
Multi-factor Sequential Re-ranking with Perception-Aware
Diversification

Yue Xu
yuexu.xy@foxmail.com

Alibaba Group.

Hao Chen
sundaychenhao@gmail.com

The Hong Kong
Polytechnic University,

Hong Kong.

Zefan Wang
wongzfn@gmail.com
Jinan University, China.

Jianwen Yin
yjw264077@alibaba-

inc.com
Alibaba Group.

Qijie Shen
qijie.sqj@alibaba-inc.com

Alibaba Group.

Dimin Wang
dimin.wdm@alibaba-

inc.com
Alibaba Group.

Feiran Huang
huangfr@jnu.edu.cn

Jinan University, China.

Lixiang Lai
lixiang.llx@alibaba-

inc.com
Alibaba Group.

Tao Zhuang
zhuangtao.zt@alibaba-

inc.com
Alibaba Group.

Junfeng Ge
beili.gjf@alibaba-inc.com

Alibaba Group.

Xia Hu
xia.hu@rice.edu

Rice University, USA

ABSTRACT
Feed recommendation systems, which recommend a sequence of
items for users to browse and interact with, have gained significant
popularity in practical applications. In feed products, users tend to
browse a large number of items in succession, so the previously
viewed items have a significant impact on users’ behavior towards
the following items. Therefore, traditional methods that mainly
focus on improving the accuracy of recommended items are sub-
optimal for feed recommendations because they may recommend
highly similar items. For feed recommendation, it is crucial to con-
sider both the accuracy and diversity of the recommended item
sequences in order to satisfy users’ evolving interest when consec-
utively viewing items. To this end, this work proposes a general
re-ranking framework named Multi-factor Sequential Re-ranking
with Perception-Aware Diversification (MPAD) to jointly optimize
accuracy and diversity for feed recommendation in a sequential
manner. Specifically, MPAD first extracts users’ different scales of
interests from their behavior sequences through graph clustering-
based aggregations. Then, MPAD proposes two sub-models to re-
spectively evaluate the accuracy and diversity of a given item by
capturing users’ evolving interest due to the ever-changing context
and users’ personal perception of diversity from an item sequence
perspective. This is consistent with the browsing nature of the feed
scenario. Finally, MPAD generates the return list by sequentially
selecting optimal items from the candidate set to maximize the joint
benefits of accuracy and diversity of the entire list. MPAD has been
implemented in Taobao’s homepage feed to serve the main traffic
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and provide services to recommend billions of items to hundreds
of millions of users every day.
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1 INTRODUCTION
Feed recommendation system (RS) is one type of product that rec-
ommends a sequence of items for users to browse and interact with.
It has been widely applied to various online platforms, such as on
the homepage of Kuaishou [27], Xiaohongshu [21], Taobao [35],
and AliExpress [18]. An example of the feed recommendation is
given in Figure 1. The feed allows users to continuously scroll down
the item list of items in the viewing window, such that previously
viewed items have a large impact on users’ behaviors towards the
next item. In this case, traditional methods that mainly focus on
improving the accuracy of recommended items become sub-optimal
for feed recommendation because they usually ignore the correla-
tions between consecutive items. For example, if a user was shown
a mobile phone item, it may be sub-optimal to put a series of more
mobile phone items next to it. This mismatch is exacerbated by
the fact that similar items tend to have similar click ratios. There-
fore, it is of vital importance for feed recommendation methods
to consider both accuracy and diversity from an item sequence
perspective to attract users to browse and interact with more items
in the feed [21, 27, 35].

This work focuses on two common characteristics that are closely
related to optimizing accuracy and diversity in feed recommenda-
tions. First, different users may have different perceptions of di-
versity, such that item diversity in feed recommendations should
be measured based on their personal interests. Existing works on
diversified recommendations mainly focus on measuring the dis-
similarity between item pairs, without considering users’ personal
interests. For example, the post-processing methods improve diver-
sity by heuristically rearranging the item order based on predefined
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(a) Channel blocks (b) Feed recommendation

Figure 1: An example of different forms of real-world RS.
Left: Traditional RS recommends items in different chan-
nel blocks. Right: Feed RS recommends a sequence of items
where users can slide down to view more items.

rules, which are not customized for all users [3, 6–8, 37, 41]; the
learning-based methods measure the similarity of a given item pair
by directly comparing the item embeddings [1, 9, 44, 46]. Though
effective, the ignorance of users’ personal interests may lead to a
mismatch between the model’s definition of diversity and users’
perceptions of diversity. For example, some female customers prefer
to view more clothing than others in the feed. Directly reducing the
probability of presenting user-preferred items to increase diversity
may degrade their satisfaction with the recommended results.

Second, in feed applications, users tend to view many items in
a row, such that users’ interests may evolve during this continu-
ous browsing process. In this case, the measurement of both item
accuracy and diversity should consider the evolving interest due
to the ever-changing context so as to accommodate the sequential
browsing nature in feed scenarios. However, most existing inter-
est models mainly focus on learning users’ interests from their
historical behaviors with less emphasis on the evolution of inter-
ests along with the browsing context [10, 34, 47, 48]. Another line
of research on re-ranking proposes various list-wise solutions to
capture the interior correlations between items within the con-
text [2, 5, 20, 32]. Nevertheless, they mainly focus on improving
accuracy regardless of diversity. Some recent works devote efforts
to solve this accuracy-diversity dilemma and obtained promising
results [21, 27, 44, 46]. However, the joint optimization of accuracy
and diversity still remains to be a challenging problem, especially
for industrial implementation on large-scale systems.

In light of the above challenges, in this paper, we investigate the
following research questions. 1) How to formulate and design a
general framework for jointly optimizing accuracy and diversity
from an item sequence perspective? 2) How to estimate accuracy
and diversity with adaptation to the evolution of user interest while
browsing consecutive items in feed scenarios? 3) How to implement
the proposed framework in industrial systems for practical appli-
cations and how well does it perform? To this end, we propose a
general Multi-factor Sequential Re-ranking with Perception-Aware

Diversification (MPAD) framework to jointly optimize accuracy
and diversity for practical feed recommendations. This framework
consists of four main components. The bi-sequential determinan-
tal point process (BS-DPP) algorithm provides a principled and
tractable framework for sequential item selection to maximize the
joint benefits of accuracy and diversity of the entire item list. The
Multi-scale Interest Extraction (MIE) model extracts multi-scale
user interests through graph clustering-based aggregations. The
Context-aware Accuracy Estimation (CAE) model provides an es-
timate of context-aware accuracy from a sequence perspective by
learning from both the multi-scale interests and the ever-changing
browsing context. The Perception-Aware Kernel (PDK) evaluates
the similarity between itemswith consideration of the user’s percep-
tion of diversity based on personal interests. Themain contributions
are as follows.
• This work formulates the feed recommendation task as a multi-
factor re-ranking problem and proposes a principle and tractable
MPAD framework to maximize the joint benefits of accuracy and
diversity of the entire recommended item list.

• This work proposes a series of collaborative models to estimate
the accuracy and diversity of an item list from a sequence per-
spective. They are able to capture the influence from both the
browsing context and the evolving user interests to align with the
browsing nature of the feed scenario. We also propose a tailored
BS-DPP algorithm to jointly optimize the accuracy and diversity
when selecting optimal items in a sequential manner.

• This paper presents a general system architecture for the de-
ployment of MPAD in industrial systems. It has now been im-
plemented in the homepage feed to achieve 2.4% lift on user
clicks, 2.0% lift on stay time, and 4.0% lift on content diversity.
The architecture now serves Taobao’s main traffic with 120, 000
queries-per-second at peak.

• Thiswork conducts extensive experiments on both offline datasets
and online A/B tests. The results show that our proposed MPAD
significantly outperforms other methods. The source code has
been made public1.

2 PROBLEM SETUP
A typical pipeline of industrial RS includes three stages [21, 44], i.e.,
matching, ranking, and re-ranking. The RS first retrieves candidate
items from item databases at the matching stage. Then, the ranking
modules measure item accuracy in a point-wise manner. Finally,
the top items will be sent to the re-ranking module to determine
the final item list to present to users.

In this paper, we consider a multi-factor feed recommendation
problem at the re-ranking stage, where the task is to select an
item sequence 𝑆 = {𝑖1, 𝑖2, · · · , 𝑖𝐾 } with size 𝐾 from a candidate
set 𝐼 = {𝑖1, 𝑖2, · · · , 𝑖𝑁 } with size 𝑁 ≫ 𝐾 provided by the ranking
module. The selection of sequence 𝑆 depends on both the item
accuracy which relates to user’s preference for the items and the
list-wise item diversity which influences user’s intention to browse
and interact in practical applications [12, 21, 29, 44]. Formally, given
a target user 𝑢 and a set of candidate items 𝐼 , our aim is to select
a fixed-size subset from 𝐼 and determine their order in a page to

1The source code is available at https://anonymous.4open.science/r/MPAD/.
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maximize a joint utility function:

P0 : argmax
𝑆⊆𝐼

𝑓 (𝑢, 𝑆) = 𝐹 (Acc(𝑢, 𝑆),Div(𝑢, 𝑆)), (1)

where the first term Acc(𝑢, 𝑆) evaluates the context-aware item
accuracy based on user interests and browsing context, the second
term Div(𝑢, 𝑆) evaluates the list-wise diversity of all items, and the
fusion function 𝐹 (·) measures the contribution of item accuracy
and diversity to the joint utility 𝑓 (𝑢, 𝑆).

Note that this formulation extends the commonly used item-level
diversity [9, 21, 27, 44] to personalized user-item-level diversity,
i.e., evolving from Div(𝑆) to Div(𝑢, 𝑆). As such, the solution needs
to consider user’s personalized perception of diversity on the rec-
ommended results.

3 METHODOLOGY
This section first gives an overview of the proposed MPAD frame-
work in Sec. 3.1. Then, this section introduces the main building
blocks of MPAD in order from Sec. 3.2 to Sec. 3.5. Finally, this
section discusses the online implementation of MPAD in Sec. 3.6.

3.1 Framework Overview
The framework consists of two layers: the selection-layer uses a se-
quential item selection algorithm to select items from the candidate
set using the item accuracy and diversity scores evaluated by the
estimation-layer. The detailed workflow is presented in Figure 2.

Specifically, the selection-layer operates with the BS-DPP algo-
rithm which considers both list-wise item diversity and context-
aware item accuracy during the selection of optimal items. It in-
deed offers a principle and tractable solution for function 𝐹 (·). The
estimation-layer, on the other hand, consists of three components.
The first component is MIE which groups users and items into dif-
ferent clusters and represents the user’s multi-scale interest based
on behavior sequences encoded by item/cluster embeddings. MIE
can be computed offline for online complexity reduction. The second
component is CAE which refines the point-wise accuracy scores
from the ranking stage into context-aware accuracy scores by mak-
ing use of both browsing context and multi-scale user interests.
The refined scores are used in the computation of Acc(𝑢, 𝑆) in BS-
DPP. The third component is PDK which computes item similarities
based on both item embedding and the user’s different scales of in-
terests. The diversity kernel measures the diversity term Div(𝑢, 𝑆)
in BS-DPP.

3.2 Bi-Sequential Item Selection
This section presents the BS-DPP algorithm for incremental item
selection at the selection-layer. In BS-DPP, both the item diversity
scores and the item accuracy scores are considered to be sequen-
tially updated along with the item selection process.

This is different with standardDeterminantal Point Process (DPP)
methods [9, 44] where the item accuracy scores are considered to be
fixed values, regardless of the change of context. Therefore, BS-DPP
is more in accordance with the browsing nature of feed products
where the user’s interests may evolve during reviewing consecutive
items.

3.2.1 Task Formulation. A point process 𝑃 defined on an item set
𝐼 = {𝑖1, 𝑖2, · · · , 𝑖𝑁 } is a probability distribution on the powerset
of 𝐼 (i.e., the set of all subsets of 𝐼 ), where the probability satisfies∑
𝑆⊆𝐼 𝑃 (𝑆) = 1. The probability of choosing a specific item subset

is determined by the kernel function in DPP and the item selection
process is usually modeled as a MAP inference [9, 25]. In this paper,
we define the DPP kernel based on a combined measurement of
Acc(𝑢, 𝑆) and Div(𝑢, 𝑆), such that the probability of choosing an
item subset is naturally proportional to the joint optimization of
item accuracy and diversity. Based on the DPP theory [9, 25], the
objective in (1) equals to:

P1 : argmax
𝑆 ∈𝐼

𝐹 (Acc(𝑢, 𝑆),Div(𝑢, 𝑆)) = log det(𝑲𝑢𝑆 ), (2)

where𝑲𝑢
𝑆
is the kernel function definedwithAcc(𝑢, 𝑆) andDiv(𝑢, 𝑆),

to be discussed later; log det(𝑲𝑢
𝑆
) is the log-probability function of

choosing a subset 𝑆 for user 𝑢. In this way, the aim to maximize the
utility function 𝑓 (𝑢, 𝑆) in (1) is transformed into maximizing the
log-probability function ℎ(𝑢, 𝑆) = log det(𝑲𝑢

𝑆
).

3.2.2 Bi-Sequential DPP. Standard DPP methods [9, 44] construct
the kernel matrix as follows:

𝐾𝑢𝑆 (𝑖, 𝑗) = 𝑔(𝑢, 𝑖) · 𝐷 (𝑖, 𝑗) · 𝑔(𝑢, 𝑗), (3)

where 𝑔(𝑢, 𝑖) is the point-wise accuracy score evaluated between
user 𝑢 and item 𝑖 ∈ 𝑆 , regardless of the page-context, while 𝐷 (𝑖, 𝑗)
measures the similarity between item 𝑖 and item 𝑗 with ∀𝑖, 𝑗 ∈ 𝑆 ,
regardless of user’s personal interests. In contrast, BS-DPP considers
that 1) the accuracy scores are related to the browsing context, i.e.,
the previously added items in 𝑆 ; and 2) the diversity scores are
related to the user’s interests. This changes the definition in (3) into

𝐾𝑢𝑆 (𝑖, 𝑗) = 𝑔(𝑢, 𝑖 |𝑆) · 𝐷 (𝑖, 𝑗 |𝐸𝑢 ) · 𝑔(𝑢, 𝑗 |𝑆), (4)

where 𝑔(𝑢, 𝑖 |𝑆) denotes the context-aware accuracy score which
conditions on the previously presented items in 𝑆 , while 𝐷 (𝑖, 𝑗 |𝐸𝑢 )
measures the similarity between item 𝑖, 𝑗 ∈ 𝑆 condition on the
user’s interest 𝐸𝑢 . We modify the log-probability of choosing a
subset 𝑆 as

ℎ(𝑢, 𝑆) =
∑︁

𝑖∈𝑆 𝑔(𝑢, 𝑖 |𝑆) + 𝛼 · log det(𝑫𝑢𝑆 ), (5)

where 𝛼 is a tunable parameter to control the trade-off between
the diversity and accuracy of the recommended results. It is useful
in practical feed applications since different platforms need such a
parameter to control the tendency towards accuracy or diversity to
suit different business orientations, e.g., more accuracy for relevant
recommendations or more diversity for discovering new interests.

The objective in (2) can be solved based on the popular greedy
approximation methods [9, 16, 44], which maximize the marginal
gain when incrementally adding a new item to set 𝑆 . Combining
with our definition of the kernel function, the greedy maximization
step to choose an optimal item per iteration can be written as

𝑗 = argmax𝑖∈𝐼\𝑆 log det
(
𝑲𝑢
𝑆∪{𝑖 }

)
− log det

(
𝑲𝑢𝑆

)
(6a)

= argmax𝑖∈𝐼\𝑆 ℎ (𝑢, 𝑆 ∪ {𝑖}) − ℎ(𝑢, 𝑆) (6b)

= argmax
𝑖∈𝐼\𝑆

𝑔(𝑢, 𝑖 |𝑆)+𝛼 ·
(
log det

(
𝑫𝑢
𝑆∪{𝑖 }

)
−log det

(
𝑫𝑢𝑆

) )
(6c)

= argmax
𝑖∈𝐼\𝑆

𝑔(𝑢, 𝑖 |𝑆) + 𝛼 · log(𝑑2𝑖 ). (6d)

3
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Figure 2: An overview of the MPAD framework.

Algorithm 1 Bi-Sequential Item Selection in MPAD
1: Initialization:
2: 𝑫𝑆 , 𝜖 , c𝑖 = [], 𝑑2

𝑖
= 𝑫𝑖𝑖 , 𝑗 = argmax𝑖∈𝐼 log(𝑑2𝑖 ), 𝑆 = { 𝑗}.

3: Iteration:
4: while |𝑆 | < 𝑘 and 𝑑2

𝑖
< Y do

5: for 𝑖 ∈ 𝐼 \ 𝑆 do
6: 𝑒𝑖 = (𝑫 𝑗𝑖 − ⟨c𝑗 , c𝑖 ⟩)/𝑑 𝑗 .
7: Update 𝑑2

𝑖
= 𝑑2

𝑖
− 𝑒2

𝑖
, c𝑖 = [c𝑖 𝑒𝑖 ].

8: Update 𝑔(𝑢, 𝑖 |𝑆) with the proposed preference model.
9: end for
10: Obtain 𝑗 = argmax𝑖∈𝐼\𝑆 𝑔(𝑢, 𝑖 |𝑆) + 𝛼 · log(𝑑2

𝑖
).

11: Update subset 𝑆 = 𝑆 ∪ { 𝑗}.
12: end while

The complete algorithm of BS-DPP in MPAD is given in Algo-
rithm 1. We defer more details on the derivations of (6) and the
update of term log(𝑑2

𝑖
), i.e., Step. 6 and Step. 7 in Algorithm 1, to the

appendix. We now introduce how to obtain 𝑔(𝑢, 𝑖 |𝑆) and log(𝑑2
𝑖
)

in (6d) via the proposed CAE and PDK model in the sequel.

3.3 Multi-Scale Interest Extraction
In this section, we propose the MIE model to extract users’ multi-
scale interests, which are used as the input of the subsequent CAE
and PDK models. Existing user interest models usually directly
perform self-attention on user’s behavior items [10, 33, 34, 48].
However, directly mixing the information from a large quantity of
raw item-level features may introduce redundant or noisy infor-
mation to the model thus affecting learning performance. It is also
hard for them to distinguish users’ different aspects of interests,
especially from the full behavior sequences.

Therefore, this work proposesMIE to describe user interests from
two scales, i.e., the micro-scale and themacro-scale. Themicro-scale
captures users’ recent interests, such as their recent attention to gold
necklaces and earrings. The macro-scale, on the other hand, models

the user’s long-term interests at a broader scope, such as fashion,
clothing, or sports. For macro-scale interests, MIE groups items
into clusters based on graph modularity and represents the user’s
macro-level interest through cluster-wise aggregated embeddings.
Each cluster corresponds to one interest point at the macro level.
For micro-scale interests, MIE directly uses item-level features of
each item within the user’s behavior sequence, such as item id
sequences and feature sequences, for micro-scale interest modeling.
Each item corresponds to one interest point at the micro-level. MIE
also adopts time decay encoding to distinguish the freshness of
recent micro-level interests.
Graph Clustering with Modularity. The user-item interaction
data can be represented as a bipartite network. The edges (i.e.,
interactions) within the bipartite network only exist between user
nodes and item nodes. In this paper, we partition the clusters in a
user-item bipartite network based on the bipartite modularity [4],
which is defined as

𝑄 =
1

𝐸

∑︁
𝑖, 𝑗

(
𝐴𝑖 𝑗 − 𝑃𝑖 𝑗

)
𝛿 (𝑐𝑖 , 𝑐 𝑗 ), (7)

where 𝐸 is the total number of edges in the bipartite graph, 𝐴𝑖 𝑗 is
the adjacency matrix where the element equals one if an interaction
between 𝑖 and 𝑗 exists, 𝑃𝑖 𝑗 refers to the expected edge between 𝑖
and 𝑗 in a graph partitioned by different clusters, and 𝛿 (𝑐𝑖 , 𝑐 𝑗 ) is
the indicator function which equals one if 𝑖 and 𝑗 belongs to the
same cluster, otherwise zero. A larger value of 𝑄 means that there
are more edges in clusters than expected, which implies a stronger
cluster structure. The graph modularity 𝑄 can be optimized in an
iterative manner according to the Louvain algorithm [13]. After the
algorithm converges, the items are grouped into different clusters
which are used as the foundation of macro-level interest modeling.
Macro-Level User Interest. For a given user 𝑢, we first classify
its behavior items into several interest points according to their
belonged clusters. Each interest point represents the user’s one
aspect of macro-level interest. We present an example in Figure 2.

4



Given a user𝑢 with full behavior sequence 𝐼𝑢 = {𝑖1, 𝑖2, 𝑖3, 𝑖4, ..., 𝑖𝑁 },
we partition these behavior items into four interest points, i.e.,
𝐶𝑢 = {𝑐1, 𝑐2, 𝑐3, 𝑐4}. Here 𝑐𝑢1 = {𝑖1, 𝑖3} due to that 𝑖1 and 𝑖3 belong
to the same cluster. We obtain the representation of one interest
point by pooling over the embedding of its contained items:

h𝑢𝑚 = Aggregate
{
e𝑖𝑥 , ∀𝑖𝑥 ∈ 𝑐𝑚

}
, (8)

where 𝑐𝑚 refers to the 𝑚-th interest point, e𝑖𝑥 denotes the em-
bedding of behavior item 𝑖𝑥 and Aggregate(·) is an aggregation
function, which is sum pooling in this paper.

Then, we performmulti-head attention among the top-M interest
groups to obtain the representation of macro-level interests. For-
mally, the formulation of one single-head attention can be written
as

Att(𝑸𝑚,𝑲𝑚, 𝑽𝑚) = Softmax
(
𝛼𝑸𝑚𝑲𝑇𝑚

)
𝑽𝑚, (9)

where 𝑸𝑚 = h𝑢𝑚𝑾
𝑄 , 𝑲 = h𝑢𝑚𝑾

𝐾 , and 𝑽 = h𝑢𝑚𝑾
𝑉 are the linear

transformations applied to the representation of interest group h𝑢𝑚 .
The scaling factor 𝛼 is usually set to be 1/

√
𝑑 with 𝑑 being the

dimension of the embedding vector. Then, the representation of
macro-level user interest via multi-head attention is

Head𝑚 = Att(𝑸,𝑲𝑚, 𝑽𝑚), (10a)

h𝑢macro = Concat(Head1, · · · ,Head𝑚)𝑾𝑂 , (10b)

where Concat(·) denotes the concatenation of embedding vectors
and𝑾𝑶 denotes the linear projection matrix and scales with the
number of used heads.
Micro-Level User Interest. User’s micro-level interests are usu-
ally more dynamic and more concrete than macro-level interests.
Therefore, we directly perform multi-head attention towards the
individual behavior items, instead of clusters, to obtain the represen-
tation of micro-level user interests. Noticeably, we inject the time
decay corresponding to each behavior item into the embedding to
describe the freshness of this aspect of interest. To be more specific,
the expanded embedding of each behavior item can be written as

�̃�𝑖𝑥 = Concat{𝒆𝑖𝑥 , 𝒕𝑖𝑥 }, ∀𝑖𝑥 ∈ 𝐼𝑢micro, (11)

where 𝐼𝑢micro denotes the set of individual behavior items and 𝒕𝑖𝑥 is
a learnable embedding that represents the time interval from the
interaction time till now. Then, we obtain the representation of the
user’s micro-level interest in the target item as

Head𝑖 = Att(𝑸𝑖 ,𝑲𝑖 , 𝑽𝑖 ), (12a)

hmicro = Concat(Head1, · · · ,Headℎ)𝑾𝑂 , (12b)

where 𝑸 , 𝑲 , and 𝑽 follows similar definition as in (9) but replace
the embedding of interest group h𝑢𝑚 with the embedding of each
individual behavior item �̃�𝑖𝑥 .

3.4 Context-Aware Accuracy Estimation
In this section, we propose the CAE model to refine the point-
wise accuracy scores produced by models in the ranking stage into
context-aware accuracy scores for the measurement of Acc(𝑢, 𝑆).
The proposed model only performs a linear transformation on the
embedding vectors such that it is low-cost for online inference. A
brief workflow of CAE is presented in Figure. 2.

CAE maintains two embeddings to describe the context informa-
tion. First, when determining the 𝑘-th item in a page, we represent
the context of previous reviewed items as

hprev = Aggregate (e𝑖 , 𝑖 ∈ [𝑘 − 1]) , (13)
where [𝑘 − 1] = {1, 2, · · · , 𝑘 − 1}. Second, we represent the context
of all candidate items to reflect the overall tendency from ranking
models, which can be written as

hcand = Aggregate (e𝑖 , 𝑖 ∈ [𝑁 ]) . (14)
Next, we model the influence from the context of previous items

and candidate items towards the target item based on an excitation
mechanism proposed in SENet [19]. Taking the context of previous
items as an example, we obtain its excited representation as

Wprev = 𝜎 (W2 · 𝛿 (W1 · hprev)), (15)
where 𝜎 (·) is the sigmoid activation function, 𝛿 (·) is the Relu func-
tion,W1 andW2 are the linear transformation matrices. This exci-
tation operator can be understood as a low-cost attention mecha-
nism to extract the key information embedded in the context vector
hprev. Then, we multiply Wprev with the target item embedding to
emphasize the influence from the context of previous items:

𝒉𝑖𝑡prev = Wprev ⊗ 𝒆𝑖𝑡 , (16)
where ⊗ denotes the dot product operation. The same goes for
the excited vector for the context of candidate items. Moreover, by
replacing 𝒆𝑖𝑡 in (16) with the macro-level user interest h𝑢macro and
the micro-level user interest h𝑢micro, we obtain another four excited
vectors, i.e., h𝑢pr,lo, h

𝑢
pr,sh, h

𝑢
ca,lo, and h

𝑢
ca,sh, to model the drift of user

interest based on the list-wise context. Finally, we concatenate all
excited embeddings together and feed it into an MLP layer with
softmax function to get the output scores:

h𝑢all = Concat
(
e𝑖𝑡 ,𝒉

𝑖𝑡
prev,𝒉

𝑖𝑡
cand, h

𝑢
pr,lo, h

𝑢
pr,sh, h

𝑢
ca,lo, h

𝑢
ca,sh

)
, (17a)

𝑌𝐼 𝐼 (𝑢, 𝑖) = Softmax
(
MLP

(
h𝑢all

))
, (17b)

This CAE model can be trained with the commonly used cross-
entropy loss as in other ranking models.

3.5 Perception-Aware Diversity Kernel
This section introduces the design of diversity kernel 𝑫𝑢

𝑆
in (5). In

general, the diversity kernel determines how to evaluate the simi-
larity between any given pairs of items in set 𝑆 . The elements of 𝑫𝑢

𝑆

determines the log(𝑑2
𝑖
) term in (6d). Different definitions of the di-

versity kernel lead to disparate diversification results. In this paper,
we introduce the user’s multi-scale interests obtained in Sec. 3.3
into the measurement of item similarity. This connects diversity
measurement with the user’s personal perception of diversity due
to distinct interests.

Specifically, we define an elementary kernel based on the form
of SE kernel [39] for the perception on macro-level interests as

𝐷𝑢macro (𝑖, 𝑗 |𝐸𝑢 ) = 𝑎2𝑙 exp
[
−
𝒉𝑢
𝑖,macro ⊗ 𝒉𝑢

𝑗,macro

𝑏2
𝑙

]
, (18)

where 𝑎2
𝑙
is the magnitude of the correlated components, 𝑏𝑙 is its

length scale, and 𝒉𝑢
𝑖,macro refers to the dot product between the item

embedding 𝒆𝑖 and the macro-level interest vector 𝒉𝑢macro. Similar
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Figure 3: Influence of adding multi-scale user interests
to the diversity measurement. (a) item-level similarity; (b)
item-level similarity with macro-level interests; (c) item-
level similarity with macro-level and micro-level interests.

goes for 𝒉𝑢
𝑗,macro. The kernel for the perception on micro-level

interests can be defined as

𝐷𝑢micro (𝑖, 𝑗 |𝐸𝑢 ) = 𝑎
2
𝑠 exp

[
−
𝒉𝑢
𝑖,micro ⊗ 𝒉𝑢

𝑗,micro

𝑏2𝑠

]
, (19)

where 𝑎2𝑠 and 𝑏𝑠 are hyper-parameters for micro-level interests. We
also define another elementary kernel that directly compares the
similarity between items based on their embeddings. In this case,
the item-level diversity used in existing literature [9, 21, 27, 44] can
be treated as a special case of PDK. In particular, this kernel can be
defined as

𝐷item (𝑖, 𝑗 |𝐸𝑢 ) = 𝑎2𝑠 exp
[
−
𝒆𝑢
𝑖
⊗ 𝒆𝑢

𝑗

𝑏2𝑠

]
, (20)

These elementary kernels can be merged into a composite kernel
without influencing the kernel properties via addition and multi-
plication operations [39]. More complicated operations such as
automatic kernel learning are also worth trying for better adap-
tivity and full automation of a system, e.g., deep DPP [16], which
can be explored in the future. In this work, we adopt the addition
operation to construct this composite kernel:
𝐷𝑢 (𝑖, 𝑗 |𝐸𝑢 )=𝐷𝑢item (𝑖, 𝑗 |𝐸𝑢 ) + 𝛽1·𝐷𝑢macro (𝑖, 𝑗 |𝐸𝑢 ) + 𝛽2·𝐷𝑢micro (𝑖, 𝑗 |𝐸𝑢 ),

(21)
where 𝛽1 and 𝛽2 are the hyper-parameters to control the influence
from macro-level and micro-level interest to the diversification
results.

We give an example in Figure. 3 to show the change of diversity
measurementwhen adding user interests into the kernel. Figure. 3(a)
shows the item similarity in 𝐷𝑢item (𝑖, 𝑗 |𝐸𝑢 ) which only considering
the distance of item embedding. Figure. 3(b) shows the item simi-
larity after adding the macro-level interests 𝐷𝑢macro (𝑖, 𝑗 |𝐸𝑢 ) into the
kernel. Figure. 3(c) shows the item similarity of the complete kernel
𝐷𝑢 (𝑖, 𝑗 |𝐸𝑢 ). It is clear that part of dissimilar items transforms into
similar items due to the consideration of user interests, and vice
versa. In this way, the similarity values of the same set of items
are different for distinct users, thereby leading to perception-aware
diversification.

3.6 Online Implementation
In this section, we introduce the online implementation of MPAD
in the Homepage Feed of Taobao Mobile App. The presented sys-
tem architecture is able to handle 120, 000 QPS at traffic peak and
respond within 20 milliseconds in general. It now serves the main
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Figure 4: The System Architecture for Online Deployment

traffic of Taobao to provide services to hundreds of millions of users
towards billions of items in Taobao every day.

The architecture to implement the proposed MPAD model in
Taobao is presented in Fig. 4, including the workflow of both of-
fline training and online serving. The offline training is based on
a distributed machine learning platform. The learned embedding
and item clustering results are uploaded to the feature center for
online serving. The re-ranking service retrieves user and item fea-
tures from the feature center in real-time and feeds them into a
series of models to determine the final item list. Note that the graph
clustering in MIE only performs offline to reduce online complexity.

The online inference complexity consists of three parts. First,
each element in PDK requires the computation of dot product be-
tween two embedding vectors which incurs a complexity of O(𝑑)
where 𝑑 is the length of embedding, such that the overall complex-
ity of computing PDK scales as O(𝑑𝑁 2), where 𝑁 is the number of
candidate items. Note that the dot product of embedding vectors
between hot items and active users can be pre-computed offline
to save a lot of computations. Second, the accuracy estimation in
CAE only involves linear transformation over embedding vectors
in the exciting mechanism and the final MLP layer. As such, the
complexity scales linearly with the length of embedding vectors,
i.e., O(𝑑𝑁 ) where we assume the length of each input embedding
is 𝑑 . Third, the BS-DPP runs in the same complexity as standard
DPP [9], i.e., 𝑂 (𝐾3) time for unconstrained MAP inference and
𝑂 (𝐾2𝑁 ) to return 𝐾 items.

4 EXPERIMENTAL RESULTS
In this section, we conduct extensive experiments on both offline
datasets and real-world online RS with the goal to answer the
following research questions. Q1: Does MPAD outperform other
SOTA methods in terms of accuracy and diversity for feed recom-
mendation? Q2: How do different components of MPAD influence
the final performance? Q3: How does MPAD perform in real-world
feed recommendation platforms?
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4.1 Experimental Setup
4.1.1 Datasets. We conduct offline experiments on three public
available datasets:MovieLens dataset2,Wechat dateset3, and Taobao
dataset4. Specifically, MovieLens dataset is a widely-used bench-
mark dataset for movie recommendations, which contains 10 mil-
lion samples. Here we propose it for easy reproduction. Wechat
dataset is collected from 7.3 million of video playback logs on
Wechat Mobile App. It is one of the largest mobile social appli-
cations in China. The dataset involves 20, 000 users and 96, 564
videos. The label is marked as positive if the user has watched more
than 90% playback progress of a video. Taobao dataset is a widely
used public benchmark dataset for online advertising, which con-
tains over 100 million ad display/click logs collected from Taobao
Mobile App. It is one of the largest online merchandise applications
in China. The logs involve 1 million users and 800 thousand of ads
collected on Taobao Mobile App.

4.1.2 Comparing Methods. We compare MPAD with both point-
wise and list-wise mainstream methods for recommendation tasks.

Point-wise baselines: we compare with four commonly used
point-wise baselines, i.e., the shallow model based on linear regres-
sion (LR) [31], the PNN model [38] which performs feature interac-
tion with different product operations, the Wide & Deep learning
model (WDL) [11] and DeepFM model [17] which adopt a hierar-
chical structure consists of linear and deep layers. We also compare
with a few representative user interest models, i.e., DIN [48] which
models short user behavior sequences with the target attention
mechanism; DIEN [47] which uses an interest extraction layer based
on Gated Recurrent Unit (GRU) to model users’ temporal drifting
interest; SIM [34] which models user’s full behavior sequence based
on a two-stage paradigm.

List-wise baselines: we compare with three representative list-
wise baselines, i.e., DLCM [2] which applies GRU to encode the
input ranking list, accompanied with a global vector to learn a
powerful scoring function for list-wise re-ranking; PRM [32] which
uses the self-attention mechanism to capture the mutual influence
among items in the input ranking list; Seq2Slate [5] which adopts
RNN and pointer network to encode the previous selected items
when selecting the most appropriate item for next step. We com-
pare with the statistical models, i.e., maximal marginal relevance
(MMR) [8] and fast DPP [9]. Both of them have a tunable param-
eter to balance accuracy and diversity, similar to MPAD. We also
compare with the generative-based models which directly gen-
erate item lists as the final results, including ListCVAE [23] and
PivotCVAE[28].

4.1.3 Metrics. For accuracy estimation, we use the commonly used
Area Under ROC (AUC) and Logloss (cross entropy) to evaluate the
point-wise estimation performance; and use normalized discounted
cumulative gain (nDCG) [22] and mean average precision (MAP)
to measure the list-wise estimation performance. nDCG@K or
MAP@K refers to the performance of top-k recommended items
in the return list. For list-wise diversity, we use intra-list average
distance (ILAD) [45] to evaluate the richness of diversified items in

2https://grouplens.org/datasets/movielens/10m/
3https://algo.weixin.qq.com/2021/intro
4https://tianchi.aliyun.com/dataset/dataDetail?dataId=56

Table 1: Comparison of user interest modeling (bold: best;
underline: runner-up). Themarker * denotes that ourmodel
performs significantly better than the runner-up with 𝑝 <

0.01 over 25 runs.

Method MovieLens WeChat Taobao
AUC (↑) Logloss (↓) AUC (↑ ) Logloss (↓) AUC (↑ ) Logloss (↓)

LR 0.7337 0.6254 0.6433 0.6656 0.5725 0.1930
PNN 0.7836 0.5597 0.6976 0.6295 0.6309 0.1896
WDL 0.7883 0.5584 0.6968 0.6295 0.6316 0.1894

DeepFM 0.7894 0.5571 0.6979 0.6290 0.6315 0.1898
DIN 0.8024 0.5394 0.6951 0.6319 0.6333 0.1896
DIEN 0.8028 0.5344 0.6994 0.6290 0.6324 0.1902
SIM 0.8023 0.5349 0.7006 0.6309 0.6312 0.1893
Ours 0.8056∗ 0.5305∗ 0.7014∗ 0.6279∗ 0.6361∗ 0.1884∗

a page. Moreover, we use PV, Stay Time, Category Breadth, CLICK,
CTR, and GMV to evaluate online performance. Here, PV refers
to the total number of browsed items, Stay Time is the average
browsing time of all users, and Category Breadth computes the
average number of distinct categories of all exposed items on all
pages, reflecting the diversity of recommendation results. CLICK
refers to the total number of clicked items, CTR equals CLICK/PV
which measures users’ willingness to click. GMV is a term used
in online retailing to indicate the total sales monetary value for
merchandise sold over a certain period of time. We use the time
period of a complete day for all online metrics in this paper.

4.1.4 Parameter Settings. In all experiments, we use the validation
set to tune the hyper-parameters to generate the best performance
for different methods. The learning rate is searched from 10−4 to
10−2. The L2 regularization term is searched from 10−4 to 1. All
models use Adam as the optimizer. We extract micro-level interests
from the user’s recent 100, 50, and 20 behavior items for Movie-
Lens, WeChat, and Taobao, respectively. For macro-level interests,
we group all items into 20, 241, and 6769 clusters for MovieLens,
WeChat, and Taobao, respectively. We assign each user’s recent
behavior to these clusters, and we select the top-5 interest groups
to compute their macro-level interests.

4.2 Offline Evaluation
This section compares the experimental results of MPAD and other
baselines on offline datasets to answer Q1 and Q2. First, we verify
the effectiveness of interest modeling in MIE. For all datasets, we
train MPAD and other competing methods using the same user
behavior sequences. The interest modeling techniques differ from
each other among the comparing methods. In particular, MPAD
makes use of the cluster-based interest model proposed in Sec. 3.3.
LR, DeepFM, and WDL treat user behavior sequences as raw fea-
tures and directly feed them into linear/MLP layers for feature
crossing. DIN and DIEN adopt TA/GRU units to model short-term
user interests. SIM introduces an additional retrieval layer to se-
lect top-𝑘 items from user’s full behavior sequences to model the
lifelong user interest. As shown in Table 1, the results verify that
MIE outperforms other user interest models remarkably, in terms
of both AUC and Logloss. This indicates that MIE is more robust to
the disturbing noise hidden in the raw item-level features within
behavior sequences that may undermine learning performance.
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Table 2: Comparison of item quality in the item list (bold:
best; underline: runner-up). The marker * denotes that our
model performs significantly better than the runner-up
with 𝑝 < 0.01 over 25 runs.

Dataset Model NDCG@3 NDCG@10 MAP@3 MAP@10

MovieLens

DIN 0.9017 0.9230 0.8760 0.8893
DIEN 0.9031 0.9239 0.8775 0.8900
SIM 0.9004 0.9219 0.8747 0.8879

Seq2Slate 0.9098 0.9295 0.8863 0.8978
DLCM 0.9095 0.9293 0.8857 0.8976
PRM 0.9102 0.9296 0.8865 0.8981

ListCVAE 0.8349 0.8800 0.8154 0.8632
PivotCVAE 0.8608 0.8928 0.8423 0.8775

Ours 0.9148∗ 0.9332∗ 0.8918∗ 0.9027∗

WeChat

DIN 0.6811 0.7200 0.6084 0.5935
DIEN 0.6970 0.7310 0.6256 0.6075
SIM 0.6976 0.7329 0.6272 0.6100

Seq2Slate 0.7001 0.7342 0.6309 0.6148
DLCM 0.7029 0.7373 0.6318 0.6164
PRM 0.7001 0.7363 0.6280 0.6152

ListCVAE 0.5710 0.6533 0.4975 0.5333
PivotCVAE 0.5738 0.6547 0.4993 0.5362

Ours 0.7095∗ 0.7419∗ 0.6398∗ 0.6216∗

Taobao

DIN 0.2017 0.3172 0.1654 0.2227
DIEN 0.2003 0.3155 0.1631 0.2202
SIM 0.2006 0.3200 0.1645 0.2237

Seq2Slate 0.2093 0.3294 0.1728 0.2326
DLCM 0.2115 0.3308 0.1749 0.2337
PRM 0.2118 0.3303 0.1750 0.2335

ListCVAE 0.1767 0.3076 0.1523 0.2193
PivotCVAE 0.1785 0.3120 0.1512 0.2224

Ours 0.2166∗ 0.3339∗ 0.1799∗ 0.2372∗
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(a) Impact of parameter 𝛼 on Taobao dataset.
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Figure 5: Trade-off between accuracy and diversity.

Next, we compare the performance of accuracy estimation among
all point-wise and list-wise ranking methods. For MPAD, we only
activate MIE and CAE components for this experiment. As shown
in Table 2, the point-wise baselines achieve generally worse per-
formance than the list-wise baselines on all datasets. This verifies

Table 3: Results of online A/B tests in TaoBao App.

PV Breadth Stay Time CLICK CTR GMV
vs Heuristic +1.29% +4.02% +1.95% +2.38% +1.07% +1.29%
vs fastDPP +0.10% +1.46% +1.41% +1.77% +1.67% +0.27%

that the mutual influence among the input ranking list incurs a
great impact on list-wise recommendation. Therefore, it is of vital
importance to consider the influence of browsing context in feed rec-
ommendations. Moreover, our proposed MPAD consistently yields
the best performance on all datasets in terms of both NDCG and
MAP. This verifies that MPAD has a superior capability to model the
contextual influence among consecutive items, due to the modeling
of browsing context and the user’s multi-scale interests.

Now we examine the capability to balance item accuracy and
diversity in MPAD. We activate all components in MPAD for this
experiment. As shown in Figure 5, when decreasing the parameter 𝛼
in (6d), ILAD decreases monotonously while nDCG increases at first
and then decrease a bit. When 𝛼 = 0, MPAD directly returns items
with the highest accuracy scores, regardless of the item diversity.
The results indicate that it is critical to introduce a proper amount
of diversity into the item list to improve the joint utility of accuracy
and diversity for feed recommendation. Then, we compare MPAD
with MMR and fastDPP. The tunable parameters of all methods
are chosen such that different algorithms have approximately the
same range of nDCG. The result in Figure 5 shows that, among all
comparing methods, our proposed MPAD exhibits the best item
accuracy-diversity trade-off performance. This is probably due to
the superior performance of accuracy and diversity estimation from
MIE, CAE, and PDK. It is also noteworthy that each curve in Figure 5
has an inflection point, corresponding to the optimal balance of
accuracy and diversity. In practical applications, the parameter 𝛼
should be tuned to reach such an optimal status to deliver the best
experience for customers.

4.3 Online Evaluation
MPAD has been fully deployed in the homepage feed of Taobao
named Guess-you-like to serve the main traffic. In general, Guess-
you-like one of the largest merchandise feed recommendation plat-
form in China, which serves more than hundreds of millions of
users towards billions of items every day. In Guess-you-like, users
can slide to browse and interact with endless items in a sequential
manner, as shown in Figure 1. We deploy MPAD at the re-ranking
stage in Guess-you-like platform, which takes hundreds of candi-
date items from the ranking stage as input and outputs a fixed-size
item list to form a new page. The online performance is compared
against the fast DPP method and a heuristic method. Specifically,
the fast DPP method uses point-wise ranking scores and item em-
bedding vectors from ranking models as input, similar to [9]. The
heuristic method adjusts the item order according to a series of
heuristic rules predefined with expert knowledge, e.g., no more
than two items within the same category on one screen. It is a
commonly used diversification strategy in industrial applications.

The performance in Table 3 is averaged over two consecutive
weeks. We have the following observations. Compared with the

8



(a)

(b) 

(c)

Clicked 
Items

Figure 6: An example of personalized diversification.

heuristic method, first, MPAD achieves a performance improve-
ment of 2.38% for CLICK, 0.62% for CTR, and 0.48% for GMV,
indicating that our framework is able to increase the user’s will-
ingness to interact with the items. The less improvement on GMV
is due to that we mainly optimize MPAD towards the CLICK goal
to be consistent with the business orientation. It is noteworthy
that 1% improvement is a considerable enhancement in real-world
RS, especially for applications with billion-scale users and items.
In Guess-you-like, 1% improvement on CLICK brings millions of
clicks every day. Second, the Category Breadth per page increases
by around 4% at the same time, which verifies that MPAD is able
to promote diversity in the recommended items as well as accuracy.
Third, the Stay Time increases by 1.95% and the PV increases by
1.29%, which indicates that MPAD can attract users to stay at the
platform. MPAD also outperforms fastDPP in all the above metrics.
All these improvements verify that MPAD is able to enhance both
the item accuracy and diversity in the recommendation results and
well balance their trade-off to attract users in feed recommendation.

4.3.1 Case Study. In Figure. 6, we present one case to illustrate
how MPAD diversifies items to suit personal interests. We sample
a female customer who recently clicked a series of clothing and
dressing items, which indicate her browsing interests. Figure. 6(a)
presents the diversified results based on heuristic rules which are
universal for all users. It is clear that a few less relevant items
appear in the recommendation result, such as sports shoes and
down cloth. Figure. 6(b) shows the results obtained byMPAD, where
the recommended items are all relevant to the clicked items and are
well-spaced to avoid presenting similar items in a row. Figure. 6(c)
shows the results of adjusting the parameter 𝛼 in MPAD to increase
diversity. The items are now more proportioned than those in (b).
For example, the number of clothing items decreases from four
in (b) to only two in (c), and their distance is greater. This example
qualitatively illustrates the effectiveness of MPAD in delivering
perception-aware diversification services based on user interests.

5 RELATEDWORK
Re-ranking Methods. Traditional point-wise ranking models fo-
cus on predicting the interaction label between any given user-item
pairs, e.g., Wide&Deep [11], DIN [48] and SIM [33], regardless of
the context information in a full recommendation list. However,
in feed products, the mutual influence between items exhibits a
great influence on user behaviors since users are reviewing items

in a sequential manner. Recent works on re-ranking propose to
consider the mutual influence between items in a list-wise manner,
which includes three main research lines, i.e., RNN-based methods,
attention-based methods, and evaluator-generator-based methods.
Specifically, the RNN-based methods model the mutual influence
based on RNN structures. DLCM [2] uses gated recurrent units
(GRU) to sequentially encode the top-ranked items with their fea-
ture vectors. MiDNN [49] applies the long-short term memory
(LSTM), with a global feature extension method to capture cross-
item influences. Seq2Slate [5] extends MiDNN by adopting a more
flexible pointer network to solve the re-ranking problem.

Attention-based methods use self-attention to model item in-
teractions without RNN’s sequential structure. PRM [32] uses pre-
trained embedding to extract item interactions and generate list-
wise predictions with self-attention blocks and position encoding.
PFRN [20] uses Listwise Feature Encoding for context-aware item
interaction modeling with multi-head self-attention and relative po-
sition representation. Evaluator-generator methods use a generator
to generate permutations and an evaluator to determine optimal
permutation, e.g., SEG [43] and GRN [14]. These re-ranking models
mainly focus on improving recommendation accuracy instead of a
joint utility of both accuracy and diversity.

Diversity Methods. It has been widely acknowledged in diversi-
fied recommendation methods that accuracy should not be the only
goal of recommendation tasks since it may lead to a return of highly
similar items to harm user’s satisfaction with the recommendation
results [1, 3, 6–9, 21, 27, 37, 41, 44, 46]. Research on diversification
includes three main streams. The first stream of methods adopts
heuristics rules to deal with item order in a post-processing manner.
The representative work is maximal marginal relevance (MMR) [8],
which represents relevance and diversity with independent metrics
and maximizes the marginal relevance with a trade-off parame-
ter. Other greedy heuristics methods vary in the definition of this
marginal relevance [3, 6–8, 37, 41]. The second stream of methods
treats diversified recommendation as an end-to-end learning task.
DCF [12] proposes to solve the coupled parameterized matrix fac-
torization and structural learning problems based on collaborative
filtering. BGCF [42] applies bayesian graph convolutional neural
networks to model the uncertainty between user-item and bring
diversity into recommendation indirectly. DSSA [24] adopts the
attention mechanism to determine the importance of the under-
covered subtopics, where the relevance and the diversity are jointly
estimated with subtopic attention. The third stream of methods is
based on statistical models. The representative is the determinantal
point process (DPP) which measures set diversity by describing
the probability for all subsets of the item set. The maximum a pos-
teriori (MAP) in DPP to generate diverse lists is NP-hard, such
that many related works focus on the approximation of DPP for
low-complex iterates. For example, Fast DPP [9] proposes a greedy
approximation to accelerate the MAP inference for DPP. This fast
DPP method also inspires many follow-ups to improve diversity
in different recommendation tasks [15, 30]. Meanwhile, SSD [21]
proposed a time series analysis technique to include out-of-window
items into the measurement of diversity to increase the diversity of
a long recommendation sequence and alleviate the long tail effect
as well.
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User Interest Modeling. Researchers are capturing shifting user
interests by modeling behavior sequences. For example, DIN [48]
uses TA to capture user diversity, DIEN [47] uses GRU for drift-
ing temporal interest, and MIND [26] uses multi-vectors for dy-
namic interests. These models focus on short sequences (<100). For
long sequences, memory-based methods such as HPMN [40] and
MIMN [33] use memory networks to model diverse user interests,
while two-stage methods such as SIM [34] and UBR4CTR [36] train
retrieval and CTR models separately. In the first stage, the retrieval
model retrieves the top-𝑘 relevant items from long user behavior
sequences and stores the subsequence in an offline database. Then,
in the second stage, the CTR model retrieves the top-𝑘 relevant
items directly from the offline database to reduce complexity during
the learning. These models mainly focus on the CTR tasks with the
goal of maximizing accuracy. Their successes in CTR prediction
inspire us to extract user interests from both the long and short
behavior sequences.

6 CONCLUSION
In this paper, we propose a general re-ranking framework named
MPAD for practical feed recommendation. A series of collaborative
models are proposed to sequentially evaluate the accuracy and
diversity of different items in a list and to generate an optimal
item list by maximizing the joint utility of accuracy and diversity
of the entire list. Both online and offline experiments verified the
effectiveness of the proposed framework.
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A DERIVATION OF ITEM SELECTION
The composite kernel 𝑫𝑢

𝑆
is a PSD matrix since it is an addition

of multiple PSD elementary kernels. The Cholesky decomposition
of 𝑫𝑢

𝑆
can be written as 𝑫𝑢

𝑆
= VV⊤, where V ∈ R𝑘×𝑘 is an in-

vertible lower triangular matrix. For any 𝑖 ∈ 𝐼 \ 𝑆 , the Cholesky
decomposition of 𝑫𝑢

𝑆∪{𝑖 } can be represented as

𝑫𝑢
𝑆∪{𝑖 } =

[
𝑫𝑢
𝑆

𝑫𝑢
𝑆,𝑖

𝑫𝑢
𝑖,𝑆

𝑫𝑢
𝑖𝑖

]
=

[
V 0
c𝑖 𝑑𝑖

] [
V 0
c𝑖 𝑑𝑖

]⊤
, (22)

where the row vector c𝑖 and the scalar 𝑑𝑖 ≥ 0 satisfies
Vc⊤𝑖 = 𝑫𝑢𝑆,𝑖 , (23a)

𝑑2𝑖 = 𝑫𝑢𝑖𝑖 − ∥c𝑖 ∥22 . (23b)
According to (22), we have

det
(
𝑫𝒖
𝑆∪{𝑖 }

)
= det

(
VV⊤) · 𝑑2𝑖 = det

(
𝑫𝑢𝑆

)
· 𝑑2𝑖 . (24)

Combine (6c) with (24), we obtain
𝑗 = argmax

𝑖∈𝐼\𝑆
𝑔(𝑢, 𝑖 |𝑆) + 𝛼 · log(𝑑2𝑖 ). (25)

We follow [9] to derive the update of log(𝑑2
𝑖
) as follows. The

Cholesky decomposition of 𝑫𝑢
𝑆∪{ 𝑗 } can be written as

𝑫𝑢
𝑆∪{ 𝑗 } =

[
V 0
c𝑗 𝑑 𝑗

] [
V 0
c𝑗 𝑑 𝑗

]⊤
. (26)

Define c′
𝑖
and 𝑑 ′

𝑖
as the new vector and scalar of 𝑖 ∈ 𝐼 \ (𝑆 ∪ { 𝑗})

after adding item 𝑗 into 𝑆 . According to (23a) and (26), we have[
V 0
c𝑗 𝑑 𝑗

]
c′𝑖
⊤
= 𝑫𝑢

𝑆∪{ 𝑗 },𝑖 =
[
𝑫𝑆,𝑖
𝑫 𝑗𝑖

]
. (27)

Combining (27) with Eq. (23a), we have

c′𝑖 =
[
c𝑖 (𝑫𝑢

𝑗𝑖
− ⟨c𝑗 , c𝑖 ⟩)/𝑑 𝑗

]
�

[
c𝑖 𝑒𝑖

]
. (28)

Then (23b) implies
𝑑 ′2𝑖 = 𝑫𝑢𝑖𝑖 − ∥c′𝑖 ∥

2
2 = 𝑫𝑢𝑖𝑖 − ∥c𝑖 ∥22 − 𝑒

2
𝑖 = 𝑑2𝑖 − 𝑒2𝑖 . (29)

11


	Abstract
	1 Introduction
	2 Problem Setup
	3 Methodology
	3.1 Framework Overview
	3.2 Bi-Sequential Item Selection
	3.3 Multi-Scale Interest Extraction
	3.4 Context-Aware Accuracy Estimation
	3.5 Perception-Aware Diversity Kernel
	3.6 Online Implementation

	4 Experimental Results
	4.1 Experimental Setup
	4.2 Offline Evaluation
	4.3 Online Evaluation

	5 Related Work
	6 Conclusion
	References
	A Derivation of Item Selection

