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ABSTRACT
Discovering evolutionary traits that are heritable across species on
the tree of life (also referred to as a phylogenetic tree) is of great
interest to biologists to understand how organisms diversify and
evolve. However, the measurement of traits is often a subjective and
labor-intensive process, making trait discovery a highly label-scarce
problem. We present a novel approach for discovering evolutionary
traits directly from images without relying on trait labels. Our pro-
posed approach, Phylo-NN , encodes the image of an organism into
a sequence of quantized feature vectors–or codes–where different
segments of the sequence capture evolutionary signals at varying
ancestry levels in the phylogeny. We demonstrate the effectiveness
of our approach in producing biologically meaningful results in a
number of downstream tasks including species image generation
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and species-to-species image translation, using fish species as a
target example.1
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1The code and datasets for running all the analyses reported in this paper can be found
at https://github.com/elhamod/phylonn.
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1 INTRODUCTION
One of the grand challenges in biology is to find features of organisms–
or traits–that define groups of organisms, their genetic and develop-
mental underpinnings, and their interactions with environmental
selection pressures [18]. Traits can be physiological, morphological,
and/or behavioral (e.g., beak color, stripe pattern, and fin curva-
ture) and are integrated products of genes and the environment.
The analysis of traits is critical for predicting the effects of en-
vironmental change or genetic manipulation, and to understand
the process of evolution. For example, discovering traits that are
heritable across species on the tree of life (also referred to as the
phylogenetic tree), can serve as a starting point for linking traits to
underlying genetic factors. Traits with such genetic or phylogenetic
signal, termed evolutionary traits, are of great interest to biologists,
as the history of genetic ancestry captured by such traits can guide
our understanding of how organisms diversify and evolve. This
understanding enables tasks such as estimating the morphological
features of ancestors, understanding how species have responded
to environmental changes, and even predicting the potential fu-
ture course of trait changes [7, 30]. However, the measurement
of traits is not straightforward and often relies on subjective and
labor-intensive human expertise and definitions [43]. Hence, trait
discovery has remained a highly label-scarce problem, hindering
rapid scientific advancement [29].

With the recent availability of large-scale image repositories
containing millions of images of biological specimens [45, 48, 49],
there is a great opportunity for machine learning (ML) to contribute
to the problem of trait discovery [29]. In particular, advances in
deep learning have enabled us to extract useful information from
images and to map them to structured feature spaces where they
can be manipulated in a number of ways. We ask the question: how
can we develop deep learning models to discover novel evolutionary
traits automatically from images without using trait labels?

Despite the biological relevance of this question, answering it
is challenging for two main reasons. First, not all image features
extracted by a deep learning model for ML tasks such as image
reconstruction or species classification will exhibit evolutionary
signals. Hence, it is important to disentangle the image features of
an organism that preserve evolutionary information, from remain-
ing features influenced by unrelated factors [7]. Second, informa-
tion about evolutionary signals is not available as a set of known
attributes (or trait labels) but rather in the form of structured knowl-
edge of how species are related to each other in the phylogenetic
tree (see Figure 1). Without access to trait labels, current methods
for feature disentanglement in deep learning [5, 28] are unfit for
discovering evolutionary traits. Furthermore, current standards in
deep learning for generative modeling [14, 41] or interpretable ML
[4, 32] are unable to leverage structured forms of biological knowl-
edge (e.g., phylogenetic trees) in the learning of image features,
and hence are unable to analyze and manipulate learned features
in biologically meaningful ways.

We propose a novel approach for discovering evolutionary traits
automatically from images, termed phylogeny-guided neural net-
works (Phylo-NN ), which encodes the image of an organism into a
sequence of quantized feature vectors or “codes” (see Figure 1). A
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Figure 1: Phylo-NN converts images to discrete sequences of
features (called Imageomes) where different sequence seg-
ments (shown in distinct colors) capture evolutionary infor-
mation at varying ancestry levels of phylogeny (L1 to L4).

unique feature of the image-derived sequences learned by Phylo-
NN is that different segments of the sequence capture evolutionary
information at varying ancestry levels in the phylogeny, where
every level corresponds to a certain point of time in evolutionary
history. Analogous to how the genome of an organism encodes all
its genetic information and structures it as a set of genes, our image-
derived sequences encodes all of the visual information contained
in the organism’s image and structures it as a set of evolutionary
traits shared with ancestor nodes within its lineage (at different
levels of phylogeny). We thus refer to the image-derived sequences
of Phylo-NN as Imageomes, a brand-new concept in evolutionary
biology. By analyzing and manipulating the codes in the Imageomes
of organisms, we can perform a number of biologically meaningful
downstream tasks such as species image generation, species-to-
species image translation, and visualization of evolutionary traits.
We demonstrate the effectiveness of Phylo-NN in solving these
tasks using fish species as a target example.

Our work, for the first time, provides a bridge between the “lan-
guage of evolution” represented as phylogeny and the “language
of images” extracted by Phylo-NN as Imageomes. This work is
part of a larger-scale effort to establish a new field of research in
“Imageomics” [33], where images are used as the source of infor-
mation to accelerate biological understanding of traits, ranging
from their selective consequences to their causation. Our work
also provides a novel methodological advance in the emerging field
of knowledge-guided machine learning (KGML) [20–22] by using
tree-based knowledge to structure the embedding space of neural
networks and produce scientifically meaningful image generation
and translation results.

2 BACKGROUND AND RELATEDWORK
What is a Phylogenetic Tree? A phylogenetic tree visually char-
acterizes the evolutionary distances among a set of species and their
common ancestors represented as nodes of the tree. In this tree,
the length of every edge is a value that represents the evolutionary
distance between two nodes (measured in time intervals represent-
ing thousands or millions of years), which is estimated from living
species and time-calibrated ages using dated fossil ancestors or
molecular methods. While rates of change along different edges
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may vary substantially, on average we expect that longer edges will
accumulate higher levels of evolutionary trait change than shorter
edges. In our work, we consider discretized versions of the phyloge-
netic tree with nl = 4 ancestry levels, such that every species class
(leaf node in the tree) has exactly nl − 1 ancestors. Every ancestry
level corresponds to a certain point of time in evolutionary history.
See Appendix B for details on phylogeny preprocessing.
Generative Modeling for Images: There exists a large body of
work in deep learning for image generation, including methods
based on Variational Autoencoders (VAEs) [26], Generative Ad-
versarial Networks (GANs) [16, 23–25, 41], Transformer networks
[11, 17], and Diffusion models [8]. While some recent advances in
this field (e.g., DALL-E 2) have been shown to produce images with
very high visual quality, they involve large and complex embedding
spaces that are difficult to structure and analyze using tree-based
knowledge (e.g., phylogeny). Instead, we build upon a recent line
of work in generative modeling using vector-quantized feature
representations of images [14, 34] that are easier to manipulate
than continuous features. In particular, a recent variant of the VAE,
termed Vector-Quantized VAE (VQVAE) [34], uses discrete feature
spaces quantized using a learned codebook of feature vectors and
employs a PixelCNN [46] model for sampling in the discrete feature
space. This work was extended in [14] to produce VQGAN, which is
different from VQVAE in two aspects. First, it adds a discriminator
to its framework to improve the quality of the generated images.
Second, it uses a Transformer model, namely the GPT architecture
[39], to generate images from the quantized feature space instead
of a PixelCNN. VQGAN is a state-of-the-art method that gener-
ates images of better quality efficiently at higher resolutions than
other counterparts such as StyleGAN [23] and Vision Transform-
ers [11, 17]. Our work draws inspiration from VQGAN to embed
images in discrete feature spaces (analogous to the discrete nature
of symbols used in genome sequences) but with the grounding of
biological knowledge available as phylogenetic trees.
Interpretable ML: There is a growing trend in the ML community
to focus on the interpretability of deep learning features [12]. Some
of the earliest works in this direction include the use of saliency
scores [44] and Class Activation Maps (CAMs) [42] that reveal
sensitive regions of an image influencing classification decisions.
However, these methods are known to be noisy and often imprecise
[1]. Recent work includes the ProtoPNet model [4], which first
learns a set of template image patches (or prototypes) for each class
during training, and then uses those templates to both predict and
explain the class label of a test image. These methods suffer from
two drawbacks. First, they do not allow for structured knowledge
to guide the learning of interpretable features and hence are not
designed to produce results that are biologically meaningful. Second,
they are mostly developed for classification problems and cannot
be directly applied to image generation or translation problems.
Disentangling ML Features: Another related line of research
involves disentangling the feature space of deep learning models
to align the disentangled features with target “concepts.” This in-
cludes the approach of “Concept whitening” (CW) [5], where the
latent space of a classification model is whitened (i.e., normalized
and decorrelated) such that the features along every axis of the
latent space corresponds to a separate class. Another approach in
this area is that of Latent Space Factorization (LSF) [28], where
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Figure 2: Overview of proposed Phylo-NN model architecture.

the latent space of an autoencoder is linearly transformed using
matrix subspace projections to partition it into features aligned
with target concepts (or attributes) and features that do not capture
attribute information. Note that our proposed Phylo-NN model can
also be viewed as a latent space disentanglement technique, where
the disentangled segments of the learned Imageome correspond to
different ancestry levels of the phylogeny. We thus use CW and
LSF as baselines in our experiments to test if it is possible to dis-
cover evolutionary traits just by disentangling the latent space
using species classes as orthogonal concepts, without using the
structured knowledge of how species are related to one another in
the phylogeny.
Knowledge-Guided ML: KGML is an emerging area of research
that aims to integrate scientific knowledge in the design and learn-
ing of ML models to produce generalizable and scientifically valid
solutions [22]. Some examples of previous research in KGML in-
clude modifying the architecture of deep learning models to capture
known forms of symmetries and invariances [2, 51], and adding
loss functions that constrain the model outputs to be scientifically
consistent even on unlabeled data [9, 40]. In biology, KGML meth-
ods have been developed for species classification that leverage the
knowledge of taxonomic grouping of species [10, 13]. KGML meth-
ods have also been developed for generative modeling of images
using domain knowledge available as knowledge graphs or ontolo-
gies [15, 37]. In contrast to these prior works, we focus on struc-
turing the embedding space of neural networks using tree-based
knowledge (i.e., phylogeny) to enable the discovery and analysis of
novel evolutionary traits automatically from images.

3 PROPOSED APPROACH: PHYLO-NN
We consider the problem of discovering novel (or “unknown”) evo-
lutionary traits automatically from images without using any trait
labels or knowledge of how the unknown traits correspond to
known concepts in a knowledge graph or ontology. We only use
the “distant” supervision of how these unknown traits have evolved
over time and are shared across species, available in the form of the
phylogenetic tree. Figure 2 provides an overview of our proposed
Phylo-NN model. Our method can operate on the latent space of
any backbone encoder model E that takes in images as input and
produces continuous feature maps x as output. There are three com-
puting blocks in Phylo-NN as shown in Figure 2. The first block,
Phylo-Encoder (PE), takes continuous feature maps x as input and
generates quantized feature sequences (or Imageomes) as output.
Imageome sequences z𝑄 comprise of two disentangled segments:
zQp , which captures phylogenetic information (p) at varying ances-
try levels, and zQnp, which captures non-phylogenetic information
(np) that is still important for image reconstruction but is unrelated
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Figure 3: Detailed view of the Phylo-Encoder block.

to the phylogeny. The second block, Phylo-Decoder (PD), maps the
Imageome sequences back to the space of feature maps x̂, such that
x̂ is a good reconstruction of x. We then feed x̂ into a backbone
decoder model D that reconstructs the original image. Note that
in the training of PE and PD models, both the backbone models E
and D are kept frozen, thus requiring low training time. Phylo-NN
can thus be plugged into the latent space of any powerful encoder-
decoder framework. The third block of Phylo-NN is a transformer
model T that takes in the species class variable as input, and gener-
ates a distribution of plausible Imageome sequences corresponding
to the class as output. These sequences can be fed to the PD model
to generate a distribution of synthetic images. In the following, we
provide details on each of the three blocks of Phylo-NN .

3.1 Phylo-Encoder (PE) Block
Figure 3 shows the sequence of operations that we perform inside
the PE block. We first apply a convolutional layer on x to produce
feature maps of size (H×W×C), where C is the number of channels.
We split these C feature maps into two sets. The first Cp maps are
fed into an MLP layer to learn a global set of feature vectors zp
capturing phylogenetic information. The size of zp is kept equal to
(nlnp × d), where nl is the number of phylogeny levels, np is the
number of feature vectors we intend to learn at every phylogeny
level, and d is the dimensionality of feature vectors. Similarly, the
remaining C − Cp maps are fed into an MLP layer to produce a set
of feature vectors znp capturing non-phylogenetic information of
size (nnp × d).
Vector Quantization: Both zp and znp are converted to quantized
sequences of feature vectors, zQp and zQnp, respectively, using the
approach developed in VQVAE [34]. The basic idea of this quanti-
zation approach is to learn a set (or codebook) of nq distinct feature
vectors (or codes), such that every feature vector in zp and znp is re-
placed by its nearest counterpart in the codebook. This is achieved
by minimizing the quantization loss, Lq = |z − z𝑄 |. The advantage
of working with quantized vectors is that every feature vector in
zQp and zQnp can be referenced just by its location (or index) in the
codebook. This allows for faster feature manipulations in the space
of discrete code positions than continuous feature vectors.
Using phylogenetic knowledge in zQp : Here, we describe our
approach to ensure that the quantized feature sequence zQp contains
phylogenetic information. Note that zQp contains nl sub-sequences
of length np, where every sub-sequence corresponds to a different
ancestry level in the phylogeny. While the first sub-sequence 𝑆1

should ideally capture information contained in x that is necessary
for identifying ancestor nodes at level 1 of the phylogeny, 𝑆2 should
contain additional information that when combined with 𝑆1 is suffi-
cient to identify the correct ancestor node of x at level 2. In general,
we define the concept of a Phylo-descriptor 𝐷𝑖 = {𝑆1, 𝑆2, . . . , 𝑆𝑖 } of
x that contains the necessary information for identifying nodes
at level 𝑖 (see Figure 3). We feed 𝐷𝑖 to an MLP layer that predicts
the class probabilities of nodes at level 𝑖 , which are then matched
with the correct node class of x at level i, 𝑐𝑖 (x), by minimizing the
following phylogeny-guided loss, Lp:

Lp =

nl∑︁
𝑖=0

𝛽𝑖CE(MLP𝑖 (𝐷𝑖 (x)), 𝑐𝑖 (x)), (1)

where CE is the cross-entropy loss and 𝛽𝑖 is the weighting hyper-
parameter for level 𝑖 .
Disentangling zQp and zQnp:While minimizing Lp guides the learn-
ing of zQp to contain phylogenetic information, we still need a way
to ensure that zQnp focuses on complementary features and does not
contain phylogenetic information. To achieve this, we first apply
an orthogonal convolution loss Lo (originally proposed in [50]) to
the convolutional layer of Phylo-Encoder, to constrain the C convo-
lutional kernels to be orthogonal to each other. To further ensure
that zQnp has no phylogenetic information, we also employ an ad-
versarial training procedure to incrementally remove phylogenetic
information from zQnp. In particular, we apply an MLP layerMLPadv
on zQnp, and then train the parameters of MLPadv to minimize the
following adversarial loss:

Ladv =

nl∑︁
𝑖=0

𝛽𝑖CE(MLP𝑖 (MLPadv (z
Q
np (x))), 𝑐𝑖 (x)), (2)

This is aimed at training MLPadv to detect any phylogenetic in-
formation contained in zQnp. Simultaneously, we train the rest of
Phylo-NN ’s parameters to maximize Ladv, such that zQnp becomes
irrelevant for the task of identifying nodes in the phylogeny and
only contains non-phylogenetic information.

4 PHYLO-DECODER (PD) BLOCK
The goal of the PD block is to convert the space of Imageome
sequences, z𝑄 = {zQp , z

Q
np}, back to the space of original feature

maps, x. The sequence of operations in PD is almost a mirror image
of those used in PE. We first pass zQp and zQnp through two MLPs,
and then concatenate their outputs to create feature maps of size
(H ×W × C). These feature maps are then fed into a convolutional
layer to produce x̂. Minimizing the reconstruction loss, Lrec = |x̂−x|,
ensures that x̂ is a good approximation of x. Finally, PE and PD
are jointly trained using a weighted summation of all the losses
mentioned above.

4.1 Transformer (T) Block
Once PE and PD are trained, we can extract Imageome sequences
z𝑄 for every image in the training set. The goal of the Transformer
block is to learn the patterns of codes in the extracted Imageome
sequences of different classes (e.g., species class or ancestor node
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class), and use these patterns to generate synthetic Imageome se-
quences for every class. To achieve this task, we follow the approach
used by VQGAN [14] and train a GPT transformer model [39] T 𝑖
to generate plausible sequences of z𝑄 for every node class at level
𝑖 . The generated Imageome sequences can then be converted into
synthesized specimen images using PD and D.

5 EVALUATION SETUP
5.1 Data
We used a curated dataset of teleost fish images from five ichthy-
ological research collections that participated in the Great Lakes
Invasives Network Project (GLIN). After obtaining the raw images
from these collections, we handpicked a subset of about 11, 000 im-
ages and pre-processed them by resizing and appropriately padding
each image to be of a 256 × 256 pixel resolution. Finally, we parti-
tioned the images into a training set and a validation set using an
80 − 20 split. See Appendix A for details on data pre-processing.

Our dataset includes images from 38 species of teleost fishes
with an average number of 200 images per species. We discretized
the phylogenetic tree to have nl = 4 ancestry levels, where the last
level is the species class. See Appendix B for details on phylogeny
selection and discretization.

5.2 Backbone Encoder and Decoder
Since Phylo-NN can operate on the feature space x of any back-
bone encoder E and produce reconstructed feature maps x̂ that can
be decoded back to images by a corresponding backbone decoder
D, we tried different encoder-decoder choices including pix2pix
[19], ALAE [35], and StyleGAN [25]. However, we found VQGAN
[14] feature maps to produce images of better visual quality than
other encoder-decoder models. Hence, we used the embeddings of
a base VQGAN encoder E as inputs in Phylo-NN for all our experi-
ments. The reconstructed feature maps of Phylo-NN were then fed
into a base VQGAN quantizer serving as the backbone decoder D.
Note that while training Phylo-NN , we kept the parameters of the
backbone models fixed, thus saving training time and resources.

5.3 Baseline Methods
Since no direct baselines exist for structuring the embedding space
of neural networks using tree-based knowledge or discovering
novel evolutionary traits from images, we considered the following
baselines that are closest in motivation to Phylo-NN :
Vanilla VQGAN [14]: The first baseline that we consider is a
vanilla VQGAN model trained to generate and reconstruct images
on the fish dataset. By comparing the learned embeddings and
generated images of Phylo-NN with vanilla VQGAN, we aim to
demonstrate the importance of using biological knowledge to struc-
ture the embedding space of neural networks for trait discovery,
rather than solely relying on information contained in data.
Concept whitening (CW) [5]: For this second baseline, we re-
placed the last normalization layer in the encoder block of vanilla
VQGAN with the concept whitening (CW) module, where we used
species class labels as concept definitions. This is intended to eval-
uate if CW is capable of disentangling the evolutionary traits of
species automatically from images without using the phylogeny.
The whitened embeddings zcw produced by the CW module are

fed into the quantizer module of vanilla VQGAN for converting the
embeddings to images. While training the CW module, we opti-
mized the whitening and rotation matrices for all concepts every 30
batches. We used the VQGAN’s transformer to generate plausible
feature sequences zcw conditioned on the species label, which are
then decoded into specimen images using the VQGAN’s decoder.
Latent Space Factorization (LSF) [28]: The third baseline that
we considered is the LSF method, which is another approach for
feature disentanglement given concept attribute labels. Specifically,
we introduced a variational autoencoder (VAE) model between
the encoder and the quantization layer of the base VQGAN model.
Similar to CW, we used the species class of each image as the
concept attribute for factorizing the latent space in LSF. The LSF
module was trained to optimize VAE’s KL-divergence loss and
recreation loss along with the attribute and non-attribute losses, as
originally defined in the LSF method [28].

6 RESULTS
In the following, we analyze the results of Phylo-NN from multiple
angles to assess the quality of its learned embeddings and generated
images in comparison with baseline methods.

6.1 Validating Species Distances in the
Embedding Space

In order to evaluate the ability of Phylo-NN to extract novel (or un-
known) evolutionary traits from images without using trait labels,
we show that distances between species pairs in the embedding
space of Phylo-NN are biologically meaningful and are correlated
with ground-truth values better than baseline methods. In the fol-
lowing, we describe the two types of ground-truths used, the ap-
proach used for computing distances in the embedding space of
comparative methods, and the comparison of correlations with
ground-truth values.
Phylogenetic Ground-truth (GT): The first ground-truth dis-
tance between pairs of species is the evolutionary distance between
their corresponding nodes in the phylogenetic tree. In particular,
for any two species, we can calculate the total sum of edge lengths
in the path between their nodes in the phylogenetic tree. The longer
the path, the more distant the species are on the evolutionary scale.
Hence, if Phylo-NN indeed captures evolutionary traits in its em-
bedding space, we would expect it to show higher correlations with
evolutionary distances computed from the phylogeny as compared
to baselines. We applied min-max scaling of evolutionary distances
so that they range from 0 to 1.
Morphological Ground-truth (GT): Another type of ground-
truth distance between species was computed based on measure-
ments of known morphological traits obtained from the FishShapes
v1.0 dataset [36], which contains expert-measured traits known to
carry evolutionary signals, defined and collected using traditional
methods that are subjective and labor-intensive. We specifically
used 8 functionally relevant traits from this dataset for every fish
species. Some species were not available in this dataset, so when
possible, either the closest relative was substituted or the species
was dropped. The species were then matched to a time-calibrated
phylogeny of fishes [3, 38] and the log-transformed measurements
were rotated with phylogenetically-aligned components analysis
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(PACA) [7], which rotates the traits to the axis with the highest
level of phylogenetic signal. After correcting for overall size and
allometry, the principal components of PACA were used to com-
pute the Mahalonobis distance between every species-pair, using
a covariance matrix proportional to the evolutionary rate matrix.
See Appendix D for details on PACA calculations.
Computing Embedding Distances: To compute pair-wise dis-
tances in the embedding space of Phylo-NN , we first compute the
probability distributions (or histograms) of quantized codes at ev-
ery position of the Imageome sequence (i.e., zQp and zQnp) in the test
images for every species. We then compute the Jensen-Shannon (JS)
divergence [31] between the probability distributions of codes at a
pair of species to measure the dissimilarity of their learned embed-
dings. We adopt a similar approach for computing the JS-divergence
of species-pairs in the quantized feature space of vanilla VQGAN.
For baseline methods that operate in continuous feature spaces
(CW and LSF), we first calculate the mean feature vector for every
species and then compute the cosine distance (1 − cosine similarity)
of vectors for a pair of species. For both metrics, JS-divergence and
cosine distance, a value closer to 0 represents higher similarity.
Comparing Correlations with Ground Truth: Figure 4(a) and
Figure 4(b) show the pair-wise species distance matrices for mor-
phological and phylogenetic GTs, respectively. Note that the rows
and columns of all matrices in Figure 4 are species ordered ac-
cording to their position in the phylogeny (see Appendix B for
details) and the diagonal values (correlation with self) are removed
so that they do not affect the colormap scale. We can see that both
ground-truths show a similar clustering structure of species. How-
ever, there are differences too; while phylogenetic GT is solely based
on phylogeny, the morphological GT uses both the phylogeny and
information about “known” traits. Figure 4(c) and Figure 4(d) show
the JS-divergences among species computed separately for the two
disentangled parts of PhyloNN’s embeddings (zQp and zQnp). We can
see that the embeddings containing phylogenetic information show
a similar clustering structure of distances as the GTmatrices, in con-
trast to the non-phylogenetic embeddings. This shows the ability of
Phylo-NN to disentangle features related to phylogeny from other
unrelated features. Figure 4 also shows the embedding distance
matrices of the baseline methods, which are not as visually clean
as Phylo-NN in terms of matching with the GT matrices.

To quantitatively evaluate the ability of Phylo-NN to match with
GT distances, we compute the Spearman correlation between the
GT distance matrices and embedding distance matrices for different
methods as shown in Table 1. We can see that Phylo-NN shows
higher correlations at the species level with both GTs. Furthermore,
since Phylo-NN learns a different descriptor for every ancestry level
in contrast to baseline methods that learn a flat representation, we
can also compute Phylo-NN ’s distance matrix at any ancestry level
and compare it with GT matrices at the same level. Table 1 shows
that Phylo-NN shows significantly higher correlations with GT
matrices at higher ancestry levels than the species level.

6.2 Evaluating Species-to-species Image
Translations

To further assess how well Phylo-NN ’s embeddings capture evolu-
tionary traits, we investigate how altering the learned Imageome

(a) Morphological ground truth (b) Phylogenetic ground truth

(c) JS-divergence for Phylo-NN ’s
phylogenetic embedding

(d) JS-divergence for Phylo-NN ’s
non-phylogenetic embedding

(e) Cosine distance for CW’s [5]
embedding

(f) Cosine distance for LSF’s [28]
embedding

(g) JS-divergence for Vanilla VQ-
GAN’s [14] embedding

Figure 4: Comparing embedding distance matrices of meth-
ods with morphological and phylogenetic ground-truths.

sequence of an image specimen incrementally in a phylogenetically
meaningful ordering affects the observed traits when the altered
embeddings are decoded back as an image. To do that, we set up
the following experiment. We pick two specimen images from a
pair of species. By encoding the two images using Phylo-NN , we
obtain their corresponding Imageome encodings, z𝑄1 and z𝑄2 . We
then start to replace the codes in the Imageome sequence z𝑄1 with
the corresponding codes in z𝑄2 iteratively, until z𝑄1 transforms com-
pletely into z𝑄2 . The order of this iterative replacement is by first
replacing the codes representing the non-phylogenetic part of the
embedding zQnp1, then the part capturing evolutionary information
at the earliest ancestry level (level 0), to the next ancestry level
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Table 1: Correlations between GT and embedding distances

Morphological Phylogenetic

PhyloNN

level0 0.86 0.83
level1 0.87 0.85
level2 0.78 0.83
species 0.70 0.78

LSF 0.38 0.55
CW 0.70 0.67
vanilla VQGAN 0.31 0.24

(level 1), till we eventually reach the last level of the phylogeny,
which is the species level. At the final point, the entire Imageome
sequence z𝑄1 has been replaced with z𝑄2 . This phylogeny-driven
ordering of code replacements helps us capture key “snapshots”
of the species-to-species translation process that are biologically
meaningful. In particular, by observing the traits that appear or
disappear at every ancestry level of code replacement, we can infer
and generate novel hypotheses about the biological timing of trait
changes as they may have happened in evolutionary history.

Figure 5 shows an example of such a translation process between
a specimen of the species Carassius auratus to a specimen of the
species Lepomis cyanellus. We can see that although the two spec-
imens look similar on the surface, there are several subtle traits
that are different in the two species that are biologically interesting.
For example, the source species has a V-shaped tail fin (termed
caudal fin), while the target species has a rounded caudal fin. By
looking at their place of occurrence in the translation process of
Phylo-NN , we can generate novel biological hypotheses of whether
they are driven by phylogeny or not, and whether they appeared
earlier or later in the target species in the course of evolution. For
example, we can see that the rounded tail feature of the target
species appears right after replacing the non-phylogenetic part of
the embedding (see blue circle), indicating that this feature may
not be capturing evolutionary signals and instead maybe affected
by unrelated factors (e.g., environment). On the other hand, if we
observe another fin (termed pectoral fin) that appears on the side
of the body just behind the gill cover, compared to the fin’s lower
position closer to the underside of the specimen in the source image,
we can see that it seems to get sharper and compact only in the
later levels (it is faintly visible in level 1 but shows up prominently
as a white region in level 2, see green circle). This suggests that the
change in the position and shape of the pectoral fin occurred later
in fish evolution, which is supported by the phylogeny and is in
fact the case. Our work opens novel opportunities for generating
such biological hypotheses, which can be further investigated by
biologists to potentially accelerate scientific discoveries. Figure 5
also shows the translations obtained by baseline methods for the
same pair of species specimens. We can see that the baselines are
mostly performing a smooth interpolation between the source and
target images. This is in contrast to the discrete and non-smooth
nature of changes observed in the translation of Phylo-NN , which is
indeed the desired behavior since the appearance or disappearance
of traits at every ancestry level are expected to be orthogonal to

those at other levels. Furthermore, the transition points in the trans-
lation process of baseline methods do not correspond to biologically
meaningful events as opposed to Phylo-NN .

6.3 Generalization to Unseen Species
As Phylo-NN aims to encode specimen images into their corre-
sponding phylogenetic and non-phylogenetic sequences of codes,
we expect specimens that belong to the same species to largely
share the same phylogenetic code in terms of the species descriptor
𝐷nl , while varying in terms of the non-phylogenetic codes. More
generally, specimens belonging to species sharing a common an-
cestor at phylogenetic level 𝑖 should largely share the codes with
the descriptor at level 𝑖 , 𝐷𝑖 , while varying at the rest of codes. This
should also apply for specimens of unseen (or newly discovered)
species that we have not yet observed in the training set. We posit
that by looking at the similarity of codes generated for an unseen
species, we should be able to infer its ancestral lineage in terms of
the species sampled during training. In other words, by analyzing
the distribution of codes generated from the image of an unseen
species, we should be able to locate it on the phylogenetic tree
and position it to next to the subset of known species (seen during
training) that share a common ancestor.

To quantify this phenomenon, for a given species or ancestor
node, we construct two sets of histograms, Hp and Hnp, of sizes
[nl×np] and [nnp], respectively. Each value in the histograms,Hp𝑖, 𝑗

and Hnp𝑘 , describes the distribution of codes at a certain location
in the Imageomes across all specimens belonging to the species or
ancestor node. See Appendix F for an example. We then compute
the entropy of each sequence location in Hp and Hnp to measure
the “purity” of codes used at every location. If the entropy is low
for a certain location, it means only a few possible codes occur
at that location, suggesting that those specific codes are key at
characterizing the species or ancestor node in question. On the
other hand, higher entropy means a variety of codes occur at that
location, implying that such a location is not discriminative to the
species or ancestor node. Finally, to compare the code distributions
for two species, we use the JS-divergence metric for calculating the
difference between two histograms of a sequence location. Similar
to Section 6.1, such a metric can be aggregated to quantify the
coding differences between species-pairs.

To assess Phylo-NN ’s ability to generalize to unseen species, we
train it on a subset of the species and then evaluate the quality
of the embedding space when the model is introduced to species
it has never seen before during training. In our experiment, we
chose to train on the same dataset as before while only excluding
three species. Once the model is trained, we look at the average
JS-divergence distance between these missing species and three
other species in the tree. These three other species were selected
such that each missing species has one seen species that is close to
it phylogenetically (i.e., both species share the same ancestor at the
immediate ancestry level) while others are relatively far from it.

Table 2 shows the average distance of the phylogenetic codes
among the six aforementioned species. We can see that the distance
is smallest for each unseen species and its counterpart that shares
the same immediate ancestor (shown as the diagonal in the table).
This confirms that even though the model has not seen the former
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(a) Phylo-NN

(b) Vanilla VQGAN / CW

(c) LSF

Figure 5: Comparing species-to-species image translations from a Carassius auratus specimen to a Lepomis cyanellus specimen.

species, it was able to characterize it using an Imageome sequence
that is significantly closer to that of its seen counterpart than the
other species’ Imageomes.

While Table 2 highlights the phylogenetic matching in the em-
bedding space at the species descriptor level, 𝐷nl , Table 3 does
the same but for the descriptor at a distant ancestry level (level
0), i.e., 𝐷0. Based on the phylogenetic tree we have used in this
example, both the Notropis and Noturus species share the same
distant ancestor at that descriptor level. On the other hand, Lep-
omis species does not share that ancestor. Hence, we find that the
JS-divergences increase for the Lepomis unseen species with seen
species that are not Lepomis as compared to Table 2. On the other
hand, the JS-divergences decrease for the other two unseen species
w.r.t. seen species that are on the off-diagonals of the table. This
confirms that𝐷0 specifically captures the phylogenetic information
of that distant ancestor that is common across Notropis and Noturus
seen and unseen species. Finally, to confirm that this phylogenetic
correlation is mainly constrained only to the phylo-descriptors, we
calculate the same distances but using the non-phylogenetic part
of the sequences. The result is shown in Table 4. We can see that
the distances are much closer to each other, implying that the non-
phylogenetic embedding is not specialized at differentiating among
different species, and hence cannot be used to phylogenetically
categorize the unseen species.

6.4 Assessing the Clustering Quality of the
Embedding Space Using t-SNE Plots

In this section, we qualitatively assess the quality of generated
images by visualizing their embedding space. Visualization tools
such as loss landscape visualizations [27] and t-SNE plots [47], have

Table 2: JS-diveregence of the phylogenetic codes at the
species level between unseen and seen species

Seen species

Notropis
nubilus

Lepomis
macrochirus

Noturus
flavus

U
ns
ee
n
sp
ec
ie
s Notropis perco-

bromus
0.47 0.71 0.62

Lepomis mega-
lotis

0.73 0.43 0.72

Noturus miu-
rus

0.62 0.71 0.48

Table 3: JS-diveregence of the phylogenetic codes at the earli-
est ancestral level between unseen and seen species

Seen species

Notropis
nubilus

Lepomis
macrochirus

Noturus
flavus

U
ns
ee
n
sp
ec
ie
s Notropis perco-

bromus
0.26 0.81 0.50

Lepomis mega-
lotis

0.81 0.27 0.81

Noturus miu-
rus

0.52 0.80 0.31
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Table 4: JS-diveregence of the non-phylogenetic codes be-
tween unseen and seen species

Seen species

Notropis
nubilus

Lepomis
macrochirus

Noturus
flavus

U
ns
e e
n
sp
ec
ie
s Notropis perco-

bromus
0.39 0.45 0.39

Lepomis mega-
lotis

0.46 0.36 0.48

Noturus miu-
rus

0.40 0.42 0.36

been frequently used as investigative tools in deep learning in recent
years as they help gauge a model’s generalization power. To that
end, we are interested in understanding how Phylo-NN clusters the
embedding space compared to other baselines by analyzing these
models’ t-SNE plots. To construct the t-SNE plot for each model,
we iterate through its generated images, encode them, obtain the
quantized embedding vector for each image (zQp and z𝑄 for Phylo-
NN and vanilla VQGAN, respectively), and finally create the t-SNE
plots. For CW, we use the whitened embeddings zcw instead.

Figure 6 shows these constructed t-SNE plots with two different
color-coding schemes. The first one (left column) color-codes the
data-points based on the grouping of species at the second phyloge-
netic level (i.e., the direct ancestor of the specimen’s species). Using
this color-coding scheme allows us to inspect how different species
cluster in the embedding space. The second color-coding (right col-
umn) is the average phylogenetic distance between the data-point
and its 𝑘-nearest neighbors (KNN), where 𝑘 = 5 in this setup. The
higher the average distance (i.e., the darker the data-point’s color),
the more distant the specimen is from those 𝑘 specimen’s that are
closest to it in the quantized embedding space. This color-coding
helps us spot how well the different species are separated from each
other in the embedding space, which generally characterizes the
quality of the encoding and its propensity for downstream tasks,
such as classification.

From Figure 6, we can see that Phylo-NN (top row) clusters the
generated images better than vanilla VQGAN and CW as evident
from its hierarchical clustering where the specimens belonging to
the same species clump into small clusters and these clusters in
turn clump into larger clusters (representing ancestor nodes) that
have a singular color. This demonstrates that Phylo-NN is able to
learn a phylogenetically-meaningful encoding, whereas the other
base models’ clustering is quite fuzzy and poorly characterizes any
biological knowledge. Also, by looking at the right column, we can
see that Phylo-NN commits very little clustering error in terms
of its phylogenetic constraints because the average phylogenetic
distance is low (almost zero) for the majority of points. This is in
contrast to the other baselines where there is quite a high clustering
error as seen from the “heat” of its scatter plot.

7 CONCLUSIONS AND FUTUREWORK
In this work, we presented a novel approach of Phylo-NN for dis-
covering biological traits related to evolution automatically from

(a) Phylo-NN

(b) Vanilla VQGAN

(c) CW

Figure 6: t-SNE plots of the images generated by Phylo-NN
and other baselines.

images in an unsupervised manner without requiring any trait la-
bels. The key novelty of our approach is to leverage the biological
knowledge of phylogeny to structure the quantized embedding
space of Phylo-NN , where different parts of the embedding capture
phylogenetic information at different ancestry levels of the phy-
logeny. This enables our method to perform a variety of tasks in a
biologically meaningful way such as species-to-species image trans-
lation and identifying the ancestral lineage of newly discovered
unseen species.

In the future, our work can be extended to include a larger num-
ber of embedding dimensions to improve the visual quality of gen-
erated images and can be applied to other image datasets beyond
the fish dataset. Future work can explore extensions of Phylo-NN to
generate images of ancestor species or to predict images of species
that are yet to be evolved. Future work can also focus on making the
discovered Imageome sequences more explainable by understand-
ing the correspondence of each quantized code with a region in the
image space. Our work opens a novel area of research in grounding
image representations using tree-based knowledge, which can lead
to new research paradigms in other fields of science where images
are abundant but labels are scarce.
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Figure 7: Ancestors at different levels of phylogeny

A DATASET
As mentioned in Section 5.1, the images we use in this work come
from a 38-species semi-balanced subset of a larger collection that
participated in the Great Lakes Invasives Network Project (GLIN).
After further splitting this subset into training and test sets, we
apply some pre-processing that is necessary for the neural net-
work to yield best results. This pre-processing includes padding
the images with the ImageNet mean RGB color. We also use data
augmentation when training the base VQGANmodel. This includes
random horizontal flips, spatial shifts and rotations, and brightness
and contrast changes.

B PHYLOGENY PREPROCESSING
As mentioned in Section 2, we use a phylogenetic tree to character-
ize the evolutionary distances between the species in our dataset.
The phylogeny corresponding to the dataset described in Section 5.1
was obtained using opentree (https://opentree.readthedocs.io/en/
latest/) python package. Phylogeny processing and manipulation
were done using ete3 (http://etetoolkit.org/) python package.

In our application, we quantize our 38-species tree into nl = 4
distinct phylogenetic levels. Each level groups the 38 species based
on their common ancestry within that level. Figure 7 outlines each
level with its corresponding species groupings.

C HYPER-PARAMETER SELECTION
In terms of hyper-parameter tuning, we used the following settings
for each of the trained models:
Vanilla VQGAN:We trained a VQGAN with a codebook of 1024
possible codes and an embedding sequence of 256 codes. We trained

the model for 836 epochs with a learning rate of 4.5 × 10−6. We
used this VQGAN as the base model for the rest of the models. A
batch size of 32 was used.
Phylo-NN Taking the base VQGAN model described above, we
trained a Phylo-NN that has zQp of dimensions (nl = 4, np = 8).
zQnp also has the same dimensionality. The dimensionality of the
embedding itself is d = 16 , and the size of the codebook nq = 64. A
batch size of 32 was used.
Concept Whitening (CW) Taking the base VQGAN model de-
scribed above, we trained CW for 20 epochs using the same hyper-
parameters as Vanilla VQGAN. We used a batch size of 20 for the
concepts.
Latent Space Factorization (LSF): With the base VQGAN model
described above, a variational autoencoder was introduced between
the base encoder and the quantization layer. The model was trained
for 200 epochs with a learning rate of 1 × 10−4. We used an embed-
ding dimension of 1024 for the variational autoencoder.

D DETAILS OF MORPHOLOGICAL DISTANCE
PROCESSING

The 8 functionally relevant traits that we used from the FishShapes
dataset include: standard length, maximum body depth, maximum
fish width, lower jaw length, mouth width, head depth, minimum
caudal peduncle depth, andminimum caudal peduncle. Some species
were not available in the FishShapes dataset, so when possible, the
closest relative was substituted. (Notropis percobromus was replaced
with Notropis rubellus, and Carassius auratus was replaced with
Carassius carassius). Also, two species of Lepisosteus had no close
relatives and were thus removed fro the Spearman correlation anal-
ysis. To correct for overall size and allometry, each measurement
was log transformed and regressed against Standard Length (SL)
using a phylogenetic regression in the R package phylolm, with
the residuals from the regression being the inputs into PACA. Dis-
tances in the principal components of PACA were measured as the
Mahalonobis distance between the multivariate means using a co-
variance matrix proportional to the evolutionary rate matrix from
the multivariate Brownian Motion fit in the R package mvMORPH
[6].

E T-SNE PLOTS FOR TEST IMAGES
As we have shown in Section 6.4, the embedding of the images
generated by our Phylo-NN model are more meaningful than those
generated by a vanilla VQGAN. In this section, we run the same
analysis on the test images. Clearly, a similar case can be made here,
namely that the encoding of the images using Phylo-NN is superior
to other models’ in terms of its clustering. Figure 8 illustrates this
point clearly when comparing Phylo-NN ’s (top row) t-SNE plots
with those of the other models’. Both vanilla VQGAN and CW
perform worse at clustering the dataset compared to Phylo-NN .

F EXAMPLE OF PHYLO HISTOGRAMS
In Section 6.3, by means of calculating the average JS-divergence
of sequence histograms, we investigated how well the Imageome
sequences match for species that share a common ancestor, as
opposed to those that don’t. In this section, we show an example
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Figure 9: Notropis nubilus

(a) Phylo-NN

(b) Vanilla VQGAN

(c) CW

Figure 8: t-SNE plots of the test set images using different
models

histogram plots to illustrate their value and the insight they could
provide.

In Figure 9, each histogram represents a code location in the
phylogenetic sequence of Notropis nubilus. Each column represents
one of the nl = 4 phylogenetic levels into which the phylogeny
was quantized, starting with the species level from right and climb-
ing the phylogeny all the way to the earliest ancestral level on
the left. Each column has np = 8 codes. Each histogram shows
the relative frequency of each code of the learned nq = 64 codes
for its corresponding sequence location. The lower a histogram’s
entropy (i.e., when there is only one or a couple of codes that domi-
nate the histogram’s frequency spectrum), the more important that
code location hypothetically is for characterizing the species at its
corresponding phylogenetic level.
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