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ABSTRACT
We study the ability of transformer-based language models (LMs)
to understand social media language. Social media (SM) language is
distinct from standard written language, yet existing benchmarks
fall short of capturing LM performance in this socially, economi-
cally, and politically important domain. We quantify the degree to
which social media language differs from conventional language
and conclude that the difference is significant both in terms of to-
ken distribution and rate of linguistic shift. Next, we introduce a
new benchmark for Social MedIa Language Evaluation (SMILE,)
that covers four SM platforms and eleven tasks. Finally, we show
that learning a tokenizer and pretraining on a mix of social media
and conventional language yields an LM that outperforms the best
similar-sized alternative by 4.2 points on the overall SMILE, score.

CCS CONCEPTS
• Information systems→ Social networks; •Computingmethod-
ologies→ Natural language processing; Learning paradigms; Trans-
fer learning; • Human-centered computing→ Social media.
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language modeling, social media, transfer learning, T5, datasets,
neural networks
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1 INTRODUCTION
Social media (SM) plays an increasingly important role in our lives.
As of 2021, seven out of ten US adults use at least one social media
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platform like Facebook, Twitter, Instagram, or Pinterest [3]. That
proportion likely underestimates SM use if we broaden the defini-
tion of SM to include user-generated content like restaurant reviews,
news article comments, and forum discussions. The ever-growing
trove of text produced by social media users is both a challenge
and an opportunity for natural language processing (NLP). NLP
models with a strong grasp of social media language could perform
a variety of socially, economically, and politically important tasks.
They could, for example, tackle automatic content moderation to
improve the quality of online discourse, summarize restaurant re-
views to simplify the decision-making process of hungry customers,
and detect and stunt disinformation campaigns aimed at sowing
societal instability.

However, modeling social media language is inherently chal-
lenging. Due to its informal, noisy, and fast-evolving nature, social
media language on platforms such as Twitter [14] is different from
the language found in books, news publications, and Wikipedia.
Additionally, the tasks that organically arise from the social media
domain (trend detection, emoji prediction, cyberbullying detection,
online marketing, etc.) are qualitatively different from the tasks
natural to the domain of standard written language (translation,
entailment, grammar checking, etc.). Although the recipe of pre-
training language models on massive conventional corpora has
been successful in pushing the state-of-the-art of general language
understanding [8, 10, 12, 16, 35, 41], it is unclear if this recipe’s
success will transfer to the social media domain. The reason for this
lack of clarity is that general language understanding benchmarks
[7, 33, 42, 44, 45, 50, 51] include neither SM data nor tasks and
therefore do not measure social media language understanding.

While huge strides have been made in the social media language
understanding literature to mitigate these challenges, existing work
has spotty coverage of the full range of social media platforms
and social media language understanding tasks. First, some re-
lated works studied vocabulary shift on a single platform (Twitter,
Amba Hombaiah et al. [2]) and compared corpora of different gen-
res [18, 36]. However, they did not directly compare social media
language with conventional language. Similarly, many existing so-
cial media language understanding benchmarks either focus on a
single platform [5, 57] or a single task [9, 15, 30] and thus cannot
provide a holistic evaluation. Finally, while there exist language
models pretrained on multiple platforms in specialized domains
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such as scientific literature [6], biomedical text [24, 37], and elec-
tronic health records [54], some of the most popular social media
language models [4, 5, 14, 26, 38, 56] are explicitly pretrained on
data from a single social media platform. It is unclear whether these
models generalize well across social media platforms.

Towards a more comprehensive understanding of social media
language across multiple platforms and multiple application scenar-
ios, we propose a new benchmark and a recipe for training language
models that accounts for the divergence between social media lan-
guage and conventional language. Specifically, we consider social
media language understanding in English and make the following
contributions:

• We conduct a time-aligned comparison between the vocabulary
(token) distribution of (1) posts from Twitter and Reddit and (2)
that of mC4 [53], a conventional text corpus used to pretrain lan-
guage models in many existing works [47, 52, 53]. We observe a
substantial difference between the two distributions and also find
that social media language changes twice as fast as conventional
language (Section 3).

• We compile a SocialMedIa Language Evaluation (SMILE,) bench-
mark that includes social media language data from four plat-
forms (Twitter, Reddit, Yelp, and Civil Comments) across both
classification and generation tasks organically arising from the
social media domain. This newly compiled benchmark coupled
with an evaluation protocol is a well-rounded toolkit for the
evaluation of an LM’s social media language understanding (Sec-
tion 4).

• We provide an effective recipe for training LMs for social me-
dia language understanding backed by a large-scale empirical
study conducted using the SMILE, benchmark and training reg-
imen for T5-based architectures [41]. Our study suggests that
by training a custom tokenizer and pretraining the model from
scratch using a corpus of both social media and conventional
language, we can improve performance by 4.2 points compared
to a similarly-sized baseline model (Section 5). We carry out
additional ablation studies in Section 6.

It is worth noting that very large language models (LLMs) like
PaLM [12, 48] exhibit emergent few-shot capabilities in understand-
ing and generating different styles, modes, and dialects of language.
Thus the challenges of social media language understanding out-
lined above may be less pronounced for this class of models. To that
end, we outline some interesting research directions in Section 7.
The central focus of our study, however, is models that are three or-
ders ofmagnitude smaller in terms of parameters—i.e. 220M vs. 540B
for the largest PaLM model—and follow a pretraining-fine-tuning
workflow (Section 2) rather than the few-shot learning setup.

The rest of the paper is organized as follows. Section 2 provides
necessary background. Section 3 presents our comparison between
social media language and conventional language. In Section 4,
we describe the compilation of the SMILE, benchmark. Using the
SMILE, benchmark, we report the findings of our empirical study
on learning language models for social media language understand-
ing in Section 5. We carry out related ablation studies in Section 6
and discuss future work in Section 7. Finally, we conclude the paper
in Section 8.

2 BACKGROUND
We describe a typical end-to-end workflow for training models for
language understanding. This workflow proceeds in three steps:
data preparation, tokenizer setup, and model training. We present
these three steps in detail, describing related works and highlighting
why they may be insufficient for social media language understand-
ing.

Data Preparation. In this step, we gather data needed to produce
a language model from scratch. Two types of data are needed:
training corpora and evaluation benchmarks.
• Training corpora typically consist of text crawled from the web
with filters applied for data quality. For example, the C4 corpus
[41], which is widely used to pretrain languagemodels for general
language understanding, contains 750GB of meticulously filtered
web text free from offensive language, paragraphs that are too
short, and sentences that do not end in a terminal punctuation
mark. While such filters may make sense for general language
understanding, it is unclear whether these design choices are as
suited to social media language understanding: units of social
media text tend to be short and poorly punctuated, and under-
standing offensive language likely key to downstream social
media tasks like online safety. In fact, as a result of filtering, the
C4 corpus does not include any Twitter data. We further study
this disparity between social media language and conventional
language in Section 3.

• Evaluation benchmarks typically contain a number of small-scale
datasets with labels for a particular task, e.g., sentiment classifi-
cation. These datasets typically have splits: a train split used to
fine-tune a model and a test split used to evaluate the fine-tuned
model’s performance on that task. In social media understanding,
a popular evaluation benchmark is TweetEval [5], which consists
of seven classification tasks measuring the capacity of language
models to understand tweets. Other evaluation benchmarks exist
[1, 4]; however, existing benchmarks are skewed towards particu-
lar social media platforms or particular tasks. We seek to provide
a more comprehensive measure with our newly-complied bench-
mark in Section 4.

Tokenizer setup. Tokenization is the process of segmenting strings
of text into sequences of characters known as tokens. The set of
possible tokens is determined in advance and constitutes the vocab-
ulary of the language model, the basic units of the model’s language
understanding. Our study relies on the SentencePiece model (SPM)
[32], which selects frequently observed whitespace-agnostic tokens
from a large training corpus. Given the discrepancy between social
media language and the standard language of the web, one may con-
jecture that training a tokenizer specific to social media language
could be helpful. However, related results from existing works in
learning domain-specific language models are mixed [5, 24]. In
Section 5 we investigate this conjecture further.

Model training. Pioneered by Devlin et al. [16], masked language
modeling (MLM) is an effective procedure of pretraining trans-
former based language models [49]. The setup asks the model to
predict randomly masked tokens in sentences drawn from the pre-
training corpus in a Cloze test fashion. Once the model is pretrained,
it is further trained (i.e. fine-tuned) on the evaluation benchmark
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Figure 1: Left: Symmetric KL (SKL) divergence and Jaccard
distance (JD) between the vocabulary distributions of T&R
and English mC4. Right: SKL and JD of the month-to-month
vocabulary distributions of T&R and English mC4.

train split. The fine-tuned model is then evaluated on the bench-
mark test split to measure its performance on a particular task.
There are a few existing language models for social media language
understanding. For example, Barbieri et al. [4, 5], DeLucia et al.
[14], Nguyen et al. [38], Zhang et al. [56] reported language models
trained on Twitter text. Meanwhile, MentalBERT [26], a langauge
model for mental-health-related tasks, is trained on Reddit data. In
general language understanding, Thoppilan et al. [48] and Chowd-
hery et al. [12] use 50% social media content in pretraining LaMDA
and PaLM, respectively. As mentioned in Section 2, this class of
models is not in scope for this study.

3 COMPARING SOCIAL MEDIA LANGUAGE
WITH CONVENTIONAL LANGUAGE

In this section, we empirically study the difference between con-
ventional and social media language to motivate our subsequent
exploration of model training recipes. Our findings suggest that (1)
the language used on social media is significantly different from the
standard language of the web (Section 3.1) and (2) social media lan-
guage changes twice as fast as conventional language (Section 3.2).

Datasets. To represent social media language, we compile a col-
lection of English-only text posts from publicly-crawlable Twitter
(80%) and Reddit (20%) pages (T&R). To represent conventional
language we use the English portion of mC4, C4’s multilingual
descendant that is also widely used to pretrain language models
for general language understanding [53]. We focus on the subset
of T&R and English mC4 that overlap in post/document publish
time: between April 2020 and August 2020. We then split the two
corpora into five segments representing each month, sampling 4M
posts/documents from each split.

3.1 Vocabulary Difference between
Conventional and Social Media Language

We quantify the difference in social media language and conven-
tional language by measuring the difference in token distribution
between T&R and the English mC4 corpus.

Metrics. We compute the symmetric KL divergence (SKL, a.k.a. pop-
ulation stability index or PSI) between token distributions in each
five monthly segments of T&R and English mC4 as a measure of
their difference. SKL ranges from 0 to +∞. Yurdakul and Naranjo
[55] suggests that, as a rule of thumb, an SKL smaller than 0.1
implies little difference, an SKL between 0.1 and 0.25 implies mod-
erate difference, and an SKL higher than 0.25 implies a significant
difference between two distributions. We use this rough rule of
thumb to interpret the SKL divergence results. Following a related
study [2], we also report Jaccard distance (JD) between each two
vocabularies (token sets). Jaccard distance ranges from 0 to 1. While
various other approaches are proposed in computational linguistics
[17, 18, 28, 29] to compare corpora, we focus on the comparison
between token distributions because our downstream workflow
takes tokens as input, and hence the changes in token distribution
directly influence subsequent language modeling.

Protocol. For each of the five month-segments of T&R and Eng-
lishmC4, we train an SPM tokenizer with a vocabulary size of 50,000
to compute the token frequency distribution for that subcorpus. For
each segment of T&R and segment of English mC4 corresponding
to the same month, we take the tokens that are in either vocabulary
along with their frequencies to obtain two categorical distributions
over the same set of tokens. We then calculate the SKL divergence
between these two distributions. To calculate the Jaccard distance,
we count the number of tokens in the intersection 𝑖 and union 𝑢

of the two segments of the same month from T&R and English
mC4. The Jaccard distance is then given as 1 − 𝑖/𝑢. Note that our
time-aligned comparison controls for temporal confounding, hence
providing a more accurate perspective on the difference between
T&R and English mC4.

Results. Figure 1 reports the token distribution difference be-
tween T&R and the English mC4 corpus over five months. In terms
of SKL, the divergence between the two is consistently higher than
2.8, a significant difference. The consistently high Jaccard distance
(> 0.65) between T&R and English mC4 corroborates this finding.
Thus we conclude that social media language is significantly dif-
ferent from conventional language. These empirical observations
validate our intuition and motivate the need for a social media
language modeling recipe distinct from the status quo.

3.2 Temporal Vocabulary Shift in Social Media
Language and Conventional Language

We quantify the temporal vocabulary shifts in social media and in
conventional language by measuring the month-to-month token
distribution shift in T&R and English mC4 and compare the rate at
which these two modes of language change over time.

Metrics and Protocol. For both T&R and English mC4, we com-
pute SKL divergence and Jaccard distance between the token dis-
tributions of adjacent months to measure. The calculation of these
metrics follows the same protocol as in Section 3.1. The fivemonthly
segments result in four month-to-month SKL divergence and Jac-
card distance statistics for both T&R and English mC4.

Results. Figure 1 presents the month-to-month SKL and Jaccard
distance for T&R and English mC4. In terms of SKL, we observe
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Table 1: Key characteristics of the social media language
understanding tasks in the SMILE Benchmark; CLS: classifi-
cation task; GEN: generation task.

Name Platform Type |Train| |Test| Metric
TE Emoji Twitter CLS 45,000 50,000 MA F1
TE Emotion Twitter CLS 3,257 1,421 MA F1
TE Hate Twitter CLS 9,000 2,970 MA F1
TE Irony Twitter CLS 2,862 784 F1
TE Offense Twitter CLS 11,916 860 MA F1
TE Sentiment Twitter CLS 45,615 12,284 MA recall
TE Stance Twitter CLS 2,620 1,249 non-neutral MA F1
CCT CC CLS 1,611,9341 194,640 acc & F1
YRP Yelp CLS 522,000 38,000 acc & F1
RTIFU Reddit GEN 71,714 3,953 ROUGE-1
GE Reddit CLS 43,410 5,427 MA F1

significant month-to-month changes (> 0.25) of the vocabulary
in T&R. Meanwhile, the changes in the English mC4 corpus are
less significant (< 0.25). In terms of both month-to-month SKL
divergence and Jaccard distance, the numbers for T&R are roughly
twice as high as for English mC4. These observations suggest that
social media language changes faster than conventional language.

4 THE SOCIAL MEDIA LANGUAGE
EVALUATION (SMILE) BENCHMARK

Motivated by the distinction between social media language and
conventional language observed in Section 3, we compile the So-
cial MedIa Language Evaluation (SMILE,) benchmark that aims
to provide a more comprehensive assessment of social media lan-
guage understanding by improving platform and task coverage. The
SMILE, benchmark consists of eleven English-only tasks drawing
from five datasets that are derived from four source platforms: Twit-
ter, Yelp, Reddit, and Civil Comments2 (a now defunct comment
hosting service for web publications). The SMILE, benchmark
covers both classification and generation tasks in the areas of self-
expression, opinion discovery, and online safety. All eleven tasks
are publicly available on TensorFlow Datasets3 (TFDS) as listed in
Table 2. In what follows, we describe each dataset (Section 4.1) and
the summary evaluationmetrics (Section 4.2) to be used with SMILE.
In Section 4.3, we investigate whether language in SMILE, tasks
is more similar to conventional or social media language.

4.1 Datasets
Table 1 summarizes key characteristics of the SMILE, datasets.
Below we describe each dataset in more detail and discuss the
evaluation metrics of each task.

TweetEval (TE, Barbieri et al. [5]) . SMILE, includes all seven
TweetEval classification tasks (emoji prediction, emotion recog-
nition, hate speech detection, irony detection, offensive language
identification, sentiment analysis, and stance detection) and uses
the same performance metrics for each task as TweetEval. The

1Note the discrepancy with TFDS split sizes: we held out 10% of the TFDS train split
for validation and combined the TFDS validation and test splits into a single test split.
2https://www.drupal.org/project/civilcomments
3https://www.tensorflow.org/datasets

Table 2: SMILE benchmark sets in TensorFlow Datasets.

Name TFDS name Version
TE Emoji huggingface:tweet_eval emoji 1.1.0
TE Emotion huggingface:tweet_eval/emotion 1.1.0
TE Hate huggingface:tweet_eval/hate 1.1.0
TE Irony huggingface:tweet_eval/irony 1.1.0
TE Offense huggingface:tweet_eval/offensive 1.1.0
TE Sentiment huggingface:tweet_eval/sentiment 1.1.0
TE Stance huggingface:tweet_eval/stance* 1.1.0

CCT civil_comments 1.2.4

YRP yelp_polarity_reviews 0.2.0

RTIFU reddit_tifu 1.1.2

GE goemotions 0.1.0

seven tasks were derived from SemEval4 challenges between 2016
and 2019.

Civil Comments Toxicity (CCT, Borkan et al. [9]). This dataset
contains news-site user comments collected between 2015 and 2017
labeled for toxicity classification by human raters. A comment is
considered toxic if at least one rater labeled it as such. Under this def-
inition, 30% of the comments in the dataset are toxic. SMILE, uses
accuracy and F1 as the performance measures for this task.

Yelp Review Polarity (YRP, Zhang et al. [57]) . Yelp Review Po-
larity dataset includes Yelp reviews from 2015 labeled positive or
negative according to the user star ratings. The dataset is balanced
and uses accuracy and F1 as the evaluation metrics. While it is ar-
guable whether online reviews should be considered social media,
Section 4.3 shows that Yelp reviews have more in common with
social media language than with conventional language.

Reddit TIFU (RTIFU, Kim et al. [30]) . RTIFU is a weakly super-
vised abstractive summarization task derived from the r/tifu subred-
dit5 crawled between 2013 and 2018. The task is to generate a post’s
title given that post’s body content. RTIFU is the only SMILE, task
suitable for measuring generation capabilities of language models
in the social media domain. As the metric for this task, SMILE, uses
ROUGE-1 score [34], which ranges between 0 and 1, with higher
values indicating better performance.

GoEmotions (GE, Demszky et al. [15]). The GoEmotions dataset
includes snippets from Reddit posts published between 2005 and
2019 labeled with one or more of 27 possible emotional categories.
Compared to TweetEval Emotion where each example belongs to
only one of four emotional categories, the GoEmotions task in-
volves multiclass classification on a much finer scale. SMILE, uses
the macro-averaged (MA) F1 score across all categories as the per-
formance metric for this task.

4.2 Summary Evaluation Metrics
To measure the overall performance of language models on SMILE
we use three summary evaluation metrics that aggregate over
the performance score of each the eleven tasks in SMILE, . The
summary metrics are: the task macro-averaged performance, the

4https://en.wikipedia.org/wiki/SemEval
5https://www.reddit.com/r/tifu/
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Table 3: Difference between the five datasets in SMILE and
English mC4 and T&R

Name English mC4 T&R
SKL JD SKL JD

All TweetEval 5.96 0.78 3.89 0.77
Civil Comments Toxicity 3.73 0.72 2.35 0.71
Yelp Review Polarity 5.86 0.78 4.70 0.75

Reddit TIFU 5.44 0.85 4.49 0.79
GoEmotions 6.03 0.83 5.91 0.76

platform macro-averaged performance, and the TweetEval macro-
averaged performance.

Performance Scores. To construct a summary metric, we first
compute a performance score for each of the eleven tasks in Table 1.
Note that most tasks only use a single evaluation metric to measure
performance. We use these single metrics scaled by 100𝑥 as their
performance scores. For CCT and YRP where both accuracy and F1
are used for evaluation, we compute the average between accuracy
and F1 scaled by 100𝑥 as the performance score following the prac-
tice of Wang et al. [50, 51]. Note that all the evaluation metrics in
Table 1 range between 0 and 1. The overall performance score of
each task hence ranges between 0 and 100.

Task Macro-Averaged Performance (TMA). This is the simple aver-
age of the performance scores across all the eleven tasks in SMILE.
Consequently, this score assumes that each task in SMILE, is
equally important in measuring the performance of language mod-
els for social media language understanding. We refer to this metric
as the SMILE,score.

Platform Macro-Averaged Performance (PMA). Because the ma-
jority of the SMILE, tasks are Twitter-based, it is arguable that
the task macro-averaged performance overweights one platform.
To mitigate confounding effects of different social media platforms,
SMILE, also uses a per-platform macro-averaged performance
score as a summary evaluation metric. To compute this metric, the
performance scores of the tasks from the same platform are first
averaged, yielding four per-platform average performance scores.
The platform macro-averaged performance is then computed by
taking the mean of these four per-platform scores.

TweetEval Macro-Averaged Performance (TEMA). This summary
evaluation metric is a simple average of the performance scores
across all the TweetEval tasks. This is the same summary metric
used in the TweetEval benchmark. We include this metric as several
key existing works [4, 14] evaluate performance on the TweetEval
benchmark.

4.3 Similarity between SMILE and the
Pretraining Corpora

In this section, we seek to understand whether SMILE, tasks share
more resemblance with social media language than with conven-
tional language. To this end, we compute the difference between
five subsets of SMILE, and the August 2020 segments of T&R and

the English mC4 corpus introduced in Section 3. Following the pro-
tocol established in Section 3, we use SKL divergence and Jaccard
distance between token distributions to measure how the language
in SMILE, tasks differs from T&R and English mC4. The results
are summarized in Table 3.

From Table 3, SKL and JD are high between all five SMILE subsets
and both T&R and English mC4. Nonetheless, the five SMILE, sub-
sets are less different from T&R than they are from English mC4 in
terms of SKL. This may suggest pretraining on a corpus of social
media language as an avenue to improving benchmark performance
(as supported by subsequent experiments in Section 5). Meanwhile,
the high SKL (> 0.25) could imply that the capacity of the pre-
trained language models in domain adaptation may still be a key
factor in determining downstream benchmark performance. Finally,
the comparison results for the Yelp dataset in Table 3 also suggest
that Yelp reviews are more similar to social media language than to
conventional language, despite user reviews not being considered
the prototypical example of social media.

5 SOCIAL MEDIA DOMAIN ADAPTATION
In this section, we explore adaptation of language models to the
social media domain. We carry out a large scale empirical study of
training regimens for producing language models that work well on
social media text as proxied by the SMILE benchmark introduced
in Section 4. Our winning recipe adapts a general T5 language
model [41] by (1) training a tokenizer on a corpus of both con-
ventional language and social media language and (2) pretraining
model parameters from scratch, first using the conventional lan-
guage portion and then the social media language portion. The
resulting SociAl Media langUage modEL (SAMUEL) can outper-
form the best alternative of similar size and pretraining budget on
the SMILE, benchmark by 4.2 points.

In what follows, we first highlight the key results of comparing
SAMUEL with alternative language models in terms of the per-
formance on SMILE, (Section 5.1). We then provide a detailed
description of the empirical study that informed SAMUEL’s design.
Specifically,

• In Section 5.2, we introduce a social media language corpus of
publicly available social media text that includes data from four
major social media platforms (Twitter, Reddit, Facebook, and
Telegram).

• In Section 5.3, we show that tokenizer setup and language model
pretraining can benefit from the social media language corpus
compared to using a corpus of conventional language.

• We consider the standard domain adaptation practice of continual
pretraining in Section 5.4.

• Finally, we explore strategies for mixing social media and con-
ventional language data as alternatives to continual pretraining
(Section 5.5), completing the design of SAMUEL’s training recipe.

In addition, to understand whether language models adapted for
social media understanding can maintain decent performance in
general language understanding, we report results on the GLUE
[51] and SuperGLUE [50] benchmark in the Appendix (Section 9.2).



KDD ’23, August 6–10, 2023, Long Beach, CA, USA Vasilisa Bashlovkina, Riley Matthews, Zhaobin Kuang, Simon Baumgartner, & Michael Bendersky

Table 4: Overall performance on the SMILE,benchmark.

Model TEMA PMA TMA
T5 1.1 base 62.26 68.22 62.39
BERTweet 67.90 n/a n/a
mT5 base 60.86 66.89 60.62
byT5 base 59.44 67.55 60.38
SAMUEL 67.95 70.75 66.63

𝜎 ±0.19 ±0.10 ±0.14
T5 XXL 68.20 71.01 66.82

5.1 Performance of SAMUEL and Alternatives
on the SMILE Benchmark

We describe SAMUEL and compare its performance on the SMILE
benchmark with multiple representative competing language mod-
els.

SAMUEL. SAMUEL is a T5-based language model adapted for
social media understanding. SAMUEL is pretrained on a corpus of
both social media language and conventional language. We discuss
the choice of architecture, training corpus, tokenizer setup, and
pretraining procedure for SAMUEL below.
• Architecture. SAMUEL is a based on the T5 [41] architecture. It is
a transformer-based [49] encoder-decoder model that is capable
of tackling both classification and generation tasks as required
by SMILE. It does so by processing the input and output of the
tasks as free form text. Following the T5 1.1.6 implementation,
SAMUEL has a parameter size of 220M that matches the size of
T5 1.1. base.

• Pretraining Corpus. SAMUEL is pretrained on a corpus that is
80% social media text and 20% conventional web text. The social
media language portion is drawn from the corpus described in
Section 5.2. The conventional language portion is drawn from
the C4 corpus that was used to pretrain the original T5 model.

• Tokenizer Setup. SAMUEL’s tokenizer is an SPM with 32k tokens.
It is trained directly on the pretraining corpus. As a result, the to-
kens selected are drawn from both social media and conventional
language.

• Pretraining Procedure and Hyperparamters. SAMUEL is first pre-
trained on conventional language and then on social media lan-
guage. For SAMUEL and for other pretraining experiments in
this paper, we pretrain all models using the span corruption ob-
jective [41] on tensor processing unit (TPU) pods with batch
size of 2048, sequence length of 512, and a total of 218 steps with
input packing. We use the Adafactor optimizer with an reciprocal
square root decay learning rate schedule.

Competing Language Models. We compare five representative
language models with SAMUEL on SMILE. Because SAMUEL is
T5-based, we consider a variety of other T5-based language models
in our comparison. We also consider BERTweet, a state-of-the-
art language model that specializes in tweet understanding. We
describe each of the competing language models below and provide
a summary in Table 10 in the Appendix.
6https://github.com/google-research/text-to-text-transfer-
transformer/blob/main/released_checkpoints.md

• T5 1.1. base [41] shares the same parameter and tokenizer size as
well as the same pretraining hyperparamters as SAMUEL. How-
ever, both the model and the tokenizer are trained exclusively
on the C4 corpus. It differs from the off-the-shelf version of T5
1.1 base because it was pretrained on 4x as much data to match
SAMUEL’s pretraining budget.

• mT5 base [53] is an off-the-shelf multilingual variant of T5. It has
580M parameters and is pretrained on mC4 for 1M steps. This
model’s SPM has 250k tokens including 256 byte tokens, which
means no string of text is out of vocabulary for mT5. We explore
the byte fallback feature of SentencePiece tokenizers in more
detail in Section 6.2.

• byT5 base [52] is an off-the-shelf byte-level model that closely
follows the T5 setup. Instead of relying on a SentencePiece model
for tokenization, byT5 simply uses bytes as tokens to flexibly
represent text. We hypothesize that such flexibility may be bene-
ficial for representing text in the social media domain, given its
noisy, informal, and dynamic nature.

• T5 1.1 XXL [41] is an off-the-shelf large language model with
11B parameters, which is more than 40x larger than SAMUEL.
While a head-to-head comparison between T5 XXL and SAMUEL
may not be fair because of the discrepancy in parameter size
[27], we nonetheless include this model to estimate performance
headroom.

• BERTweet [38] is a language model for social media understand-
ing that achieves state-of-the-art performance on the TweetEval
benchmark7. BERTweet is a 110M-parameter encoder only model
and hence cannot perform generation tasks. We only report its
performance on TweetEval.

Protocol. After pretraining SAMUEL, we fine-tune SAMUEL and
the five alternative models on each SMILE, task separately for
10k steps and report the performance metrics on the test splits.
To get a sense of the uncertainty in performance metrics, we fine-
tune SAMUEL on each task 12 times and compute the standard
deviation for each metric. Note that we presume the performance
of different models to share similar levels of uncertainty and do not
compute the standard deviation for each model because of the high
computational cost of doing so. We run all experiments using the
T5X framework [43].

Results. Table 4 summarizes the performance comparison of
SAMUEL against other language models on SMILE. With the excep-
tion of T5 XXL, SAMUEL outperforms its similar-sized alternatives
by at least 4.2 points in terms of task macro-averaged (TMA) score.
This suggests the practical utility of the recipe behind SAMUEL
in building effective language models for social media language
understanding. Moreover, SAMUEL’s score is only 0.2 points below
that of T5 1.1 XXL with 50 times more parameters, which suggests
that SAMUEL may be nearing the upper limits of performance
headroom on this benchmark.

5.2 Social Media Corpus
In Section 3, we observe that social media language is different from
conventional language. Meanwhile, commonly used pretraining

7https://github.com/cardiffnlp/tweeteval
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Table 5: Summary performance on SMILE when SPM tok-
enizer learning and/or LM pretraining are/is conducted on
the SM corpus vs the C4 corpus.

Model TEMA PMA TMA
T5 1.1 base 62.26 68.22 62.39
+ SM SPM +2.61 +1.05 +1.83
+ SM Pretraining +3.68 +1.70 +2.77
+ SM SPM&Pretraining +5.40 +2.00 +3.73
Continual Pretraining +2.81 +1.58 +2.27

corpora, like C4 in the case of off-the-shelf T5, represent conven-
tional language. We begin our adaptation of T5 to social media
language understanding with compiling a large social media (SM)
corpus.

Protocol. We parse out post text from publicly crawlable Twitter,
Reddit, Facebook, and Telegram pages. We filter out posts with
images, videos, or URLs because the text of such posts may not
contain the entirety of their meaning and therefore may be too
difficult to learn from in the span corruption setting. To mitigate
the risk of inadvertently training any models on posts from the
benchmark test sets, we only include posts published in 2022 to
avoid temporal overlap (the content used in SMILE,was published
between 2015 and 2020).

Results. The resulting corpus has 6B examples. Its platform com-
position is 51% Twitter, 26% Reddit, 23% Facebook, and 0.1% Tele-
gram. In contrast, the C4 corpus contains only 0.005% Reddit data
and no data from the other three platforms. In addition, while C4
has 16 times fewer examples, C4 examples are on average 10 times
longer than the examples in our social media corpus. The presence
of short examples makes it important to minimize padding with
input packing.

5.3 In-Domain Tokenization and Pretraining
We consider the effect of using the SM corpus defined in Section 5.2
for tokenizer setup and LM pretraining on the model’s capacity for
social media language understanding.

Protocol. Keeping the T5 1.1 backbone fixed, we modify its tok-
enizer and pretraining regimen separately and then together. We
measure the impact on the SMILE, score.

Results. Table 5 and Table 6 show the metric improvement com-
pared to the baseline model—a T5 1.1 model where both the tok-
enizer and the model are trained on the C4 corpus. Unsurprisingly,
including in-domain data helps the performance on most tasks.
Swapping out the standard tokenizer with one trained on SM data
and then pretraining on C4 leads to a 1.8-point gain on the overall
SMILE, score (see Table 15 in the Appendix for examples), while
using SM pretraining data with a standard tokenizer adds 2.8 points.
These performance gains are not exactly additive when both the
model’s tokenizer and parameters are trained on the in-domain
data, but the combination does lead to the biggest improvement—
3.7 points to the TMA. It is worth noting the tasks that buck the
overall trend. Reddit TIFU, the only summarization task, appears

to be hurt by a tokenizer trained on in-domain data, whether or
not the rest of the model is pretrained on SM or C4. In-domain pre-
training with a C4 tokenizer does improve the ROUGE-1 score, but
barely more than a single standard deviation for this task (+0.25 vs
0.22), all despite the fact that the token distribution of this dataset is
closer to SM data than it is to clean web text (Table 3). The opposite
effect can be observed for the TweetEval Emotion task—there, the
in-domain tokenizer alone yields a 6.1 point gain, 1.5 times larger
than from in-domain pretraining.

5.4 In-Domain Continual Pretraining
While in Section 5.3 we established that using social media data in
tokenizer and model training significantly improves performance
on the SMILE, benchmark, this recipe requires retraining the
model from scratch, which is undesirable in practice because of
engineering effort, data, and computation required. A much more
popular and practical recipe is continual pretraining, where an
existing pretrained model is adapted to a different domain or task
via more pretraining steps. In this section, we investigate how well
continual pretraining can perform in the social media domain.

Protocol. We take a T5 model with a standard C4 tokenizer pre-
trained on C4 for 217 steps and continue training it on the same span
corruption task but on our four-platform SM corpus for another
217 steps, yielding a total of 218 pretraining steps.

Results. Table 5 and Table 6 report the results of our continual
pretraining experiment. We see that continual pretraining does not
help as much as training a T5 1.1 backbone on SM from scratch
(+2.3 vs +2.8). This finding is in line with Gu et al. [24]. However, it
is remarkable that continual pretraining achieves 80% of the gain
afforded by from-scratch in-domain pretraining—while using half as
much in-domain data, in half as many steps. Part of the reason may
be that the model is able to leverage the foundation derived from
the clean language of its original pretraining corpus, C4, despite
the fact that it is much further from social media language in token
distribution.

5.5 Mixed-Domain Pretraining
Inspired by the relative success of the continual pretraining recipe
in Section 5.4, we drill down into the idea of combining in- and
out-of-domain data into mixed-domain data to further improve the
performance. In particular, we consider various mixing schedules
and ratios.

5.5.1 Mixing Schedules.

Protocol. We try three different mixing schedules for C4 and our
SM corpus (see Figure 2): (1) Static mixture: every batch contains
the same proportion of C4 and SM data. (2) Sequential mixture: in
the first part of training, batches consist of only C4, in the second
part—only SM. This is similar to continual pretraining. (3) Dynamic
mixture: in the beginning of training batches contain mostly C4
examples. As the training progresses, the proportion of C4 decreases
and the proportion of SM increases linearly. By the end of the
training, batches contain mostly SM examples. As we learned from
Section 5.3, updating the tokenizer to match the target distribution
contributes significantly to the model performance. We train a
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Table 6: Performance on each task in SMILE when SPM tokenizer learning and/or LM pretraining are/is conducted on the SM
corpus vs the C4 corpus.

Model TweetEval CCT YRP RTIFU GE
Emoj Emot H I O Sen Sta Acc F1 Acc F1 R-1 F1

T5 1.1 base 31.25 75.65 40.99 69.96 77.68 72.33 67.98 81.58 65.19 97.39 97.39 28.79 50.91
+ SM SPM +3.98 +6.13 +0.82 +2.16 +1.90 +0.85 +2.44 -0.12 +2.50 +0.10 +0.11 -0.29 +0.86
+ SM Pretraining +4.91 +3.89 +6.18 +5.07 +1.07 +1.67 +2.99 -0.53 +3.53 +0.12 +0.12 +0.25 +2.78
+ SM SPM&Pretraining +5.73 +8.15 +8.88 +8.34 +0.86 +1.88 +3.93 +0.15 +3.31 +0.29 +0.30 -0.25 +1.43
Continual Pretraining +2.81 +4.13 +5.20 +1.71 +2.18 +1.23 +2.40 -0.26 +3.43 +0.14 +0.16 +0.26 +3.32

SMC4
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Figure 2: Representation of pretrain dataset composition in terms of the mix of SM and C4 dataset as a function of pretraining
steps. Two leftmost diagrams: SM and C4 only pretrain datasets. Three rightmost diagrams: the three types of mixing schedules:
static, sequence, and dynamic.

tokenizer on a 50/50 mix of C4 and SM to match the pretraining
data and pretrain three models using the schedules described above.

Result. Table 7 shows that the model trained on the sequential
mixture performs best. Note that though its schedule is identical
to continual pretraining, the model is different because it has a
custom tokenizer and was pretrained from scratch. We also note
that the dynamic mixture is very close in performance to sequential:
66.55 vs 66.38 on the overall score, which has a standard deviation
of 0.14. However, pretraining with a dynamic schedule is much
more challenging to set up from the infrastructure perspective than
the sequence mixture. We hence commit to the use of sequential
mixture schedule in our subsequent investigation.

5.5.2 Mixing Rates.

Protocol. Using the sequence mixture as the schedule, we then
try three different SM/C4 ratios: 20/80, 50/50 and 80/20. We update
the tokenizers to match the ratios and pretrain two more models.

Results. The best overall model is trained on 20% C4 and 80%
SM in sequence, with an overall score of 66.63. (That corresponds
to our best model, SAMUEL, in Table 4). Interestingly, different
benchmark tasks react to the rate of in-domain data differently
(see Table 12 in the Appendix). For TweetEval Emotion, the more
in-domain data, the better—its performance peaks when the model
is trained exclusively on SM data. On the other hand, Yelp polarity
classification benefits roughly equally from any proportion of in-
domain pretraining, while Reddit TIFU summarization benefits
from more C4 pretraining, even though it is out of domain.

6 ABLATION STUDIES
We conduct ablation studies on the platform composition of our
SM corpus and the effect of the byte-level fallback feature of SPM

Table 7: Overall performance on SMILE using different strate-
gies and ratios to mix the SM corpus and the C4 corpus. *in-
dicates the configuration adopted by SAMUEL.

Strategy C4/SM TEMA PMA TMA
Static 50/50 67.31 70.18 65.96

Sequential 50/50 68.28 70.42 66.55
Dynamic 50/50 67.87 70.44 66.38
None 0/100 62.26 68.22 62.39

Sequential 20/80 67.83 70.35 66.30
Sequential 50/50 68.28 70.42 66.55
*Sequential 80/20 67.95 70.75 66.63

None 100/0 67.66 70.22 66.12

tokenizers to see how these aspects impact social media language
understanding.

• In Section 6.1, we evaluate performance contributions of using
data from different SM platform and conclude that a variety of
platforms in the training data yields optimal performance on the
SMILE benchmark.

• In Section 6.2, we consider adding byte tokens to the model vo-
cabulary, which should intuitively help parse noisy social media
text, and find that while byte fallback does indeed help the model
trained on conventional language, it no longer has a positive
effect when the model is trained on SM data.

6.1 Cross-Platform Transfer
Given the multi-platform nature of the SMILE, benchmark, we in-
vestigate how using the four-platformmixture compares to training
the model on each platform separately. For example, we presume
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Table 8: Performance of LMs pretrained only on data from a
certain platform vs all platforms.

PT data Twitter avg Reddit avg CC avg Yelp avg PMA
All SM 67.66 40.44 75.12 97.69 67.60
Twitter 68.12 39.89 75.02 97.42 67.54
Reddit 66.80 40.05 75.04 97.87 67.38

Facebook 66.23 40.35 74.99 97.40 67.11

Table 9: Performance of LMs when pretrained with/without
byte-level fallback and with/without in-domain data and
SPM tokenizer.

Model TEMA PMA TMA
T5 1.1 62.26 68.22 62.39
+ Byte Fallback +1.20 +0.56 +0.87
+ SM SPM&Pretraining +5.40 +2.00 +3.73
+ SM SPM&Pretraining + Byte Fallback +4.83 +2.01 +3.47

Reddit data will be helpful on the Reddit-based tasks, but how well
will it transfer to tasks from other platforms?

Protocol. To answer this question, we train three more T5 models
using the best performing recipe from Section 5.3 but on single-
platform slices of the same SM corpus — Twitter-only, Reddit-only,
and Facebook-only. The amount of Telegram data in the original
SM corpus is negligibly low—about 0.1% and only 7M examples—so
we can not train a Telegram-only model. The three single-platform
models see the same amount of data despite different average ex-
ample lengths thanks to input packing.

Results. The results for per-platform average performance scores
as well as the PMA are shown in Table 8. Overall, we see that
single-platform models perform very similarly to each other as
well as the four-platform mixture ("All SM"). Though the four-
platform mixture has the highest score on the PMA, it is within
one standard deviation from the second place—the Twitter-only
model. The Twitter-only model also, unsurprisingly, does best on
the Twitter portion of the SMILE, benchmark. On the other hand,
the Reddit-only model takes the third place on the Reddit portion of
the benchmark, lagging behind the four-platform mixture as well
as the Facebook-only model. We conclude that though the scores
are very close, having a mix of platforms in the pretraining data
results in beneficial transfer across platforms.

6.2 Byte-level Fallback
We evaluate the impact of including byte tokens in the model vo-
cabulary. Also known as byte-level fallback, this feature allows the
tokenizer to segment any string of text without resorting to the
<UNK> token. Can it improve performance on social media text with
its typos, abbreviations, and emojis?

Protocol. To answer this question, we replace the 256 least fre-
quent tokens in the standard C4 SPM with tokens representing the
256 bytes and use the modified tokenizer to pretrain a model on
C4. We perform the same vocabulary surgery on a model whose
tokenizer and parameters are trained on social media data.

Results. The results are shown in Table 9. Overall, even though
the C4 model with byte fallback did not see a single example from
the social media corpus, its performance on the SMILE, benchmark
is 0.87 points (𝜎 = 0.14) better than the equivalent model without
byte fallback.We speculate that allowing the tokenizer to fall back to
byte tokens does indeed help themodel handle emojis and typos that
otherwise would not be represented by the vocabulary. However,
for the model trained on social media data, replacing 256 organically
selected tokens with bytes no longer has a positive effect (+3.73 vs
+3.47).

7 FUTUREWORK
We envision the following directions as future work.
• Internationalization. Our SMILE, benchmark spans multiple
platforms and tasks but is currently English only. An important
opportunity for future work is the extension to other languages,
ideally covering locales where social media usage is most pro-
nounced and locales with multilingual content.

• Multi-modality. Social media content is inherently multi-modal
and context dependent. Relevant modalities can be content based
(text, image, etc.) but also include creators, communities, and any
other aspects of a social graph. Future opportunities lie both in
exploring techniques for modeling multi-modal content and in
providing evaluation benchmarks for this setting.

• Time Sensitivity and Adaptability. Social media language changes
faster than conventional language (Section 3.2). Consequently, it
would be valuable to define time-sensitive tasks that measure the
ability of models to adapt to these shifts. Byte-level languagemod-
els [47, 52] may be of particular interest in tackling distribution
shifts because they are not constrained by a fixed vocabulary
and can be fully fine-tuned (i.e. including the tokenizer). Effi-
cient architectures [46] that hinge on the principle of sparsity
[13, 19–23, 31, 39], among other principles [11, 25, 40], can be
particularly relevant given the longer sequence length induced
by byte representation of the data.

• Domain Adaptation vs. Model Scaling.Given the popularity of very
large language models, it would be beneficial to study how scal-
ing up the model size affects the gains from domain adaptation.
At what model size, if any, does the performance improvement
afforded by domain adaptation cease to be worth the computa-
tionally expensive pretraining regimen?

8 CONCLUSION
We have shown that the language of social media is significantly
different from the standard language of the web and proposed the
SMILE, benchmark that captures the peculiarities of this distinct
domain. Through pretraining experiments with T5, we came up
with simple recipes for improving performance on the benchmark.
We believe it can open up opportunities for future research in
adapting language models to the social media domain.
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9 APPENDIX
In the appendix, we include additional experiment details (Section 9.1) as well as evaluation results on GLUE and SuperGLUE (Section 9.2).
We also provide concrete examples demonstrating the potential benefits of training the tokenizer and the model parameters on social media
data compared to their generic counterparts in Section 9.3.

9.1 Additional Experiment Details

Table 10: Key characteristics of SAMUEL and its competing LMs

Model Pretraining Tokenizer
corpus # params steps batch seq length corpus # tokens has bytes

T5 1.1 base C4 220M 262k 2048 512 C4 32k no
BERTweet tweets 110M 950k 7k 128 tweets 64k no
mT5 base mC4 580M 1M 1024 1024 mC4 250k yes
byT5 base mC4 580M 1M 1024 1024 mC4 256 yes
SAMUEL 20/80 C4/SM 220M 262k 2048 512 20/80 C4/SM 32k no
T5 XXL C4 11B 1M 2048 512 C4 32k no

Table 11: Performance of SAMUEL and its competing models on each task in SMILE.

Model TweetEval CCT YRP RTIFU GE
Emoj Emot H I O Sen Sta Acc F1 Acc F1 R-1 F1

T5 1.1 base 31.25 75.65 40.99 69.96 77.68 72.33 67.98 81.58 65.19 97.39 97.39 28.79 50.91
BERTweet 33.4 79.3 56.4 82.1 79.5 73.4 71.2 n/a n/a n/a n/a n/a n/a
mT5 base 30.63 72.33 46.32 63.94 77.23 69.17 66.38 82.1 68.24 97.42 97.4 23.24 45
byT5 base 32.42 67.24 44.37 60.55 74.95 67.24 69.32 83.04 68.67 97.60 97.58 27.32 47.33
SAMUEL 37.42 83.52 50 78.7 78.49 74.35 73.15 81.74 68.69 97.56 97.55 29 55.55

𝜎 ±0.25 ±0.24 ±0.72 ±0.56 ±0.31 ±0.13 ±0.41 ±0.37 ±0.51 ±0.01 ±0.01 ±0.22 ±0.45
T5 XXL 35.42 82.45 51 80.96 78.97 71.61 77 82.65 68.48 98.57 98.57 32.93 50.51

Table 12: Effect of pretraining data mix ratio on each task in SMILE

Strategy C4/SM TweetEval CCT YRP RTIFU GE
Emoj Emot H I O Sen Sta Acc F1 Acc F1 R-1 F1

T.5 1.1 base 0/100 31.25 75.65 40.99 69.96 77.68 72.33 67.98 81.58 65.19 97.39 97.39 28.79 50.91
Sequential 20/80 +4.76 +7.36 +8.60 +8.54 +1.28 +2.20 +6.24 +0.09 +3.28 +0.20 +0.19 +0.69 +1.40
Sequential 50/50 +5.59 +7.68 +9.21 +9.99 +2.44 +1.93 +5.31 -0.27 +3.62 +0.23 +0.24 +0.23 +1.49
*Sequential 80/20 +6.17 +7.87 +9.01 +8.74 +0.81 +2.02 +5.17 +0.16 +3.50 +0.17 +0.16 +0.21 +4.64
None 100/0 +5.73 +8.15 +8.88 +8.34 +0.86 +1.88 +3.93 +0.15 +3.31 +0.29 +0.30 -0.25 +1.43

9.2 GLUE and SuperGLUE Experiments
To understand performance on standard NLU tasks, we report detailed results on the GLUE ([51] and SuperGLUE ([50]) benchmarks in
Table 13 and Table 14 respectively. All models were pretrained for 218 steps, including our version of T5 1.1 (which thus is different from the
publicly available version). We trained each model on a mixture of all tasks with proportionate sampling (GLUE and SuperGLUE separately)
for 50k steps with a batch size of 128 and a dropout rate of 0.1.

9.3 Examples of Social Media Language Tokenization
In Table 15 we present three real-world examples below to illustrate the misalignment between conventional and social media language as
well as the resulting difference in predictions made by the T5 1.1. baseline and SAMUEL (trained on conventional and social media language,
respectively). These examples are drawn from the TweetEval 4-way Emotion classification task.
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Table 13: GLUE Results

Pretraining Tokenizer COLA SST2 MRPC MRPC STS-B STS-B QQP QQP MNLI-m MNLI-mm QNLI RTE
Matthew’s Acc Acc F1 Pearson Spearman Acc F1 Acc Acc Acc Acc Macro Avg

T5 1.1 Base (our version) C4 C4 50.46 94.38 87.25 90.61 89.74 89.64 91.52 88.54 87.08 86.50 91.82 76.53 83.82
SM SM 49.86 93.58 88.97 92.06 89.09 89.07 91.61 88.67 86.52 86.43 90.92 71.12 82.79

SAMUEL C4/SM 20/80 C4/SM 20/80 45.17 94.15 88.48 91.77 88.90 88.72 91.63 88.73 87.09 86.96 91.85 74.37 82.94
Twitter Twitter 46.65 93.46 89.95 92.72 88.88 88.75 91.37 88.39 85.35 85.53 90.30 71.48 82.08
Reddit Reddit 52.10 94.38 89.46 92.34 89.26 89.15 91.70 88.95 87.10 87.52 91.29 76.90 84.13

Facebook Facebook 32.21 92.09 88.48 91.77 88.93 88.90 91.36 88.12 85.27 85.51 90.76 69.68 80.12

Table 14: SuperGLUE Results

Pretraining Tokenizer BoolQ CB CB COPA MultiRC MultiRC ReCoRD RTE WiC WSC
Acc Acc F1 Acc F1 EM EM Acc Acc Acc Macro Avg

T5 1.1 Base (our version) C4 C4 65.87 71.43 49.84 45.00 71.30 19.83 74.56 68.59 63.48 76.92 62.58
SM SM 66.79 58.93 36.71 55.00 66.16 18.47 66.51 65.70 64.73 70.19 59.88

SAMUEL C4/SM 20/80 C4/SM 20/80 66.39 80.36 56.15 49.00 69.28 20.25 69.23 67.15 63.64 73.08 62.69
Twitter Twitter 63.76 60.71 39.59 45.00 60.99 16.16 63.61 67.87 62.85 69.23 57.63
Reddit Reddit 68.65 78.57 54.80 50.00 70.62 20.46 68.99 69.68 63.17 76.92 62.42

Facebook Facebook 63.24 69.64 48.68 54.00 67.01 17.31 66.32 61.01 63.95 69.23 59.88

Table 15: Example tweets from the TweetEval Emotion task processed by T5 1.1 and SAMUEL.

# Tweet with emotion
label

T5 1.1 tokenization and prediction SAMUEL tokenization and prediction

1 "When you baby has
their first
temperature and all
you do is worry
#firsttimemum
#firsttimemom
#newborn #baby
#sickbaby #worry"

[ When] [ you] [ baby] [ has] [ their]
[ first] [ temperature] [ and] [ all]
[ you] [ do] [ is] [ worry] [ #]
[first] [time] [m] [um] [ #] [first] [time]
[m] [o] [m] [ #] [new] [born] [ #] [bab]
[y] [ #] [s] [ick] [bab] [y] [ #] [w] [or]
[ry]

[ ] [When] [ you] [ ] [baby] [ ] [has]
[ ] [their] [ first] [ ] [temperature]
[ ] [and] [ ] [all] [ you] [ ] [do]
[ ] [is] [ ] [worry] [ #] [first] [time]
[mum] [ #] [first] [time] [mom] [ #]
[newborn] [ #] [baby] [ #] [sick] [baby]
[ #] [worry]

Label: sadness Prediction: optimism Prediction: sadness
2 "I thought he cried

over some of his
relative death or
something but when
i know the truth .
I just wanna burst
out "

[ I] [ thought] [ ] [he] [ ] [cried]
[ over] [ some] [ of] [ his]
[ relative] [ death] [ or] [ something]
[ but] [ when] [ ] [i] [ know] [ the]
[ truth] [ ] [.] [ I] [ just] [ wann]
[a] [ bur] [s] [t] [ out] [ ] [<UNK>]

[ ] [I] [ thought] [ ] [he] [ ] [cri]
[ed] [ over] [ ] [some] [ ] [of] [ ]
[his] [ ] [relative] [ death] [ ] [or]
[ ] [something] [ ] [but] [ ] [when]
[ ] [i] [ know] [ ] [the] [ ] [truth]
[ ] [.] [ ] [I] [ ] [just] [ ] [wanna]
[ ] [burst] [ ] [out] [ ] [ ]

Label: joy Prediction: sadness Prediction: joy
3 "Actually gunna

miss America a lot
"

[ Actually] [ gun] [n] [a] [ miss]
[ America] [ ] [a] [ lot] [ ] [<UNK>]

[ ] [Actual] [ly] [ ] [gun] [na] [ ]
[miss] [ America] [ ] [a] [ ] [lot] [ ]
[ ]

Label: sadness Prediction: joy Prediction: sadness

On interpreting tokenization results. Each group of symbols in square brackets represents a single token. There are two special symbols:
" ", which represents a word-separating character like a space, and "<UNK>", which represents an out-of-vocabulary token the tokenizer
resorts to when it cannot break down the input string into any of its known 32k tokens.

Discussion. As one can see in Table 15, T5 1.1. struggles with hashtag tokenization and fails to understand semantically important emojis.
In example 1, T5’s tokenizer (trained on C4’s clean text) tokenizes properly space-separated text well (e.g. [ worry]) but when the same
text appears inside a hashtag, it gets mangled ([ #] [w] [or] [ry]). In contrast, SAMUEL’s tokenizer is capable of tokenizing hashtags
in a manner that better aligns with human intuition because it learns not to assume that words will be properly space-separated ([ #]

[worry]). SAMUEL’s tokenizer is also capable of identifying semantically important emojis ( and in examples 2 and 3), while T5
does not because they are unknown to its tokenizer. These examples show that the token distribution differences reflect real distinctions in
language use between social media and the standard web. In addition, the vocabulary learned from these distinct distributions influences
downstream task performance: in all three examples, SAMUEL predicts the correct labels while T5 1.1. fails to do so.
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