform distribution 𝑈 (0,𝑤max

𝑖
) indepen-

dently, where𝑤max
𝑖

is the maximum value for a given preference
weight, ranging from 0 to 1. The hypernetwork is deployed along
with the re-ranking model and𝒘 is specified in real-time for each
case during serving. The CMR framework enables a re-ranking
model to generate the optimal recommendation list for any given
𝒘 . Determining optimal 𝒘 at serving time is beyond the scope of
this paper.

KDD ’23, August 6–10, 2023, Long Beach, CA, USA Sirui Chen et al.

Algorithm 1 Conditional training in the CMR framework

Input: hypernetwork ℎ(·; 𝝓) parameterized by 𝝓; re-ranking
model 𝑔(·; [𝜽𝒘 , 𝜽 𝒘̄]) parameterized by the𝒘-sensitive and in-
sensitive parameters; a list reward function 𝑅𝒘 ; training dataset
D = {(𝑢, C, 𝑋,𝑌)𝑖 }𝑛𝐷

𝑖=1; a feasible distribution of the preference
weight P𝒘

Output: a learned hypernetwork ℎ(·; 𝝓∗) and a re-ranking model
𝑔 with insensitive parameters 𝜽 ∗𝒘̄

1: repeat
2: sample a training instance (𝑢, C, 𝑋,𝑌) ∼ D
3: sample a preference weight𝒘 ∼ P𝒘
4: 𝜽𝒘 ← ℎ(𝒘 ; 𝝓){run the hypernetwork}
5: 𝐿 ← 𝑔((𝑢, C); [𝜽𝒘 , 𝜽 𝒘̄]) {run the re-ranking model}
6: evaluate the list by 𝑅𝒘 (𝐿)
7: update 𝝓 to modify the generating probability of 𝐿 according

to 𝑅𝒘 (𝐿) with proper algorithms
8: optionally, update 𝜽 𝒘̄ to modify the generating probability

of 𝐿 according to 𝑅𝒘 (𝐿) with proper algorithms if the re-
ranking model has not been well trained

9: until Converge
10: return 𝝓∗ and 𝜽 ∗𝒘̄

4.2 The Proposed Re-ranking Model
Our re-ranking model is based on the AE framework which can
incorporate various utilities easily. It contains two main modules:
an actor for list generation and an evaluator for list evaluation.

4.2.1 The Actor Module. The Actor has an encoder-decoder struc-
ture as illustrated in Fig.2(a). Before feeding into the encoder, fea-
ture augmentation and embedding lookup are carried out. The
augmented features of an item come from the candidate set, such
as the ranking of the item in terms of historical Click Through
Rate (CTR) within the set. It is a very efficient and simple way of
informing a model of the relationship between an individual item
and its containing candidate set. Then ID features are transferred
to real-valued embeddings to facilitate numerical computation.

The DeepSet-based Encoder. DeepSet [42] is selected as the
encoder because it is insensitive to the order of the input items, as
shown in Fig.2(c). It is preferable because, in complex applications,
it is not trivial to find a good initial list mixing texts, images, and
videos. Poor initial ordering may hurt the performance of a re-
ranking model. It is neither necessary to provide an initial list since
(𝑢, C) contains all information a re-ranking model needs to know
to generate a good list. The context embedding 𝒆𝑐 is calculated as

𝒆𝑐 = 𝑀𝐿𝑃2

(
𝑀∑︁
𝑖=1

𝑀𝐿𝑃1 ([𝒙𝑖 ; 𝒙𝑢])
)
,

where 𝒙𝑢 means user vector and [𝒙𝑖 ; 𝒙𝑢] means the concatenation
of the two vectors.𝑀𝐿𝑃 stands for multilayer perceptron. Note that
the output of𝑀𝐿𝑃1 is used as the item embedding 𝒆 for each item.

The PointerNet-based Decoder. The decoder is based on Point-
erNet [32] which picks one item from the candidate set at one time,
updates context information immediately, and then picks the next,
as shown in Fig.2(d). Item selection is based on a local context
enhanced attention mechanism as shown in Fig.2(b).

At the very beginning of decoding, the context embedding 𝒆𝑐 is
used as the initial hidden state of a Recurrent Neural Network (RNN)
cell and a special token "start" is fed into the RNN cell as the input.
After that, at each step, the output embedding of the RNN cell acts as
the state embedding 𝒆𝑠 , which is supposed to contain all necessary
information for item selection. The local context enhanced attention
𝒂 ∈ ℝ𝑀 is calculated as

𝒂 = softmax([𝑀𝐿𝑃3 ([𝒆𝑠 ; 𝒆𝑖 ; 𝒆𝑠𝑖])]𝑀𝑖=1), (1)

where 𝒆𝑖 is the item embedding and 𝒆𝑠𝑖 is the local context embed-
ding. It is termed “local” because the context is specific to the cur-
rent state and the current candidate item. As illustrated in Fig. 2(b),
the introduction of the local context is to facilitate the model’s
understanding of business rules and prior knowledge of a good
list. For example, one may want an item list from diverse sellers.
It can be achieved by controlling seller duplication in the result
list. If a candidate item introduces a seller duplication, its attention
value should be smaller so that it has a lower chance to be selected.
Although the piece of information regarding seller duplication can
potentially be abstracted implicitly by a complex neural network,
it is not necessary and is low efficient. Instead, we can directly add
a feature “the number of seller duplication of the current item in
the preceding list” into the local context embedding 𝒆𝑠𝑖 .

Masking is applied to the attention values for two main reasons.
First, an item that has been selected in the preceding steps should
not be selected again. So their attention values are masked to zero.
Second, business rules may ask a model to place a certain item at a
certain position in the result list. In this case, the attention values of
all items other than the target one are masked to zero. Incorporating
a sampling mechanism is crucial for an actor because it lets the
actor try different actions and ultimately find the optimized list-
generating policy. We use Thompson Sampling, which samples an
item proportionally to its masked attention value.

4.2.2 The Evaluator Module. The evaluator contains an ensemble
of utility functions. Recall that a utility function is a mapping from
(𝑢,𝑋) to a scalar, 𝑈 : ℝ𝑑𝑢 ×ℝ𝑑𝑖×𝑁 → ℝ, indicating the quality of
the list in one perspective. Some of the utility functions come from
business-oriented requirements and prior knowledge of good lists,
such as item diversity. These utilities have analytical formulas and
can be calculated directly. Other utilities, such as the probability of
user-list engagement, have to be predicted by models, which are
trained with offline data. Once trained, they are used as predefined
utility functions. This section introduces the model used for the
predictions.

The overall structure of the evaluator model is shown in Fig.3(a).
After the same feature processing as that of in the actor, the item
list is represented by a matrix 𝐸 = [𝒆1, 𝒆2, ..., 𝒆𝑁]. It is processed by
5 channels that focus on different aspects of the list. The results are
then concatenated and transferred to the final predictions through
a 𝑀𝐿𝑃 . The first channel is "sum pooling", which is an element-
wise sum of the item embeddings as shown in Fig.3(b), resulting in
𝒆𝑠𝑝 :=

∑𝑁
𝑖=1 𝒆𝑖 , The second channel is "forward & concat" which is

good at abstracting useful information from each item as in Fig.3(c)
and results in an embedding 𝒆 𝑓 𝑐 as

𝒆 𝑓 𝑐 = [𝑀𝐿𝑃4 (𝒆1);𝑀𝐿𝑃4 (𝒆2); · · · ;𝑀𝐿𝑃4 (𝒆𝑁)] . (2)

The third channel is "multi-head self-attention" as in Fig.3(d) which

Controllable Multi-Objective Re-ranking with Policy Hypernetworks KDD ’23, August 6–10, 2023, Long Beach, CA, USA

Figure 2: Model structure of the Actor. (a) the encoder-decoder structure; (b) local context enhanced attention for item selection;
(c) the DeepSet-based encoder; (d) the PointerNet-based decoder.

aims to capture mutual influence between items. It outputs 𝒆𝑚ℎ as

𝒆𝑚ℎ = 𝑟𝑒𝑑𝑢𝑐𝑒_𝑠𝑢𝑚([ℎ𝑒𝑎𝑑ℎ (𝑊
𝑞

ℎ
𝐸,𝑊 𝑘

ℎ
𝐸,𝑊 𝑣

ℎ
𝐸)]𝐻

ℎ=1),

where𝑊 𝑞 ,𝑊 𝑘 , and𝑊 𝑣 are linear projection matrices and 𝐻 is
the number of heads. ℎ𝑒𝑎𝑑 stands for scaled dot-product atten-
tion. The 𝑟𝑒𝑑𝑢𝑐𝑒_𝑠𝑢𝑚 of a matrix 𝑋 = [𝒙1, 𝒙2, . . . , 𝒙𝑛] means
𝑟𝑒𝑑𝑢𝑐𝑒_𝑠𝑢𝑚(𝑋) =

∑𝑛
𝑖=1 𝒙𝑖 . The fourth channel is "RNN" as in

Fig.3(e) which reveals the evolution trend of the list. The result
embedding 𝒆𝑟𝑛𝑛 is the output of the RNN cell at the final step.
The fifth channel is "pair-wise comparison" as in Fig.3(f). As sug-
gested by its name, it compares each item pair using inner product
and the result embedding 𝒆𝑝𝑐 = [⟨𝒆𝑖 , 𝒆 𝑗 ⟩]1≤𝑖≤𝑁,𝑖< 𝑗≤𝑁 . The final
𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠 are obtained via a𝑀𝐿𝑃

𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠 = 𝑀𝐿𝑃5 ([𝒆𝑠𝑝 ; 𝒆 𝑓 𝑐 ; 𝒆𝑚ℎ ; 𝒆𝑟𝑛𝑛 ; 𝒆𝑝𝑐]).

4.3 Business-Oriented Utilities
We classify business-oriented tasks into four main categories: fixed-
position insertions, flow control, diversity, and group ordering.
Many real-life complex business problems can be broken down
into these tasks or their combinations. Traditionally, these tasks are

handled separately in a pipeline manner, leading to sub-optimal per-
formance. This section incorporates all the tasks into our proposed
re-ranking model which provides an end-to-end optimal solution.

4.3.1 Flow Control. Flow control ensures that the contents from
certain groups get enough exposure to customers. It comes from
several perspectives: from the fairness perspective where the groups
are protected minorities, and from a platform ecology perspective
where contents by new providers are distributed with priority.

The effectiveness of flow control is measured by exposure ratio.
We may want the exposure ratio of a certain group to be greater
than a predefined threshold. The flow control utility is defined as

𝑈
𝑓
𝑔 = − 1

|𝑏 |
∑︁
𝑝∈𝑏

𝕀

(∑
𝑖∈𝑝 𝕀

(
𝑖 ∈ I𝑔

)
|𝑝 | ≤ 𝑡𝑒𝑔

)
, (3)

where the superscript 𝑓 means flow control, 𝑝 means a page, 𝑏
means a training batch, and 𝑡𝑒 means the exposure ratio threshold.
With a little abuse of notations, 𝑖 stands for the item at position 𝑖

as well as the position index of an item in the list, as long as it does
not cause confusion. I𝑔 is a set containing all items belonging to
the group 𝑔. |𝑝 | stands for the number of slots in the page. 𝕀 is the

KDD ’23, August 6–10, 2023, Long Beach, CA, USA Sirui Chen et al.

Figure 3: Model structure of the Evaluator. (a) the overall structure; (b) the sum pooling channel; (c) the forward & concat
channel; (d) the multi-head self-attention channel; (e) the RNN channel; (f) the pair-wise comparison channel.

indicator function. Please note the negative sign at the beginning of
the right-hand side of the equation. It means recommendation lists
violating the requirement of flow control will receive a penalty.

Eq. (3) is too strict since it requires all pages to satisfy the thresh-
old. We only want to control the exposure ratio at the population
level, rather than on each page. Although the exposure ratio of the
whole population is not accessible during training, the exposure
ratio of a batch can work as a handy approximation:

𝑈
𝑓
𝑔 = − 1

|𝑏 | 𝕀
(
RatioInBatch(𝑔) ≤ 𝑡𝑒𝑔

) ∑︁
𝑝∈𝑏

𝕀

(∑
𝑖∈𝑝 𝕀(𝑖 ∈ I𝑔)
|𝑝 | ≤ 𝑡𝑒𝑔

)
.

(4)

where RatioInBatch(𝑔) =
∑

𝑝∈𝑏
∑

𝑖∈𝑝 𝕀(𝑖∈I𝑔)
|𝑏 | |𝑝 | is a gating. As long as

the exposure ratio of the whole population meets the requirement,
the exposure ratio of individual pages is no longer a concern.

In the scenarios where customers perceive items in a result list
one by one, customers may leave at any time, and items at the
bottom of a list may not be actually seen by the customers, which
makes the above exposure ratio calculation inaccurate. To handle
it, we can add another position term

𝑈
𝑓
𝑔 = − 1

|𝑏 | 𝕀
(
RatioInBatch(𝑔) ≤ 𝑡𝑒𝑔

) ∑︁
𝑝∈𝑏

𝕀

(∑
𝑖∈𝑝 𝕀(𝑖 ∈ I𝑔)
|𝑝 | ≤ 𝑡𝑒𝑔

)
−

1
|𝑏 | 𝕀

(
PosInBatch(𝑔) ≥ 𝑡

𝑝
𝑔

) ∑︁
𝑝∈𝑏

𝕀

(∑
𝑖∈𝑝 pos𝑖𝕀(𝑖 ∈ I𝑔)∑

𝑖∈𝑝 𝕀(𝑖 ∈ I𝑔)
≥ 𝑡

𝑝
𝑔

)
,

(5)

where PosInBatch(𝑔) =
∑

𝑝∈𝑏
∑

𝑖∈𝑝 pos𝑖𝕀(𝑖∈I𝑔)∑
𝑝∈𝑏

∑
𝑖∈𝑝 𝕀(𝑖∈I𝑔) , and 𝑝𝑜𝑠𝑖 means the

exposure position of item 𝑖 and 𝑡𝑝 is the exposure position threshold.
Note that Eq. (3), Eq. (4), and Eq. (5) show possible choices of flow
control utility for a particular group 𝑔. Flow control for more than

one group may co-exist in one model.

4.3.2 Diversity. Diversity means items in result lists should come
from different groups. The groups may refer to sellers, categories,
supply sources, as well as item exhibition types such as text, image,
and video. The diversity utility of a group 𝑔 can be written as

𝑈𝑑
𝑔 =

1
|𝑏 | |𝑝 |

∑︁
𝑝∈𝑏

∑︁
𝑖∈𝑝

𝕀(𝑔𝑖 ∉ G𝑖−1),

where the superscript 𝑑 means diversity and 𝑔𝑖 means the group
of the item at position 𝑖 . G𝑖−1 is the group set of items in a sliding
window before item 𝑖: G𝑖−1 = {𝑔 𝑗 | 𝑗 ∈ {𝑖 − 𝑛𝑑𝑔 , 𝑖 − (𝑛𝑑𝑔 − 1), . . . , 𝑖 −
1}, 𝑗 > 0} where 𝑛𝑑𝑔 is the length of the diversity window. Setting
𝑛𝑑𝑔 = ∞ promotes whole list-wise diversity.

4.3.3 Group Ordering. Group ordering means the items from cer-
tain groups are ranked before others with high probability. For
example, in a new arrival promoting scene, it is preferred to show
new items released within 3 days first and then others. Group or-
dering can be achieved by checking the group priority of item
pairs

𝑈 𝑜
𝑔 =

1
|𝑏 |

∑︁
𝑝∈𝑏

1
2|𝑝 | |𝑝 − 1|

∑︁
𝑖∈𝑝

∑︁
𝑗>𝑖

𝕀(priority(𝑔𝑖) ≥ priority(𝑔 𝑗)),

where the superscript𝑜 means group ordering and priority indicates
the predefined priority function of groups.

4.3.4 Fixed Position Insertion. Fixed position insertion is a very
strict task, which means a given item must be placed at a specified
position of a result list with 100% probability. A customer may come
to a recommendation scene by clicking a trigger item, it is manda-
tory to place the trigger item at the very top of a recommendation
list. It may seem trivial at first glimpse since one can always add
the trigger item to the top of a list after the list has been created.
However, such a method may fail to handle the relations between

Controllable Multi-Objective Re-ranking with Policy Hypernetworks KDD ’23, August 6–10, 2023, Long Beach, CA, USA

multiple objectives simultaneously. For example, adding a trigger
item on top of a separately generated list may result in seller dupli-
cation of the first two items, which breaks the diversity requirement.
Adding a utility function does not work well for this task because a
utility cannot offer a strong probability guarantee. Instead, we use
masking to achieve fixed position insertion as introduced in 4.2.1.

4.4 Model Training
The evaluator is fully trained before the actor in a purely supervised
learning fashion. So far we only train classification models for the
evaluator with the classic Cross Entropy:L𝑒𝑣𝑎𝑙 = −

∑
𝑖=1 𝑦𝑖 log(𝑝𝑖),

where 𝑦𝑖 ∈ {0, 1} is the one-hot label for a class and 𝑝𝑖 is the
model prediction for the class. The models may predict whether
the generated list will lead to a certain kind of user engagement,
e.g. click, and the intensity of the engagement.

We use a REINFORCE-based method for actor training. In rein-
forcement learning, a policy is a mapping from a state to a proba-
bility distribution over possible actions which maximizes the total
reward. In simple words, policy tells us which action to take in a
given state. In our case, Eq. (1) plays the essential role of a policy,
where the state is [𝒆𝑠 ; 𝒆𝑖 ; 𝒆𝑠𝑖]𝑀𝑖=1 and the probability distribution
over M possible items is 𝒂. Suppose for a user 𝑢 and a candidate
item set C = {𝑐1, 𝑐2, ..., 𝑐𝑀 }, the actor generate a list 𝐿(𝑢, C) as
[𝑐𝜋1 , 𝑐𝜋2 , ..., 𝑐𝜋𝑁

]. 𝝅 is the indicator of a list, where 𝜋𝑛 =𝑚 means
the𝑚th item in the candidate set is placed in the 𝑛th position in the
output list. Here we assume an arbitrary ranking in the candidate
set to get the index. The loss function for the actor L𝑎𝑐𝑡𝑜𝑟 is

L𝑎𝑐𝑡𝑜𝑟 = −
[
𝑅𝒘 (𝐿(𝑢, C)) − 𝑅𝒘 (𝐿𝑒𝑥𝑝)

] 𝑁∑︁
𝑛=1

log(𝑎𝜋𝑛),

where 𝐿(𝑢, C) is the list generated by the actor, 𝐿𝑒𝑥𝑝 is the recorded
exposure list, the reward difference between the two 𝑅𝒘 (𝐿(𝑢, C)) −
𝑅𝒘 (𝐿𝑒𝑥𝑝) severs as the advantage function. In this loss, we as-
sume each action contributes equally to the advantage value. We
recognize advanced training options such as Proximal Policy Opti-
mization (PPO) [30]. Nevertheless, the REINFORCE-based method
works well so we leave the choice of the options to further studies.
We observe that gradient clipping greatly benefits the training.

5 EXPERIMENTS
We conducted offline and online experiments to verify the effec-
tiveness of the proposed CMR framework. The source code of of-
fline experiments has been share at https://github.com/lyingCS/
Controllable-Multi-Objective-Reranking.

5.1 Offline Experiments
We trained CMR on the benchmark LibRerank1 with the public rec-
ommendation dataset Ad22. We conducted experiments to answer
the following two questions: i) Can CMR take effect on various
re-ranking models? ii) How does our method perform compared
with other rule-based controllable re-ranking baselines?

1https://github.com/LibRerank-Community/LibRerank
2https://tianchi.aliyun.com/dataset/56

5.1.1 Experiment Setting. We conducted our offline experiments
on the public benchmark LibRerank1, which can automatically
perform re-ranking experiments and integrate a major collection
of re-ranking algorithms.

To answer the first question, we extend the single accuracy
objective in the original benchmark to multi-objective by adding di-
versity objective. Specifically, inspired by MDP-DIV[36], we define
the diversity reward function as the promotion of diversity metric
caused by choosing the 𝑖-th item:

𝑅𝑑𝑖𝑣𝑖 (𝐿(𝑢, C)) = 𝐸𝑅𝑅_𝐼𝐴[𝐿𝑖 (𝑢, C)] − 𝐸𝑅𝑅_𝐼𝐴[𝐿𝑖−1 (𝑢, C)] .

The loss function is designed to be L𝑎𝑐𝑡𝑜𝑟 := 𝜆L𝑎𝑐𝑐
𝑎𝑐𝑡𝑜𝑟 + (1 −

𝜆)L𝑑𝑖𝑣𝑎𝑐𝑡𝑜𝑟 , where 𝜆 ∈ [0, 1] is the trade-off parameter and L𝑎𝑐𝑐
𝑎𝑐𝑡𝑜𝑟 ,

L𝑑𝑖𝑣𝑎𝑐𝑡𝑜𝑟 stand for losses in terms of utilities of accuracy and diversity.
Dataset: The original Ad dataset records 1 million users and

26 million ad display/click logs, with 8 user profiles (e.g., id, age,
and occupation), 6 item features (e.g., id, campaign, and brand).
LibRerank transformed the records of each user into ranking lists
according to the timestamp of the user browsing the advertisement.
Items that have been interactedwithwithin 5minutes are sliced into
a list. The final Ad dataset contains 349,404 items and 483,049 lists.
Baselines:We chose several representative methods as baselines:
Seq2Slate [1]: a sequence-to-sequencemodel that formulates the re-
ranking as a sequence generation problem, and sequentially selects
the next items by pointer network; EG-Rerank [9]: a re-rankmodel
that adopts an evaluator generator paradigm—with a generator to
generate feasible permutations and an evaluator to evaluate the
listwise utility of each permutation;MMR [5]: a heuristic approach
with the documents selected sequentially according to maximal
marginal relevance; APDR [31]: a learning model that aims to
improve the diversity and personalization of image search results.

Evaluation metrics: We selected MAP, NDCG as the accuracy
metrics, and ILAD[8], ERR_IA[39] as the diversity metrics. Specifi-
cally, we choseMAP@5,MAP@10, NDCG@5, NDCG@10, ILAD@5,
ERR_IA@5 and ERR_IA@10. Note that MAP and NDCG are greedy
metrics, which means the highest evaluation is reached when items
are ranked strictly according to their "relevance". However, such
lists may not lead to the best online performance. Instead, the AE
framework-based re-ranking models aim to maximize list-wise user
engagement, without putting too much emphasis on in-page item
ordering. The user engagement is predicted by the evaluator. As a
result, the best online performing AE re-ranking models may seem
sub-optimal in terms of MAP and NDCG. We stick with the met-
rics because they are popular and can be easily applied to various
methods, whether based on the AE framework or not.

5.1.2 Performance Analysis. To answer the first question, we in-
vestigate the following models in the CMR framework: Seq2Slate,
EG-Rerank, and ours. The results are reported in Table 1. The first
row of the table shows the metrics of the list after sorting by ranker.
In this experiment, the ranker we used is lambdaMART[4]. Then we
tested the two baselines and our model at three different accuracy
preference(0, 0.5, 1), and counted their 4 accuracy metrics and 3
diversity metrics. Note that any permutation makes no difference
to the calculation of ILAD@10, so we do not present this metric in
the table. We notice that as the accuracy preference increases, the
accuracy metrics show an upward trend, and the diversity metrics

https://github.com/lyingCS/Controllable-Multi-Objective-Reranking
https://github.com/lyingCS/Controllable-Multi-Objective-Reranking

KDD ’23, August 6–10, 2023, Long Beach, CA, USA Sirui Chen et al.

Table 1: Offline evaluation results of sequential re-ranking models. The experiments are repeated 3 times with different random
seeds. We display the mean performance and standard deviation. The best results of diversity and accuracy metrics under the
condition that 𝜆(acc_prefer) is 0 and 1 are highlighted in bold respectively and the second-best results are underlined.

Method 𝜆 map@5 map@10 ndcg@5 ndcg@10 ilad@5 err_ia@5 err_ia@10
Initial – 0.59961 0.60321 0.68092 0.69531 0.64535 1.29619 1.32672

0 0.5924±0.0011 0.5963±0.0011 0.6750±0.0010 0.6901±0.0008 0.6449±0.0005 1.2957±0.0003 1.3264±0.0002
0.5 0.6001±0.0012 0.6038±0.0013 0.6815±0.0010 0.6958±0.0010 0.6448±0.0002 1.2955±0.0001 1.3262±0.0001Seq2Slate
1 0.6021±0.0005 0.6057±0.0005 0.6829±0.0003 0.6972±0.0004 0.6444±0.0002 1.2954±0.0002 1.3261±0.0001
0 0.5988±0.0007 0.6026±0.0007 0.6807±0.0006 0.6948±0.0005 0.6444±0.0005 1.2952±0.0005 1.3259±0.0004
0.5 0.6000±0.0005 0.6038±0.0004 0.6815±0.0003 0.6957±0.0003 0.6434±0.0002 1.2944±0.0001 1.3253±0.0000EG-Rerank
1 0.6009±0.0012 0.6046±0.0011 0.6822±0.0009 0.6963±0.0009 0.6424±0.0007 1.2935±0.0005 1.3247±0.0003
0 0.5949±0.0046 0.5987±0.0045 0.6772±0.0036 0.6919±0.0034 0.6485±0.0004 1.2991±0.0003 1.3289±0.0004
0.5 0.5971±0.0035 0.6009±0.0034 0.6789±0.0028 0.6935±0.0026 0.6484±0.0007 1.2987±0.0001 1.3286±0.0002CMR (ours)
1 0.6016±0.0018 0.6053±0.0017 0.6825±0.0014 0.6969±0.0013 0.6480±0.0008 1.2983±0.0003 1.3282±0.0001

Table 2: Offline comparisons of CMR and rule-based baselines. No standard deviation is reported since random seeds do not
affect APDR and MMR experimental results. The best results of diversity and accuracy metrics under the condition that
𝜆(acc_prefer) is 0 and 1 are highlighted in bold respectively and the second-best results are underlined.

Method 𝜆 map@5 map@10 ndcg@5 ndcg@10 ilad@5 err_ia@5 err_ia@10
Initial – 0.5996 0.6032 0.6809 0.6953 0.6454 1.2962 1.3267

0 0.5965 0.6001 0.6787 0.6932 0.6673 1.3153 1.3409
0.5 0.5967 0.6005 0.6788 0.6933 0.6617 1.3101 1.3373APDR
1 0.5971 0.6010 0.6789 0.6936 0.6453 1.2962 1.3268
0 0.5992 0.6027 0.6808 0.6951 0.6656 1.3147 1.3402
0.5 0.5996 0.6032 0.6810 0.6953 0.6565 1.3054 1.3335MMR
1 0.5996 0.6032 0.6809 0.6953 0.6454 1.2962 1.3267
0 0.5949 0.5987 0.6772 0.6919 0.6485 1.2991 1.3289
0.5 0.5971 0.6009 0.6789 0.6935 0.6484 1.2987 1.3286CMR (ours)
1 0.6016 0.6053 0.6825 0.6969 0.6480 1.2983 1.3282

Figure 4: Controllable effects of sequential re-ranking models.

are basically the opposite. We then conducted controllable experi-
ments of the above three re-ranking models on the test set. The final
results are shown in Fig. 4, where the horizontal axis is the prefer-
ence for accuracy and the vertical axis is the corresponding metric.

The upper two subgraphs are the accuracy metrics MAP@5 and
NDCG@5, and the lower ones are the diversity metrics ILAD@5
and ERR_IA@5. As we can see, there is a clear trend that as the
accuracy preference increases, the corresponding accuracy metrics
increase and the corresponding diversity metrics decreases, with
the most obvious and smoothest change in CMR. It can also be
seen that for the accuracy metrics, the effect of Seq2slate is slightly
better than that of the other two re-ranking models, followed by
CMR. But for diversity metrics, CMR is much better. So our CMR
framework can be well adapted to various re-ranking models.

For the second question, We compared our model with the ex-
isting rule-based controllable methods APDR and MMR. The ex-
periment results are performed in Table 2. We observe that though
under diversity metrics CMR underperforms APDR and MMR, it
can break through the limitations of the rule-based methods and
outperforms these baselines in terms of accuracy.

5.2 Online Experiments
We conducted online experiments on the "Subscribe" scene in the
Taobao App, a leading e-commerce platform in China. Its main
entrance is the "Subscribe" button on top of Taobao’s main landing
page, and it is a stream of various elements including item lists,
posters, coupons, etc.

In the first experiment, we evaluated whether an online perfor-
mance metric changes well with a corresponding preference weight.

Controllable Multi-Objective Re-ranking with Policy Hypernetworks KDD ’23, August 6–10, 2023, Long Beach, CA, USA

We train a CMR re-ranking model from scratch and assign random
preference weight during serving. We picked one representative
from each of the four types of business-oriented tasks: a flow con-
trol utility to ensure the exposure ratio of cold start contents as in
Eq. (5), a seller account diversity utility to promote the number of
sellers in result lists, a group ordering utility to place more new
contents in the front of result lists, and a traditional click utility to
promote user engagement. Trigger contents are guaranteed to sit
at the top of result lists with fixed position insertion masking. The
result is shown in Fig. 5, where the horizontal axis is the weight
of a utility and the vertical axis is the relative improvement of
a corresponding metric online. Logged samples are grouped into
successive bins according to preference weights, and the average
metric within each bin is calculated. The metrics are normalized
so that the minimum value is 1 and the relative improvement is
calculated with respect to the minimal value. As we can see, there
is a clear trend that as a preference weight goes up, the correspond-
ing online metric increases. Although the range of the preference
weights is the same from 0 to 1, the adaptive ranges of the metrics
vary from 1.4% to 7%. It is likely an essential reflection of the nature
of the recommender system. Note that currently the CMR model
takes 20 inputs and outputs a list of 10, which limits the adaptive
ranges of the metrics. We are working on increasing the input size.
The blue metric curves are not ideally monotonical. We mainly
attribute it to data sparsity. As online experiments may hurt real
users’ experience, we only use a small portion of the App traffic.

Figure 5: Onlinemetric changesw.r.t. preferenceweights. The
orange lines are the linear fitting of the blue metric curves.

In the second experiment, we aim to show the superiority of
the joint optimal solution provided by the proposed re-ranking
model. The baseline is a classic module pipeline solution. In the
first module, the click probability of each content is predicted as the
basic ranking score to form the initial recommend list. In the second
module, a freshness bias is added to the ranking score so that new
contents are placed relatively in front of result lists. In the third
module, a heuristic diversity algorithm is applied to promote seller
diversity[31]. In the fourth module, cold start contents are inserted

into the list. In the final module, trigger contents are placed at the
top of the list. This is the default solution of the online system and
the involved hyper-parameters are kept tuned manually for years.
Our CMR re-ranking model gets rid of the pipeline and offers an
end-to-end one-step solution. One CMR model is trained and the
preference weights are tuned manually online. The model config,
such as the utilities involved, is the same as in the first online
experiment. As no other re-ranking model considers such a big
scope, we show the A/B test results of the base solution and the
CMR solution only. Table 3 shows the results of a 7-day online
A/B test. The first four metrics are directly related to the utility
functions in the CMR model and all of them are improved, which
are content click number per user, seller exposure number per user,
cold start exposure ratio, and chronological ordering. An interesting
observation is that stay time per user and content exposure number
per user are also improved, although we do not model them directly.
In our experience, it is a sweet byproduct of AE based re-ranking
models.

Table 3: Online A/B test results.

Metric Relative improvement
content click number per user 0.62%
seller exposure number per user 2.43%
cold start exposure ratio 4.27%
chronological ordering 1.40%
stay time per user 1.41%
content exposure number per user 0.73%

6 CONCLUSION
This paper presents a controllable multi-objective re-ranking (CMR)
framework to adapt the recommendation re-ranking models ac-
cording to the preference weights in a dynamic manner, avoiding
the costs of re-training the models. The key of CMR is using pol-
icy hypernetworks to generate a part of the parameters in the
re-ranking models. A new re-ranking model based on AE is pro-
posed which offers an end-to-end joint optimal solution for complex
business-oriented tasks. Offline and online experiments on Taobao
app demonstrated the effectiveness of the proposed CMR frame-
work and the re-ranking model.

ACKNOWLEDGMENTS
This work was funded by the National Key R&D Program of China
(2019YFE0198200), the National Natural Science Foundation of
China (61872338, 62006234, 61832017), the Fundamental Research
Funds for the Central Universities, and the Research Funds of Ren-
min University of China (23XNKJ13), Intelligent Social Governance
Interdisciplinary Platform, Major Innovation & Planning Interdis-
ciplinary Platform for the “Double-First Class” Initiative, Renmin
University of China, and Beijing Outstanding Young Scientist Pro-
gramNO. BJJWZYJH012019100020098. The workwas partially done
at Beijing Key Laboratory of Big Data Management and Analysis
Methods. This work was supported by Alibaba Group through
Alibaba Innovative Research Program.

KDD ’23, August 6–10, 2023, Long Beach, CA, USA Sirui Chen et al.

REFERENCES
[1] Irwan Bello, Sayali Kulkarni, Sagar Jain, Craig Boutilier, Ed Chi, Elad Eban,

Xiyang Luo, Alan Mackey, and Ofer Meshi. 2018. Seq2slate: Re-ranking and slate
optimization with rnns. arXiv preprint arXiv:1810.02019 (2018).

[2] John R Birge and Francois Louveaux. 2011. Introduction to stochastic programming.
Springer Science & Business Media.

[3] Fedor Borisyuk, Krishnaram Kenthapadi, David Stein, and Bo Zhao. 2016. CaS-
MoS: A framework for learning candidate selection models over structured
queries and documents. In Proceedings of the 22nd ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining. 441–450.

[4] Christopher JC Burges. 2010. From ranknet to lambdarank to lambdamart: An
overview. Learning 11, 23-581 (2010), 81.

[5] Jaime Carbonell and Jade Goldstein. 1998. The use of MMR, diversity-based
reranking for reordering documents and producing summaries. In Proceedings of
the 21st annual international ACM SIGIR conference on Research and development
in information retrieval. 335–336.

[6] Yoav Goldberg. 2017. Neural network methods for natural language processing.
Synthesis lectures on human language technologies 10, 1 (2017), 1–309.

[7] Yu Gong, Yu Zhu, Lu Duan, Qingwen Liu, Ziyu Guan, Fei Sun, Wenwu Ou, and
Kenny Q Zhu. 2019. Exact-k recommendation via maximal clique optimization.
In Proceedings of the 25th ACM SIGKDD international conference on knowledge
discovery & data mining. 617–626.

[8] Qi Hao, Tianze Luo, and Guangda Huzhang. 2021. Re-ranking with constraints
on diversified exposures for homepage recommender system. arXiv preprint
arXiv:2112.07621 (2021).

[9] Guangda Huzhang, Zhenjia Pang, Yongqing Gao, Yawen Liu, Weijie Shen, Wen-Ji
Zhou, Qing Da, Anxiang Zeng, Han Yu, Yang Yu, et al. 2021. AliExpress Learning-
To-Rank: Maximizing online model performance without going online. IEEE
Transactions on Knowledge and Data Engineering (2021).

[10] Dietmar Jannach. 2022. Multi-objective recommendation: Overview and chal-
lenges. In Proceedings of the 2nd Workshop on Multi-Objective Recommender
Systems co-located with 16th ACM Conference on Recommender Systems (RecSys
2022), Vol. 3268.

[11] Zhengbao Jiang, Ji-Rong Wen, Zhicheng Dou, Wayne Xin Zhao, Jian-Yun Nie,
and Ming Yue. 2017. Learning to diversify search results via subtopic attention.
In Proceedings of the 40th international ACM SIGIR Conference on Research and
Development in Information Retrieval. 545–554.

[12] Chen Karako and Putra Manggala. 2018. Using image fairness representations in
diversity-based re-ranking for recommendations. In Adjunct Publication of the
26th Conference on User Modeling, Adaptation and Personalization. 23–28.

[13] George Karypis, Eui-Hong Han, and Vipin Kumar. 2005. Item-based top-n rec-
ommendation algorithms. ACM Transactions on Information Systems (TOIS) 22, 1
(2005), 143–177.

[14] Yehuda Koren. 2009. Matrix factorization techniques for recommender systems.
Computer 42, 8 (2009), 30–37.

[15] Denis Kotkov, Shuaiqiang Wang, and Jari Veijalainen. 2016. A survey of serendip-
ity in recommender systems. Knowledge-Based Systems 111 (2016), 180–192.

[16] Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. 2015. Deep learning. nature
521, 7553 (2015), 436–444.

[17] Dingcheng Li, Xu Li, Jun Wang, and Ping Li. 2020. Video recommendation
with multi-gate mixture of experts soft actor critic. In Proceedings of the 43rd
International ACM SIGIR Conference on Research and Development in Information
Retrieval. 1553–1556.

[18] Xi Lin, Zhiyuan Yang, Qingfu Zhang, and Sam Kwong. 2020. Controllable pareto
multi-task learning. arXiv preprint arXiv:2010.06313 (2020).

[19] Xi Lin, Hui-Ling Zhen, Zhenhua Li, Qing-Fu Zhang, and Sam Kwong. 2019. Pareto
multi-task learning. Advances in neural information processing systems 32 (2019).

[20] Jiongnan Liu, Zhicheng Dou, Xiaojie Wang, Shuqi Lu, and Ji-Rong Wen. 2020.
DVGAN: a minimax game for search result diversification combining explicit and
implicit features. In Proceedings of the 43rd International ACM SIGIR Conference
on Research and Development in Information Retrieval. 479–488.

[21] Weiwen Liu, Yunjia Xi, Jiarui Qin, Fei Sun, Bo Chen, Weinan Zhang, Rui Zhang,
and Ruiming Tang. 2022. Neural Re-ranking in Multi-stage Recommender Sys-
tems: A Review. arXiv preprint arXiv:2202.06602 (2022).

[22] Mingsheng Long, Zhangjie Cao, Jianmin Wang, and Philip S Yu. 2017. Learn-
ing multiple tasks with multilinear relationship networks. Advances in neural
information processing systems 30 (2017).

[23] Debabrata Mahapatra and Vaibhav Rajan. 2020. Multi-task learning with user
preferences: Gradient descent with controlled ascent in pareto optimization. In
International Conference on Machine Learning. PMLR, 6597–6607.

[24] Mehdi Mirza and Simon Osindero. 2014. Conditional generative adversarial nets.
arXiv preprint arXiv:1411.1784 (2014).

[25] Ishan Misra, Abhinav Shrivastava, Abhinav Gupta, and Martial Hebert. 2016.
Cross-stitch networks formulti-task learning. In Proceedings of the IEEE conference
on computer vision and pattern recognition. 3994–4003.

[26] Aviv Navon, Aviv Shamsian, Gal Chechik, and Ethan Fetaya. 2020. Learning the

pareto front with hypernetworks. arXiv preprint arXiv:2010.04104 (2020).
[27] Harrie Oosterhuis. 2021. Computationally efficient optimization of plackett-luce

ranking models for relevance and fairness. In Proceedings of the 44th International
ACM SIGIR Conference on Research and Development in Information Retrieval.
1023–1032.

[28] Dripta S Raychaudhuri, Yumin Suh, Samuel Schulter, Xiang Yu, Masoud Faraki,
Amit K Roy-Chowdhury, and Manmohan Chandraker. 2022. Controllable Dy-
namic Multi-Task Architectures. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition. 10955–10964.

[29] Sebastian Ruder. 2017. An overview of multi-task learning in deep neural net-
works. arXiv preprint arXiv:1706.05098 (2017).

[30] John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov.
2017. Proximal policy optimization algorithms. arXiv preprint arXiv:1707.06347
(2017).

[31] Choon Hui Teo, Houssam Nassif, Daniel Hill, Sriram Srinivasan, Mitchell Good-
man, Vijai Mohan, and SVNVishwanathan. 2016. Adaptive, personalized diversity
for visual discovery. In Proceedings of the 10th ACM conference on recommender
systems. 35–38.

[32] Oriol Vinyals, Meire Fortunato, and Navdeep Jaitly. 2015. Pointer networks.
Advances in neural information processing systems 28 (2015).

[33] Fan Wang, Xiaomin Fang, Lihang Liu, Yaxue Chen, Jiucheng Tao, Zhiming Peng,
Cihang Jin, and Hao Tian. 2019. Sequential evaluation and generation framework
for combinatorial recommender system. arXiv preprint arXiv:1902.00245 (2019).

[34] Mark Wilhelm, Ajith Ramanathan, Alexander Bonomo, Sagar Jain, Ed H Chi, and
Jennifer Gillenwater. 2018. Practical diversified recommendations on youtube
with determinantal point processes. In Proceedings of the 27th ACM International
Conference on Information and Knowledge Management. 2165–2173.

[35] Long Xia, Jun Xu, Yanyan Lan, Jiafeng Guo, and Xueqi Cheng. 2016. Modeling
document novelty with neural tensor network for search result diversification.
In Proceedings of the 39th International ACM SIGIR conference on Research and
Development in Information Retrieval. 395–404.

[36] Long Xia, Jun Xu, Yanyan Lan, Jiafeng Guo, Wei Zeng, and Xueqi Cheng. 2017.
Adapting Markov decision process for search result diversification. In Proceedings
of the 40th International ACM SIGIR Conference on Research and Development in
Information Retrieval. 535–544.

[37] Ruobing Xie, Yanlei Liu, Shaoliang Zhang, Rui Wang, Feng Xia, and Leyu Lin.
2021. Personalized approximate pareto-efficient recommendation. In Proceedings
of the Web Conference 2021. 3839–3849.

[38] ChenXu, Sirui Chen, Jun Xu,Weiran Shen, Xiao Zhang, GangWang, and Zhenhua
Dong. 2023. P-MMF: Provider Max-min Fairness Re-ranking in Recommender
System. In Proceedings of the ACM Web Conference 2023. 3701–3711.

[39] Le Yan, Zhen Qin, Rama Kumar Pasumarthi, Xuanhui Wang, and Michael Bender-
sky. 2021. Diversification-aware learning to rank using distributed representation.
In Proceedings of the Web Conference 2021. 127–136.

[40] Yongxin Yang and Timothy Hospedales. 2016. Deep multi-task representation
learning: A tensor factorisation approach. arXiv preprint arXiv:1605.06391 (2016).

[41] Xinyang Yi, Ji Yang, Lichan Hong, Derek Zhiyuan Cheng, Lukasz Heldt, Aditee
Kumthekar, Zhe Zhao, Li Wei, and Ed Chi. 2019. Sampling-bias-corrected neural
modeling for large corpus item recommendations. In Proceedings of the 13th ACM
Conference on Recommender Systems. 269–277.

[42] Manzil Zaheer, Satwik Kottur, Siamak Ravanbakhsh, Barnabas Poczos, Russ R
Salakhutdinov, and Alexander J Smola. 2017. Deep sets. Advances in neural
information processing systems 30 (2017).

[43] Xiao Zhang, Sunhao Dai, Jun Xu, Zhenhua Dong, Quanyu Dai, and Ji-Rong Wen.
2022. Counteracting user attention bias in music streaming recommendation
via reward modification. In Proceedings of the 28th ACM SIGKDD Conference on
Knowledge Discovery and Data Mining. 2504–2514.

[44] Xiao Zhang, Haonan Jia, Hanjing Su, Wenhan Wang, Jun Xu, and Ji-Rong Wen.
2021. Counterfactual reward modification for streaming recommendation with
delayed feedback. In Proceedings of the 44th International ACM SIGIR Conference
on Research and Development in Information Retrieval. 41–50.

[45] Yu Zhang and Qiang Yang. 2021. A survey on multi-task learning. IEEE Transac-
tions on Knowledge and Data Engineering (2021).

[46] Zhe Zhao, Lichan Hong, Li Wei, Jilin Chen, Aniruddh Nath, Shawn Andrews,
Aditee Kumthekar, Maheswaran Sathiamoorthy, Xinyang Yi, and Ed Chi. 2019.
Recommending what video to watch next: a multitask ranking system. In Pro-
ceedings of the 13th ACM Conference on Recommender Systems. 43–51.

[47] Yong Zheng and David Xuejun Wang. 2022. A survey of recommender systems
with multi-objective optimization. Neurocomputing 474 (2022), 141–153.

[48] Ziwei Zhu, Jingu Kim, Trung Nguyen, Aish Fenton, and James Caverlee. 2021.
Fairness among new items in cold start recommender systems. In Proceedings
of the 44th International ACM SIGIR Conference on Research and Development in
Information Retrieval. 767–776.

[49] Tao Zhuang, Wenwu Ou, and Zhirong Wang. 2018. Globally optimized mutual
influence aware ranking in e-commerce search. arXiv preprint arXiv:1805.08524
(2018).

	Abstract
	1 Introduction
	2 Related Work
	3 Preliminary
	4 Our Proposal
	4.1 The CMR Framework
	4.2 The Proposed Re-ranking Model
	4.3 Business-Oriented Utilities
	4.4 Model Training

	5 Experiments
	5.1 Offline Experiments
	5.2 Online Experiments

	6 Conclusion
	Acknowledgments
	References

