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ABSTRACT
Recommender systems play an important role in many content
platforms. While most recommendation research is dedicated to
designing better models to improve user experience, we found that
research on stabilizing the training for such models is severely
under-explored. As recommendation models become larger and
more sophisticated, they are more susceptible to training instability
issues, i.e., loss divergence, which can make the model unusable,
waste significant resources and block model developments. In this
paper, we share our findings and best practices we learned for im-
proving the training stability of a real-world multitask ranking
model for YouTube recommendations. We show some properties
of the model that lead to unstable training and conjecture on the
causes. Furthermore, based on our observations of training dynam-
ics near the point of training instability, we hypothesize why exist-
ing solutions would fail, and propose a new algorithm to mitigate
the limitations of existing solutions. Our experiments on YouTube
production dataset show the proposed algorithm can significantly
improve training stability while not compromising convergence,
comparing with several commonly used baseline methods. We open
source our implementation at https://github.com/tensorflow/recommenders/
tree/main/tensorflow_recommenders/experimental/optimizers/clippy_adagrad.py.
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1 INTRODUCTION
A good recommender system plays a key factor to user experience.
It has become a core technology and even a main user interface
in many web applications, including YouTube, one of the largest
online video platforms in the world. As a result, many compo-
nents can be incorporated into recommendation models to capture
contexts with different modalities and improve recommendation
quality, including audio signals [30], video signals [21], user history
sequence [5, 28], etc. Besides, the scaling law of recommendation
models [3] suggests substantial quality improvements by increasing
model capacity in data-rich applications.

As recommendation models become larger and more sophisti-
cated, they are more susceptible to training instability issues [14],
i.e., the loss diverges (instead of converging), causing the model to
be “broken” and completely useless. In industry, serving such a “bro-
ken” model leads to catastrophic user experience (see Section 2.2).
Moreover, if we cannot ensure reliable training of recommendation
models, a huge amount of resources can be wasted and model devel-
opment can be blocked. Therefore, we couldn’t emphasize more on
how essential training stability is. However, very sparse research
has been done on the training stability of recommendation models.

On one hand, there’s a lack of fundamental understanding of why
recommendation models are prone to training instability issues. In
particular, we observe that ranking models with multiple objectives
are more likely to encounter problems than retrieval models with
a single objective (e.g. Softmax Cross-Entropy over large output
space). In addition to increasing model complexity, we found that
simply adding new input features or output tasks can also cause
*Equal contribution to the work.

ar
X

iv
:2

30
2.

09
17

8v
2 

 [
cs

.L
G

] 
 1

5 
Ju

n 
20

23

https://github.com/tensorflow/recommenders/tree/main/tensorflow_recommenders/experimental/optimizers/clippy_adagrad.py
https://github.com/tensorflow/recommenders/tree/main/tensorflow_recommenders/experimental/optimizers/clippy_adagrad.py
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3580305.3599846
https://doi.org/10.1145/3580305.3599846


KDD ’23, August 6–10, 2023, Long Beach, CA, USA Jiaxi Tang et al.

training unstable. To deal with this problem, people mostly rely
on empirical solutions and sometimes on luck (when the problem
occurs randomly). Developing a fundamental understanding of
what causes the problemwould allow people to navigate the process
more confidently.

On the other hand, we found that there’s a lack of effective ap-
proaches to largely mitigate the training instability problem. There
are some widely used methods, such as activation clipping [20],
gradient clipping [7, 24], learning rate warmup [12, 14], and layer
normalization [4]. But in practice, we found that these approaches
were ad hoc and couldn’t completely prevent training instability in
our model. Developing an effective method that can significantly
improve model training stability accelerates model improvements
by addressing concerns about training problems.

The focus of this paper is to share the lessons learned from
addressing the training instability problems experienced by a multi-
task ranking model used in production for YouTube recommenda-
tions. In Section 2, we show some implications and consequences
of unstable model training in real-world recommender systems,
suggesting the importance and difficulties of considerably improv-
ing model training stability. After introducing some preliminary
basics of our model in Section 3, we present some case studies
about changes that had led to more training instability problems
and provide our understanding on the root cause of the problems. In
practice, however, we’ve found that there’s a big gap between know-
ing the root cause and having an effective solution. Some methods
that are supposed to be effective do not work well empirically. Next,
in Section 4, we closely examine the training dynamics of our model,
which inspired us to propose a more effective approach to over-
come the limitations in existing methods. The empirical evidence
on a YouTube dataset in Section 5 reveals the effectiveness of the
proposed method for improving model training stability, especially
when increasing model capacity and using a large learning rate
for faster convergence. We hope that these findings can help the
community better understand the training instability problem and
effectively solve it.

2 BACKGROUND AND RELATEDWORK
2.1 Symptoms
Training instability is a model property that measures the unsteadi-
ness of model training. It has a common symptom of loss divergence
(a.k.a loss blow-up). Based on our observations, we further cate-
gorize loss divergence into two types: micro-divergence and full
divergence. When a model’s loss micro-diverges (see model-a in Fig-
ure 1 as an example), we can observe a sudden jump in training
loss and a sudden drop in training metrics, although the loss may
recover to normal (as shown in the example) as training continues.
Usually, we don’t need to worry too much about this situation,
because the recovered model can have a quality on-par with mod-
els that don’t suffer from loss divergence. However, if a model’s
loss fully diverges (see model-b in Figure 1 as an example), we can
see that the training loss becomes very high in a few number of
training steps, and all training metrics become extremely bad. For
example, the binary classification AUC (the metric we mainly look
throughout the paper) drops to 0.5 as shown in Figure 1, suggesting
the model becomes completely useless, practically giving random

Figure 1: Example of loss divergence in our model and its
impact on training loss (top) and AUC (bottom). In this exam-
ple, model-a’s loss micro-diverged then recovered, whereas
model-b’s loss fully-diverged.

results. What’s worse, the fully diverged loss cannot recover to its
pre-divergence value as training continues.

2.2 Motivation and Challenges
Wemotivate the importance of training stability research, especially
for recommender systems in industry, from several aspects. First,
the problem of loss divergence, once it occurs regularly, can affect
almost all types of model development. This includes, but is not
limited to:

(1) Increasing model complexity: As more modeling tech-
niques are applied and more components are added to the
recommendation model (to improve its quality), there’s a
greater chance that the model will suffer from loss diver-
gence problems. Even simply enlarging the model capacity
could put the model in a dangerous state, despite the great
benefits in data-rich environments suggested by current scal-
ing laws [3].

(2) Adding more input features or tasks: Typically, the rank-
ing model in a recommendation system uses many input
features for multiple tasks [36]. A combination of predic-
tions on all tasks is used to decide the ranking of a candidate
item. We found that both adding new input features and
adding new tasks can lead to training instability, although
they are common ways to improve model quality.

(3) Increasing convergence speed: We have found that hy-
perparameter tuning that facilitate model convergence (such
as increasing the learning rate) can significantly increase
the likelihood of loss divergence. This forces model design-
ers to use a smaller learning rate which results in slower
convergence.

Second, as training complex models requires large amounts of re-
sources, loss divergence problems, which block the model from
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completing their training, waste training resources. Moreover, in-
advertently deploying a “broken” model for serving also leads to
catastrophic user experience.

Consequently, we’ve seen many efforts on alleviating this prob-
lem from an engineering perspective, such as ensuring model qual-
ity before serving. Nevertheless, given that engineering efforts
cannot prevent training instability from occurring, it is clear that
drastically improving model training stability is the right path to
pursue in the long run.

In dealing with the problem of model instability, we experienced
the following challenges.

• Reproducibility: A model can suffer from loss divergence
at any time during training, however, only some of them can
be easily reproduced (more discussions in Section 3). Failing
to reproduce bad cases makes it hard to understand what
happened to the model before loss divergence.

• Detection: In practice, it is costly to evaluate model and re-
port results frequently during training, otherwise the train-
ing can be significantly slowed down. Since sometimes a
micro-divergence can happen and then recover very quickly,
it is hard to even detect if any micro-divergence happens
during model training without sacrificing training speed.

• Measurement: There’s little research on quantitative mea-
sures of a model’s training stability prior to training. To
know (1) whether a modeling change will increase the risk
of loss divergence, or (2) whether a mitigation can help re-
duce the risk of loss divergence, one has to rely on empirical
evaluations (i.e., train multiple copies of a model and check
how many of them have issues), which are time-consuming
and resource-intensive.

2.3 Related Work
Model training stability has been an under-explored research area,
not only for recommendation models, but also in general machine
learning. Fortunately, with the increasing trend of large models [8,
11, 29], stabilizing model training has become an emerging research
area and attracts more attention in recent years.

From the perspective of optimization theory, Wu et al. [32] first
theoretically predicted the training instability for quadratic models
with learning rate and the “sharpness” (measured by the maximum
eigenvalue of the loss Hessian) of the loss curvature. For deep neural
networks, Cohen et al. [12], Gilmer et al. [14] confirmed that this
prediction is still accurate enough.

In terms of techniques, there are some methods widely used
in language and vision models, such as activation clipping [20],
gradient clipping [24], learning rate warmup [16], and various nor-
malization techniques [4, 18]. In addition, You et al. [34] proposed
a new optimizer that achieves a better trade-off between conver-
gence and stability for large batch-size training. Brock et al. [7]
developed Adaptive Gradient Clipping to improve the stability of
ResNet models [17] without Batch Normalization [18].

However, empirically, we found these approaches not effective
enough to completely prevent our model from training instability
(See Section 5). This may due to some unique properties of the rec-
ommendation model. As will be discussed in the next section, these

Input features and Embeddings

Shared Layer(s)

(Top) Shared Layer

Task 1 Layer(s) Task N Layer(s)…

Task N PredictionTask 1 Prediction

Figure 2: An general illustration of the ranking model used
in recommender systems. The model has one or more layers
that are (softly or fully) shared by multiple tasks.

properties can make multi-task ranking models more susceptible
to training instability problems.

3 UNDERSTANDING THE CAUSE OF THE
ISSUE

In this section, we first describe the model to be studied in this
paper and its characteristics. Then, we share our understanding on
the root cause of the training instability problems that happened
in our model.

3.1 Model Definition
YouTube’s video recommendation system uses multiple candidate
generation algorithms to retrieve a few hundred candidates. This is
followed by a ranking system which generates a ranked list from
these candidates. This paper mainly focuses on the ranking mod-
els in YouTube’s recommender system. Different from candidate
generation models (a.k.a retrieval models), which are responsible
for filtering out the majority of irrelevant items, ranking models
aim to provide a ranked list so that items with the highest utility
to users are displayed at the top. Therefore, ranking models use
more advanced machine learning techniques with more expensive
features to have sufficient model expressiveness for learning the
association of features and their relationship with utility.

Figure 2 depicts a general architecture of the ranking model that
we want to study throughout the paper. Below we summarize some
important features for our ranking model and how it is trained; one
can refer to [36] for more details.

• Multitask: As shown in Figure 2, the ranking model has
multiple tasks that predict multiple labels. These predictions
are combined to form the final ranked list of items. Regardless
of different modeling choices [9, 22], there are some hidden
layers in the middle of the model that are shared by these
tasks (either fully shared or softly shared).

• Sequential training: The model is trained sequentially, i.e.,
the training is done over a corpus of data in sequential order
from old to new. While unlike pure online learning [6, 25],
which visits training data in strictly sequential order, we
define a time-based moving window and randomly sample
data batches from this window of training data for parallel
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Figure 3: From [12, Figure 2]. Gradient descent on a quadratic
model with eigenvalues 𝛼1 = 20 and 𝛼2 = 1. We can clearly
observe training instability problems starting to occur when
learning rate 𝜂 > 2/𝛼∗ = 2/𝛼1 = 0.1.

training. This training scheme has been widely used and is
known to be beneficial for many aspects of recommendation
quality [2, 23, 36].

• Optimization: Large batch-size training is known to have
less noise in gradients and thus optimization is more curva-
ture driven [2, 34]. We adopt a large batch size with a high
learning rate for faster convergence. We found Adagrad [13]
to be strong in our case, despite many advances in optimizers
(e.g., Adam [19], Adafactor [26]).

3.2 Root Cause and Case Studies
Regardless of the types of loss divergence, we believe that the intrin-
sic cause can be summarized as “step size being too large when
loss curvature is steep”. Once a model meets both conditions at
a given state, a divergence can easily occur. Intuitively, the step
size should be conservative at a steep loss surface (measured by
the maximum eigenvalue of the loss Hessian) to ensure that loss
decreases instead of increases.

For quadratic models, Wu et al. [32] theoretically proves the
above argument and suggests

2/𝜂 > 𝛼∗

to make training stable, where 𝜂 is the learning rate and 𝛼∗ is the
maximum eigenvalue of the loss Hessian. Cohen et al. [12] gives a
nice and straightforward example (in Figure 3) for the proof. For
neural networks, this argument still mostly holds [12, 14].

Knowing the root cause of the training instability problem allows
us to answer the following research questions:

RQ1: Why do recommendation models in general have worse training
stability than models in other domains?

RQ2: Within recommendation models, why do ranking models typi-
cally have worse training stability than retrieval models?

We relate the answers to these questions to the following unique
properties of our models. Please refer to some empirical evidence
in Section A.1 in Supplementary Material.

• Data distribution changes (RQ1): Compared to models in
other domains, recommendation models use several orders
of magnitude more input features (hundreds to thousands).
What’s worse, with sequential training, the distribution of
these input features (and labels) keeps changing. We think
a steeper loss curvature can occur when data distribution
sudden change, which happens regularly. Also, a model with
sequential training will never converge as it has to adapt
to newly arriving data points with a changed distribution.
Thus, a large learning rate is required to make the adapta-
tion efficient enough. In summary, compared to models in
other domains that are trained on a fixed dataset, changes
in the training data distribution pose greater challenges for
stabilizing the training of recommendation models.

• Larger model size and complexity (RQ2): Compared to
retrieval models used for candidate generation, ranking mod-
els are usually much larger in capacity to accurately measure
the utility of candidate items. With the recent developments
of ML hardware (e.g., TPUs), we are able to significantly
increase the model size for quality improvements [3]. The
empirical studies from Gilmer et al. [14] suggested the in-
creased model capacity and complexity is a contributing
factor to steeper loss curvature.

• Multiple objectives vs. Single objective (RQ2): Compared
to retrieval models which usually has a single objective (e.g.
Softmax Cross-Entropy) [33], ranking models often need to
optimize for many objectives at the same time [36]. This
causes ranking models to suffer from loss divergence much
more easily. Because if there are spurious gradients caused by
bad predictions from a particular task, the gradients can back-
propagate throughout the model, causing the layers that are
shared by multiple tasks to behave (slightly) abnormally. But
since the layers are shared by different tasks, other tasks
tend to predict irregular values afterwards, reinforcing the
instability to a nonrecoverable state. In other words, shared
layers (as well as embeddings) can be a double-edged sword—
they allow transfer learning from different tasks, but can also
exacerbate the training instability problem, making ranking
models more vulnerable than retrieval models.

Despite the recent advances in understanding the root causes
of divergence issues, we have found a large gap remains between
our current understanding on the cause of the issue and having
an effective solution. We have tried many temporary fixes. Some
examples are: (1) Using even slower learning rate warmup schedule
to pass the initial model state where loss curvature is steep [14]. (2)
Enlarging the sequential training moving window to make training
data distribution changes smoother. These fixes indeed mitigated
training instability issues for a while, but when our model became
more complex, loss divergence happened again. After trying many
ad-hoc fixes, we believe developing a more principled way that can
significantly improve model stability is the long-term solution.

4 EFFECTIVE METHOD FOR IMPROVING
TRAINING STABILITY

In this section, we first introduce the general direction (Gradient
Clipping) for controlling the effective step size while loss curvature
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(a) Training loss (left) and AUC (right) at different steps.

(b) (left) Measurements used by different methods to determine clipping factors. (right) The corresponding clipping factors.

Figure 4: (a) We dive into three typical moments in model training: The model was training healthily before step-a. Then
at step-b, model’s loss aroused and AUC dropped. Finally at step-c, the loss is fully diverged and AUC dropped to 0.5. (b)
When checking some statistics from the top hidden layer of the model, we found that GC and AGC failed to provide small
enough clipping factor. While Clippy’s clipping factor can be 2-orders of magnitude smaller than GC and AGC. Section B in
Supplementary Material has the statistics for other layers.

is steep, by presenting some classical methods on this direction,
accompanied with notations and denotations. Despite being suc-
cessful when applied in other domains, we found these classical
methods are not effective enough when applied in our model. Based
on some observations of training dynamics in our model, we pro-
pose a new method and explain why it can be more effective for
improving the training stability.

We first describe Adagrad [13], the optimizer used in our model.
In Adagrad, model parameters𝒘𝑡 are updated by the rule

𝑮𝑡 = 𝑮𝑡−1 + 𝒈2𝑡 ,

𝒓𝑡 = 𝒈𝑡 · 𝑮−1/2
𝑡 ,

𝒘𝑡+1 = 𝒘𝑡 − 𝜂𝑡 · 𝒓𝑡 ,
(1)

where 𝜂𝑡 denotes the learning rate at step 𝑡 , 𝒈𝑡 is the standard
stochastic gradient of the empirical loss with respect to the model
parameters and 𝑮𝑡 , known as “accumulator”, is a vector initialized
to some small constant value, typically 0.1. In addition, all powers
operations are computed element-wise.

As mentioned in Section 3, we desire a more principled approach
to control the step size when loss curvature is steep. However, the
loss curvature measured by the eigenvalue of loss Hessian is very
expensive to compute during training. Fortunately, the first-order
gradients 𝒈𝑡 can be used as a surrogate for the Hessian (c.f. [35]).
Consequently, gradient clipping based algorithms become very

popular to improve training stability and used in many large mod-
els [8, 11, 29].

Gradient Clipping. Proposed by Pascanu et al. [24], Gradient
Clipping (GC) limits the magnitude of gradient (measured by its
norm) before applying it to the model. In other words, as gradient
magnitude becomes large (loss curvature becomes steeper), Gra-
dient Clipping controls the “effective step size” to stabilize model
training.

Formally, Gradient Clipping algorithm clips the gradients 𝒈𝑡
(before applying Adagrad update in equation 1) as:

𝒈 →
{

𝜆
𝒈
∥𝒈 ∥ if ∥𝒈∥ ≥ 𝜆,

𝒈 else.

Or 𝒈 → 𝜎 · 𝒈, where 𝜎 = min{ 𝜆

∥𝒈∥ , 1.0}
(2)

The clipping threshold 𝜆 is a hyperparameter that controls the
maximum allowable gradient norm ∥𝒈∥. In other words, if the
model gradient 𝒈𝑡 has a large magnitude at step 𝑡 , GC will clip
its norm to 𝜆 by rescaling gradients with a scalar clipping factor
𝜎 ∈ R+. In practice, Frobenius norm (or 𝐿2 norm) ∥.∥2 is a common
choice for vector norm, and clipping is often applied to each layer
independently of the other layers.

Adaptive Gradient Clipping. Empirically, although GC can im-
prove training stability of the model, training stability is extremely
sensitive to the choice of the clipping threshold 𝜆, requiring fine-
grained tuning for different layers. What’s worse, the threshold 𝜆
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need to be re-tuned when model structure, batch size, or learning
rate is changed.

To overcome this burden, Brock et al. [7] proposed Adaptive
Gradient Clipping (AGC). AGC is motivated by the observation
that the ratio of the norm of the gradients ∥𝒈𝑡 ∥ to the norm of the
model parameters ∥𝒘𝑡 ∥ should not be large, otherwise training is
expected to be unstable.

Specifically, the gradients 𝒈 is clipped by

𝒈 →
{

𝜆
∥𝒘 ∥
∥𝒈 ∥ 𝒈 if ∥𝒈 ∥

∥𝒘 ∥ ≥ 𝜆,

𝒈 else .

Or 𝒈 → 𝜎 · 𝒈, where 𝜎 = min{𝜆 ∥𝒘 ∥∥𝒈∥ , 1.0}
(3)

Intuitively, if at step 𝑡 the gradient norm ∥𝒈𝑡 ∥ is greater than a
fraction of the parameter norm 𝜆 · ∥𝒘𝑡 ∥, AGC will clip the gradient
norm to 𝜆 ∥𝒘𝑡 ∥, by rescaling gradients with a scalar clipping factor
𝜎 ∈ R+. AGC can be viewed as a special case of GC, where the
clipping threshold 𝜆GC is a function of model parameters 𝜆GC =

𝜆AGC ∥𝒘 ∥. So when using AGC, we don’t need to fine tune 𝜆 for
different layers, this is where the “adaptiveness” comes from.

4.1 Observations of Training Dynamics
Despite the success of GC and AGC in various domains, we found
that they are not effective enough to prevent loss divergence when
being applied in our model. To better understand the limitations of
GC/AGC and to propose better solutions, we inspect the training of
our model without using any gradient clipping based techniques1.

Figure 4a shows the training loss and AUC for a particular binary
classification task. To simplify the illustration, let’s look mainly at
the 3 most important training steps: step-a, step-b, and step-c2. As
we can see, this model is training healthily before step-a: the loss is
minimized and the AUC has increased rapidly. However, at step-b,
the model’s training loss started to diverge and AUC began to drop,
though relatively unnoticeably. Finally, at step-c, this model was
fully diverged with loss become large, and AUC dropped to 0.5.

In Figure 4b(left), we take a closer look at some statistics for the
top shared layer to understand what happened as loss diverged. The
gradient norm ∥𝒈∥2 is pretty consistent before step-a whenmodel is
healthy. Then it grew to a large value at step-b, suggesting the loss
curvature is quite steep at that moment. Since we didn’t apply any
model stability treatments, the model diverged completely at step-c
and the gradient norm ∥𝒈∥2 became a small value. This means that
all pre-activations (values before applying nonlinear activation)
at this layer already reach a state where gradients are extremely
small3, causing the loss divergence to become nonrecoverable.

Knowing what happened, we fabricate how GC/AGC will react
in this situation. Figure 4b(left) plots the measurements of ∥𝒈∥2
(blue) and ∥𝒈 ∥2

∥𝒘 ∥2
(orange) that are used to determine clipping factors

in GC and AGC. Not surprisingly, both measurements became
larger at step-b. However, the relative scale of change for these
measurements are different. ∥𝒈 ∥2

∥𝒘 ∥2
(orange) is more sensitive to loss

1Note the model we are inspecting here is the model-b in Figure 1
2The specific training step numbers are: step-a=198.7k, step-b=198.8k, step-c=198.9k.
3One typical example is the dying ReLU where most pre-activations are smaller than
zero. It is worth noting that other nonlinear activations also have regions where
gradients are close to zero, so can suffer from the same issue.

Algorithm 1 Adagrad with Clippy
1: Input: Parameter vector to optimize𝒘 ; objective function L;

learning rate schedule 𝜂𝑡 .
2: Input: Clippy hyperarameters: relative threshold 𝜆rel and ab-

solute threshold 𝜆abs.
3: Initialize parameter vector𝒘0.
4: for 𝑡 = 0 to 𝑇 − 1 do
5: 𝒈𝑡 =

𝜕L(𝒘𝑡 )
𝜕𝒘𝑡

→ obtain stochastic gradient.
6: 𝑮𝑡 = 𝑮𝑡−1 + 𝒈2𝑡 → update accumulator
7: 𝒓𝑡 = 𝒈𝑡 · 𝑮−1/2

𝑡 → compute updates
8: 𝜎𝑡 = min{1.0,min( 𝜆rel |𝒘𝑡 |+𝜆abs

𝜂𝑡 ∗|𝒓𝑡 | )} → get clipping factor
9: 𝒘𝑡+1 = 𝒘𝑡 − 𝜂𝑡𝜎𝑡 𝒓𝑡 → apply rescaled updates
10: end for
11: Return:𝒘𝑇

curvature changes than ∥𝒈∥2 (blue). The difference in sensitivity of
these measurements can result in different clipping factors 𝜎 , which
is the rescaling multiplier to the gradients in different methods.
Figure 4b(right) gives the clipping factor 𝜎 for GC and AGC when
using 𝜆GC = 10−1 and 𝜆AGC = 10−3 as clipping thresholds4.

By checking the clipping factors, we hypothesize that the reason
behind inefficacy of GC/AGC is that they failed to offer enough
constraints on gradients (i.e., failed to provide enough control over
the “effective step size”) when gradient norm suddenly increases
(i.e., loss curvature becomes steep), due to lack of sensitivity. More
specifically, both methods rely on 𝐿2 norm, which is not sen-
sitive to drastic gradient changes in only a few coordinates,
especially when layer width is large.

4.2 Proposed Solution: Clippy
To alleviate this limitation, we proposed a new algorithm called
Clippy. Clippy has two major changes over GC/AGC: First, it uses
𝐿∞ norm instead of 𝐿2 norm to increase its sensitivity to changes
in individual coordinates. Second, it clips based on updates 𝒓𝑡 =

𝒈𝑡 ·𝑮−1/2
𝑡 instead of gradients𝒈𝑡 , since updates are the actual change

to model parameters and can be quite different from gradients when
using the Adagrad optimizer.

Specifically, Clippy controls



 𝒓𝑡𝒘𝑡





∞

< 𝜆, (4)

and then rescales updates when the inequality is violated. From Fig-
ure 4b, we can see that this measurement has a a more dramatic
change at step-b, when loss was diverging. Supposewe use 𝜆Clippy =

10−1 as the clipping threshold, Clippy results in 2 orders of mag-
nitude smaller clipping factors 𝜎 compared to GC/AGC, thanks to
the better sensitivity of the measurement. In other words, we hope
Clippy can put larger constraints on the actual updates when
loss curvature is steep even in a few coordinates.

Formally, we present Clippy in Algorithm 1. As can be seen, there
are some minor but important changes in line-8 of the algorithm
compared to what we described in equation 4.

4As described in Section 5.1.3, we obtain these thresholds with grid-search and a even
lower threshold can impact convergence.
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(1) Introducing absolute threshold. In Clippy, we use two
hyperparameters: The relative threshold 𝜆rel that is similar
to GC/AGC, and another absolute threshold 𝜆abs. With the
absolute threshold 𝜆abs introduced, we can avoid aggressive
clipping when model parameters are zero (e.g., biases that
are initialized to zeros) or have very small values. As will be
discussed in Section 4.3.1, this allows Clippy to switch from
GC-style to AGC-style during training.

(2) Considering learning rate. We have learning rate 𝜂𝑡 in
the denominator when calculating the clipping factor to
account for different learning rate schedules. If the learning
rate slowly ramps up, this will loosen the clipping threshold
at initial training, avoiding a slow pace of convergence in
the initial phases of training.

4.3 Additional Discussions
4.3.1 Relationship with other methods. Clippy has interesting con-
nections with other methods. In gradient clipping based algorithms,
if we accumulate the accumulator with original gradients (instead
of clipped gradients). Then, we can have a general Adagrad update
form with all aforementioned algorithms

𝒓𝑡 = 𝒈𝑡 · 𝑮−1/2
𝑡 ,

𝒘𝑡+1 = 𝒘𝑡 − (𝜂𝑡𝜎𝑡 )𝒓𝑡 .
(5)

That is, different algorithms scale down the learning rate 𝜂𝑡 with
different choices of clipping factor 𝜎𝑡 . And the choice of clipping
factors by different algorithms are summarized in the table below.

Algorithm 𝜎𝑡

GC [24] min{1.0, 𝜆 1
∥𝒈 ∥2

}

AGC [7] min{1.0, 𝜆 ∥𝒘 ∥2
∥𝒈 ∥2

}

LAMB [34] 𝜙 ( ∥𝒘𝑡 ∥2 )
∥𝒓𝑡 ∥2

Clippy (Ours) min{1.0,min( 𝜆rel |𝒘𝑡 |+𝜆abs
𝜂𝑡 ∗|𝒓𝑡 | )}

Clippy is a combination of GC/AGC/LAMB: First of all, Clippy
switches from GC-style to AGC-style during training. During ini-
tial model training when |𝒘 | ≈ 0, 𝜆abs dominates the clipping
threshold 𝜆rel |𝒘𝑡 |+𝜆abs

𝜂𝑡 ∗|𝒓𝑡 | ≈ 𝜆abs
𝜂𝑡 ∗|𝒓𝑡 | and makes Clippy close to GC. In

later training, when 𝜆rel |𝒘 | ≫ 𝜆abs, Clippy acts more like AGC
𝜆rel |𝒘𝑡 |+𝜆abs

𝜂𝑡 ∗|𝒓𝑡 | ≈ 𝜆rel |𝒘𝑡 |
𝜂𝑡 ∗|𝒓𝑡 | . However, compared to GC/AGC, Clippy

relies on updates instead of gradients. Moreover, although both
Clippy and LAMB use the updates, Clippy does not completely
ignore the update magnitude as in LAMB5. Finally, Clippy uses 𝐿∞
instead of 𝐿2 norm to be more sensitive to drastic update changes
in a small number of coordinates.

4.3.2 Clip locally or globally. When using Clippy, we clip the up-
date per each layer (a.k.a locally) instead of per all model parame-
ters as a whole (a.k.a globally), similar to the other methods (like
GC/AGC/LAMB). This gives more flexibility on finer-grained con-
trol, but results in a biased gradient update. However, in large-batch
settings, it can be shown that this bias is small [34].
5LAMB updates parameter by 𝒘𝑡+1 = 𝒘𝑡 − 𝜂𝑡

𝒓𝑡
∥𝒓𝑡 ∥2

𝜙 ( ∥𝒘𝑡 ∥2 ) , with 𝜙 (𝑥 ) =

min{max{𝑥,𝛾𝑙 }, 𝛾𝑢 } bounds the parameter 𝐿2 norm. It uses only the direction of
updates and ignores its magnitude.

Table 1: The configuration of each model setting.

Model Name Non-Embedding Shared bottom
Model Parameters Architecture

Small 7.5M FFN: 512 × 2
Large 57.0M FFN: 4096 × 4

Large+DCN 68.0M DCN + LN → 4096 × 4

4.3.3 Adapting to other optimizers. One can easily adapt Clippy to
optimizers other than Adagrad by using the optimizer-dependent
update 𝒓𝑡 . Empirically, we have also observed clear benefits in
training stability when applying Clippy on Adam [19], without
compromising convergence. But we leave the theoretical conver-
gence analysis of Clippy to future work.

5 EMPIRICAL STUDIES
Conducted on a YouTube production dataset, experiments in this
section are divided into two parts. Firstly, we compare Clippy with
other baselines to verify its benefits for improving model stability.
Then we show some further analyses for Clippy to better under-
stand its strength.

5.1 Experiment Setup
5.1.1 Model detail. Besides all the model properties that are al-
ready covered in Section 3.1, it is worth mentioning that we sim-
plified our ranking model by (1) Only keeping the most important
subset of tasks and input features; (2) Using a simple shared bottom
structure with several shared hidden layers. Though much simpler
than the production model, we found it to be a sufficiently good
testbed for studying the training stability problem, as it allows us to
train models faster and focus more on research perspectives instead
of irrelevant modeling details. The model is built with TensorFlow-
2 [1] and is trained using a large batch size of 65k on TPUs.

5.1.2 Evaluation protocol. Unfortunately, there is no reliable met-
ric to quantify the model’s training stability. To precisely measure
the benefit from better training stability, we vary model complex-
ity as well as learning rates, then check model’s offline quality,
measured by AUC for binary classification tasks and RMSE for
regression tasks. Presumably, a more complex model gives better
offline quality but is more likely to suffer from loss divergence
issues. So if an algorithm can significantly improve the model’s
training stability, we should observe better offline metrics when
using it. More specifically, we used first (𝑁 − 1) days of data to
sequentially train the model and continuously evaluate the model’s
performance (AUC or RMSE) on the last day (the 𝑁 -th day) of data.
If the model does not suffer from any loss divergence issues during
training, we should observe the evaluation metrics keep becoming
better, as the model is adapting to the data distribution closer to
the 𝑁 -th day of data. Whereas if the model’s loss diverges dur-
ing training, either fully-diverge or consistently micro-diverge, the
evaluation metrics will be significantly impacted.

To explore the effect of model complexities, we consider various
model settings summarized in Table 1. Both Small and Large use
simple feed-forward networks as the shared bottom, with two 512
layers and four 4096 layers respectively. Large+DCN is built on top
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Model Name Metrics Methods
Naive GC AGC LAMB Clippy

Small
AUC (higher is better)

diverged
71.68 ± 0.13 71.73 ± 0.00 71.56 ± 0.01 71.79 ± 0.00

RMSE (lower is better) 1.058 ± 0.002 1.059 ± 0.003 1.063 ± 0.001 1.056 ± 0.000

Best learning rate 2x 1x 1x 2x

Large
AUC (higher is better)

diverged
72.07 ± 0.05 72.09 ± 0.02 72.01 ± 0.09 72.16 ± 0.02

RMSE (lower is better) 1.053 ± 0.003 1.051 ± 0.001 1.054 ± 0.002 1.051 ± 0.000

Best learning rate 2x 1x 1x 2x

Large+DCN
AUC (higher is better)

diverged
72.27 ± 0.03 72.06 ± 0.08 72.05 ± 0.11 72.37 ± 0.01

RMSE (lower is better) 1.049 ± 0.001 1.051 ± 0.001 1.057 ± 0.001 1.047 ± 0.001

Best learning rate 1x 2x 1x 2x
Table 2: Evaluation of training stability treatments on different model settings. Methods suffering from training instability
problems should get worse evaluation metrics. We first find the best learning rate (1x or 2x) for each variant, then repeat the
same setting 3 times and report mean and standard deviation. We use underline to denote the best result for each setting.

of Large and further adds more complexity by having DCN-v2 lay-
ers [31] on inputs, followed by a standard Layer Normalization [4].

5.1.3 Baselines. Weapply Clippy and other baselines to non-embedding
model parameters and compare their effectiveness. Below are more
details about these baselines and Clippy.

• Gradient Clipping (GC) [24]: We used layer-wise (local)
gradient clipping with clipping threshold searched from
𝜆GC ∈ {10−1, 10−2, 10−3}.

• Adaptive Gradient Clipping (AGC) [7]: We used the of-
ficial implementation6 provided in the paper and searched
clipping threshold from 𝜆AGC ∈ {10−2, 10−3, 10−4}.

• LAMB (adapt to Adagrad) [34]: LAMB was originally pro-
posed based on Adam [19], while the authors also provided
a general form for the clipping which we introduced in Sec-
tion 4.3.1. We choose 𝜙 (𝑥) = 𝑥 as in the official implemen-
tation7. Since LAMB uses parameter 𝐿2 norm ∥𝒘 ∥2 as up-
date magnitude that is different from other methods, we
have to scale the learning rates by 𝜇 and searched 𝜇 ∈
{10−1, 10−2, 10−3}.

• Clippy: Clippy has two hyperparameters 𝜆abs and 𝜆rel so
suppose to be more non-trivial for the tunings, but we found
simply setting 𝜆rel = 0.5 and 𝜆abs = 10−2 gives decent per-
formance in our experiments. .

5.2 Overall Performance
Table-2 presents the overall comparison between Clippy and other
baselines on different model settings. Though the model is trained
on six tasks, due to space limitations, we only present the metrics
from two most representative tasks — one binary classification task
evaluated with AUC (in percentage) and another regression task
evaluated with RMSE. We not only use the original learning rate
but also try to double the learning rate and see if any method can
benefit from it. After finalizing the best learning rate, we repeat the
same setting 3 times with different random seeds and report the
mean and standard deviation.

6https://github.com/deepmind/deepmind-research/tree/master/nfnets
7https://github.com/tensorflow/addons/blob/master/tensorflow_addons/optimizers/
lamb.py

Looking at Table 2, we can see the naive method which does
not have any treatments on training stability always suffers from
loss divergence, even on the Small model. There is a chance for it
to survive if we drastically tune down the learning rate (see Sec-
tion A.1 in Supplementary Material) but we omit its results here
as they are bad. GC can survive with 2x learning rate and provide
good results on Small and Large model. But in a more complex
model with DCN, GC can only use 1x learning rate, otherwise it will
suffer from loss divergence issues (see blue line in Figure 5a right).
AGC did a reasonable job on Small and Large with 1x learning
rate, but became bad with 2x learning rate. On Large+DCN, AGC
shows very high variance using either 1x or 2x learning rate (see
orange line in Figure 5a), suggesting AGC already reaches its limits
on keeping training stable. LAMB successfully trains the model
without suffering from training instability problems using 1x learn-
ing rate, but the convergence is negatively impacted. On Figure 5a,
we found the results from LAMB are always worse than the other
methods. We believe this is due to LAMB completely ignoring the
update magnitude, causing the convergence at initial training to
be very slow when parameter 𝐿2 norm is small. Surprisingly, GC
performs the best on all settings among all the baselines, this could
be because the model is relatively simple thus tuning the clipping
threshold for GC is still trivial.

On the last column of Table 2, we can see Clippy handles all
model settings with 2x learning rate. More importantly, Clippy
doesn’t compromise convergence, it has comparable results with
GC (i.e., the best baseline) on Small and Largemodel (see Figure 5b),
and having significantly better AUC (Note 0.1% AUC improvement
in our model is considered very significant and can lead to live
metric gains) and RMSE on Large+DCN model compared to GC.
One important finding we want to highlight is that Clippy offers
larger gains when the model is more complex and trained with a
larger learning rate. On Figure 5b, we can see gap between Clippy
and GC is getting larger when using a more complex model with
2x learning rate. So we are not surprised Clippy can help in the
production model which is much more complex than Large+DCN.

5.3 Closer Look at Clippy’s Clipping Factors
Figure 6 shows Clippy’s clipping factor on different layers during
training the Large+DCN model. As introduced in Section 4, the

https://github.com/deepmind/deepmind-research/tree/master/nfnets
https://github.com/tensorflow/addons/blob/master/tensorflow_addons/optimizers/lamb.py
https://github.com/tensorflow/addons/blob/master/tensorflow_addons/optimizers/lamb.py
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(a) AUC for different methods during the training on Large+DCN model.

(b) AUC of Clippy and GC (the best baseline) during the training on different model settings.

Figure 5: Evaluation AUC vs. Training steps for different methods in different model settings.

Figure 6: Clippy’s clipping factor on different layers during training the Large+DCNmodel.

clipping factor 𝜎 ∈ (0.0, 1.0]. A smaller clipping factor indicates
more clipping is done to scale down the learning rate. Since the
clipping is applied per layer, we plot the clipping factor for several
layers, including the weights in (1) DCN layer, in (2) top and (3)
bottom hidden layer of shared bottom, and in the output layers of
(4) binary classification task and (5) regression task. It is interesting
to see more clipping is done on the bottom layers of the model. We
think this intuitively makes sense, because bottom layers usually
have smaller parameter norm so Clippy’s clipping threshold will
also be smaller. On the other hand, this could potentially benefit
training stability because we know a small change in the bottom
layer weights can lead to a large difference in model outputs.

6 CONCLUSION AND FUTUREWORK
In this paper, we present the training instability problem that hap-
pen recurrently in ranking models at YouTube. We show the im-
portance and challenges of mitigating this problem in the long run.

To better understand the issue, we dive deep into the problem, try-
ing to know the root cause of why conventional methods did not
work well in our case. With our understandings, we propose a new
clipping based method called Clippy, which has a nice relationship
with existing methods but alleviates the limitations of them. From
empirical studies on the YouTube production dataset, we found
Clippy showed significantly better strength on improving model
training stability than other baselines.

Clippy showed significant improvements on training stability in
multiple ranking models for YouTube recommendations. It is pro-
ductionized in some large and complex models. More importantly,
it unblocks several ongoing modeling developments and alleviates
us from training instability problems that happened recurrently.

As for future work, we hope to theoretically justify the effective-
ness of Clippy and provide convergence guarantees. In addition, we
hope evolution-based AutoML algorithms [10, 27] can be applied
here to do a better job than the human-designed clipping methods.
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Figure 7: A comparison of AdamW, Adagrad and Adagrad
with Clippy on the task for English to German translation.

A ADDITIONAL EMPIRICAL STUDIES
A.1 Empirical Evidence for Section 3.2
In Table 3, we show more empirical evidence on how the unique
properties of multitask ranking models in the recommendation do-
main can affect training stability. All the experiments are performed
on the Large+DCNmodel without any treatments on training stabil-
ity. We used 0.4x learning rate to make the training at the edge of
instability and to see the benefits from other changes on improving
training stability.

As a result, we can see that the loss of the model kept diverging
if no change is applied: 5 out of 5 runs has loss fully diverged.
However, if we reduce the model size (by switching to Small+DCN
model) or remove DCN-v2 layers (by switching to Large model),
there will be some surviving cases. Moreover, if we remove a subset
of input features or one or more output tasks, we can also observe
their benefits on training stability. Due to the large training cost
for each trial, we cannot offer more data points, but we hope these
results can support for the hypotheses and claims in Section 3.2.

A.2 A Transformer-based model
In this section, we report the performance of Clippy in an addi-
tional setting. We based our experiment on init2winit8’s [15] ‘trans-
late_wmt’ dataset with the default ‘xformer_translate’ model, con-
taining six encoder and six decoder layers for the task of English to

German translation. We compared the default AdamW optimizer
to Adagrad and to Adagrad with Clippy. For both AdamW and Ada-
grad optimizers we tested the learning rates [0.01, 0.03, 0.1, 0.3, 1.0],
while for Adagrad with Clippy we used learning rate in [0.1, 0.3,
1.0, 3.0, 10.0, 30.0] and set 𝜆GC = 0.1, 𝜆AGC = 10−3. All experiments
were executed twice for 500k steps, once a with warm-up period
10k steps and a second time with a 40k step warm-up period.

When the warm-up period was 10k steps, AdamW diverged
when the learning rate was 0.1 and diverged for learning rate equal
to 1.0 when the warm-up period was at 40k steps. Adagrad diverged
for learning rate equal to 0.3 in both cases. On the other hand,
Adagrad with Clippy did not diverge for any of our experiments. In
8https://github.com/google/init2winit
a few of our earlier trials, Adagrad with Clippy did start to slowly
diverge, however, that divergence was transitory and the model
later recovered.

The baseline AdamW optimizer attained the best result with a
learning rate of 0.1 and 40k warm-up period, reaching a validation
error rate of 31.6%. Adagrad’s best run was with a learning rate
of 0.1 and 10k warm-up period, reaching a validation error rate of
36.9%, while Adagrad with Clippy’s best run was with learning rate
of 3.0 and 10k warm-up steps, reaching an error rate of 33.4% on the
validation set. See Figure 7 for the validation error rate throughout
the training process.

Note that although Adagrad with Clippy did not reach the per-
formance of AdamW, which is considered state-of-the-art for this
task, it did show significant improvement over the Adagrad im-
plementation. Furthermore, we did not attempt to tune any of the
model’s parameters beyond what is reported above, opening the
way to further improvements.

B STATISTICS FROM OTHER LAYERS
Besides the top hidden layer weights presented in Figure 4b, we
also show statistics from other representative layers in Figure 8.
From the figure, we can see other layers behave similarly as the
top hidden layer at step-b, except for the binary classification layer.
From Figure 8b, we found measurements used by GC/AGC even
failed to capture the sudden changes in model parameters at step-b,
resulting in no clipping applied at step-b for the binary classification
layer weights by GC/AGC.

https://github.com/google/init2winit
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Direction Specific Change #Diverged #Tried Divergence Ratio
N/a Clean 5 5 100%

Model size Smaller model size 1 3 33%
Model complexity Remove DCN 2 3 66%

Input features Remove subset of input features 2 3 66%

Output tasks Remove one task 2 3 66%
Remove two tasks 0 3 0%

Table 3: The impact of different model properties to training instability. Large+DCN model is used without any treatments on
training stability and with 0.4x learning rate.

(a) Bottom hidden layer weights.

(b) Classification task layer weights.

(c) Regression task layer weights.

Figure 8: (left) Measurements used by different methods to determine clipping factors. (right) The corresponding clipping
factors.
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