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ABSTRACT
Although pre-trained language models (PLMs) have recently ad-

vanced the research progress in mathematical reasoning, they are

not specially designed as a capable multi-task solver, suffering

from high cost for multi-task deployment (e.g., a model copy for

a task) and inferior performance on complex mathematical prob-

lems in practical applications. To address these issues, in this paper,

we propose JiuZhang 2.0, a unified Chinese PLM specially for

multi-task mathematical problem solving. Our idea is to maintain a

moderate-sized model and employ the cross-task knowledge sharing
to improve the model capacity in a multi-task setting. Specially,

we construct a Mixture-of-Experts (MoE) architecture for model-

ing mathematical text, so as to capture the common mathematical

knowledge across tasks. For optimizing the MoE architecture, we

design multi-task continual pre-training and multi-task fine-tuning
strategies for multi-task adaptation. These training strategies can

effectively decompose the knowledge from the task data and estab-

lish the cross-task sharing via expert networks. In order to further

improve the general capacity of solving different complex tasks,

we leverage large language models (LLMs) as complementary mod-

els to iteratively refine the generated solution by our PLM, via

in-context learning. Extensive experiments have demonstrated the

effectiveness of our model.
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1 INTRODUCTION
Recently, the mathematical reasoning capacity of machines has

been largely empowered by the progress of pre-trained language

models (PLMs) [30, 39, 41, 56]. By pre-training on large-scale mathe-

matical corpus with specially designed tasks, PLMs can understand

the mathematical formulas and logic to a certain extent [56], achiev-

ing better performance on a variety of math-related tasks.

Despite the progress, existing PLM based approaches still have

two major limitations in real-world math-related applications. (1)

Limited task performance: due to the limit of model capacity and

pre-training data, PLMs are less capable of understanding complex

mathematical problems, thus suffering from performance degra-

dation on difficult tasks. (2) Large maintenance cost: an online ap-

plication often supports multiple math-related tasks (e.g., similar

problem retrieval and knowledge point classification), while PLMs

need to be fine-tuned task by task when dealing with different

downstream tasks, taking a significant cost of maintaining multi-

task solvers (e.g., a model copy for a task).

By exploring the scaling laws, large language models (LLMs)
1
[4,

5] can overcome the above issues to some extent with stronger

mathematical reasoning ability. While, they are very costly to be

tuned for task or domain adaptation. Although in-context learn-

ing [4] can be applied to solve different tasks in an efficient way

(with no need for fine-tuning), it is still difficult to adapt them to

1
In this paper, PLMs and LLMs refer to mathematical language models with

moderate sizes (e.g., BERT [10]) and huge sizes (e.g., GPT-3 [4]), respectively.
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specific tasks that require rich domain knowledge, e.g., English-
focused LLMs such as GPT-3 [4] and CodeX [5] cannot perform

very well on Chinese mathematical problems (as shown in Table 2).

Considering the above issues, we aim to develop a more effective

Chinese PLM that can well adapt to multiple complex mathemat-

ical tasks, so as to better support math-related applications. To

motivate our solution, we observe that mathematical tasks usually

rely on common or related background knowledge, e.g., a multi-

choice problem and a blank-filling problem might target the same

knowledge point though with different problem settings. Thus, it

is intuitive to transfer and share mathematical knowledge across

tasks by learning a unified model, so that the performance of each

individual task can be potentially improved. In a multi-task manner,

it also naturally reduces the cost of task-specific fine-tuning, since

a joint model is trained with the data of all tasks. While, to become

multi-task learner, it requires a higher generalization ability for

solving different tasks [4, 44]. For this purpose, we further leverage

existing LLMs that implicitly encode large amounts of knowledge

to enhance the capacity of complex problem solving for PLMs.

To this end, in this paper, we propose JiuZhang 2.0, a unified Chi-
nese PLM specially for multi-task mathematical problem solving. In

order to enhance the multi-task capacity, we make three major tech-

nical contributions. Firstly, we design a Mixture-of-Experts (MoE)
based architecture to transfer and share mathematical knowledge

across tasks.We adopt theMoE architecture to encodemathematical

text with an elaborately designed routing mechanism. Secondly, we

design multi-task continual pre-training and multi-task fine-tuning
strategies to optimize the MoE-based architecture for multi-task

adaptation. For multi-task continual pre-training, we construct a

group of self-supervised pre-training tasks to warm up the MoE

architecture for knowledge sharing; for multi-task fine-tuning, we

unify the math-related tasks into two general formats of language

understanding and generation, and directly enhance the knowledge

sharing across these tasks. Thirdly, in order to further improve the

general capacity of solving different complex tasks, we leverage

LLMs as complementary models to improve the generated solu-

tion by our PLM. The PLM (with a smaller tuning cost) is used for

task adaptation and generates a preliminary solution, while the

LLM (with a stronger model capacity) mainly refines the gener-

ated results without directly solving the problem. Concretely, we

retrieve similar examples and iteratively concatenate instructions

with them to compose the prompt, gradually guiding the LLM to

improve the generation results in a coarse-to-fine manner (overall

logic, deduction process and language expressions).

To verify the effectiveness of our proposed JiuZhang 2.0, we

conduct extensive experiments on eight tasks, covering both the

evaluation settings of seen tasks and unseen tasks. Experimental

results have shown that our approach can consistently outperform a

number of competitive baseline methods (even LLM basedmethods).

Besides, we deploy our model in a Chinese education app and online

𝐴/𝐵 test further verifies the effectiveness of our approach.

2 RELATEDWORK
This work focuses on solving mathematical problems, which has

been extensively discussed in the literature [37, 38, 48]. Various

resources or toolkits are released [8, 22, 28], and also empower a

variety of math-related applications [3, 53, 58]. In the following, we

will review the related study in three major technical approaches.

Traditional NLP Approaches. Since mathematical problems are

described in natural language, it is straightforward to cast the un-

derstanding of mathematical problems as a natural language pro-

cessing (NLP) task. A major difficulty lies in the understanding of

the formulas and logic that mathematical text contains. Thus, early

NLP approaches typically extract the features for understanding the

text and formulas, e.g., semantic parser [47] and operator tree [53].

In recent years, a surge of methods introduce the deep neural net-

work into mathematical problem understanding. They generally

leverage advanced NLP models, e.g., RNN [7] and Transformer [31],

to encode the mathematical text into meaningful representations.

PLM Based Approaches. Inspired by the success of PLMs in NLP

tasks, researchers employ PLMs to deal with mathematical prob-

lems [41, 42], showing the superiority in understanding and model-

ing of mathematical texts. Basically, these methods continually pre-

train PLMs (e.g., BERT [10]) with a specific math corpus, and design

proper pre-training strategies to capture the semantics of the formu-

las and logics conveyed in the mathematical texts, e.g., text-formula

representation alignment [18, 41], basic-to-advanced curriculum

pre-training [56] and unified multi-task learning [39]. However,

existing PLM approaches cannot well solve complex mathematical

problems and also have a high cost in multi-task deployment.

LLM Based Approaches. In contrast to PLMs with moderate sizes,

large language models (LLMs) [4, 5, 57] are introduced to solve

mathematical problems [8, 21, 30, 39]. Further, external modules or

tools are used to assist LLMs in complex math problem solving, e.g.,
program interpreter [6, 13, 16]. Since it is very costly to tune LLMs,

in-context learning [4] has been widely used to solve different

tasks, e.g., chain-of-thought (CoT) method that uses multi-step

reasoning [51]. Based on CoT, several improvements have been

proposed for mathematical reasoning, including selecting more

appropriate samples [15, 54], designing better instructions [25],

generatingmultiple results for ranking [32, 50, 60] and decomposing

problem into sub-problems [59]. However, it is hard for LLMs to

adapt to the domains or tasks with large differences from the pre-

training setting [21], e.g., Chinese mathematical problem solving.

Besides, our model is built on MoE architecture [23], which aims

to scale up the model capacity with controllable computational cost.

For MoE architectures, it is important to design suitable expert

network [43], routing mechanism [19, 26, 52] and training strate-

gies [46, 52, 61]. While, our work has presented a novel application

of MoE for dealing with mathematical tasks, with specific improve-

ments. Our work is also related to multi-task learning based on

language models [1, 35], while our focus is to share mathematical

knowledge across. We design specific architecture and correspond-

ing training strategies for mathematical problem solving, which

distinguishes it from prior work on multi-task learning.

3 APPROACH
In this section, we present our JiuZhang 2.0, which is developed

based on the former version of JiuZhang by introducing specific

improvements for multi-task mathematical problem solving.
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Pre-training Tasks: MLM, DAE, SSR, SFR, GSC, USC
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Figure 1: The overview of our model JiuZhang 2.0, consisting of two major parts: MoE extension with multi-task training based
on the PLM (the primary role) and iterative refinement via LLM (the complementary role). The red bold tokens are errors
generated by JiuZhang, which are corrected by LLM in the later iterative refinement process.

3.1 Backbone Model: JiuZhang
We first introduce the backbone model JiuZhang [56] for mathe-

matical problem understanding. Unlike general-purpose PLMs (e.g.,
BERT [10]), JiuZhang considers the pre-training corpus of mathe-
matical text, in which each text consists of a sequence of 𝑛 tokens

(either a text word or a math symbol) corresponding to a mathe-

matical problem (including both problem statement and possible

solution), denoted as 𝑑 = {𝑡1, 𝑡2, · · · , 𝑡𝑛}. Next, we introduce the
original architecture and pre-training tasks for JiuZhang [56].

Architecture. Since both understanding and generation capacities

are needed for mathematical problem solving, JiuZhang adopts an

architecture consisting of one shared encoder and two task-specific
decoders: one decoder for understanding tasks (𝑈 -decoder) and the

other decoder for generation tasks (𝐺-decoder). It employs bidi-

rectional Transformers to implement the shared encoder and the

𝑈 -decoder, and an auto-regressive Transformer to implement the𝐺-

decoder. In order to enhance the representation ability, the shared

encoder is built with more layers than the two decoders (i.e., 10
layers v.s. 2 layers). Given a mathematical text 𝑑 = {𝑡1, · · · , 𝑡𝑛}, the
shared encoder can produce contextualized token representations

{h(𝐿)
1
, h(𝐿)

2
, · · · , h(𝐿)𝑛 } (𝐿-layer architecture) by capturing mathe-

matical semantics from the input text. Then, the 𝑈 -decoder and

𝐺-decoder will solve the understanding and generation tasks based

on the contextualized representations, respectively.

Pre-training Tasks. In the former version, JiuZhang sets up three

types of pre-training tasks and schedules them in a curriculum learn-

ing approach. The basic course is constructed based on masked

token prediction following general-purpose PLMs, with two pre-

training tasks of masked language modeling (𝐿𝑀𝐿𝑀 ) and denoised

auto-encoder (𝐿𝐷𝐴𝐸 ). The advanced course is constructed based

on specific considerations of mathematical text, including mathe-

matical logic recovering and solution checking. For mathematical

logic recovering, we introduce the pre-training tasks of shuffled sen-

tences recovering (𝐿𝑆𝑆𝑅 ) and shuffled formulas recovering (𝐿𝑆𝐹𝑅 ),

in order to enhance the understanding of mathematical logic; for so-

lution checking, we introduce the pre-training tasks of dual-decoder

solution checking (𝐿𝐺𝑆𝐶 and 𝐿𝑈𝑆𝐶 ), which improve the model’s

ability to detect and correct errors in its own generated outputs.

These pre-training tasks can gradually adapt JiuZhang to mathe-

matical problem solving. Due to space limit, please refer to original

paper [56] for more details.

Although JiuZhang can better model mathematical text com-

pared with general-purpose PLMs, it is not specially designed for

multi-task mathematical problem solving. In order to enhance the

multi-task capacity, we next introduce two important improve-

ments, namely MoE extension with multi-task training (Section 3.2)

and iterative refinement with LLM (Section 3.3). In the following,

we introduce the two parts in detail.

3.2 MoE Extension with Multi-task Training
By leveraging a corpus of mathematical text, JiuZhang implicitly

captures mathematical knowledge with specially designed pre-

training tasks. While, such information is encoded via a whole

model (i.e., the shared encoder), and it is difficult to transfer math-

ematical knowledge across different tasks. To better decompose

and share the mathematical knowledge, we propose to enhance

the backbone model with Mixture-of-Experts (MoE) [46] extension,

and introduce multi-task continual pre-training and multi-task fine-

tuning strategies based on MoE-enhanced architecture.
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3.2.1 MoE Extension for Knowledge Sharing. MoE [23] is a widely

used technique to increase model capacity by incorporating multi-

ple expert networks (the same architecture yet different parame-

ters). While, we employ MoE to decouple and share mathematical

knowledge across tasks: common knowledge for related tasks can

be captured in one specific expert and less irrelevant knowledge

across different tasks is distributed among multiple experts.

MoE Layer for Mathematical Text. In our approach, we only ex-

tend the deep shared encoder (capturing the essential mathematical

knowledge) with MoE, but not the shallow decoders (supporting

different types of tasks). As the encoder is composed of multiple

bidirectional Transformer layers, we incorporate the MoE layer

to substitute for the original feed-forward layer. Each MoE layer

consists of a routing network 𝑅(·) and multiple expert networks

{𝐸𝑖 (·)}𝐾𝑖=1, where 𝐾 denotes the number of expert candidates. To

reuse the encoded knowledge from JiuZhang, we utilize the pa-

rameters of its feed-forward layer to initialize the parameters of

the expert networks, which can also improve the training stability.

Since a mathematical problem is usually related to diverse knowl-

edge points, we adopt a token-wise routing mechanism [46] to

decouple its associated mathematical knowledge, by assigning ex-

perts individually for each token. Given an input mathematical

text 𝑑 = {𝑡1, · · · , 𝑡𝑛}, in each Transformer layer, the multi-head

self-attention layer first produces the aggregated representations

of all these tokens {𝒉1, · · · ,𝒉𝑛}. Then, for each token, the routing

network estimates the probability distribution over the 𝐾 experts:

𝑅(𝒉) = softmax

(
𝑾 · 𝒉

)
, (1)

where𝑾 is the trainable matrix for deriving the routing distribution.

Further, we employ a weighted combination to integrate the outputs

from the 𝐾 experts:

MoE(𝒉) =
𝐾∑︁
𝑖=1

𝑅(𝒉)𝑖 × 𝐸𝑖 (𝒉). (2)

Sparsely Routing with Jitter Noise. To save the computational

cost in MoE layers, we introduce the sparse activation mecha-

nism [46] to selectively utilize expert networks for each token.

Specifically, according to the estimated probability distribution

𝑅(𝒉), we first rank all the expert networks and then select the top-𝑘

ones (𝑘 ≤ 𝐾 ) in Eq. (2) to derive the token representation. Here, we

set 𝑘 = 1, i.e., only the most related expert will be routed for each

token. In this way, for each token, the computational cost of the ex-

pert network is roughly the same as the original feed-forward layer

of JiuZhang. More detailed analysis about inference latency can be

found in Appendix B. However, prior studies [14] have found that

such a sparse expert assignment approach would deterministically

choose the best-ranking expert, causing the expert network easy

to overfit. Therefore, we introduce randomness into the expert se-

lection process by using the jitter noise [14] in the routing network.

We multiply the estimated probability distribution in Eq. (1) by a

jitter noise 𝝐 (a randomly scaling distribution vector) as:

𝑅(𝒉) = softmax

(
(𝑾 · 𝒉) ⊙ 𝝐

)
, (3)

where 𝝐 ∈ R𝐾 is a randomly sampled vector and each entry is from

a uniform distribution [1−𝜂, 1+𝜂] (with the noise degree controlling
hyper-parameter 𝜂), and “⊙” is the element-wise product. In this

way, the probability scores of different experts would be increased

or decreased randomly, making the expert networks more robust

to perturbations on the routing results.

3.2.2 Multi-task Pre-training for MoE Adaptation. In order to sup-

port the MoE architecture, we design multi-task continual pre-

training strategies for adapting to the multi-task setting.

Multi-task Continual Pre-training. The goal of multi-task pre-

training is to decouple and transfer mathematical knowledge via

expert sharing, according to task supervision. Since there is no task

data during the pre-training stage, we consider reusing the original

pre-training tasks of JiuZhang discussed in Section 3.1, including

masked token prediction (𝐿𝑀𝐿𝑀 and 𝐿𝐷𝐴𝐸 ), mathematical logic

recovering (𝐿𝑆𝑆𝑅 and 𝐿𝑆𝐹𝑅 ) and solution checking (𝐿𝐺𝑆𝐶 and 𝐿𝑈𝑆𝐶 ).

Instead of using a curriculum learning way as in [56], we treat the

six pre-training losses as equal optimization goals, and set a multi-

task pre-training objective:

𝐿𝑀𝑇 = 𝐿𝑀𝐿𝑀 + 𝐿𝐷𝐴𝐸 + 𝐿𝑆𝑆𝑅 + 𝐿𝑆𝐹𝑅 + 𝐿𝑈𝑆𝐶 + 𝐿𝐺𝑆𝐶 . (4)

Note that our model has been initialized with the parameters of the

former JiuZhang, so that it also implicitly benefits from the curricu-

lum learning strategy proposed in the previous paper [56]. While,

based on the MoE-based architecture, we employ these pre-training

tasks to decouple and share mathematical knowledge across tasks.

Auxiliary Losses for ImprovedOptimization. ForMoEmethods,

there are two major training problems that affect the performance,

i.e., the unbalanced load among experts [46] and the training in-

stability [61]. To alleviate these problems, we adopt two auxiliary

losses [46, 61] as the regularizers in our approach. Specially, the

unbalanced load problem refers that certain experts are extremely

frequently routed, which may cause the overfitting problem on

these experts and the underfitting problem on other experts. There-

fore, we aim to improve the unbalanced routing among all𝐾 experts.

Formally, we encourage the accumulated estimated probabilities

for each expert to be uniform, denoted as:

𝐿𝑈 = 𝛼 · 𝐾 ·
𝐾∑︁
𝑖=1

𝑓𝑖 · 𝑠𝑖 , (5)

where 𝑓𝑖 is the number of tokens dispatched to the 𝑖-th expert, and 𝑠𝑖
is the accumulated routing score estimated by the routing network

for the 𝑖-th expert, and 𝛼 is the coefficient to control the influence.

According to [46], this loss encourages uniform routing since it

would be minimized under a uniform distribution. Further, the

training instability problem is often caused by the large volatility

of the probability scores in the routing network. In order to control

the volatility, we adopt the 𝑍 -loss [61] that encourages the routing

logits of all tokens (size 𝑛) to remain small as:

𝐿𝑍 = 𝛽 · 1
𝑛
log

𝑛∑︁
𝑗=1

exp

(
𝑅(𝒉 𝑗 )

)
2

, (6)

where 𝛽 is the coefficient for this loss.

3.2.3 Multi-task Fine-tuning for MoE Adaptation. To apply the pre-

trained model, a typical way is to fine-tune it on some downstream

tasks. While, it cannot sufficiently leverage the merits of MoE-based

architectures (i.e., decoupling and sharing), without considering
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inter-task relationships. Thus, we design a multi-task fine-tuning

strategy, which boosts the capacity of our MoE architecture by

leveraging the data of all (available) downstream tasks.

Unifying the Fine-tuning Tasks. For multi-task fine-tuning, we

combine the available training data from multiple downstream

tasks for jointly optimizing our model. Since these tasks that we

consider are math related, they tend to rely on common mathe-

matical knowledge for task solving, which can be captured via the

MoE-based architecture. However, the formats of the input and

output data for downstream tasks are generally different, making

it hard to be jointly fine-tuned. Recall that our backbone model has

included two specific decoders that can handle both understanding

and generation tasks for mathematical text. Thus, we unify the

math-related tasks into two general formats, either understanding
or generation. Specially, for all text classification tasks, we merge

the annotation labels and consider an extended multi-label setting,

where the label dictionary covers the labels from all classification

tasks. In this way, we can equip our𝑈 -decoder with a multi-label

classifier head to simultaneously accomplish all these classification

tasks. Further, for all text generation tasks, we adopt a standard

sequence-to-sequence format and utilize the 𝐺-decoder to solve

them. To better distinguish the different tasks for our model, given

the training data from𝑚 tasks, we also devise𝑚 task prompt em-

beddings, denoted as {𝒑1, · · · ,𝒑𝑚}. For each instance, we insert its

task prompt embedding after the [CLS] token embedding.

Routing with Task Prompt. During multi-task fine-tuning, as

the task type may be useful to determine the selection of different

experts with specific mathematical knowledge, we further revise

the routing mechanism by incorporating task-level instruction.

Specially, in each MoE layer, we add the input token representation

𝒉 with the representation of the task prompt 𝒑, to compose the

input of the routing layer for estimating the probability distribution

over the experts as:

𝑅(𝒉) = softmax

(
(𝑾 · (𝒉 + 𝒑)) ⊙ 𝝐

)
, (7)

where we also use jitter noise to improve the robustness.

3.3 Iterative Refinement via LLM
Although MoE extension is employed to enhance the backbone

model, we keep a moderate-sized model (i.e., 276𝑀 for 𝐾 = 4) with

an affordable cost for downstream applications. Due to the limit in

model size and pre-training data, it still has difficulty in generating

solution text for some complex mathematical problems. Our solu-

tion is to leverage large language model (LLM) [4, 5] with stronger

general modeling capacities for refining the generation results of

our PLM. To achieve this, we first design a retrieval strategy to se-

lect the most relevant exemplars for constructing the prompts, and

then devise an iterative prompting method that utilizes in-context

learning to gradually correct the generated results.

3.3.1 Constructing Prompts Using Retrieved Samples. Since existing
LLMs are mainly English-focused, they cannot sufficiently capture

the necessary mathematical knowledge to effectively accomplish

math-related tasks in Chinese (see experiments in Section 4.2). Thus,

instead of directly solving the tasks, LLM plays a complementary
role in our approach for refining the generated results of our PLM.

Specifically, given a mathematical problem 𝑞, we first utilize the

PLM (Section 3.2) to generate the solution text 𝑎, and then employ

the LLM via in-context learning [4] to refine 𝑎 into 𝑎 with improved

quality. To provide effective guidance on the LLM, we construct the

prompts with retrieved relevant exemplars and specially designed

natural language instructions.

Retrieving Exemplars. As empirical studies [34] have revealed

that the exemplars in the prompts of LLMs are important to the task

performance, we retrieve relevant instances from the training data

as the exemplars. Since exemplar finding is essentially an unsuper-

vised text retrieval task, we further employ SimCSE [17] to enhance

the representation capacity of our backbone model for semantic

matching. Following SimCSE, we incorporate the dropout mecha-

nism to augment positive representations and utilize the contrastive

learning objective for training. In the retrieval stage, given the target

problem 𝑞 and the training data set as the retrieval candidate pool,

we first encode all the mathematical problems into dense vectors

by our backbone model, and then select the top-ranking problems

as relevant exemplars, denoted as 𝐶 = {⟨𝑞 𝑗 , 𝑎 𝑗 ⟩}𝐵𝑗=1, where 𝑎 𝑗 is
the associated solution text for problem 𝑞 𝑗 . Note that we do not

use the solution text for the target problem, while only utilizing

the solution texts of the problems from training data.

Building Prompts. In order to guide the LLM to refer to the re-

trieved exemplars for revising the generated result 𝑎 from our PLM,

we utilize the in-context learning method with specially designed

prompts. Specifically, the input of the LLM consists of four parts,

i.e., the given question 𝑞, the generated result 𝑎, the retrieved exem-

plars 𝐶 = {⟨𝑞 𝑗 , 𝑎 𝑗 ⟩}𝐵𝑗=1, and a natural language instruction 𝐼 . We

concatenate the above four parts into a long sentence, to compose

the prompt template as:

[𝑞;𝑎;𝐶; 𝐼 ] → prompt(LLM), (8)

where the instruction 𝐼 can be flexibly set according to different

tasks. We will discuss how to set it in the following part.

3.3.2 Iterative Prompting for Result Refinement. Generally, the gen-
erated results from the PLM may contain a variety of mistakes (e.g.,
inconsistent logic and language typos), and it is hard for the LLM to

completely check and correct all these mistakes at once. Therefore,

we devise a three-stage iterative refining strategy that gradually

improves the generated results following a coarse-to-fine manner.

Concretely, based on the prompt template in Eq. (8), we design three

specific instructions for the three stages, which guide the LLM to

refine the generation results from the three perspectives of overall
logic, deduction process and language expressions, respectively. We

present the above instructions in the Appendix (Table 9).

Further, to better cooperate with the above instructions, we also

revise the way of retrieving exemplars in the three stages:

• at the first stage, we only rely on the problem statement 𝑞

for finding similar problems, referring to their overall logic;

• at the second stage, we leverage both 𝑞 and the generated

solution text 𝑎 for retrieving relevant problems with similar

solution text, checking the deduction process;

• at the third stage, we only utilize the generated solution text

𝑎 for retrieval to find other similar solution texts, correcting

improper language expressions.
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Table 1: Statistics of the datasets for eight evaluation tasks.
“Seen” and “Unseen” refer that the task data is used or not
used during multi-task fine-tuning, respectively.

Setting Type Task Train Dev Test

Seen

QA tasks

MCQ 22,000 3,982 7,466

BFQ 14,795 1,786 1,778

Generation

CAG 16,000 1,976 1,977

BAG 14,795 1,786 1,778

Classification

KPC 8,721 991 1,985

QRC 10,000 2,000 4,000

Unseen Generation

JCAG 8,000 1,000 1,000

JBAG 8,000 1,000 1,000

To accomplish the goal for each individual stage, we find that it

needs multiple iterations for LLM to produce ideal outputs. Thus,

we perform 𝑇 -step (𝑇 = 3) iterations for each stage. At each step,

the refined output 𝑎 (𝑡 ) will be used as the input of the next step

𝑎 (𝑡+1) to compose the prompt and the retrieved exemplars can also

be updated according to new query 𝑎 (𝑡+1) . In this way, we can

iteratively refine the generated results until the expected goal is

fulfilled at each stage, and finally generate high-quality results.

4 EXPERIMENTS
4.1 Experimental Settings
We utilize the same pre-training corpus of JiuZhang [56], consisting

of 1,276,952 high-school math problems collected from Zhixuewang,

and each problem is associated with the problem type, problem

statement and solution text. We preprocess these collected texts in

the same way as JiuZhang.

Evaluation Tasks. We consider two different settings for eval-

uation, namely seen tasks and unseen tasks, referring to the task

data that are used and not used, respectively, during multi-task fine-

tuning. We split each task dataset into training/development/test

sets. The statistics of these tasks are shown in Table 1.

• Seen tasks consist of six tasks based on high-school math prob-

lems, including (1) two question answering tasks, i.e., Multiple-

Choice Question Answering (MCQ) and Blank-Filling Question

Answering (BFQ); (2) two analysis generation tasks, i.e.,Multiple-

Choice Analysis Generation (CAG) and Blank-Filling Analysis Gen-

eration (BAG); and (3) two classification tasks, i.e., Knowledge Point
Classification (KPC) and Question Relation Classification (QRC).

For these tasks, we perform multi-task fine-tuning with all training

sets, select the model checkpoint with the best average performance

on development sets, and then evaluate the results on test sets.

• Unseen tasks consist of two analysis generation tasks based on

junior high school math problems, i.e., Junior-high-school Multiple-

Choice Analysis Generation (JCAG) and Junior-high-school Blank-

Filling Analysis Generation (JBAG), which are not used in multi-

task fine-tuning for our model. For the two tasks, we perform

task-specific fine-tuning, i.e., the multi-task fine-tuned model is

separately optimized, tuned and evaluated for each task.

We use the evaluation metrics following JiuZhang [56]. For clas-

sification tasks (KPC and QRC), we adopt Accuracy and F1-macro

as the evaluation metrics. For question answering tasks (MCQ and

BFQ), we adopt Accuracy for evaluation. For generation tasks (CAG,

BAG, JCAG and JBAG), we use BLEU-4 [40], ROUGE-2 and ROUGE-

L [33] to evaluate the quality of the generated analysis, and also

adopt Accuracy to evaluate the generated answers.

Baseline Methods.We select the following four types of baselines:

•Non-pretrainingmethods consist of classic neural networkmeth-

ods for text classification or generation, i.e., TextCNN [24], TextR-

CNN [27], Seq2Seq [2] and Transformer [49].

• Pre-trained language models have been pre-trained on large-

scale general corpus. We select BERT-Base [11], BART-Base [29],

RoBERTa-wwm [9], CPT [45] and Mengzi [55]. For generation

tasks, we fine-tune RoBERTa-wwm in a UniLMway [12], and utilize

bi-directional attention for input and unidirectional attention for

output to implement the Seq2Seq based training and inference.

• Continual pre-training methods further pre-train PLMs on

domain-specific corpus (our collected math corpus), and also adopt

specially designed pre-training tasks. We select MathBERT [41],

DAPT-BERT [20], DAPT-CPT, COMUS [18], JiuZhang [56]. Since

our approach is also related to multi-task learning [1, 35], we also

add a variant that extends JiuZhang [56] in a multi-task training

strategy, MTDNN [35] for fine-tuning.

• Chain-of-thought (CoT) methods add explanations to the exem-

plars in the input prompt of LLMs, to better guide them to generate

correct answer [51]. We employ CoT on GPT-3 [4] and CodeX [5],

i.e., GPT3-CoT and CodeX-CoT.

Note that CoT methods rely on intermediate reasoning steps

of the sampled exemplars in input to guide the solving of math

problems, which are not available in the two classification tasks of

KPC and QRC. While, in MCQ, BFQ, CAG and BAG tasks, we can

utilize the analysis text to derive the intermediate reasoning steps,

hence we only report the results of CoT methods on the four tasks.

Implementation Details. For GPT3-CoT and CodeX-CoT, we

follow the standard chain-of-thought way to construct the input

prompts [51], and the numbers of sampled exemplars are set to

5 and 8, respectively, since GPT-3 has a smaller maximum input

length than CodeX. During training, we use AdamW [36] as the

optimizer with the learning rate of 3e-5, and warm up the learning

rate for the first 5% steps then decay the weight with a ratio of 0.01.

The coefficients of the auxiliary loss (Eq. (5)) and the 𝑍 -loss (Eq. (6))

are 1e-3 and 1e-4, respectively. For the MoE structure, we set the

number of experts 𝐾 = 4 and the number of activated experts 𝑘 = 1.

For continual multi-task pre-training, we pre-train our model with

a batch size of 256 for 700000 steps. For multi-task fine-tuning, we

fine-tune our model with a batch size of 32 for 80 epochs and adopt

the routing mechanism with task prompt. For iterative refinement,

we use CodeX [5] as the LLM and retrieve top-8 similar problems

from the training set as exemplars for each input problem. More

details are reported in Appendix A.

4.2 Main Results
4.2.1 Evaluation on Seen Tasks. For seen tasks, we evaluate the

performance of our approach after multi-task fine-tuning. The re-

sults of the seen QA/generation and classification tasks are shown

in Table 2 and Table 3, respectively, and we can observe that:
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Table 2: Main results on two question answering tasks and two analysis generation tasks in the setting of seen tasks. Here,
“Acc.” denotes the metric Accuracy, and “w/o IRL” denotes removing the iterative refinement strategy using LLMs. The best and
the second-best methods are denoted in bold and underlined fonts respectively.

Tasks MCQ BFQ CAG BAG

Metrics Acc. Acc. BLEU-4 ROUGE-2 ROUGE-L Acc. BLEU-4 ROUGE-2 ROUGE-L Acc.

Seq2Seq 37.61 44.32 39.91 47.79 67.88 42.63 39.86 48.15 68.06 39.91

Transformer 35.33 46.57 41.39 48.50 67.09 41.02 41.91 48.80 67.76 45.95

RoBERTa-wwm 37.29 47.24 47.29 53.81 70.61 47.70 44.62 51.5 69.54 42.35

BART 36.15 46.82 48.20 55.04 71.66 48.92 45.46 52.16 69.62 43.92

CPT 37.90 46.31 47.98 54.97 71.67 47.03 44.82 52.29 70.01 40.68

DAPT-CPT 46.26 53.41 49.54 55.97 72.52 50.46 46.33 53.69 70.91 48.98

JiuZhang 47.73 54.60 50.05 56.51 72.99 54.51 47.73 54.36 71.17 51.82

JiuZhang-MTDNN 48.81 54.95 49.15 56.28 72.77 56.80 47.58 54.16 71.22 53.09

GPT3-CoT 36.15 50.39 46.93 53.59 70.65 55.18 45.82 52.35 69.43 50.39

CodeX-CoT 40.36 53.82 43.65 54.28 70.43 56.30 42.96 53.45 69.89 53.82

JiuZhang 2.0 w/o IRL 49.75 55.85 50.17 56.72 73.02 58.83 48.33 54.79 71.48 54.78

JiuZhang 2.0 50.37 58.77 50.72 56.97 73.14 60.19 49.39 55.61 71.69 58.77

Table 3: Main results on two basic classification tasks in the
seen setting. Iterative refinement via LLM is not applicable
to the two tasks.

Tasks KPC QRC

Metrics Acc. F1-macro Accu. F1-macro

TextCNN 47.4 26.8 73.3 52.9

TextRCNN 55.3 38.8 79.6 59.0

BERT 59.6 34.9 82.7 63.4

RoBERTa-wwm 61.0 37.0 84.2 65.2

Mengzi 56.6 29.5 81.7 62.8

BART 62.7 41.9 82.0 63.0

CPT 66.2 48.4 82.8 63.4

DAPT-BERT 68.7 46.5 86.5 68.5

MathBert 68.9 47.1 85.3 69.8

COMUS 71.0 63.3 88.0 73.3

DAPT-CPT 72.0 58.0 88.8 76.7

JiuZhang 73.3 59.4 89.4 79.2

JiuZhang-MTDNN 71.5 58.4 89.2 77.1

JiuZhang 2.0 (w/o IRL) 73.5 61.2 89.9 79.8

First, continual pre-training methods (i.e., COMUS, DAPT-CPT,

JiuZhang, JiuZhang-MTDNN) achieve better performance than

general-purpose PLMs such as BART and CPT. The reason is that

these methods have been continually pre-trained on the math cor-

pus, which can learn useful mathematical knowledge from such

texts. Among these continual pre-training methods, the two meth-

ods based on JiuZhang (i.e., JiuZhang and JiuZhang-MTDNN)mostly

outperform all other methods. It is mainly because that JiuZhang

incorporates three types of pre-training tasks, which is further pre-

trained in a curriculum learning way. While, JiuZhang-MTDNN

revises the fine-tuning process of JiuZhang by adopting multi-task

learning, which can improve the performance on MCQ and BFQ,

but has worse performance on KPC and QRC tasks. A possible

reason is that there exists negative interference among these tasks

during multi-task learning. Besides, COMUS also performs well on

the KPC task. Since the KPC task requires a deep understanding of

the formulas in mathematical problems for predicting the knowl-

edge points, COMUS specially designs graph neural networks and

memory networks for modeling the formulas.

Second, the chain-of-thought methods based on powerful LLMs

(i.e., GPT3-CoT and CodeX-CoT) overall perform worse than con-

tinual pre-training methods on generation metrics (i.e., BLEU-4,
ROUGE-2 and ROUGE-L). The reason might be that these LLMs

mainly focus on English tasks, and cannot well adapt to Chinese

math-related tasks. In contrast, these continual pre-training meth-

ods have been trained over the math corpus, thus having an adapta-

tion capacity in downstream tasks. While, for the Accuracy metric,

chain-of-thought methods perform relatively better than other base-

lines. It shows that LLMs are more skilled in accurately predicting

the answer, since they have a stronger mathematical reasoning

capacity due to the huge model size and large-scale pre-training

corpus (also including large amounts of mathematical texts).

Finally, our proposed JiuZhang 2.0 outperforms all the baselines

in most cases. By integrating the MoE architecture with multi-task

training, our model can better capture the mathematical knowledge

across various math-related tasks. Even without iterative refine-

ment via the LLM, our model (i.e., JiuZhang 2.0 w/o IRL) can still

outperform all the baselines. After incorporating the iterative refine-

ment via the LLM, the performance of our approach can be further

improved, especially on the Accuracy metric. It demonstrates that

our approach can further benefit from the mathematical reasoning

capacity of the LLM. In this way, JiuZhang 2.0 can combine both

the advantages of the PLM and LLM: PLM can be tuned for domain

adaptation to Chinese math-related tasks, while LLM has stronger

reasoning and generation capacities.

4.2.2 Evaluation on Unseen Tasks. Since multi-task fine-tuning

cannot cover all math-related tasks, we continue to examine the

performance of our model on new tasks that are not seen before.

In order to enlarge the domain gap between existing and new

tasks, we select the two tasks of multiple-choice analysis generation
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Table 4: Main results on two analysis generation tasks for junior high school in the unseen setting.

Methods JCAG JBAG

BLEU-4 ROUGE-2 ROUGE-L Accuracy BLEU-4 ROUGE-2 ROUGE-L Accuracy

BART 50.50 59.67 73.15 50.40 54.54 60.75 74.51 30.60

CPT 49.38 59.27 72.91 48.20 53.50 60.32 74.23 27.60

DAPT-CPT 52.06 60.84 73.53 54.50 54.66 61.36 74.78 32.30

JiuZhang 52.13 61.43 73.87 55.30 55.69 61.73 75.00 34.50

JiuZhang 2.0 w/o IRL 53.37 61.74 74.00 55.60 56.19 62.13 75.36 38.10

JiuZhang 2.0 55.73 63.76 75.37 63.20 54.45 64.81 77.14 53.80
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Figure 2: Ablation study of our approach on CAG and BAG tasks. “¬” indicates that the corresponding technique is removed
from our model, while the rest are kept. We abbreviate the terms Multi-task Continual Pre-Training, Multi-Task Fine-Tuning,
Mixture-of-Experts, and Task embedding in Routing network as MTPT, MTFT, MoE and TR respectively.

(JCAG) and blank-filling analysis generation (JBAG) from junior
high schools, which has a different distribution with those from

high schools (in multi-task fine-tuning). For these two unseen tasks,

we fine-tune our model (task by task) on them after multi-task

fine-tuning, as the same way in the baselines.

From Table 4, we can see that the overall experimental findings

are similar to those discussed in Section 4.2.1, where we have the

overall performance order: PLMs < continual pre-training methods

< JiuZhang < JiuZhang 2.0 w/o IRL < JiuZhang 2.0. In particular,

the variant of JiuZhang 2.0 w/o IRL also performs better than all

these baselines, since it employs MoE extension with multi-task

training, thus having an improved ability for capturing common

mathematical knowledge across tasks. Further, by adopting the

iterative refinement via LLMs (IRL), our JiuZhang 2.0 achieves a

significant improvement on the Accuracymetric (i.e., 55.60→ 63.20

on JCAG, 38.10 → 53.80 on JBAG). The results show that the

proposed IRL strategy can effectively leverage the strong generation

and reasoning capacities of LLMs via in-context learning, which

can gradually improve the generation quality of our PLM.

4.3 Detailed Analysis
4.3.1 Ablation Study. In JiuZhang 2.0, we have proposed a series of
improvement techniques for enhancing the capacity for mathemati-

cal problem solving. Next, we study how each technique contributes

to the model performance. We keep the complete model with all im-

provement techniques as a reference, then remove one specific tech-

nique each time, and compare the performance with and without
it. We consider the following variants: (1) ¬ MoE removes the MoE

extension, (2) ¬ MTPT removes multi-task continual pre-training,

(3) ¬ MTFT removes multi-task fine-tuning, and (4) ¬ TR removes

the task embedding from the routing network. Note that ¬ MoE
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Figure 3: Varying the number of experts (𝐾) in our approach.

can be considered as an implementation of the multi-task learning

method [35] with JiuZhang as the backbone model. We report

BLEU-4 and Accuracy of these variants on the CAG and BAG tasks.

From Figure 2, we observe that removing any of these improve-

ments would lead to performance degradation, which indicates the

effectiveness of these proposed techniques in mathematical prob-

lem solving. In particular, the removal of multi-task pre-training or

fine-tuning leads to a larger performance drop, which shows the

two training strategies are more important to improve the model

performance. These two tasks are well suited to the MoE architec-

ture, and they can help capture the mathematical knowledge via

the expert networks.

4.3.2 Hyper-parameters Analysis. In our MoE architecture, there

are two major hyper-parameters to tune, i.e., the number of experts

𝐾 and the number of activated experts 𝑘 in the MoE layers. Next,

we investigate the effect of each hyper-parameter on our approach.

We conduct the analysis experiments on CAG and BAG tasks and

report the results on BLEU-4 and Accuracy metrics for the two

hyper-parameters in Figure 3 and Figure 4, respectively.
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Figure 4: Varying the number of activated experts (𝑘).

Table 5: Online 𝐴/𝐵 test of JiuZhang 2.0 and JiuZhang via the
automatic math problem solving function on Zhixuewang.

JiuZhang 2.0 Wins JiuZhang Wins

Ratio 53.5 % 46.5%

First, the increase in the number of experts does not necessarily

improve the performance of our approach (Figure 3), especially in

the Accuracy metric. A possible reason is that the MoE architecture

introduces additional parameters, which is more likely to overfit

on the training set. Besides, using more experts also leads to larger

computational costs. In our experiments, to balance the effective-

ness and efficiency, we set 𝐾 = 4, i.e., using four expert networks,
which generally gives a good performance. Second, more activated

experts are not useful to improve the model performance, even

leading to performance degradation (Figure 4). A possible reason is

that activating more experts would cause interference among them,

resulting in the conflict utilization of experts. In contrast, by setting

𝑘 = 1, we can not only achieve a relatively better performance, but

also save the computation cost of activated expert networks.

4.3.3 Analysis on the MoE Architecture. A major contribution of

our model lies in the architecture extension with MoE. By setting

multiple expert networks, we can effectively share the mathemat-

ical knowledge learned from the math corpus across tasks, so as

to improve multi-task mathematical problem solving. These ex-

perts are expected to capture and decompose specific mathematical

knowledge for different math tasks. Next, we present an analysis

experiment about the encoded knowledge at each expert network.

As shown in Table 6, we select three mathematical texts from two

tasks, and show the routed expert for each token (toke-level routing)

in different background colors. It can be observed that our routing

network can effectively decompose the mathematical knowledge

and route them to the corresponding experts. For example, the

trigonometric functions (e.g., 𝑠𝑖𝑛 and 𝜋 ) are routed to expert #3,
while the (background or formal) words and numbers are mainly

assigned to expert #1 and expert #2, respectively.

4.4 Online 𝐴/𝐵 Test
Besides offline evaluation, we further conduct the online 𝐴/𝐵 test

on Zhixuewang
2
for examining the practical performance of our

approach. Zhixuewang is designed as a teacher assistant app that

provides personalized education services to students, accumulating

about 51 million users in China mainland. Specially, we employ

2
https://www.zhixue.com/

Table 6: Case study on the token-level expert routing. We
use the background color to indicate different experts:
expert #1 , expert #2 , expert #3 .

Task Problem Content
BAG 5 sin 90

◦ + 2 sin 0
◦ − 3 sin 270

◦ + 10 cos 180 ◦ =____ .

KPC

Known the domain of definition of function

𝑦 = 2𝑎cos(2𝑥−
𝜋

3

) + 𝑏 is [0,
𝜋

2

] and the domain of func-

tion is [−5, 1]. Find the value of 𝑎, 𝑏.

KPC

A seagoing ship starts from A, sails in a straight line at a speed

of 40 nautical miles per hour in the direction of 40
◦
......

the function of automatic math problem solving on Zhixuewang

for conducting online 𝐴/𝐵 test. Given a math problem (e.g., blank-
infilling problem), this function aims to automatically generate the

answer with a detailed analysis of the solving process. Here, we

compare our JiuZhang 2.0 with the original JiuZhang [56], and both

models are fine-tuned by the training data provided by this app.

For comparison, we sample a small population of requests of this

function, and a user will be asked to select her/his preferred answer

and analysis provided by the two models in each request.

Table 5 reports the winning ratio of the two methods. As we can

see, our proposed JiuZhang 2.0 performs better than the baseline

JiuZhang. The major reason is that our model adopts the multi-task

training with MoE layers to better capture the shared knowledge

across multiple math-related tasks, and also leverages LLMs to

iteratively refine the generated results. In this way, our model can

generate more accurate answers and high-quality analysis.

5 CONCLUSION
In this paper, we proposed JiuZhang 2.0, a unified Chinese PLM for

multi-task mathematical problem solving. Different from previous

PLM approaches for math domain, we focus on improving the multi-

task capacity of PLMs, especially on complex tasks. For this purpose,

we designed a MoE-based encoder for modeling the mathematical

text, aiming to share the mathematical knowledge across different

tasks. To support the MoE architecture, we specially designed multi-

task continual pre-training and multi-task fine-tuning strategies

for learning the shared knowledge via expert networks. Further, we

leveraged the powerful LLMs as a complementary role to iteratively

refine the generation results by our PLM, with the elaborately

designed prompts. Experimental results (both offline evaluation and

online 𝐴/𝐵 test) have demonstrated that our approach is superior

to competitive baselines on a variety of math-related tasks.
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Algorithm 2: The iteratively refining algorithm.

Input :A mathematical problem 𝑞 and its analysis generated by

JiuZhang with MoE 𝑎̃ (0)

Parameter : Iteration steps of each stage𝑇 , number of exemplars 𝐵

1 for 𝑠 ← 1 to 3 do
2 for 𝑡 ← 1 to𝑇 do
3 iter_step← (𝑠 − 1) × 𝑇 + 𝑡 ;
4 𝑎 (iter_step) ← 𝑎̃ (iter_step−1) ;

5 switch 𝑠 do
6 case 1 do
7 Use 𝑞 as the query for retrieval ;

8 end
9 case 2 do
10 Use 𝑞 and 𝑎 (iter_step) as the query for retrieval ;

11 end
12 case 3 do
13 Use 𝑎 (iter_step) as the query for retrieval ;

14 end
15 end
16 Retrieve exemplars𝐶 = {⟨𝑞 𝑗 , 𝑎 𝑗 ⟩}𝐵𝑗=1 from the training set

using the query;

17 Construct input prompt using Eq. 8;

18 Feed the prompt to CodeX to obtain the refined result

𝑎̃ (iter_step) ;

19 end
20 end

Table 8: The inference latency per batch of different methods
on BAG.

Methods BAG
Latency BLEU-4 Accuracy

BART 830 ms 45.46 43.92

CPT 330 ms 44.82 40.68

JiuZhang 2.0 w/o IRL 370 ms 48.33 54.78

Table 7: Parameter settings of our models.

Task Settings

Continual Pre-training

AdamW, learning_rate=3e-5

warmup_ratio=0.01

batch_size=256

max_steps=70k

num_experts=4

top_k=1

Multi-task Fine-tuning

AdamW, learning_rate=3e-5

warmup_ratio=0.1

batch_size=64

num_experts=4

top_k=1

router=task_router

OOD Fine-tuning

AdamW, learning_rate=5e-5

warmup_ratio=0.1

batch_size=64

num_experts=4

top_k=1

router=task_router

In-context Learning

num_examplars=8

𝑇=1

Supplementary material

Algorithm 1: The multi-task training algorithm.

Input :Pre-training corpus, Multiple math-related datasets for

fine-tuning

Parameter :The parameters of the encoder Θ𝐸 ,𝑈 -decoder Θ𝑈 ,

𝐺-decoder Θ𝐺

// Multi-task Pre-training for MoE Adaptation

1 while not converged do
2 Sample a batch from the pre-training corpus;

3 Compute the six pre-training losses using Eq. 4;

4 Compute the two auxiliary losses using Eq. 5 and Eq. 6;

5 Performing gradient descent to optimize Θ𝐸 , Θ𝑈 and Θ𝐺 ;

6 end
// Multi-task Fine-tuning for MoE Adaptation

7 while not converged do
8 Sample a batch from the multiple fine-tuning datasets;

9 Unify the input and output data formats of the batch of

instances;

10 Compute the fine-tuning loss using the𝑈 -decoder and

𝐺-decoder;

11 Performing gradient descent to optimize Θ𝐸 , Θ𝑈 and Θ𝐺 ;

12 end

A IMPLEMENTATION DETAILS.
We report the detailed parameter settings of our approach through-

out the experiments in Table 7. In addition to the above settings,

we conduct all the experiments on 8 RTX 3090 24G GPUs, where

the multi-task continual pre-training and multi-task fine-tuning

took about 72 and 12 hours, respectively. During multi-task fine-

tuning, we construct the model inputs of all downstream tasks as

follows, and the task embedding will be inserted after the [CLS]
token embedding.

KPC, MCQ, BFQ, CAG, BAG, JCAG and JBAG: [CLS] 𝑞 [SEP].
QRC: [CLS] 𝑞1 [SEP] 𝑞2 [SEP].
For the iterative refinement via the LLM, we also design three

types of instructions and adopt three ways to construct queries for

retrieval, for the three iterative stages, respectively. We show the

details in Table 9.

Besides, we also present the Algorithm 1 and Algorithm 2, to bet-

ter show the multi-task training and iterative refinement processes

of our approach, respectively.

B INFERENCE LATENCY ANALYSIS
In our approach, although we scale up the number of parameters

in the PLM by incorporating the MoE layers, the sparsely routing

mechanism can ensure that only the top-1 most related expert will

be activated, leading to relatively less increased computational cost.

To investigate it, we conduct the analysis experiments to compare

the inference latency per batch of our model with two baselines
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Table 9: The detailed retrieved queries and instructions for constructing the input in each iterative refinement stage.

Iteration Stage Query for Retrieval Instruction

First Stage Problem statement 𝑞

根据上文中相似的题目，选取正确的解题思路，修改本题参考解
答中的错误。

According to similar problems above, choose the correct idea to solve

this problem and fix mistakes in the reference solution.

Second Stage Problem statement 𝑞 + Generated analysis 𝑎

根据上文中相似的题目，修改本题的参考解答中的推理错误和逻
辑错误，确定本题的答题逻辑，得到正确解答。

According to similar problems above, correct the reasoning errors and

logical errors in the reference solution, determine the reasoning logic

of this question and get the correct solution.

Third Stage Generated analysis 𝑎

根据上文中相似的题目，修改本题的参考解答中的计算错误和抄
写错误，确定本题的正确答案，得到正确解答。

According to similar problems above, correct the calculation errors

and transcription errors in the reference solution, determine the final

answer and get the correct solution.

Table 10: Case study on the analysis generation tasks.

Math Problem

设{𝑎𝑛}为等差数列, 𝑎1 = 22 , 𝑆𝑛 为其前𝑛项和,若𝑆10 = 𝑆13 ,则公差𝑑 =?

Let {𝑎𝑛} be an arithmetic sequence, 𝑎1 = 22 , 𝑆𝑛 be the sum of the first 𝑛 items, if 𝑆10 = 𝑆13 , the common difference 𝑑 =?

A. −2 ; B. −1 ; C. 1 ; D. 2 ;

Ground-Truth
因为𝑆10 = 𝑆13 , 𝑎1 = 22 ,所以10 × 22 + 10(10−1)

2
𝑑 = 13 × 22 + 13(13−1)

2
𝑑 ,解得𝑑 = −2 .故选A .

Because 𝑆10 = 𝑆13 , 𝑎1 = 22 , so 10 × 22 + 10(10−1)
2

𝑑 = 13 × 22 + 13(13−1)
2

𝑑 , the solution is 𝑑 = −2 . So choose A .

Codex-CoT
由𝑆10 = 𝑆13得到𝑎1 + · · · +𝑎10 = 𝑎1 + · · · +𝑎13 ,即𝑎13 = 0.因此𝑎13 = 𝑎1 + (13− 1)𝑑 = 𝑎1 − 12𝑑 = 0 ,解得𝑑 = 1 .故选C .

From 𝑆10 = 𝑆13 , get 𝑎1 + · · · + 𝑎10 = 𝑎1 + · · · + 𝑎13 , namely 𝑎13 = 0. Therefore 𝑎13 = 𝑎1 + (13 − 1)𝑑 = 𝑎1 − 12𝑑 = 0 , the

solution is 𝑑 = 1 . So choose C.

JiuZhang
由𝑆10 = 𝑆13,得

10(𝑎1+𝑎13 )
2

=
13(𝑎1+𝑎13 )

2
,即22 + 11𝑑 = 0,解得𝑑 = 2.故选D.

From 𝑆10 = 𝑆13, get
10(𝑎1+𝑎13 )

2
=

13(𝑎1+𝑎13 )
2

, That is, 22 + 11𝑑 = 0, the solution is 𝑑 = 2. So choose D.

Ours
因为𝑆10 = 𝑆13 ,所以𝑎11 + 𝑎12 + 𝑎13 = 0 ,所以𝑎12 = 0 ,又𝑎1 = 22 ,所以𝑑 = −2 .故选A .

Because 𝑆10 = 𝑆13 , so 𝑎11 + 𝑎12 + 𝑎13 = 0 , so 𝑎12 = 0 , and 𝑎1 = 22 , So 𝑑 = −2 . So choose A .

using different model structures, i.e., BART and CPT, in the BAG

task. During inference, we adopt greedy search to decode and set

the batch size to 16. As shown in Table 8, compared to CPT, the

inference latency of our model is slightly increased. It indicates

the effectiveness of the sparse routing mechanism to guarantee the

efficiency of our approach. Besides, we can see that BART requires

double the inference time of CPT and our approach. The reason is

that CPT and JiuZhang 2.0 adopt an unbalanced model architecture

with a shallower decoder than BART (2 layers VS. 6 layers), which

can save the computation cost on the cross-attention layers of the

decoder.

C CASE STUDY
To give a qualitative analysis of our proposed approach, we perform

a case study that shows the generated analysis from our approach.

We select two examples from the CAG and BAG tasks, respectively,

and also show the generated analysis by two best performed meth-

ods, i.e., JiuZhang and CodeX-CoT.

As shown in Table 10, although CodeX-CoT and JiuZhang have

generated a detailed multi-step reasoning process consisting about

the two problems, they both make mistakes in the intermediate

steps. For the first example, we can see that CodeX-CoT obtains

a wrong intermediate conclusion 𝑎13 = 0 by mistakenly simpli-

fying the summation of two arithmetic progressions, which may

be caused by the unfamiliarity of the knowledge about arithmetic

progressions. JiuZhang makes a small mistake in calculation, i.e.,
22 + 11𝑑 = 0 −→ 𝑑 = 2, leading to the wrong answer. It also re-

flects the lack of mathematical computation common sense about

JiuZhang. As a comparison, we can see that our approach can gener-

ate more proper analysis and successfully produce the true answers.

It indicates the effectiveness of our approach in solving complex

mathematical problems.
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