
HUGE: Huge Unsupervised Graph Embeddings with TPUs
Brandon A. Mayer
bmayer@google.com
Google Research

USA

Anton Tsitsulin
tsitsulin@google.com

Google Research
USA

Hendrik Fichtenberger
fichtenberger@google.com

Google Research
Switzerland

Jonathan Halcrow
halcrow@google.com

Google Research
USA

Bryan Perozzi
bperozzi@acm.org
Google Research

USA

ABSTRACT
Graphs are a representation of structured data that captures the
relationships between sets of objects. With the ubiquity of avail-
able network data, there is increasing industrial and academic need
to quickly analyze graphs with billions of nodes and trillions of
edges. A common first step for network understanding is Graph
Embedding, the process of creating a continuous representation
of nodes in a graph. A continuous representation is often more
amenable, especially at scale, for solving downstream machine
learning tasks such as classification, link prediction, and cluster-
ing. A high-performance graph embedding architecture leverag-
ing Tensor Processing Units (TPUs) with configurable amounts
of high-bandwidth memory is presented that simplifies the graph
embedding problem and can scale to graphs with billions of nodes
and trillions of edges. We verify the embedding space quality on
real and synthetic large-scale datasets.

CCS CONCEPTS
• Computing methodologies → Dimensionality reduction
and manifold learning; Neural networks; Factorization methods;
Distributed algorithms; •Theory of computation→Distributed
computing models; • Information systems→ Data mining.

KEYWORDS
graph embedding, scalable algorithms, tensor processing units

ACM Reference Format:
Brandon A. Mayer, Anton Tsitsulin, Hendrik Fichtenberger, Jonathan Hal-
crow, and Bryan Perozzi. 2023. HUGE: Huge Unsupervised Graph Embed-
dings with TPUs. In Proceedings of the 29th ACM SIGKDD Conference on
Knowledge Discovery and Data Mining (KDD ’23), August 6–10, 2023, Long
Beach, CA, USA. ACM, New York, NY, USA, 11 pages. https://doi.org/10.
1145/3580305.3599840

1 INTRODUCTION
Graph data naturally arises in many domains, including social,
biological, and computer networks and the structure of theWeb, and
user-content interactions including purchase and content networks.

This work is licensed under a Creative Commons Attribution
International 4.0 License.

KDD ’23, August 6–10, 2023, Long Beach, CA, USA
© 2023 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0103-0/23/08.
https://doi.org/10.1145/3580305.3599840

Figure 1: HUGE can learn representations on extremely large
graphs (billions of nodes) at Google. (Shown here: t-SNE pro-
jection of HUGE-TPU’s Papers100M embeddings)
Graph can greatly vary in size – in industrial applications, they often
times grow to billions of nodes and trillions of edges in size. Making
intelligent automated decisions with such large scale graphical data
sets is extremely compute and storage intensive, making these tasks
hard or impossible to solve using commodity hardware.

Graph embeddings1 are a common first step in graph under-
standing pipelines where every node in the graph is embedded[6]
into a common low-dimensional space. These embeddings are then
used for graph learning tasks such as node classification, graph clus-
tering, and link prediction [5, 6] that can be solved with standard
machine learning algorithms applied in the graph embedding space
without having to develop specific algorithms to directly exploit the
graph structure. For example, approximate nearest neighbor search
systems [9] can serve product recommendations using embeddings
of user-item graphs.

Numerous methods, which we briefly review in Section 2.1, have
been proposed in the literature. One of the most popular meth-
ods, DeepWalk [22], proposes to embed nodes via a shallow neu-
ral network trained to discriminate samples generated from ran-
dom walks from random negatives. Unfortunately, the process is
memory-bound, as it requires random accesses for both random
walk generation and updating the embedding table. At first glance,
it does not scale beyond graphs larger than a couple of millions of
nodes even in the distributed setting.

Or does it? Distributed data processing workflows (such as
Flume [4] or Apache Beam) can be used to execute sampling strate-
gies even for graphs that are too large to represent in memory on a
1Also referred to as node embeddings in the literature.

ar
X

iv
:2

30
7.

14
49

0v
1

 [
cs

.L
G

]
 2

6
Ju

l 2
02

3

https://doi.org/10.1145/3580305.3599840
https://doi.org/10.1145/3580305.3599840
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3580305.3599840
https://beam.apache.org/

KDD ’23, August 6–10, 2023, Long Beach, CA, USA Brandon A. Mayer, Anton Tsitsulin, Hendrik Fichtenberger, Jonathan Halcrow, and Bryan Perozzi

single machine. At the same time, specialized hardware such as Ten-
sor Processing Units (TPUs), a custom ASIC introduced in Jouppi
et al. [15], have large amounts of high-bandwidth memory that
enables high-throughput gradient updates. In this work, we present
a simple, TPU-based architecture for graph embedding that ex-
ploits the computational advantages of TPUs to embed billion-scale
graphs2. This architecture eliminates the need to develop complex
algorithms to partition or synchronize the embedding table across
multiple machines.

More specifically, we propose a two-phase architecture. First
random walks are generated and summarized via a distributed data
processing pipeline. After sampling, graph embedding is posed as
a machine learning problem in the style of DeepWalk [22]. We
propose an unsupervised method for measuring embedding space
quality, comparing the embedding space result to the structure of
the original graph and show that the proposed system is competitive
in speed and quality compared to modern CPU-based systems while
achieving HUGE scale.
Graph Embeddings at Google. Graph-based machine learning is
increasingly popular at Google (Perozzi et al. [23]). There are dozens
of distinct model applications using different forms of implicit and
explicit graph embedding techniques in many popular Google prod-
ucts. Over time, these models have evolved from single-machine
in-memory algorithms (similar to those dominating in academic
literature) to more scalable approaches based on distributed com-
pute platforms. In this work we detail a relatively new and very
promising extension of classic graph embedding methods that we
have developed in response to the need for differentiable graph
embedding methods which can operate with data at extreme scale.

2 BACKGROUND
In this section, we first briefly review the related work in Section 2.1.
We review DeepWalk [22], which we use as a base for our high-
performance embedding systems, in Section 2.2. We then proceed
with describing two architectures for scaling Deepwalk graph em-
bedding using commodity (HUGE-CPU) and TPU (HUGE-TPU)
hardware that allow us to scale to huge graphs in Section 2.3.

2.1 Related Work
We now proceed to review the two basic approaches to embedding
large graphs. Over the past years, tremendous amount of work
introduced various embedding methods as well as a myriad of tech-
niques and hardware architectures to scale them up. We summarize
the related work in terms of the embedding approach, speedup
techniques, and its expected scalability in Table 1.

2.1.1 Graph Embedding Approaches. We categorize embedding
methods as either neural network-based or matrix factorization-
based. Regardless of the approach, each method employs, some-
times implicitly, a similarity function that relates each node to other
nodes in the graph. The best-performing methods depart from just
using the adjacency information in the graph to some notion of
random walk-based similarity, for example, personalized PageR-
ank (PPR) [3]. A key insight for accelerating the computation of

2Open source implementation available at: https://github.com/google-research/google-
research/tree/master/graph_embedding/huge

these similarities is that they are highly localized in the graph [2],
meaning 2–3 propagation steps are enough to approximate them.

Neural embedding methods view node embeddings as parame-
ters of a shallow neural network. Neural methods optimize these pa-
rameters with stochastic gradient descent for either adjacency [29],
random walk [22], or personalized PageRank [30] similarity func-
tions. This optimization is done via sampling, and the updates to
the embedding table are usually very sparse. Thus, randommemory
access typically bounds the performance of these methods.

An alternative to gradient-based methods is to directly factorize
the similarity matrix. There are deep connections between neural
and matrix factorization approaches [27, 31]—essentially, for many
node similarities the optimal solutions for neural and factorization-
based embeddings coincide. The main challenge to matrix-based
methods is maintaining sparsity of intermediate representations.
For large graphs, one can not afford to increase the density of the
adjacency matrix nor keep too many intermediate projections.

2.1.2 Scaling Graph Embedding Systems. There are several direc-
tions for speeding up embedding algorithms—some are tailored to
particular methods while some are more general. We now briefly re-
view themost general speedup techniques. Graph coarsening [7, 17]
iteratively contracts the graph, learns the embeddings for the most
compressed level, and deterministically propagates the embed-
dings across the contraction hierarchy. Graph partitioning meth-
ods [12, 16] distribute the computation across machines while at-
tempting to minimize communication across machines.

Early approaches to matrix factorization [26, 40, 41] attempt to
sparsify the random walk or PPR matrices. Unfortunately, higher-
order similarity matrices are still too dense for these embeddings
methods to scale to very large graphs. Leveraging specialized sparse
numerical linear algebra techniques [28] proved to be amore fruitful
approach. Implicit solvers [21, 44] can factorize the matrix with-
out explicitly materializing it in memory. These methods are con-
strained to perform linear decomposition, which is not able to
successfully account for structure of graphs.

Two families of techniques that produce most scalable embed-
ding methods are spectral propagation and matrix sketching [35].
Spectral propagation methods [25, 42] first compute some truncated
eigendecomposition of the adjacency or the Laplacian matrix of a
graph and then use these eigenvectors to simulate the diffusion of
information. Matrix sketching approaches approximate the similar-
ity matrix, either iteratively [8, 37, 43] or in a single pass [24]. The
latter option is more scalable.

2.1.3 Hardware-based Embedding Acceleration. Compared to al-
gorithmic advances, hardware-based acceleration has arguably re-
ceived less attention. Zhu et al. [45] proposes a hybrid system that
uses CPU for sampling and GPU for training the embeddings. Since
themost RAM a single GPU can offer is in the order of 100 gigabytes,
one can only train embeddings of 100 million node graphs on such
systems. Wei et al. [34], Yang et al. [36] address this problem with
partitioning to include more GPUs. This approach requires tens
of GPUs for a billion-node graph, which is prohibitive compared
to scalable CPU-based systems, which can embed a billion-node
graph on a single high-memory machine in hours.

Efficient computation of higher-order similarity is one aspect
where hardware acceleration is currently lacking. Wang et al. [33],

https://github.com/google-research/google-research/tree/master/graph_embedding/huge
https://github.com/google-research/google-research/tree/master/graph_embedding/huge

HUGE: Huge Unsupervised Graph Embeddings with TPUs KDD ’23, August 6–10, 2023, Long Beach, CA, USA

Table 1: An overview of different approaches to scaling graph embeddings up. In this work, we demonstrate a system that
works without any of the yet mentioned techniques scaled to largest graphs. Scalability is given as an approximate graph size
that can be processed by best-performing algorithm&system combination in a day.

Method Family Speedup Technique Reference Methods Scalability

neural — DeepWalk, LINE, VERSE 10M
neural graph coarsening HARP, MILE 10M
neural partitioning BigGraph, EDGES, DeLNE 1000M

factorization — NetMF, GraRep 10k
factorization matrix sparsification NetSMF, NetMFSC, STRAP, NRP 100M
factorization implicit solvers HOPE, AROPE 100M
factorization spectral propagation ProNE, LightNE 1000M
factorization matrix sketching FastRP, RandNE, NodeSketch, InstantEmbedding 1000M

Yang et al. [39] propose efficient systems for random walk genera-
tion for general hardware architectures. However, in an absence
of a suitable embedding method, these systems are not useful for
graph embedding.

2.2 DeepWalk
Before describing our TPU embedding system, it is necessary to
review DeepWalk [22], which is the basic method for neural graph
embedding. DeepWalk adapts word2vec [18], a widely successful
model for embedding words, to graph data. DeepWalk generates
a “corpus” of short random walks; the objective of DeepWalk is
to maximize the posterior probability of observing a neighboring
vertex in a random walk within some specific window size. To max-
imize this probability efficiently, it uses hierarchical softmax [19],
which constructs a Huffman tree of nodes based on their frequency
of appearance, or a more computationally efficient approximation,
negative sampling [10]. For each node that was observed within the
window size from some node, DeepWalk picks 𝑘 ≪ 𝑛 uniformly at
random as contrastive negative examples.

There are several computational problems with DeepWalk’s ar-
chitecture, which are to be solved if we are to scale DeepWalk to
graphs with billions of nodes:
• Random walk generation for large graphs is computationally
prohibitive due to randommemory accesses on each random
walk step.
• Random walk corpus grows in size rapidly, growing much
larger in size than the original sparse graph.
• Negative sampling-based optimization is also computation-
ally prohibitive due to random memory accesses. If batched,
each gradient update is bound to update a significant part of
the embedding table.

To overcome the difficulties with random walk sampling, we
present a distributed random walk algorithm in section 3.2 that
is routinely used at Google to scale random walk simulations to
web-scale graphs.

2.3 Tensor Processing Units
We proceed with briefly reviewing TPU architecture highlighting
the aspects critical for our graph embedding system. A detailed
review can be found in [13–15]. TPUs are dedicated co-processors

optimized for matrix and vector operations computed at half pre-
cision. TPUs are organized in pods, which3 can connect a total of
4096 of TPU chips with 32 GiB memory each, which together makes
up to 128 TiB of distributed memory available for use. TPUs chips
inside a pod are connected with dedicated high-speed, low-latency
interconnects organized in a 3D torus topology.

2.4 Common ML Distribution Strategies
Various methods for distributing Machine Learning workloads have
been discussed in the literature [1] and most Machine Learning
(ML) frameworks provide consistent APIs implementing multiple
distribution schemes through a consistent interface. This section
highlights some common distribution paradigms focusing on the
techniques used to scale DeepWalk using commodity hardware
(which we refer to as HUGE-CPU) and TPUs (HUGE-TPU).

TensorFlow provides the tf.distribute.Strategy abstractions to
enable users to separate model creation from the training runtime
environment with minimal code changes. Two common strategies
are the Parameter-Server (PS) strategy and Multi-Worker Mirrored
Strategy.

2.4.1 Parameter-Server Strategy. In the context of graph embed-
ding, using a PS strategy is useful for representing a large embed-
ding table. The PS strategy defines two compute pools of potentially
heterogeneous hardware that the user can access. One pool con-
tains machines labeled "parameter servers" and the other pool’s
machines are named "workers". A model’s trainable variables are
sharded across the machines in the parameter-server pool which
serve requests, potentially over a network, both for the values of
these variables and to update them. For graph embedding, machines
in the worker pool asynchronously receive batches of examples,
fetch the necessary embedding rows from parameter servers over
a network, compute gradients and push updates back to parameter
server machines.

2.4.2 Multi-Worker Mirrored Strategy. The Multi-Worker Mirrored
Strategy replicates all variables in the model on each device in a
user defined pool of worker machines. A (potentially) large batch of
input examples is divided among the multiple workers and proceed
to compute gradients using their smaller per-replica batches. At

3In the TPUv4 architecture.

https://www.tensorflow.org/guide/distributed_training
https://www.tensorflow.org/guide/distributed_training#parameterserverstrategy
https://www.tensorflow.org/guide/distributed_training#multiworkermirroredstrategy
https://www.tensorflow.org/guide/distributed_training#multiworkermirroredstrategy
https://www.tensorflow.org/guide/distributed_training#multiworkermirroredstrategy
https://www.tensorflow.org/guide/distributed_training#multiworkermirroredstrategy

KDD ’23, August 6–10, 2023, Long Beach, CA, USA Brandon A. Mayer, Anton Tsitsulin, Hendrik Fichtenberger, Jonathan Halcrow, and Bryan Perozzi

the completion of a single step, gradients across the replicas are ag-
gregated and all variable copies are updated synchronously. While
this can accelerate computationally heavy workloads, compared to
the parameter server architecture, this design has limited use in the
context of Graph Embedding. Replicating embedding tables across
multiple machines introduces unwanted redundancy and memory
consumption.

2.4.3 TPUStrategy and Accelerated TPU Embedding Tables. Train-
ing a model (or graph embedding) in TensorFlow using TPU hard-
ware, the TPUStrategy is very similar to the MultiWorkerMirrored-
Strategy. A user defines a desired TPU topology, a slice of a POD
that can be thought of as a subset of interconnected processing
units. Under the TPUStrategy, trainable variables are copied to
all TPU replicas and large batches of examples are divided into
smaller per-replica batches and distributed to available replicas and
gradients are aggregated before a syncronous update. Normally,
this distribution paradigm would limit the scalability of models
that define large embedding tables. However, TPUs are capable of
sharding embedding layers over all devices in an allocated topology
and leverage high bandwidth interconnections between replicas
to support accelerated sparse look-ups and gradient updates. Ac-
celerated embedding tables are exposed in TensorFlow using the
tf.tpu.experimental.embedding.TPUEmbedding (TPUEmbedding)
layer and are the primary mechanism for scaling DeepWalk training
on TPUs.

3 METHOD
We scale the DeepWalk algorithm to embed extremely large-scale
graphs using two methods. The first, called HUGE-CPU, uses only
commodity hardware whereas the second, HUGE-TPU, leverages
modern TPUs for increased bandwidth and performance gains.
Figure 2 visualizes the parameter-server architecture of HUGE-
CPU. The details of parameter-server architecture are covered in
section 3.3.1. Figure 3 illustrates the TPU system design behind
HUGE-TPU and is detailed in section 3.3.2.

3.1 Preprocessing
One key observation is that most positional graph embedding sys-
tems cannot generate useful embeddings for nodes with less than
two edges. Specifically, nodes with no edges are generally not well
defined by embedding algorithms, and similarly, positional embed-
dings of nodes with only one edge are totally determined by the
embedding of their single neighbor. Therefore, we typically prune
the input graph, eliminating nodes with degree less than two. In
our experiments, we only prune once though the pruning operation
itself may introduce nodes that fall below the degree threshold.

3.2 Sampling
After preprocessing the graph, we run random walk sampling to
generate co-occurrence tuples that will be used as the input to the
graph embedding system.

A high-level overview of the distributed random walk sampling
is provided in Algorithm 1. The input to the sampling component
is the preprocessed graph and the output are TensorFlow Examples
containing co-occurrence tuples extracted from the random walks.

The implementation of the distributed random walk sampling algo-
rithm is implemented using the distributed programming platform
FlumeC++ [4].

In the initialization phase, the distributed sampler takes as input
theN nodes of the graph and replicates them 𝛾 times each to create
the seeds of 𝛾 |N | walks it will generate (Line 1). Next, the random
sampling process proceeds in an iterative fashion, performing 𝑘

joins which successively grow the length of each random walk
(Lines 2-4). Each join combines the walk with the node at its end
point. 4 After joining the end of the walk with its corresponding
node from the graph 𝐺 , sampling of the next node occurs (Line 4).
We note that many kinds of sampling can be used here to select
the next node at this step – including uniform sampling, random
walks with backtracking, and other forms of weighted sampling.
For the results in this paper, we consider the case of using uniform
sampling. A final GroupBy operation is used to collapse the random
walks down to co-occurrence counts between pairs of nodes as a
function of visitation distance (Line 7).

The output of the sampling pre-processing step is a sharded series
of files encoding a triple: (source_id, destination_id, co_counts).
source_id is the node ID of a starting point in the randomwalk, the
destination_id is a node ID that was arrived at during the 𝛾 ran-
dom walks and co_counts is a histogram of length walk_length
containing the number of times the source_id encountered
destination_id (indexed by the random walk distance of the co-
occurrence).

The DeepWalk model defines a graph reconstruction loss that
has a “positive” and “negative” component. The “positive” examples
are random walk paths that exist in the original graph. “Negative”
examples are paths that do not exist in the original graph. If de-
sired, the sampling step can be used to generate different varieties
of negative samples (through an additional distributed sampling
algorithm focusing on edges which do not exist). However, in prac-
tice, we frequently prefer to perform approximate random negative
sampling “on-the-fly” while training.

3.3 Distributed training
3.3.1 HUGE-CPU. Figure 2 outlines the system design for the
HUGE-CPU baseline system architecture. This system leverages dis-
tributed training with commodity hardware. Two pools of machines
are defined as described in 2.4.1, a cluster of parameter-servers and
a pool of workers. During initialization, trainable variables such as
the large embedding table are sharded across the machines in the
parameter-server pool. Workers distribute and consume batches
of training examples from the output of the graph sampling pre-
processing step, asynchronously fetch embedding activations from
parameter servers, compute a forward pass and gradients and asyn-
chronously push gradient updates to the relevant activations back
to the parameter servers. There is no locking or imposed order of
activation look-ups or updates. This enables maximum through-
put of the system but comes at the cost of potentially conflicting
gradient updates.

3.3.2 HUGE-TPU. Figure 3 visualizes the system design of dis-
tributed training of the DeepWalk embedding model using TPUs
4This join is necessary, as the system must support graphs which are too large to fit in
the memory of a single machine.

https://www.tensorflow.org/guide/distributed_training#tpustrategy
https://www.tensorflow.org/guide/distributed_training#multiworkermirroredstrategy
https://www.tensorflow.org/guide/distributed_training#multiworkermirroredstrategy
https://www.tensorflow.org/api_docs/python/tf/tpu/experimental/embedding/TPUEmbedding

HUGE: Huge Unsupervised Graph Embeddings with TPUs KDD ’23, August 6–10, 2023, Long Beach, CA, USA

Algorithm 1 Distributed Random Walk Sampling

Require: A graph 𝐺 = (𝑉 , 𝐸), a set of nodes to sample from N ,
𝛾 , the number of walks from each node, and 𝑘 the number of
random walks to sample per node.

Ensure: C, the co-occurrence counts between pairs of nodes in 𝐺
observed in the walk.
// Initialize 𝑘 walks with each seed

1. 𝑤𝑎𝑙𝑘𝑠 ← N .repeat(𝛾)
2. for step = 1...𝑘 do

// Join each walk with the node at its end
3. (𝑤𝑎𝑙𝑘𝑠,𝑉) ←𝑤𝑎𝑙𝑘𝑠 .Join(𝐺)

// Extend walk/node pair with new node
4. 𝑤𝑎𝑙𝑘𝑠 ← (𝑤𝑎𝑙𝑘𝑠,𝑉).Sample()
5. end for

// Group walks from the same seeds together
6. 𝑛𝑜𝑑𝑒_𝑤𝑎𝑙𝑘𝑠 ← 𝑤𝑎𝑙𝑘𝑠 .GroupByKey()

// Aggregate co-occurrences for each node’s walks
7. return C ← 𝑛𝑜𝑑𝑒_𝑤𝑎𝑙𝑘𝑠 .CombineValues()

tf.Examples

Worker Worker WorkerA A A

Parameter
Server

Parameter
ServerA A A

Figure 2: System diagram for the Parameter-Server (CPU)
based DeepWalkmodel (HUGE-CPU). Two pools ofmachines
are defined, parameter-servers and workers. Workers asyn-
chronously fetch batches of training examples from disk
and collect relevant embedding activations from parameters
servers that serve requests for the sharded embedding table.
Gradients are computed and updated asynchronously.

after the sampling procedure is complete. The replication strategy
used for TPUs in conjunction with their high FLOPS per second re-
quires generating extremely large batches of training examples for
every step. The bottleneck in this system is rarely the embedding
lookup or model tuning but the input pipeline to generate the large
batch size required at every step.

File shards of the sampling data are distributed over the workers
in a cluster dedicated to generating input data. The workers inde-
pendently deserialize the co-occurrence input data and augment
the source_id and destination_id pairs with negative samples, repli-
cating source_id and randomly sampling additional destination_id
node IDs uniformly from the embedding vocabulary.

tf.Examples

tf.data
dispatcher

tf.data
worker

tf.data
worker

tf.data
worker

tf.data
worker

TPU
replica

TPU
replica

TPU
replica

TPU
replica

TPU
replica

TPU
replica

Tensors

Figure 3: System diagram for accelerated HUGE unsuper-
vised graph embedding. A large embedding table is efficiently
sharded over the TPU HBM using TensorFlow TPUEmbed-
ding layer. A cluster of machines that read, parse and ran-
domly sample the input data is leveraged to avoid an input
bottleneck. This diagram is illustrative and does not repre-
sent the true connectivity of the TPU topology.

Table 2: Parameters used for all HUGE-TPU and HUGE-CPU
experiments. LWSGD is Stochastic Gradient Descent with
a Linear Warmpup and decay learning rate schedule. The
schedule is parameterized by four numbers, the number of
warmup steps, the final value after warmup, the number of
decay steps and the final value after the decay phase at which
point the learning rate is held constant.

Parameter HUGE-TPU HUGE-CPU

num_walks_per_node 128 128
walk_length 3 3

Per-Replica Batch Size 4096 1024
num_neg_per_pos 31 3
Global Batch Size 224 219

LWSGD (5K, 0.01,
100K, 0.001)

N/A

SGD N/A 0.001

The input cluster then streams the resulting training Tensors
to the TPU system which de-duplicates and gathers the relevant
embedding activations for the batch and distributes the compu-
tational work of computing the forward pass and gradient to the
TPU replicas which are then aggregated and used to update the
embedding table.

4 EXPERIMENTS
4.1 Experimental Details
4.1.1 Datasets. For testing the scalability of ourmethods, we resort
to random graphs.We resort to the standard (degree-free) Stochastic
Block Model [20], which is a generative graph model that divides 𝑛
vertices into𝑘 classes, and then places edges between two vertices 𝑣𝑖
and 𝑣 𝑗 with probability 𝑝𝑖 𝑗 determined from the class assignments.
Specifically, each vertex 𝑣𝑖 is given a class 𝑦𝑖 ∈ {1, . . . , 𝑘}, and
an edge {𝑣𝑖 , 𝑣 𝑗 } is added to the edge set 𝐸 with probability 𝑃𝑦𝑖𝑦 𝑗

,

KDD ’23, August 6–10, 2023, Long Beach, CA, USA Brandon A. Mayer, Anton Tsitsulin, Hendrik Fichtenberger, Jonathan Halcrow, and Bryan Perozzi

Table 3: Datasets we use for our experimental studies. We
report the total number of nodes and edges in all graphs.

Name |𝑉 | |𝐸 |
Friendster 65.6M 3612M
OGB-Papers100M 111M 1616M
SBM-10M 10M 100M
SBM-100M 100M 1000M
SBM-1000M 1000M 10000M

where 𝑃 is a symmetric 𝑘×𝑘 matrix containing the between/within-
community edge probabilities. Assortative clustering structure in
a graph can be induced using the SBM by setting the on-diagonal
probabilities of 𝑃 higher than the off-diagonal probabilities. For
benchmarking, we set 𝑃𝑦𝑖𝑦 𝑗

= 𝑞 iff 𝑖 = 𝑗 and to 𝑝 otherwise.
Complementing our analysis on synthetic benchmark datasets,

we also study the performance of the methods on two large real-
world graphs: Friendster [38] and OGBN-Papers100m [11]. We
report the dataset statistics in Table 3.

4.1.2 Baselines. First we compare HUGE-CPU and HUGE-TPU
with other state-of-the-art scalable graph embedding algorithms: In-
stantEmbedding [24], PyTorch-BigGraph [16] and LightNE [25] on
an end-to-end node classification task using the OGBN-Papers100m
dataset. We further explore the embedding space quality of each al-
gorithm using both the OGBN-Papers100m and Friendster datasets.
Finally we compare embedding space quality metrics as a function
of training time to explore the speedups of HUGE-TPU compared to
HUGE-CPU using a randomly generated graphs with 100M (SBM-
100M) and 1B nodes SBM-1000M.

4.2 Parameters for HUGE methods
Table 2 shows the parameters used by the HUGE-CPU and HUGE-
TPU methods. The random walk sampling procedure describe in 3.2
was executed sampling 𝛾 = 128 walks per node with a walk length
of 𝑘 = 3. The set of samples were shared for all experiments involv-
ing HUGE-CPU and HUGE-TPU to minimize the affect of random
sampling on the results. num_neg_per_pos is the number of ran-
dom negative destinations sampled for every "positive" example
drawn from the sampling pre-processing step. The global batch size
for HUGE-TPU may be computed as per_replica_batch_size ∗
(1 + num_neg_per_pos). A step is not well defined for the HUGE-
CPU algorithm since workers asynchronously pull variables and
push updates. Due to the increased computational power and high
bandwidth interconnections between replicas, HUGE-TPU achieves
a much higher throughput and global per-step batch size. Training
with extremely large batch sizes can be challenging. We have found
that a Stochastic Gradient Descent (SGD) optimizer with a linear
warmup and ramp down gives good results. HUGE-CPU was also
trained with a SGD optimizer but uses a fixed learning rate.

4.3 Evaluation Metrics
For all other graphs besides OGBN-Papers100m, there are no ground-
truth labels for node classification. This problem is not unique to

Table 4: Embedding quality as measured by downstream task
accuracy, relative speed, and hardware used for four different
embedding methods. Speed normalized to the runtime of
HUGE-CPU.

Method Quality Speedup Hardware

PyTorch-BigGraph 43.64 23.0 16x A100 GPUs
LightNE 27.90 40.8 160 vCPUs

InstantEmbedding 53.15 3.5 64 vCPUs
HUGE-CPU 56.03 1 5120 vCPUs
HUGE-TPU 56.13 9.9 4x4x4 v4 TPUs

publicly available large graphs—in our practical experience, often-
times there is need to evaluate and compare different embedding
models in an unsupervised fashion. We propose simple unsuper-
vised metrics to compare the embedding quality of different embed-
dings of a graph. For the analysis, we 𝐿2-normalize all embeddings.

We also report four self-directed metrics for evaluation we use
in our production system to monitor the embedding quality. First,
edge signal-to-noise ratio (edge SNR) defined as:

SNR =
E𝑢,𝑣∉𝐸 [𝑑 (𝑢, 𝑣)]
E𝑢,𝑣∈𝐸 [𝑑 (𝑢, 𝑣)]

,

where we approximate the numerator term by taking a random
sub-sample of all non-edges. In our experiments, we also show
the entire distribution of edge- and non-edge distances. The
intuition behind these metrics is that the distance between nodes
that are connected in the original graph (a “true” edge) should be
“closer” than nodes that are not adjacent in the input graph. Last, we
compute the sampled version of the edge recall [30]. We sample
100 nodes, pick 𝑘 closest nodes in the embedding space forming a
set 𝑆 . Then, sampled recall is:

recall@𝑘 (𝑢) = |𝑁 (𝑢) ∩ 𝑆 |
𝑘

.

Despite small sample size, the recall is stable and, coupled with the
edge SNR, it is a useful indicator of the reconstruction performance
of different graph embedding methods.

4.4 Downstream Embedding Quality
Being the fastest embedding system is not enough – we also want
embedding vectors to be as useful as possible. Every percentage
point of quality on downstream tasks directly translates to missed
monetary opportunities. Therefore, in our experience, when work-
ing on scalable versions of algorithms, it is critical to maintain high
embedding quality.

To that end, we provide one of the first studies of embedding
scalability and performance across different hardware architectures.
We compare with the fastest single-machine CPU embedding avail-
able [25] and industrial-grade GPU embedding system [16]. Note
that these systems have a much more restrictive limit for a maxi-
mum number of nodes that they can process. PyTorch-BigGraph
can not process graphs with more than 1.4 × 109 nodes on the
current hardware, assuming a system with the latest-generation
GPUs and highest available memory. LightNE does not have such
restriction, but it keeps both the graph and the embedding table in

HUGE: Huge Unsupervised Graph Embeddings with TPUs KDD ’23, August 6–10, 2023, Long Beach, CA, USA

0

5

10

15

20

Method

Edge SNR

0 20 40 60 80 100
0

0.5

1

1.5

2

Pecrentile

Edge Distance

HUGE-TPU HUGE-CPU InstantEmbedding PyTorch-BigGraph LightNE

0 20 40 60 80 100
0

0.5

1

1.5

2

Pecrentile

Non-Edge Distance

0 20 40 60 80 100
0

0.2

0.4

0.6

0.8

1

Pecrentile

Edge Recall

Figure 4: Unsupervised embedding analysis results for OGBN-Papers100m. We see that HUGE-TPU has superior edge SNR
compared to all baselines.

0

2

4

6

Method

Edge SNR

0 20 40 60 80 100
0

0.5

1

1.5

2

Pecrentile

Edge Distance

HUGE-TPU HUGE-CPU InstantEmbedding PyTorch-BigGraph LightNE

0 20 40 60 80 100
0

0.5

1

1.5

2

Pecrentile

Non-Edge Distance

0 20 40 60 80 100
0

0.2

0.4

0.6

0.8

1

Pecrentile

Edge Recall

Figure 5: Embedding analysis results for Friendster. HUGE-TPU achieves the best edge SNR due to better distance distributions.

0

5

10

Method

Edge SNR

0 20 40 60 80 100
0

0.5

1

1.5

2

Pecrentile

Edge Distance

HUGE-TPU InstantEmbedding HUGE-CPU-3B HUGE-CPU-12B HUGE-CPU-36B

0 20 40 60 80 100
0

0.5

1

1.5

2

Pecrentile

Non-Edge Distance

0 20 40 60 80 100
0

0.2

0.4

0.6

0.8

1

Pecrentile

Edge Recall

Figure 6: Embedding analysis results for SBM-100M. This figure compares training HUGE-CPU for 3, 12 and 36 billion training
examples compared to the results of HUGE-TPU and InstantEmbedding.

KDD ’23, August 6–10, 2023, Long Beach, CA, USA Brandon A. Mayer, Anton Tsitsulin, Hendrik Fichtenberger, Jonathan Halcrow, and Bryan Perozzi

0

0.5

1

1.5

Method

Edge SNR

0 20 40 60 80 100
0

0.5

1

1.5

2

Pecrentile

Edge Distance

HUGE-TPU InstantEmbedding HUGE-CPU-3B HUGE-CPU-12B HUGE-CPU-36B

0 20 40 60 80 100
0

0.5

1

1.5

2

Pecrentile

Non-Edge Distance

0 20 40 60 80 100
0

0.2

0.4

0.6

0.8

1

Pecrentile

Edge Recall

Figure 7: Embedding analysis results for SBM-1000M to explore the embedding space quality as a function of training time for
HUGE-CPU compared to HUGE-TPU and InstantEmbedding.

memory. Because of that, scalability into multi-billion node embed-
ding territory is still an open question for that system.

Table 4 presents the embedding quality results on the OGB-
Papers100M dataset. For measuring the embedding quality, we
follow the Open Graph Benchmark evaluation protocol [11] with a
simple logistic regression model. We skip tuning the model param-
eters on the validation set, and report the accuracy of predictions
on the test set. We also report the relative speedup over the CPU
DeepWalk embedding implementation. HUGE-TPU is the only one
that maintains the end-to-end classification quality provided by
DeepWalk and improves runtime efficiency relative HUGE-CPU by
an order of magnitude.

4.5 Self-directed Embedding Space Evaluation
To better understand the differences in downstream model per-
formance, we present our self-directed metric for datasets with
no ground-truth labels. We analyze the embedding space quality
with the proposed metrics comparing HUGE-CPU, HUGE-TPU,
InstantEmbedding, PyTorch-BigGraph and LightNE. To that end,
we report the results on 2 real and 2 synthetic datasets, presented
in Figures 4-5 and 6-7, respectively.

Interestingly, the results are fairly consistent across all datasets
considered. We see that HUGE-TPU provides superior separation
between the distributions of edges and non-edges, achieving a
very high edge signal to noise ratio. We also see that the sampled
edge recall metric on is generally much harder to optimize for
on very large graphs, and that HUGE-TPU meets or exceeds the
performance of its comparable baseline HUGE-CPU.

4.6 Visualization
In order to better understand our embeddings, we frequently resort
to visualizations. Figure 8 shows a plot of the entire embedding
space of OGBN-Papers100M dataset for HUGE-TPU and LightNE,
projected via t-SNE [32]. Compared to HUGE-TPU, the LightNE
embedding demonstrated surprisingly poor global clustering struc-
ture, which explains its subpar downstream task performance we
covered in Section 4.4.

Table 5: The average examples per seconds processed by
HUGE-CPU and HUGE-TPU for all reported experiments.
HUGE-CPU used 128 Parameter Servers and 128 Workers
with 20 cores each. HUGE-TPU was configured with a v4 in a
64 chip configuration. We report the total number of exam-
ples processed per second relative to HUGE-CPU

Method Relative Examples Per Second

HUGE-CPU 1
HUGE-TPU 173x

4.7 Discussion
While both HUGE-CPU and HUGE-TPU can horizontally scale
according to the user configuration, we use the same topologies
throughout all experiments. HUGE-CPU uses 128 Parameter Server
machines and 128 Workers with 20 cores each and 2GiB of RAM.
HUGE-TPU uses a v4 TPU with 64 replicas. The total training
examples processed by HUGE-TPU relative to HUGE-CPU for this
configuration is shown in table 5. Since the throughput of HUGE-
CPU and HUGE-TPU is fixed for a given topology and batch size,
the throughput is constant thought all experiments.

As shown in table 4, HUGE-TPU achieves the highest accu-
racy in the end-to-end node classification task using the OGBN-
Papers100m dataset though HUGE-CPU not far behind. However,
while HUGE-CPU is able to scale horizontally to handle extremely
large embedding spaces, in-memory and hardware accelerated
achieve orders of magnitude speedups compared to HUGE-CPU.

When analyzing the embedding space quality metrics however,
in terms of HUGE-TPU consistently achieves superior performance.
The distribution of distances between adjacent nodes for HUGE-
TPU is typically much smaller than the other methods as is reflected
by an SNR that is consitently orders of magnitude larger than
other methods. The consistently high SNR is probably due to the
extremely high throughput compared with HUGE-CPU.

To further explore the affect of throughput on the system, we
ran HUGE-CPU for multiple fixed number of training steps: 3B,
12B and 36B, while fixing the TPU training time on the SBM-100M

HUGE: Huge Unsupervised Graph Embeddings with TPUs KDD ’23, August 6–10, 2023, Long Beach, CA, USA

Figure 8: Visualization of the entire embedding space of (left) HUGE-TPU and (right) LightNE embeddings of the Papers100M
dataset, projected via t-SNE with the same parameters. Colors indicate point density. We can observe much better clustered
structure in HUGE-TPU embeddings which directly translates to significantly better downstream prediction quality.

and SBM-1000M datasets. In relative terms, HUGE-CPU-3B took
approximately half the time of HUGE-TPU, HUGE-CPU-12B was
trained for 2x the time of HUGE-TPU and HUGE-CPU-36B was
trained for 6x the allowed time of HUGE-TPU. We also compare
these results with InstantEmbedding to contrast the Deepwalk style
embeddings with a matrix factorization graph embedding method.
Predictably, the results show that the HUGE-CPU will "converge" or
at least approach, over time, the performance of InstantEmbedding
in terms of edge/non-edge distributions and recall. However, HUGE-
TPU consistently outperforms both InstantEmbedding and HUGE-
CPU in terms of SNR and edge and non-edge distance distributions
even when HUGE-CPU is allowed to train for more than 6x more
time than HUGE-TPU.

To summarize, we comprehensively demonstrate the quality and
performance of HUGE-TPU over HUGE-CPU as well as state-of-
the-art industrial-grade systems for graph embeddings. First, we
showed that on a largest-scale labelled embedding data, HUGE-
TPU achieves state-of-the-art performance while being order of
magnitude faster than comparable CPU-based system. We then
proceed with unsupervised embedding evaluations we use in de-
ployed production systems at Google. We show how HUGE-TPU
is competitive in embedding quality over both real and synthetic
tasks, only improving its performance compared to the baselines
as the size of the graphs increases.

5 CONCLUSION
In this work we have examined the problem of scalable graph
embedding from a new angle: TPU systems with large amounts of

shared low-latency high-throughput memory. We build a system
(HUGE) that does not suffer from key performance issues of the
previous work, and greatly simplifies the system design. HUGE
is deployed at Google, in a variety of different graph embedding
applications. Our experiments demonstrate the merits of using
accelerators for graph embedding. They show that the HUGE-TPU
embedding is competitive in speed with other scalable approaches
while delivering embeddings which are more performant. In fact,
the embeddings learned with HUGE-TPU are of the same quality
as running the full embedding algorithm (with no compromises for
its speed).

REFERENCES
[1] Salem Alqahtani and Murat Demirbas. 2019. Performance Analysis and Compar-

ison of Distributed Machine Learning Systems. https://doi.org/10.48550/ARXIV.
1909.02061

[2] Reid Andersen, Fan Chung, and Kevin Lang. 2006. Local graph partitioning using
pagerank vectors. In FOCS. IEEE, 475–486.

[3] Sergey Brin and Lawrence Page. 1998. The anatomy of a large-scale hypertextual
web search engine. Computer networks and ISDN systems 30, 1-7 (1998), 107–117.

[4] Craig Chambers, Ashish Raniwala, Frances Perry, Stephen Adams, Robert Henry,
Robert Bradshaw, and Nathan. 2010. FlumeJava: Easy, Efficient Data-Parallel
Pipelines. In ACM SIGPLAN Conference on Programming Language Design and
Implementation (PLDI).

[5] Ines Chami, Sami Abu-El-Haija, Bryan Perozzi, Christopher Ré, and Kevin Mur-
phy. 2022. Machine learning on graphs: A model and comprehensive taxonomy.
JMLR (2022).

[6] Haochen Chen, Bryan Perozzi, Rami Al-Rfou, and Steven Skiena. 2018. A tutorial
on network embeddings. arXiv preprint arXiv:1808.02590 (2018).

[7] Haochen Chen, Bryan Perozzi, Yifan Hu, and Steven Skiena. 2018. HARP: Hier-
archical representation learning for networks. In AAAI.

[8] Haochen Chen, Syed Fahad Sultan, Yingtao Tian, Muhao Chen, and Steven Skiena.
2019. Fast and accurate network embeddings via very sparse random projection.
In CIKM. 399–408.

https://doi.org/10.48550/ARXIV.1909.02061
https://doi.org/10.48550/ARXIV.1909.02061

KDD ’23, August 6–10, 2023, Long Beach, CA, USA Brandon A. Mayer, Anton Tsitsulin, Hendrik Fichtenberger, Jonathan Halcrow, and Bryan Perozzi

[9] Ruiqi Guo, Philip Sun, Erik Lindgren, Quan Geng, David Simcha, Felix Chern,
and Sanjiv Kumar. 2020. Accelerating Large-Scale Inference with Anisotropic
Vector Quantization. In ICML.

[10] Michael Gutmann and Aapo Hyvärinen. 2010. Noise-contrastive estimation: A
new estimation principle for unnormalized statistical models. In AISTATS. JMLR
Workshop and Conference Proceedings, 297–304.

[11] Weihua Hu, Matthias Fey, Marinka Zitnik, Yuxiao Dong, Hongyu Ren, Bowen
Liu, Michele Catasta, and Jure Leskovec. 2020. Open graph benchmark: Datasets
for machine learning on graphs. NeurIPS (2020).

[12] Mubashir Imran, Hongzhi Yin, Tong Chen, Yingxia Shao, Xiangliang Zhang, and
Xiaofang Zhou. 2020. Decentralized embedding framework for large-scale net-
works. In International Conference on Database Systems for Advanced Applications.
Springer, 425–441.

[13] Norman P. Jouppi, Doe Hyun Yoon, Matthew Ashcraft, Mark Gottscho, Thomas B.
Jablin, George Kurian, James Laudon, Sheng Li, Peter Ma, Xiaoyu Ma, Thomas
Norrie, Nishant Patil, Sushma Prasad, Cliff Young, Zongwei Zhou, and David
Patterson. 2021. Ten Lessons From Three Generations Shaped Google’s TPUv4i :
Industrial Product. In 2021 ACM/IEEE 48th Annual International Symposium on
Computer Architecture (ISCA). 1–14. https://doi.org/10.1109/ISCA52012.2021.
00010

[14] Norman P. Jouppi, George Kurian, Sheng Li, Peter Ma, Rahul Nagarajan, Lifeng
Nai, Nishant Patil, Suvinay Subramanian, Andy Swing, Brian Towles, Cliff Young,
Xiang Zhou, Zongwei Zhou, and David Patterson. 2023. TPU v4: An Optically
Reconfigurable Supercomputer for Machine Learning with Hardware Support
for Embeddings. arXiv:2304.01433 [cs.AR]

[15] Norman P. Jouppi, Cliff Young, Nishant Patil, David Patterson, Gaurav Agrawal,
Raminder Bajwa, Sarah Bates, Suresh Bhatia, Nan Boden, Al Borchers, Rick Boyle,
Pierre luc Cantin, Clifford Chao, Chris Clark, Jeremy Coriell, Mike Daley, Matt
Dau, Jeffrey Dean, Ben Gelb, Tara Vazir Ghaemmaghami, Rajendra Gottipati,
William Gulland, Robert Hagmann, C. Richard Ho, Doug Hogberg, John Hu,
Robert Hundt, Dan Hurt, Julian Ibarz, Aaron Jaffey, Alek Jaworski, Alexander
Kaplan, Harshit Khaitan, Andy Koch, Naveen Kumar, Steve Lacy, James Laudon,
James Law, Diemthu Le, Chris Leary, Zhuyuan Liu, Kyle Lucke, Alan Lundin,
GordonMacKean, AdrianaMaggiore, MaireMahony, KieranMiller, Rahul Nagara-
jan, Ravi Narayanaswami, Ray Ni, Kathy Nix, Thomas Norrie, Mark Omernick,
Narayana Penukonda, Andy Phelps, and Jonathan Ross. 2017. In-Datacenter Per-
formance Analysis of a Tensor Processing Unit. https://arxiv.org/abs/1704.04760

[16] Adam Lerer, Ledell Wu, Jiajun Shen, Timothee Lacroix, Luca Wehrstedt, Abhijit
Bose, and Alex Peysakhovich. 2019. PyTorch-BigGraph: A Large-scale Graph
Embedding System. In SysML.

[17] Jiongqian Liang, Saket Gurukar, and Srinivasan Parthasarathy. 2021. MILE: A
multi-level framework for scalable graph embedding. In AAAI. 361–372.

[18] Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Corrado, and Jeff Dean. 2013.
Distributed representations of words and phrases and their compositionality.
NIPS (2013).

[19] Frederic Morin and Yoshua Bengio. 2005. Hierarchical probabilistic neural net-
work language model. In AISTATS. PMLR, 246–252.

[20] Krzysztof Nowicki and Tom A B Snijders. 2001. Estimation and prediction for
stochastic blockstructures. Journal of the American statistical association (2001).

[21] Mingdong Ou, Peng Cui, Jian Pei, Ziwei Zhang, and Wenwu Zhu. 2016. Asym-
metric transitivity preserving graph embedding. In KDD. 1105–1114.

[22] Bryan Perozzi, Rami Al-Rfou, and Steven Skiena. 2014. DeepWalk: Online learning
of social representations. In KDD. 701–710.

[23] Bryan Perozzi, Jakub Łącki, and Vahab Mirrokni. 2020. Graph Mining and Learn-
ing at Google. NeurIPS Workshop (2020). https://gm-neurips-2020.github.io/

[24] Ştefan Postăvaru, Anton Tsitsulin, Filipe Miguel Gonçalves de Almeida, Yingtao
Tian, Silvio Lattanzi, and Bryan Perozzi. 2020. InstantEmbedding: Efficient local
node representations. arXiv preprint arXiv:2010.06992 (2020).

[25] Jiezhong Qiu, Laxman Dhulipala, Jie Tang, Richard Peng, and Chi Wang. 2021.
LightNE: A lightweight graph processing system for network embedding. In
SIGMOD. 2281–2289.

[26] Jiezhong Qiu, Yuxiao Dong, Hao Ma, Jian Li, Chi Wang, Kuansan Wang, and Jie
Tang. 2019. NetSMF: Large-scale network embedding as sparse matrix factoriza-
tion. In The World Wide Web Conference. 1509–1520.

[27] Jiezhong Qiu, Yuxiao Dong, Hao Ma, Jian Li, Kuansan Wang, and Jie Tang. 2018.
Network embedding as matrix factorization: Unifying DeepWalk, LINE, PTE, and
node2vec. In WSDM. 459–467.

[28] Yousef Saad. 2003. Iterative methods for sparse linear systems. SIAM.
[29] Jian Tang, Meng Qu, Mingzhe Wang, Ming Zhang, Jun Yan, and Qiaozhu Mei.

2015. LINE: Large-scale information network embedding. In WWW. 1067–1077.
[30] Anton Tsitsulin, Davide Mottin, Panagiotis Karras, and Emmanuel Müller. 2018.

VERSE: Versatile graph embeddings from similarity measures. InWWW. 539–
548.

[31] Anton Tsitsulin, Marina Munkhoeva, Davide Mottin, Panagiotis Karras, Ivan
Oseledets, and Emmanuel Müller. 2021. FREDE: anytime graph embeddings.
VLDB (2021), 1102–1110.

[32] Laurens Van der Maaten and Geoffrey Hinton. 2008. Visualizing data using t-SNE.
Journal of machine learning research 9, 11 (2008).

[33] Rui Wang, Yongkun Li, Hong Xie, Yinlong Xu, and John CS Lui. 2020.
{GraphWalker}: An {I/O-Efficient} and {Resource-Friendly} Graph Analytic
System for Fast and Scalable Random Walks. In USENIX. 559–571.

[34] Wanjing Wei, Yangzihao Wang, Pin Gao, Shijie Sun, and Donghai Yu. 2020. A
distributed multi-GPU system for large-scale node embedding at Tencent. arXiv
preprint arXiv:2005.13789 (2020).

[35] David P Woodruff et al. 2014. Sketching as a tool for numerical linear algebra.
Foundations and Trends® in Theoretical Computer Science 10, 1–2 (2014), 1–157.

[36] Dongxu Yang, Junhong Liu, and Junjie Lai. 2020. EDGES: An efficient distributed
graph embedding system on GPU clusters. IEEE Transactions on Parallel and
Distributed Systems 32, 7 (2020), 1892–1902.

[37] Dingqi Yang, Paolo Rosso, Bin Li, and Philippe Cudre-Mauroux. 2019. NodeSketch:
Highly-efficient graph embeddings via recursive sketching. In KDD. 1162–1172.

[38] Jaewon Yang and Jure Leskovec. 2012. Defining and evaluating network commu-
nities based on ground-truth. In Proceedings of the ACM SIGKDD Workshop on
Mining Data Semantics. 1–8.

[39] Ke Yang, Xiaosong Ma, Saravanan Thirumuruganathan, Kang Chen, and Yongwei
Wu. 2021. Random Walks on Huge Graphs at Cache Efficiency. In Proceedings of
the ACM SIGOPS 28th Symposium on Operating Systems Principles. 311–326.

[40] Renchi Yang, Jieming Shi, Xiaokui Xiao, Yin Yang, and Sourav S Bhowmick.
2020. Homogeneous network embedding for massive graphs via reweighted
personalized pagerank. VLDB (2020).

[41] Yuan Yin and Zhewei Wei. 2019. Scalable graph embeddings via sparse transpose
proximities. In KDD. 1429–1437.

[42] Jie Zhang, Yuxiao Dong, Yan Wang, Jie Tang, and Ming Ding. 2019. ProNE: Fast
and Scalable Network Representation Learning.. In IJCAI. 4278–4284.

[43] Ziwei Zhang, Peng Cui, Haoyang Li, Xiao Wang, and Wenwu Zhu. 2018. Billion-
scale network embedding with iterative random projection. In ICDM. IEEE.

[44] Ziwei Zhang, Peng Cui, Xiao Wang, Jian Pei, Xuanrong Yao, and Wenwu Zhu.
2018. Arbitrary-order proximity preserved network embedding. In KDD.

[45] Zhaocheng Zhu, Shizhen Xu, Jian Tang, and Meng Qu. 2019. GraphVite: A high-
performance cpu-gpu hybrid system for node embedding. In The World Wide
Web Conference. 2494–2504.

https://doi.org/10.1109/ISCA52012.2021.00010
https://doi.org/10.1109/ISCA52012.2021.00010
https://arxiv.org/abs/2304.01433
https://arxiv.org/abs/1704.04760
https://gm-neurips-2020.github.io/

HUGE: Huge Unsupervised Graph Embeddings with TPUs KDD ’23, August 6–10, 2023, Long Beach, CA, USA

A EXPERIMENT SETUP
The following setups were used for the experiments with PyTorch-
BigGraph and LightNE.

PyTorch-BigGraph.
• Google Cloud machine: a2-megagpu-16g, 96 vCPUs, 1.33 TB
memory. 16x NVIDIA A100 40GB.
• Image: Debian 10 based Deep Learning VM for PyTorch
CPU/GPU with CUDA 11.3 M98
• BigGraph version as of September 2022 (git@2e94f8a).
• Configuration Friendster:

dimension=128, comparator="cos", num_epochs=2,

batch_size=100000, num_batch_negs=1000,

num_uniform_negs=1000, eval_fraction=0.01,

num_gpus=16

• Configuration Papers100m:

dimension=128, comparator="cos", num_epochs=3,

batch_size=100000, num_batch_negs=1000,

num_uniform_negs=1000, eval_fraction=0.01,

num_gpus=16

LightNE.
• Google Cloud machine: m1-ultramem-160, 160 vCPUs, 3.84
TB memory.
• Image: Debian 11, v20220920
• LightNE version: version as of September 2022 (git@c43afc4)
• Configuration:

-walksperedge 10000 -walklen 3 -step_coeff 1,1,1 -

rounds 1 -s -m -ne_method netsmf -rank 256 -dim

128 -order 10 -sample_ratio 17 -mem_ratio 0.5 -

negative 1 --sparse_project 0 -sample 1 -upper 0

-analyze 1

	Abstract
	1 Introduction
	2 Background
	2.1 Related Work
	2.2 DeepWalk
	2.3 Tensor Processing Units
	2.4 Common ML Distribution Strategies

	3 Method
	3.1 Preprocessing
	3.2 Sampling
	3.3 Distributed training

	4 Experiments
	4.1 Experimental Details
	4.2 Parameters for HUGE methods
	4.3 Evaluation Metrics
	4.4 Downstream Embedding Quality
	4.5 Self-directed Embedding Space Evaluation
	4.6 Visualization
	4.7 Discussion

	5 Conclusion
	References
	A Experiment setup

