
ar
X

iv
:2

20
8.

07
31

1v
3 

 [
cs

.G
T

] 
 2

0 
M

ay
 2

02
3

A General Framework for Fair Allocation under Matroid Rank

Valuations

Vignesh Viswanathan and Yair Zick

University of Massachusetts, Amherst

{vviswanathan, yzick}@umass.edu

Abstract

We study the problem of fairly allocating a set of indivisible goods among agents with matroid rank

valuations — every good provides a marginal value of 0 or 1 when added to a bundle and valuations

are submodular. We generalize the Yankee Swap algorithm to create a simple framework, called General

Yankee Swap, that can efficiently compute allocations that maximize any justice criterion (or fairness

objective) satisfying some mild assumptions. Along with maximizing a justice criterion, General Yankee

Swap is guaranteed to maximize utilitarian social welfare, ensure strategyproofness and use at most a

quadratic number of valuation queries. We show how General Yankee Swap can be used to compute

allocations for five different well-studied justice criteria: (a) Prioritized Lorenz dominance, (b) Maximin

fairness, (c) Weighted leximin, (d) Max weighted Nash welfare, and (e) Max weighted p-mean welfare.

In particular, our framework provides the first polynomial time algorithms to compute weighted leximin,

max weighted Nash welfare and max weighted p-mean welfare allocations for agents with matroid rank

valuations.

1 Introduction

Consider the problem of assigning people to activities (say, a community center offering after-school activities,

or university students signing up for classes). People have preferences over the activities they want to take;

however, there is a limited number of space available in each activity. The assignment must satisfy several

additional constraints; for example, people may not sign up for activities with conflicting schedules, and

there may also be limits on the maximal number of activities one can sign up for. In addition, people

often have priorities : community center members should be offered priority over non-members; similarly,

students closer to graduation may be given priority over first-years when choosing electives. This problem

can be naturally modeled as an instance of a fair allocation problem: people are agents who have a utility for

receiving bundles of items (activities). Our objective is to efficiently compute an allocation (an assignment of

activities to people) that satisfies certain justice criteria. For example, one might be interested in computing

an efficient allocation — in the activity allocation setting, this would be an allocation that maximizes the

number of activities assigned to people who are willing and able to take them. Alternatively, one might want

to find an envy-free assignment — one where every person prefers their assigned set of activities to that of any

other person. Finding these fair and efficient allocations is computationally intractable under general agent

utilities (Bouveret et al., 2016). However, we assume that agent preferences follow a combinatorial structure:

for example, under mild assumptions, agent preferences over activities are submodular ; in economic jargon,

they have decreasing returns to scale. In addition, assuming people are only interested in taking the maximal

number of activities relevant to them, their gain from taking an additional activity is either 0 or 1. This

class of preferences is known as binary submodular valuations (Benabbou et al., 2021).

Recently, Viswanathan and Zick (2023) introduced the Yankee Swap algorithm for computing fair and

efficient allocations. The algorithm starts with all items unassigned, and proceeds in rounds; at every round,

an agent is picked to play. The agent can choose to either pick an unassigned item to add to its bundle, or

1

http://arxiv.org/abs/2208.07311v3


to steal an item from another agent. If they choose to steal, then they initiate a transfer path, where each

agent steals an item from another, until the final agent takes an unassigned item. This continues until no

agents wants to take any unassigned item.

If agents have binary submodular valuations, Yankee Swap is guaranteed to output a Lorenz dominating

allocation. When agents have binary submodular valuations, Lorenz dominating allocations are extremely

appealing Babaioff et al. (2021a): they 1. maximize both utilitarian and Nash welfare; 2. are envy-free up to

any item (EFX); 3. offer each agent at least half their maximin share and 4. can be computed truthfully. We

explore an extension of this framework where agents have weights (also known as entitlements or priorities),

as proposed by Chakraborty et al. (2021a); that is, some agents are intrinsically more important than others,

and should be given higher priority as a function of their weight. When agents have weights, Lorenz

dominating allocations lose their appeal Chakraborty et al. (2021b): they no longer offer approximate envy-

freeness, MMS or Nash welfare guarantees. In fact, Chakraborty et al. (2021b) argue against their use in

weighted settings. While most solution concepts in the unweighted setting have been shown to be efficiently

computable (Barman and Verma, 2021; Babaioff et al., 2021a), little is known about the weighted setting.

Our main result bridges this gap: despite the incompatibility of the different solutions in the weighted

domain, we propose a

fast, simple and easily explainable algorithm that can compute a variety of solutions in weighted

settings and beyond.

1.1 Our Contribution

We present a surprising algorithmic result: a minor modification to the Yankee Swap algorithm — the order

in which it lets agents play — allows it to compute allocations satisfying a broad range of justice criteria.

Justice criteria (denoted by Ψ) can be thought of as ways to compare allocations; for example, an allocation

X is better than Y according the Nash social welfare criterion if the product of agent utilities under X is

greater than the product of utilities under Y .

The General Yankee Swap framework picks an agent at each iteration according to a general gain function

φ. The gain function φ takes as input an agent i and an allocation X and outputs a ‘score’ corresponding

to the ‘gain’ of adding a good to i according to Ψ. The selected agent can either take an unassigned item

they like, or steal an item from someone else. If they steal, then the agent who had an item stolen from

them gets to either take an unassigned item or steal yet another item. This goes on until some agent picks

an unassigned item they like. If no such path exists, the selected agent is removed from play.

General Yankee Swap computes a Ψ maximizing allocation for any Ψ as long as the following two

conditions hold: (a) Ψ maximizing allocations are Pareto dominant, and (b) Ψ admits a coherent gain

function φ such that φ(X, i) is a decreasing function of the utility of agent i under the allocation X . Several

well-known justice criteria satisfy these conditions, summarized in Table 1.

In addition to weighted settings, General Yankee Swap can produce an allocation that guarantees every

agent a maximal fraction of their maximin share, assuming that we have precomputed the maximin share

of every agent i, MMSi. Furthermore, the allocations that General Yankee Swap outputs always maximize

utilitarian social welfare, and are always truthful. Thus, despite its simplicity, General Yankee Swap offers

a unified framework for computing various optimal allocations, under different definitions of optimality.

1.2 Our Techniques

There are two broad techniques used in this paper. The first is that of path augmentations in the item

exchange graph. The item exchange graph is a directed graph over the set of goods where an edge exists from

one good g to another good g′ if the agent who is currently allocated g would be indifferent to swapping the

good g with g′. Transferring goods along a path in the exchange graph can be used to manipulate allocations

and improve them; this is a special case of a general optimization technique known as path augmentation

Schrijver (2003). Path augmentations have been extensively used in prior work (Viswanathan and Zick, 2023;

Barman and Verma, 2021). However, prior works restrict their attention to one specific justice criterion. In

2



Justice Criterion Gain Function φ(X, i)

Lorenz Dominance (Thm. 6.2) −vi(Xi)

Weighted Leximin (Thm. 6.3) − vi(Xi)
wi

Maximin Fair Share (Corr. 6.5) − vi(Xi)
MMSi

if MMSi > 0, and −∞ otherwise.

Weighted Nash (Thm. 6.6)
(

1 + 1
vi(Xi)

)wi
if vi(Xi) > 0; a large M otherwise

Weighted p-Mean (Thm. 6.8) sign(p)× wi × [(vi(Xi) + 1)p − vi(Xi)
p]

Weighted Harmonic

Montanari et al. (2022)

wi

vi(Xi)+1

Table 1: A summary of justice criteria for which General Yankee Swap (Algorithm 1) computes an optimal

solution. vi(Xi) denotes the utility of agent i under the allocation X , wi denotes the weight of agent i and

MMSi denotes the maximin share of agent i.

our work, we exploit the power of path augmentations even further, and apply this technique to a broad

range of justice criteria. We also use path augmentations to show that our framework is truthful — adopting

a proof style from Babaioff et al. (2021a).

Our second technique is a careful combination of binary search and breadth first search for the efficient

computation of paths on the exchange graph. This technique allows us to find paths on the exchange

graph without explicitly constructing it. It was first introduced by Chakrabarty et al. (2019) to create fast

algorithms for the matroid intersection problem. We use it to improve the runtime of our algorithm from

cubic valuation queries (Viswanathan and Zick, 2023) to quadratic valuation queries (ignoring logarithmic

factors).

1.3 Related Work

Several works explore fair allocation under binary submodular valuations. Benabbou et al. (2019) present

algorithms that compute fair and efficient allocations when agents have binary matching-based (OXS)

valuations, a result later extended to general binary submodular valuations by Benabbou et al. (2021).

Babaioff et al. (2021a) extend this work further, showing that it is possible to truthfully compute Lorenz

dominating allocations in polynomial time; Lorenz dominance is a stronger notion of fairness than leximin

and it implies a host of other fairness properties. Barman and Verma (2022) add to this result, showing

that Lorenz dominating allocations can be computed in a group strategyproof manner. Barman and Verma

(2021) show that it is possible to compute an allocation which guarantees each agent their maximin share.

Our results use some technical lemmas from their work.

Our work also contributes to the existing literature on fair allocation with asymmetric agents. Several

weighted fairness metrics are proposed in the literature. Farhadi et al. (2019) introduce a weighted notion of

the maximin share. Chakraborty et al. (2021a) introduce the notion of weighted envy-freeness and propose

algorithms to compute weighted envy-free up to one item. These results are extended by Chakraborty et al.

(2022) and Montanari et al. (2022). Aziz et al. (2020) introduced the notion of weighted proportionality.

Babaioff et al. (2021b) proposed and studied additional extensions of the maximin share to the weighted

setting.

Several works study computational aspects in the weighted domain, proposing algorithms for weighted

envy-freeness Chakraborty et al. (2021a,b), weighted Nash welfare Garg et al. (2021); Suksompong and Teh

(2022), proportionality in chores Li et al. (2022), and weighted maximin share for chores Aziz et al. (2019).

Suksompong and Teh’s approach uses path transfer arguments as well; however, our analysis holds for a

more general class of valuations (binary submodular vs. binary additive).

The course allocation domain is a relevant application domain for our work. The main concern in applying

our algorithmic framework in that domain is that course conflicts do not generally induce submodular prefer-

3



ences. Indeed, when items have arbitrary conflicts (encoded by a conflict graph), the problem of computing

an allocation maximizing the minimal utility of any agent is computationally intractable Chiarelli et al.

(2022). However, we find that in practice (at least in the authors’ college), course conflicts satisfy a minimal

condition that induces submodular preferences: if course A conflicts with course B, and course B conflicts

with course C, then A conflicts with C.

2 Preliminaries

We use [t] to denote the set {1, 2, . . . , t}. For ease of readability, for an element g and a set A, we replace

A ∪ {g} and A \ {g} with A+ g and A− g respectively.

We have a set of n agents N = [n] and a set of m goods G = {g1, g2, . . . , gm}. Each agent i ∈ N has a

valuation function vi : 2
G → R≥0; vi(S) specifies the value agent i has for the set of goods S ⊆ G. Each

agent i also has a positive weight wi ∈ R
+ that corresponds to their entitlement; we do not place any other

constraint on the entitlement other than positivity. We use ∆i(S, g) = vi(S + g) − vi(S) to denote the

marginal gain of adding the good g to the bundle S for the agent i. Throughout the paper, we assume

each vi is a matroid rank function (MRF). A function vi is a matroid rank function if (a) vi(∅) = 0, (b) for

any g ∈ G and S ⊆ G, we have ∆i(S, g) ∈ {0, 1}, and (c) for any S ⊆ T ⊆ G and a good g, we have

∆i(S, g) ≥ ∆i(T, g). These functions are also referred to as binary submodular valuations; we use the two

terms interchangably.

An allocation X is a partition of the set of goods into n+1 sets (X0, X1, . . . , Xn) where each agent i ∈ N

gets the bundle Xi and X0 consists of the unallocated goods. An allocation X is said to be non-redundant

if for all i ∈ N , we have vi(Xi) = |Xi|. For any allocation X , vi(Xi) is referred to as the utility or value

of agent i under the allocation X . For ease of analysis, we sometimes treat 0 as an agent with valuation

function v0(S) = |S| and bundle X0. None of our justice criteria take the agent 0 into account. By our

choice of v0, any allocation which is non-redundant for the set of agents N is trivially non-redundant for the

set of agents N + 0.

We have the following simple useful result about non-redundant allocations. Variants of this result have

been shown by Benabbou et al. (2021) and Viswanathan and Zick (2023).

Lemma 2.1 (Benabbou et al. (2021), Viswanathan and Zick (2023)). Let X be an allocation. There exists

a non-redundant allocation X ′ such that vi(X
′
i) = vi(Xi) for all i ∈ N .

2.1 Item Exchange Graph

We define the exchange graph of a non-redundant allocationX (denoted by G(X)) as a directed graph defined

over the set of goods G. An edge exists from good g ∈ Xi to another good g′ if vi(Xi − g + g′) = vi(Xi).

Intuitively, this means that from the perspective of agent i ∈ N + 0 (who owns g), g can be replaced with

g′ without reducing agent i’s utility. The exchange graph is a useful representation since it can be used to

compute valid transfers of goods between agents.

Let P = (g1, g2, . . . , gt) be a path in the exchange graph for the allocation X . We define a transfer of

goods along the path P in the allocation X as the operation where gt is given to the agent who has gt−1,

gt−1 is given to the agent who has gt−2 and so on until finally g1 is discarded. This transfer is called path

augmentation; the bundle Xi after path augmentation with the path P is denoted by XiΛP and defined as

XiΛP = (Xi − gt)⊕{gj, gj+1 : gj ∈ Xi} where ⊕ denotes the symmetric set difference operation. While the

conventional notation for path augmentation uses ∆ (Barman and Verma, 2021; Schrijver, 2003), we replace

it with Λ to avoid confusion with the other definition of ∆ as the marginal gain of adding an item to a

bundle.

For any non-redundant allocation X and agent i, we define Fi(X) = {g ∈ G : ∆i(Xi, g) = 1} as the

set of goods which give agent i a marginal gain of 1. For any agent i, let P = (g1, . . . , gt) be the shortest

path from Fi(X) to Xj for some j 6= i. Then path augmentation with the path P and giving g1 to i

results in an allocation where i’s value for their bundle goes up by 1, j’s value for their bundle goes down

4



by 1 and all the other agents do not see any change in value. This is formalized below and exists both in

Viswanathan and Zick (2023, Lemma 5) and Barman and Verma (2021, Lemma 1).

Lemma 2.2 (Viswanathan and Zick (2023); Barman and Verma (2021)). Let X be a non-redundant alloca-

tion. Let P = (g1, . . . , gt) be the shortest path from Fi(X) to Xj for some i ∈ N + 0 and j ∈ N + 0− i. We

define an allocation Y as follows:

Yk =

{

XkΛP k ∈ N + 0− i

XiΛP + g1 k = i

Then, we have for all k ∈ N + 0 − i − j, vk(Yk) = vk(Xk), vi(Yi) = vi(Xi) + 1 and vj(Yj) = vj(Xj) − 1.

Furthermore, the allocation Y is non-redundant.

This lemma is particularly useful when the path ends at some good in X0; transferring goods along the

path results in an allocation where no agent loses any utility (they lose a good they like, but steal a good

they like to recover their utility), but one agent (agent i in Lemma 2.2) increases their utility by 1. We say

there is a path from some agent i to some agent j in an allocation X if there is a path from Fi(X) to Xj in

the exchange graph G(X). Viswanathan and Zick (2023, Theorem 3.8) establish a sufficient condition for a

path to exist; we present it below.

Lemma 2.3 (Viswanathan and Zick (2023)). Let X and Y be two non-redundant allocations. For any agent

i ∈ N + 0 such that |Xi| < |Yi|, there exists a path in G(X) from Fi(X) to Xj for some j ∈ N + 0 such that

|Xj | > |Yj |.

2.2 Justice Criteria

We define the utility vector of an allocation X as ~uX = (v1(X1), v2(X2), . . . , vn(Xn)). In general, a justice

criterion (denoted by Ψ) is a way of comparing the utility vectors of two allocations X and Y . We use

~uX ≻Ψ ~uY to denote allocation X being better than allocation Y according to Ψ. To ensure all allocations

can be compared, we require �Ψ be a total ordering on the set of all possible utility vectors Zn
≥0.

For example, if Ψ is the Nash welfare justice criterion, ~uX ≻Ψ ~uY if the product of agent utilities under

X is greater than the product of agent utilities under Y . For readability, we abuse notation sometimes and

replace ~uX ≻Ψ ~uY with X ≻Ψ Y .

Our goal is to compute an allocation with a maximal utility vector with respect to Ψ. In other words,

we would like to find an allocation X such that for no other allocation Y , we have Y ≻Ψ X . We sometimes

refer to such an allocation as a Ψ maximizing allocation. In the above example, this would correspond to

computing a max Nash welfare allocation.

2.3 Important Definitions

For ease of readability, we only define a few necessary terms from the fair division literature, and defer

additional definitions to where they are used.

Definition 2.4 (Utilitarian Social Welfare). The utilitarian social welfare of an allocation X is given by
∑

i∈N vi(Xi). An allocation is referred to as MAX-USW if it maximizes the utilitarian social welfare.

Definition 2.5 (Lexicographic Domination). Let ~x, ~y ∈ R
c be two vectors for some positive integer c. ~x is

said to lexicographically dominate ~y if there exists a k ∈ [c] such that for all j ∈ [k− 1], we have ~xj = ~yj and

we have ~xk > ~yk. A real valued vector ~x is lexicographically dominating with respect to a set of vectors V if

there exists no ~y ∈ V which lexicographically dominates ~x.

This definition can be extended to allocations as well. An allocation X is said to lexicographically

dominate an allocation Y if the utility vector of X lexicographically dominates the utility vector of the Y .

Similarly, an allocation X is lexicographically dominating with respect to a set of allocations V if there exists

no Y ∈ V which lexicographically dominates X .

5



ALGORITHM 1: General Yankee Swap

X = (X0, X1, . . . , Xn)← (G, ∅, . . . , ∅)

// All items initially in X0, i.e. unassigned.

U ← N

while U 6= ∅ do

S ← argmaxk∈U φ(X,k)

// Choose the agent who maximizes φ

i← min{j : j ∈ S}

// Break ties using index

Find the shortest path in the exchange graph G(X) from Fi(X) to X0

if a path P = (gi1 , gi2 , . . . , gik) exists then

// Update X using path augmentation

Xk ← XkΛP for all k ∈ N − i

Xi ← XiΛP + gi1
X0 ← X0ΛP

else

U ← U − i

// If no path exists, remove i from U

end

end

return X

Definition 2.6 (Pareto Dominance). An allocation X is said to Pareto dominate another allocation Y if

for all h ∈ N , we have vh(Xh) ≥ vh(Yh) with a strict inequality for at least one h ∈ N .

3 General Yankee Swap

Our algorithmic fair allocation framework generalizes the Yankee Swap algorithm by Viswanathan and Zick

(2023). In the Yankee Swap algorithm, all goods are initially unallocated. At every round, the agent with

the least utility picks a good they like from the unallocated pile or initiate a transfer path where they steal

a good they like from another agent, who then steals a good they like from another agent and so on until an

agent finally takes a good they like from the set of unallocated goods. These transfer paths are equivalent

to shortest paths on the exchange graph and can be computed easily. If there is no such path to the pool

of unallocated goods, the agent is removed from the game (denoted by their removal from the set U). We

terminate once all agents are no longer playing.

We now present General Yankee Swap (Algorithm 1). Surprisingly enough, we only change one line in

the algorithm’s pseudocode: instead of picking the least utility agent at every round, we pick an agent that

maximizes a general gain function φ. The gain function φ takes as input the utility vector of an allocation

(the partial allocation we have so far) and an index i ∈ N ; its output is a b-dimensional vector. When b > 1,

φ(~uX , i) > φ(~uX , j) if φ(~uX , i) lexicographically dominates φ(~uX , j). If multiple agents maximize the gain

function φ, we break ties by choosing the agent with the least index. For ease of readability, we sometimes

replace φ(~uX , i) with φ(X, i).

The gain function φ depends on the justice criterion we maximize (Table 1 summarizes the main condition

for the gain function, elaborated upon in Section 6). The original Yankee Swap is a specific case of the general

Yankee Swap with φ(X, i) = −vi(Xi).

3.1 Sufficient Conditions for General Yankee Swap

General Yankee Swap works when the justice criterion Ψ has the following properties. These properties have

been defined for arbitrary vectors ~x, ~y and ~z but it may help to think of these vectors as utility vectors.

6



(C1) — Pareto Dominance: For any two vectors ~x, ~y ∈ Z
n
≥0, if xh ≥ yh for all h ∈ N , then ~x �Ψ ~y.

Equality holds if and only if ~x = ~y.

(C2) — Gain Function: Ψ admits a gain function φ that maps each possible utility vector to a real-valued

b-dimensional vector with the following properties:

(G1) For any vector ~x ∈ Z
n
≥0 and any i, j ∈ [n], Let ~y ∈ Z

n
≥0 be the vector that results from starting

at ~x and adding 1 to xi. Similarly, let ~z ∈ Z
n
≥0 be the vector resulting from starting at ~x and

adding 1 to xj . Then, if φ(~x, i) ≥ φ(~x, j), ~y �Ψ ~z. Equality holds if and only if φ(~x, i) = φ(~x, j).

(G2) For any two vectors ~x, ~y ∈ Z
n
≥0 and i ∈ [n], if xi ≤ yi, then φ(~x, i) ≥ φ(~y, i) with equality holding

if xi = yi.

Intuitively, φ(X, i) can be thought of as a function describing the marginal ‘gain’ of giving a good to agent

i given some allocation X . The higher the value of φ(X, i), the more valuable it is to give an item to i.

The condition (G1) states that if giving the item g to agent i results in a better allocation according to the

justice criterion Ψ, then this should be reflected in the gain function φ. The condition (G2) states that the

gain function should take an egalitarian approach, assigning a greater φ value to i when their utility is lower.

3.2 Analysis

General Yankee Swap outputs a non-redundant Ψ maximizing allocation which is also utilitarian welfare

maximizing. Moreover, among all allocations that maximize Ψ, the output of General Yankee Swap is

lexicographically dominating. This is a stronger statement and is required to show strategyproofness — a

technique used by Halpern et al. (2020) and Suksompong and Teh (2022). Our proof is subtly different from

that of Viswanathan and Zick (2023); while they heavily rely on the output allocation being leximin, our

proof carefully uses path augmentations in the analysis to show correctness for any valid Ψ. We first argue

that the output of Algorithm 1 is non-redundant, i.e. vi(Xi) = |Xi| for all i ∈ N .

Lemma 3.1. At any iteration of Algorithm 1, the allocation X maintained by the algorithm is non-redundant,

i.e. vi(Xi) = |Xi| for all i ∈ N .

Proof. This claim holds via an inductive argument on the iterations of Algorithm 1. Let Xt be the allocation

at the t-th iteration. At iteration t = 0, no agent holds any item, thus the allocation is trivially non-

redundant. At every other iteration, the only way we modify the allocation is using path augmentations.

From Lemma 2.2, the new allocation after path augmentation is non-redundant as well. Therefore, Xt must

be non-redundant for any t.

Let us next prove our main claim.

Theorem 3.2. Let Ψ be a justice criterion that satisfies (C1) and (C2) with a gain function φ. When

agents have matroid rank valuations, General Yankee Swap with input φ maximizes Ψ. Moreover, the output

of General Yankee Swap lexicographically dominates all other Ψ-maximizing allocations.

Proof. It is easy to show that Algorithm 1 always terminates: at every iteration, we either reduce the number

of unallocated goods or remove some agent from U while not changing the number of unallocated goods.

Let X be the non-redundant allocation output by Algorithm 1.

Let Y be a non-redundant allocation that maximizes Ψ — such an allocation is guaranteed to exist since

Ψ is a total order over all possible utility vectors. We can assume Y is non-redundant thanks to Lemma 2.1.

If there are multiple such Y , pick one that lexicographically dominates all others — that is, pick one that

breaks ties in favor of lower index agents.

If for all h ∈ N , |Xh| ≥ |Yh|, then X maximizes Ψ (since Ψ respects Pareto dominance according to C1)

and is lexicographically dominating — we are done. Assume for contradiction that this does not hold.

This means that there is some agent i whose utility underX is strictly lower than under Y , i.e. |Xi| < |Yi|.
Let i ∈ N be the agent with highest φ(X, i) in X such that |Xi| < |Yi|; if there are multiple agents we break

7



ties in favor of the lowest index agent. Let W be the non-redundant allocation maintained by General Yankee

Swap at the start of the iteration where i was removed from U . From this stage onward, i’s utility will no

longer increase. In addition, in order to be removed, i must have the highest value of φ(W, i) among all

agents in U . We use t to denote this iteration. We have the following lemma.

Lemma 3.3. For all h ∈ N , |Yh| ≥ |Wh|.

Proof. Assume for contradiction that this is not true. Let j ∈ N be the agent with highest φ(Y, j) such that

|Yj | < |Wj |; if there are multiple, break ties in favor of the one with the least index.

Consider the bundle Wj . Let W ′ be the allocation at the start of the iteration when j moved from a

bundle of size |Wj | − 1 to |Wj |. That is, j was the agent with maximum φ(W ′, j) within U , and executed

a transfer path which resulted in them receiving an additional item with a marginal gain of 1. Combining

this with the fact that bundle sizes for each agent monotonically increase and that agents never return to

U once removed, we have φ(W ′, j) ≥ φ(W ′, i). Furthermore, since φ decreases with agent utilities (G2),

φ(Y, j) ≥ φ(W ′, j) and φ(W ′, i) ≥ φ(W, i). Therefore:

φ(Y, j) ≥ φ(W ′, j) ≥ φ(W ′, i) ≥ φ(W, i).

If equality holds throughout and φ(Y, j) = φ(W ′, j) = φ(W ′, i) = φ(W, i), then j < i since General Yankee

Swap breaks final ties using the index of the agent and j was chosen at W ′ instead of i. Therefore, we have

φ(Y, j) ≥ φ(W, i). If equality holds, then j < i. (1)

Invoking Lemma 2.3 with allocations Y and W and agent j, we can improve j’s utility under Y via some

transfer path that ends in some agent k ∈ N + 0 for whom vk(Yk) > vk(Wk); that is, there must be a path

from the items that offer j a marginal gain of 1 under Y (the set Fj(Y )) to Yk for some k ∈ N + 0 where

|Yk| > |Wk| in the exchange graph of Y . Invoking Lemma 2.2, transferring goods along the shortest path

from Fj(Y ) to Yk results in a non-redundant allocation Z where |Zj | = |Yj |+1, |Zk| = |Yk|−1, and all other

agents’ utilities are the same.

If k = 0 — i.e. j executed a transfer path that ended with an unassigned item — we are done since Z

strictly Pareto dominates Y . Using (C1), Z ≻Ψ Y , contradicting our assumption on the Ψ optimality of Y .

Therefore, it must be that k 6= 0.

Consider φ(W,k). If φ(W,k) > φ(W, i), since i was chosen as the agent with highest φ(W, i) among

the agents in U at iteration t, we must have that k /∈ U at iteration t. This gives us |Xk| = |Wk| < |Yk|.
Combining this with our initial assumption that φ(W,k) > φ(W, i), we get φ(X, k) = φ(W,k) > φ(W, i) ≥
φ(X, i) using (G2). This contradicts our choice of i; i is not the agent with highest φ(X, i) such that

|Xi| < |Yi|. This leads us to the following observation (combined with Equation (1)).

φ(W,k) ≤ φ(W, i) ≤ φ(Y, j) (2)

Let Y ′ be a non-redundant allocation that results from starting at Y and removing any good from k.

Note that, to show Z �Ψ Y , it suffices to show that φ(Y ′, j) ≥ φ(Y ′, k) (using (G1)). From Equation (2)

and (G2), we have φ(Y ′, k) ≤ φ(W,k) ≤ φ(W, i) ≤ φ(Y, j) = φ(Y ′, j). If any of these inequalities are strict,

we have φ(Y ′, j) > φ(Y ′, k) which implies Z ≻Ψ Y , a contradiction since Y is Ψ-optimal. This gives us the

following observation.

φ(Y ′, k) = φ(W,k) = φ(W, i) = φ(Y, j) = φ(Y ′, j) (3)

Since φ(W,k) = φ(W, i) and the algorithm picked i at iteration t, we must have i ≤ k. Assume for

contradiction that this is not true. If k ∈ U at iteration t, the algorithm would have picked k instead of i

— a contradiction. If k /∈ U , then φ(X, k) = φ(W,k) = φ(W, i) ≥ φ(X, i) using (G2). Combining this with

i > k contradicts our choice of i. Therefore, i ≤ k. Combined with Equation (1), we have:

j < i ≤ k (4)

8



Combining Equation (3) and (G1), we get that Z maximizes Ψ. However, since j < k, Z lexicographically

dominates Y : all agents h < j receive the same value in both allocations and vj(Zj) > vj(Yj). This

contradicts our assumption on Y .

We have |Wi| < |Yi| by construction and |Wh| ≤ |Yh| for all h ∈ N thanks to Lemma 3.3. Therefore, from

Lemma 2.3, there must exist a path from Fi(W ) to W0 in the exchange graph of W . This is a contradiction

since we chose the iteration where i was removed from U implying that there is no path from Fi(W ) to W0

in the exchange graph of W .

Next, we show that the output of the General Yankee Swap is always MAX-USW.

Proposition 3.4. For any input gain function φ, the output of General Yankee Swap is MAX-USW.

Proof. Let X be the non-redundant allocation output by General Yankee Swap. Assume for contradiction

that X is not MAX-USW. Let Y be a non-redundant MAX-USW allocation which minimizes
∑

h∈N |vh(Xh) −
vh(Yh)|.

There must be at least one agent i such that |Xi| < |Yi|. Consider the allocation W at the start of the

iteration where i was removed from U . Since |Wi| < |Yi| and |Wh| ≤ |Yh| for all h ∈ N , using Lemma 2.3,

there exists a path from Fi(W ) to W0 in G(W ). This contradicts our choice of iteration since we chose the

iteration where i was removed from U .

Therefore, we must have at least one agent j such that |Yj | < |Xj|. Applying Lemma 2.3 with allocations

X , Y and the agent j, we get that there is a path from j to some agent k ∈ N + 0 in the exchange graph

of Y such that |Xk| < |Yk|. Transferring goods along the shortest path from j to k, using Lemma 2.2, leads

to a non-redundant allocation Z where |Zj | = |Yj | + 1 and |Zk| = |Yk| − 1 and all other agents receive the

same utility. If k = 0, Z has a higher USW than Y contradicting our assumption on Y .

If k 6= 0, then
∑

h∈N |vh(Xh)−vh(Yh)| >
∑

h∈N |vh(Xh)−vh(Zh)| and Z is MAX-USW; again contradicting

our assumption on Y . Therefore, X is MAX-USW.

4 Strategyproofness

In this section, we show that if preferences are elicited before running the General Yankee Swap, being

truthful is the dominant strategy.

A mechanism is said to be strategyproof if no agent can get a better outcome by misreporting their

valuation function. We define the steps of the Yankee Swap Mechanism as follows:

1. Elicit the valuation function vi of each agent i ∈ N . If an agent’s valuation function is not an MRF,

set the agent’s valuation of every bundle to 0.

2. Use General Yankee Swap to compute a non-redundant allocation that maximizes some valid Ψ for the

valuation profile {vi}i∈N .

Before we show the final result, we prove some useful lemmas. Our proof uses the same ideas as the

strategyproofness result in Babaioff et al. (2021a, Theorem 5). Given a set T ⊆ G, we define the function

fT : 2G → R
+ as fT (S) = |S ∩ T |. Note that for any T , fT is an MRF.

Lemma 4.1. Let X be the output allocation of the Yankee Swap mechanism with valid input gain function

φ and valuation profile {vi}i∈N . For some agent i ∈ N , replace vi with some fT such that T ⊆ Xi and run

the mechanism again to get an allocation Y . We must have Yi = T .

Proof. Since the allocation Y is non-redundant, we have that Yi ⊆ T . Assume for contradiction that Yi 6= T .

Define an allocation Z as Zh = Xh for all h ∈ N − i and Zi = T ; allocate the remaining goods in Z to

Z0. Note that both Y and Z are non-redundant under both valuation profiles (with the old vi and the new

valuation function fT ).

9



Let us compare Y and Z. Let p ∈ N be the agent with highest φ(Y, p) such that |Yp| < |Zp|; choose the

agent with the least p if there are ties. Such an element is guaranteed to exist since |Yi| < |Zi|.
If there exists no q ∈ N such that |Yq| > |Zq|, we must have |Y0| > |Z0| (since |Yi| < |Zi|). Using Lemma

2.3 with agent p and the allocations Y and Z, we get that there is a path from p to 0 in the exchange graph

of Y . Transferring goods along the shortest such path results in an allocation with a higher USW than Y

under the new valuation profile contradicting the fact that Y is MAX-USW.

Let q ∈ N be the agent with highest φ(Z, q) such that |Yq| > |Zq|; break ties by choosing the least q.

Further, note that since Z and X only differ in i’s bundle and |Yi| < |Zi|, we must have |Xq| = |Zq|.
Consider two cases:

(i) φ(X, q) > φ(Y, p),

(ii) φ(X, q) = φ(Y, p) and q < p

Then invoking Lemma 2.3 with allocations X , Y and the agent q, there exists a transfer path from q to some

agent k in the exchange graph of X (w.r.t. the old valuations) where |Yk| < |Xk|. Transferring along the

shortest such path gives us a non-redundant allocation X ′ where |X ′
q| = |Xq|+1 and |X ′

k| = |Xk|−1 (Lemma

2.2). Let X ′′ be an allocation starting at X ′ and removing one good from X ′
q. If φ(X

′′, q) > φ(X ′′, k), then

X ′ ≻Ψ X (using (G1)) contradicting our assumption on X .

If k = 0, we improve USW contradicting the fact that X is MAX-USW with respect to the original valuations

{vh}h∈N .

For case (i): If k 6= 0, we have φ(X ′′, q) = φ(X, q) > φ(Y, p) ≥ φ(Y, k) ≥ φ(X ′′, k) (using (G1) and (G2)).

Therefore φ(X ′′, q) > φ(X ′′, k) and X does not maximize Ψ — a contradiction.

For case (ii): If k 6= 0, we have φ(X ′′, q) = φ(X, q) = φ(Y, p) ≥ φ(Y, k) ≥ φ(X ′′, k). If any of these weak

inequalities are strict, we can use analysis similar to that of case (i) to show that X does not maximize Ψ.

Therefore, all the weak inequalities must be equalities and we must have φ(X ′′, q) = φ(X, q) = φ(Y, p) =

φ(Y, k) = φ(X ′′, k). This implies that X =Ψ X ′ using (G1).

Moreover, by our choice of p we have p ≤ k and by assumption, we have q < p. Combining the two, this

gives us q < k. Therefore, X ′ lexicographically dominates X — a contradiction to Theorem 3.2.

Let us now move on to the remaining two possible cases

(iii) φ(Z, q) < φ(Y, p),

(iv) φ(Z, q) = φ(Y, p) and q > p

Recall that both Y and Z are non-redundant with respect to the new valuation profile (with fT ). If any of

the above two conditions occur, then invoking Lemma 2.3 with allocations Y , Z and the agent p, there exists

a transfer path from p to some agent l in the exchange graph of Y where |Yl| > |Zl|. Transferring along the

shortest such path gives us a non-redundant allocation Y ′ where |Y ′
p | = |Yp|+ 1 and |Y ′

l | = |Yl| − 1 (Lemma

2.2).

Let Y ′′ be an allocation starting at Y ′ and removing one good from Y ′
p . If φ(Y ′′, p) > φ(Y ′′, l), then

Y ′ ≻Ψ Y contradicting our assumption on Y .

If l = 0, we improve USW contradicting the fact that Y is MAX-USW with respect to the new valuation

fT .

For case (iii): If l 6= 0, we have φ(Y ′′, p) = φ(Y, p) > φ(Z, q) ≥ φ(Z, l) ≥ φ(Y ′′, l) (using (G1) and (G2)).

Therefore φ(Y ′′, p) > φ(Y ′′, l) and Y does not maximize Ψ — a contradiction.

For case (iv): If l 6= 0, we have φ(Y ′′, p) = φ(Y, p) = φ(Z, q) ≥ φ(Z, l) ≥ φ(Y ′′, l). If any of the weak

inequalities are strict, we can use analysis similar to that of case (iii) to show that Y does not maximize Ψ.

Therefore, all the weak inequalities must be equalities and we must have φ(Y ′′, p) = φ(Y, p) = φ(Z, q) =

φ(Z, l) = φ(Y ′′, l). This implies that Y ′ =Ψ Y .

Moreover, by our choice of q we have q ≤ l and by assumption, we have p < q. Combining the two,

this gives us p < l. Therefore, Y ′ lexicographically dominates Y — contradicting the fact that Y is a

Ψ-maximizing allocation with respect to the new valuation profile (with fT ).

10



ALGORITHM 2: Find-Desired(i, S,B)

Input : An agent i, a bundle S ⊆ G, and another bundle B ⊆ G

Output: An element g ∈ B such that ∆i(S, g) = 1 or ∅ if no such element exists

if vi(S ∪ B) = vi(S) then

return ∅

end

while |B| > 1 do

Let B1 and B2 be a partition of B such that max{|B1|, |B2|} ≤
⌈ |B|

2

⌉

if vi(S ∪B1) > vi(S) then

B ← B1

else

B ← B2

end

end

return B

Since |Zq| = |Xq|, φ(Z, q) = φ(X, q). Therefore, cases (i)–(iv) cover all possible cases. Each of the cases

lead to a contradiction. Therefore, our proof is complete and Yi = T .

Lemma 4.2. Let X be the output allocation of the Yankee Swap mechanism with input valuation profile

{vi}i∈N . For some agent i ∈ N , replace vi with some v′i such that v′i(S) ≥ vi(S) for all S ⊆ G and run the

mechanism again to get an allocation Y . We must have |Yi| ≥ |Xi|.

Proof Sketch. Assume for contradiction that |Yi| < |Xi|. Let T be a subset of Yi such that |T | = vi(T ) =

vi(Yi). Define an allocation Z as Zh = Yh for all h ∈ N − i and Zi = T ; allocate the remaining goods in Z to

Z0. X and Z are non-redundant under both valuation profiles. This construction allows us to use a similar

case by case analysis to that of Lemma 4.1 to prove the required result.

We are now ready to show strategyproofness.

Theorem 4.3. When agents have matroid rank valuations, the Yankee Swap mechanism is strategyproof.

Proof. Assume an agent i reports v′i instead of their true valuation vi to generate the allocation X ′ via the

Yankee Swap mechanism. Let X be the allocation generated by the mechanism had they reported their true

valuation vi. We need to show that vi(Xi) ≥ vi(X
′
i). We can assume w.l.o.g. that v′i is an MRF; otherwise,

i gets nothing and vi(X
′
i) = 0.

Let B be a subset of X ′
i such that |B| = vi(B) = vi(X

′
i). Using Lemma 4.1, we get that replacing v′i

with fB will result in an allocation Y where Yi = B. Using Lemma 4.2, we get that replacing fB with vi
gives us the allocation X and the guarantee vi(Xi) = |Xi| ≥ |B| = vi(B). Note that we can apply Lemma

4.2 since by construction we have vi(S) ≥ vi(S ∩ B) = |S ∩ B| = fB(S) for all S such that S ∩ B 6= ∅ and

vi(S) ≥ 0 = fB(S) otherwise. Since vi(B) = vi(X
′
i), the proof is complete.

5 Time Complexity

We turn to analyzing the time complexity of General Yankee Swap. We assume that agent valuations are

computed using an oracle which takes Tv = Ω(m) time; since reading the input bundle alone will take

any oracle Ω(m) time. This assumption only exists to simplify the time complexity expression; it does not

affect the number of valuation queries made by the algorithm in any way. Our result uses the technique of

combining binary search with breadth first search first introduced by Chakrabarty et al. (2019).

We store the allocation using two data structures: (a) a binary matrix referred to as X , and (b) an

inverse mapping X−1 that maps each good to the agent it is allocated to in X .

11



ALGORITHM 3: Get-Distances(X, i)

Input : An agent i chosen by General Yankee Swap and a non-redundant allocation X

Output: Shortest paths from s to every good g in G(X)

Let dg ←∞, prevg ← None for all g ∈ G

Q← {s}, B ← G

while Q 6= ∅ do

Let a be the element added to Q the earliest

if a = s then

while b = Find-Desired(i,Xi, B) satisfies b 6= ∅ do

db ← 1, prevb ← s, Q← Q+ b, B ← B − b

end

Q← Q− s

else

j = X−1(a)

// a is allocated to j under X

while b = Find-Desired(j,Xj − a,B) satisfies b 6= ∅ do

db ← da + 1, prevb ← a, Q← Q+ b, B ← B − b

end

Q← Q− a

end

end

return d, prev

Most proofs in this section are straightforward and have been relegated to the appendix. We start with a

simple binary search procedure to check if, given an agent i and a bundle S, there is a good g in some bundle

B ⊆ G such that ∆i(S, g) = 1. The algorithm is simple: we first check if vi(S ∪B) > vi(S). If this condition

is satisfied, we partition the set B into two equal sized sets B1 and B2 and check if vi(S ∪ Bj) > vi(S) for

each j ∈ {1, 2}. If the condition holds for any one Bj (say B1), we repeat the process by dividing B1 into

two subsets until B1 is a singleton element. We refer to this procedure as Find-Desired (Algorithm 2).

Lemma 5.1. The procedure Find-Desired(i, S,B) runs in O(Tv log |B|) time and finds a good g ∈ B such

that ∆i(S, g) = 1 if it exists; otherwise, the procedure outputs ∅.

We can use the Find-Desired procedure to find shortest paths in the exchange graph using breadth first

search without explicitly building the exchange graph. We refer to this procedure as Get-Distances and its

steps can be found in Algorithm 3.

To find the shortest path from Fi(X) to X0 in the exchange graph, we add a source node s and edges

from s to all the goods in Fi(X). We then use a slightly modified breadth first search to find single source

shortest paths in the exchange graph from s; the slight modification being that we use Find-Desired to find

outgoing edges.

Lemma 5.2. On input a non-redundant allocation X and an agent i, the procedure Get-Distances(X, i)

runs in O(mTv logm) time and computes the distances and the shortest paths from the node s to each good

g ∈ G.

We can put these two results together to get the time complexity of the algorithm. Our proof uses some

observations from Viswanathan and Zick (2023).

Theorem 5.3. Assuming that the worst case time to compute the value of any bundle of goods is Ω(m), the

General Yankee Swap algorithm runs in O([mTv logm+n(b+Tφ)](m+n)) time; where Tv is the complexity

of computing the value of a bundle of goods and Tφ is the complexity of computing φ.

Proof. We make three observations. First, the algorithm runs for at most (m+n) iterations. At each round

either |X0| reduces by 1 or an agent is removed from U . X0 monotonically decreases and agents do not

return to U ; therefore we can only have at most m+ n iterations.

12



Second, finding shortest paths in the exchange graph takes O(mTv logm) time (Lemma 5.2) and updating

the allocation using path augmentation takes O(m) time.

Finally, finding i involves computing φ for each agent and then comparing the φ values. Since the output

of φ has b components, each comparison takes at most O(b) time. Therefore, finding i takes n(b+ Tφ) time.

Combining these three observations, we get the required time complexity.

Due to the similarity of our algorithm with that of Viswanathan and Zick (2023), their time complexity

result applies to our algorithm as well. However, their analaysis uses a naive implementation of breadth first

search that uses O((m + n)m2) valuation queries. Our implementation on the other hand improves this to

O((m + n)m logm) valuation queries.

6 Applying General Yankee Swap

In this section, we show how Yankee Swap can be applied to optimize commonly used justice criteria. This

section showcases how simple the problem of optimizing fairness objectives becomes when using General

Yankee Swap.

6.1 Prioritized Lorenz Dominating Allocations

As a sanity check, we first show how General Yankee Swap computes prioritized Lorenz dominating alloca-

tions.

An allocation X is Lorenz dominating if for all allocations Y and for any k ∈ [n], the sum of the utilities

of the k agents with least utility in X is at least as much as the sum of the utilities of the k agents with least

utility in Y . An allocation X is leximin if it maximizes the lowest utility and subject to that; maximizes the

second lowest utility and so on.

Both these metrics can be formalized using the sorted utility vector. The sorted utility vector of an

allocation X (denoted by ~sX) is defined as the utility vector ~uX sorted in ascending order. An allocation X

is Lorenz dominating if for all allocations Y and all k ∈ [n], we have
∑

j∈[k] s
X
j ≥

∑

j∈[k] s
Y
j . An allocation

X is leximin if the sorted utility vector of X is not lexicographically dominated by the sorted utility of any

other allocation. A Lorenz dominating allocation is not guaranteed to exist, but when it does, it is equivalent

to a leximin allocation (which is guaranteed to exist). This result holds for arbitrary valuation functions.

Lemma 6.1. When a Lorenz dominating allocation exists, an allocation is leximin if and only if it is Lorenz

dominating.

Proof. Let Y be any Lorenz dominating allocation and let X be any leximin allocation. Assume for contra-

diction that they do not have the same sorted utility vector. Let k be the lowest index such that sXk 6= sYk .

If sXk < sYk , then ~sY lexicographically dominates ~sX contradicting the fact that X is leximin. If sXk > sYk ,

then Y is not Lorenz dominating. Since sXk = sYk for all k, both allocations have the same sorted utility

vector. This implies that X is Lorenz dominating and Y is leximin.

Babaioff et al. (2021a) introduce and study the concept of prioritized Lorenz dominating allocations. Each

agent is given a priority which is represented using a permutation π : [n] 7→ [n]. When agents have MRF

valuations {vi}i∈N , prioritized Lorenz dominating allocations are defined as Lorenz dominating allocations

for the fair allocation instance where valuations are defined as v′i(S) = vi(S) +
π(i)
n2 ; we refer to v′ as

perturbed valuations. Babaioff et al. (2021a) show that when agents have MRF valuations, a prioritized

Lorenz dominating allocation is guaranteed to exist and satisfies several desirable fairness properties such as

leximin, envy freeness up to any good (EFX) and maximizing Nash welfare. Prioritized Lorenz dominating

allocations can be computed using the following gain function:

Theorem 6.2. When agents have MRF valuations, General Yankee Swap with φ(X, i) set to (−vi(Xi),−π(i))

computes prioritized Lorenz dominating allocations with respect to priority π.

13



Proof. Since Lorenz domination is not a total ordering over the set of possible utility vectors, we instead

compute leximin allocations under the perturbed valuations v′. Such an allocation is guaranteed to be a

prioritized Lorenz dominating allocation since prioritized Lorenz dominating allocations are guaranteed to

exist (Babaioff et al., 2021a) and are equivalent to leximin allocations when they do exist (Lemma 6.1).

Formally, for any two allocations X and Y , X ≻Ψ Y if ~sX lexicographically dominates ~sY where the

sorted utility vectors ~sX and ~sY are defined according to the perturbed valuations v′. Note crucially that

agents still have MRF valuations; the perturbed valuations v′ are only used to define the justice criterion Ψ.

Ψ trivially satisfies Pareto Dominance (C1) and φ trivially satisfies (G2). We therefore only show (G1).

For any vector ~x ∈ Z
n
≥0 and two agents i and j, let ~y ∈ Z

n
≥0 be the vector resulting from starting at ~x

and adding 1 to xi. Similarly, let ~z ∈ Z
n
≥0 be the vector resulting from starting at ~x and adding a value of

1 to xj . We assume that φ(~x, i) > φ(~x, j), and show that ~y ≻Ψ ~z. Note that since π(i) 6= π(j), φ(~x, i) can

never equal φ(~x, j).

If φ(~x, i) > φ(~x, j) one of the following two cases must be true.

Case 1: xi < xj . If this is true, we have xj +
π(j)
n2 > xi +

π(i)
n2 since π(i)

n2 − π(j)
n2 < 1 ≤ xj − xi. Therefore

~y ≻Ψ ~z since it is always better to add utility to a lower valued agent (according to v′).

Case 2: xi = xj and π(i) < π(j). If this is true, we have xj +
π(j)
n2 > xi +

π(i)
n2 by assumption. Again,

~y ≻Ψ ~z since it is always better to add utility to a lower valued agent (according to v′).

6.2 Weighted Leximin Allocations

Let us next consider the case where agents have entitlements. When each agent i has a positive weight wi,

the weighted utility of an agent i is defined as vi(Xi)
wi

. A weighted leximin allocation maximizes the least

weighted utility and subject to that, maximizes the second least weighted utility and so on.

More formally, we define the weighted sorted utility vector of an allocation X (denoted by ~eX) as
(

v1(X1)
w1

, v2(X2)
w2

, . . . , vn(Xn)
wn

)

sorted in ascending order. An allocation X is weighted leximin if for no other

allocation Y , ~eY lexicographically dominates ~eX . We have the following result, the proof of which has been

relegated to the appendix due to its similarity with Theorem 6.2.

Theorem 6.3. When agents have MRF valuations and each agent i has a weight wi, General Yankee Swap

with φ(X, i) = (− vi(Xi)
wi

,−wi) computes a weighted leximin allocation.

As Chakraborty et al. (2021b) show, the weighted leximin solution behaves in counterintuitive ways.

Consider the case of a single item g worth 1 to two agents. Agent 1 has a weight of w1 = 1 and agent 2

has a weight of w2 = 2. Giving the item to the higher priority agent (agent 2) results in the sorted utility

vector (0, v2(g)
w2

) = (0, 12 ), whereas giving the item to agent 1 results in the vector (0, v1(g)w1

) = (0, 1), which

is lexicographically dominant. In other words, giving items to lower priority agents is better. However, this

undesirable behavior only occurs when there are fewer items than agents. In the run of General Yankee Swap,

once every agent receives one item, the gain function prioritizes higher weight agents as should be expected.

Thus, we believe that weighted leximin allocations can still be reasonably considered in the weighted domain.

6.3 Individual Fair Share Allocations

We now turn to justice criteria that guarantee each agent a minimum fair share amount. One such popular

notion is the maximin share. An agent’s maximin share (Budish, 2011) is defined as the utility an agent would

receive if they divided the set of goods into n bundles themselves and picked the worst bundle. More formally,

the maximin share of an agent i (denoted by MMSi) is defined as MMSi = maxX=(X1,X2,...,Xn) minj∈[n] vi(Xj).

There are several other fair share metrics popular in the literature (Farhadi et al., 2019; Babaioff et al.,

2021b; Babaioff and Feige, 2022). All of these metrics have the same objective — each agent i has an

instance dependent fair share ci ≥ 0; the goal is to compute allocations that guarantee each agent a high

fraction of their share (Procaccia and Wang, 2014; Ghodsi et al., 2018).

We define the fair share fraction of an agent i in an allocation X as vi(Xi)
ci

when ci > 0 and 0 when ci = 0.

When ci = 0, any bundle of goods (even the empty bundle) provides i their fair share; therefore, an agent

14



i with ci = 0 can be ignored when allocating bundles. When agents have matroid rank valuations, General

Yankee Swap can be used to maximize the lowest fair share fraction received by an agent and subject to

that, maximize the second lowest fair share fraction and so on. Using a proof very similar to Theorem 6.3,

the appropriate φ(X, i) to achieve such a fairness objective is defined as follows:

φ(X, i) =

{

(− vi(Xi)
ci

,−ci) ci > 0

(−M, 0) ci = 0
(5)

where M is a large positive number greater than any possible vi(Xi)
ci

. This can be seen as setting the weight

of each agent i to their share ci and computing a weighted leximin allocation. The only minor change we

make is accounting for cases where ci = 0: in such a case we make φ(X, i) the lowest possible value it can

take so we do not allocate any goods to these agents. The only time Yankee Swap allocates items to these

agents is when all the other agents with positive shares do not derive a positive marginal gain from any of

the remaining unallocated goods. More formally, given an allocation Y , let ~µ(Y ) be the sorted fair-share

normalized utilty vector of the values vi(Yi)
ci

sorted in increasing order for all agents with ci > 0 (we ignore

the agents whose fair share is 0), then:

Theorem 6.4. Let X be the allocation output by General Yankee Swap with the gain function φ defined in

Equation (5). Then, among all possible allocations, X has a lexicographically dominating sorted fair-share

normalized utility vector ~µ(X).

The proof of Theorem 6.4 is very similar to that of Theorem 6.3, and is thus omitted. As an immediate

corollary of Theorem 6.4, it is no longer necessary to find a fair share fraction that can be guaranteed to

all agents, and then design an algorithm which allocates each agent at least this fraction of their fair share.

General Yankee Swap automatically computes an allocation which maximizes the lowest fair share fraction

received by any agent. A straightforward corollary is that, when there exists an allocation that guarantees

each agent their fair share, Yankee Swap outputs one such allocation. Barman and Verma (2021) show that

when agents have MRF valuations, an allocation which guarantees each agent their maximin share always

exists. Using their result with Theorem 6.4, we have the following Corollary.

Corollary 6.5. When agents have MRF valuations and every agent has ci = MMSi, General Yankee Swap

run with φ(X, i) given by (5) computes a MAX-USW and MMS allocation.

Barman and Verma (2021) also present a polynomial time algorithm to compute the maximin share of

each agent. Since the procedure to compute maximin shares is not necessarily strategyproof, the overall

procedure of computing a maximin share allocation using Yankee Swap may not be strategyproof either.

6.4 Max Weighted Nash Welfare Allocations

We still assume that each agent i has a weight wi > 0. For any allocation X , let PX be the set of agents

who receive a positive utility under X . An allocation X is said to be max weighted Nash welfare (denoted by

MWNW) if it first minimizes the number of agents who receive a utility of zero; subject to this, X maximizes
∏

i∈PX
vi(Xi)

wi (Chakraborty et al., 2021a; Suksompong and Teh, 2022). We define the gain function φ(X, i)

as follows:

φ(X, i) =

{

(

1 + 1
vi(Xi)

)wi
vi(Xi) > 0

M vi(Xi) = 0
(6)

where M is a large number greater than any possible
(

1 + 1
vi(Xi)

)wi
. We have the following Theorem.

Theorem 6.6. When agents have MRF valuations and each agent i has a weight wi, General Yankee Swap

with φ given by (6) computes a max weighted Nash welfare allocation.

Proof. Formally, we have for two allocations X and Y , X ≻Ψ Y if any of the following two conditions hold

15



(a) |PX | > |PY |

(b) |PX | = |PY | and
∏

i∈PX
vi(Xi)

wi >
∏

i∈PY
vi(Yi)

wi

It is easy to see that Ψ satisfies Pareto dominance (C1) and φ satisfies (G2). To show that φ satisfies

(G1), some minor case work is required. Let us define a vector ~x ∈ Z
n
≥0 and two agents i, j ∈ N . Let ~y be the

vector resulting from starting at ~x and adding one unit to xi and similarly, let ~z be the allocation resulting

from starting at ~x and adding one unit to xj . We need to show that if φ(~x, i) < φ(~x, j) then ~z ≻Ψ ~y and if

φ(~x, i) = φ(~x, j), then ~y =Ψ ~z.

Case 1: xi = xj = 0. In this case, it is easy to see that both φ(~x, i) = φ(~x, j) and ~y =Ψ ~z.

Case 2: xi > xj = 0. By construction φ(~x, j) > φ(~x, i). We also have ~z ≻Ψ ~y since ~z has fewer indices with

the value 0. Note that this argument also covers the case where xj > xi = 0.

Case 3: xi > 0 and xj > 0. In this case, note that

φ(~x, i) =
(xi + 1)wi

xi
wi

=
yi

wi

xi
wi

=

∏

h∈P~y
yi

wh

∏

h∈P~x
xh

wh

where P~x denotes the number of non-zero valued indices in ~x. Similarly, φ(~x, j) =
∏

h∈P~z
zh

wh

∏
h∈P~x

xh
wh

.

Therefore, since |P~y| = |P~z| > 0, we have φ(~x, i) > φ(~x, j) if and only if ~y ≻Ψ ~z. Similarly, we have

φ(~x, i) = φ(~x, j) if and only if ~y =Ψ ~z.

When all weights are uniform, leximin and max Nash welfare allocations have the same sorted utility

vector (Babaioff et al., 2021a). This implies that they are equivalent notions of fairness. However, when

agents have different weights, weighted leximin and weighted Nash welfare are not equivalent and can have

different sorted utility vectors. Consider the following example:

Example 6.7. We have two agents N = {1, 2} and six goods; w1 = 2 and w2 = 8. Both agents have

additive valuations, and value all items at 1. Any weighted leximin allocation allocates two goods to agent

1 and four goods to agent 2, with a weighted sorted utility vector of (12 , 1). However, any MWNW allocation

allocates one good to agent 1 and five goods to agent 2. This allocation has a worse sorted weighted utility

vector (12 ,
5
8 ), but a higher weighted Nash welfare.

6.5 Max Weighted p-Mean Welfare Allocations

The weighted p-mean welfare of an allocation is given by Mp(X) =
(
∑

i∈N wi × vi(Xi)
p
)1/p

where p ≤ 1.

p-mean welfare functions have been extensively studied in economics (Moulin, 2004) and machine learning

(Cousins, 2021a,b; Heidari et al., 2018). To adapt it to fair allocation, we make one minor modification to en-

sure it is well defined. We define a max weighted p-mean welfare allocation X as one that first maximizes the

number of agents who receive a non-zero utility PX and subject to that, maximizes
(
∑

i∈PX
wi × vi(Xi)

p
)1/p

.

The weighted p-mean welfare function as p approaches 0 corresponds to the weighted Nash welfare of an

allocation, and as p approaches −∞, corresponds to the leximin allocation. For all the other p values, we

can compute max weighted p-mean welfare allocations using the following gain function

φ(X, i) =











wi[(vi(Xi) + 1)p − vi(Xi)
p] p ∈ (0, 1] and vi(Xi) > 0

wi[vi(Xi)
p − (vi(Xi) + 1)p] p < 0 and vi(Xi) > 0

Mwi vi(Xi) = 0

(7)

where M is a number greater than any wi|(vi(Xi) + d)p − vi(Xi)
p|.

Theorem 6.8. When agents have MRF valuations and each agent i has a weight wi, General Yankee Swap

with φ given by (7) computes a max weighted p-mean welfare allocation for any p ≤ 1.

16



6.6 On the Complexity of Computing φ

For all the justice criteria discussed above, b = O(1) (b is the size of the vector output by φ), and φ can be

trivially computed in O(Tv) time where Tv is the complexity of computing the value of a bundle. Interestingly,

we can trivially speed up the computation of φ even further to O(1) time. The only queries we make to φ

under General Yankee Swap is with the allocation X maintained by the algorithm. Since this allocation is

always non-redundant (Lemma 3.1), we have vi(Xi) = |Xi| for any agent i. Therefore, we can store the sizes

of the allocated bundles in X at no extra cost to the time complexity and compute φ in O(1) time.

7 Limitations

The previous section describes several fairness objectives for which Yankee Swap works. This raises the

natural question: is there any reasonable fairness notion where Yankee Swap does not work?

The main limitation of Yankee Swap is that it cannot be used to achieve envy based fairness properties.

An allocation X is said to be envy free if vi(Xi) > vi(Xj) for all i, j ∈ N . Indeed, this is not always

possible to achieve. This impossibility has resulted in several relaxations like envy free up to one good

(EF1) (Lipton et al., 2004; Budish, 2011) and envy free up to any good (EFX) (Caragiannis et al., 2016;

Plaut and Roughgarden, 2017). However, at its core, these envy relaxations are still fairness objectives that

violate the Pareto dominance property (C1): by increasing the utility of an agent currently being envied by

other agents, we decrease the fairness of the allocation while Pareto dominating the allocation. One work

around for this is using Yankee Swap to compute leximin allocations and hope that leximin allocations have

good envy guarantees. This works when all the agents have equal weights — prioritized Lorenz dominating

allocations are guaranteed to be EFX. However, when agents have different weights, Yankee Swap fails to

compute weighted envy free up to one good (WEF1) allocations (Chakraborty et al., 2021a). For clarity, an

allocation X is WEF1 when for all i, j ∈ N vi(Xi)
wi

>
vi(Xj−g)

wj
for some g ∈ Xj . Yankee Swap fails mainly

due to the fact that when agents have MRF valuations, it may be the case that no MAX-USW allocation is

WEF1. Therefore, irrespective of the choice of φ, Yankee Swap cannot always compute a WEF1 allocation

(Proposition 3.4) This is illustrated in the following example.

Example 7.1. We have two agents {1, 2} and four goods {g1, . . . , g4}. We have w1 = 10 and w2 = 1. The

valuation function of every agent i is the MRF vi(S) = min{|S|, 2}. Any MAX-USW allocation will assign two

goods to both agents. However, no such allocation is WEF1: agent 1 (weighted) envies agent 2. This is

because agent 1’s weighted utility is 2
10 , but agent 2’s weighted utility is 2; even after dropping any good,

agent 2’s weighted utility (as seen by both agents) will be 1.

There does exist a WEF1 allocation in this example but achieving WEF1 comes at an unreasonable cost

of welfare. To achieve WEF1, we must allocate 3 goods to agent 1. However, the third good offers no value

to agent 1. In effect, we are obligated to “burn” an item in order to satisfy WEF1.

This example seems to suggest that WEF1 is not a suitable envy relaxation for MRF valuations. In-

deed, ours is not the first work with this complaint. Chakraborty et al. (2022) and Montanari et al. (2022)

offer alternatives to the WEF1 notion that are more suitable for submodular valuations. Interestingly, as

Montanari et al. (2022) show, General Yankee Swap can be used to compute a family of these measures

called Transferable Weighted Envy Freeness (TWEF) when agents have matroid rank valuations. They

show this by first introducing a family of justice criteria called weighted harmonic welfare (parameterized by

a variable x) which satisfy (C1) and (C2) and then showing that max weighted harmonic welfare allocations

are TWEF.

This suggests that General Yankee Swap can be used to compute allocations which satisfy several envy

notions, but finding the appropriate gain function to do so is a more complex task.

17



8 Conclusions and Future Work

In this work, we study fair division of goods when agents have MRF valuations. Our main contribution is a

flexible framework that optimizes several fairness objectives. The General Yankee Swap framework is fast,

strategyproof and always maximizes utilitarian social welfare.

The General Yankee Swap framework is a strong theoretical tool. We believe it has several applications

outside the ones described in Section 6. This is a very promising direction for future work. One specific

example is the computation of weighted maximin share allocations. Theorem 6.4 shows that to compute

an allocation which gives each agent the maximum fraction of their fair share possible, it suffices to simply

input these fair shares into Yankee Swap. Therefore, the problem of computing fair share allocations have

effectively been reduced to the problem of computing fair shares when agents have MRF valuations. It would

be very interesting to see the different kinds of weighted maximin shares that can be computed and used by

Yankee Swap.

Another interesting direction is to show the tightness of this framework. It is unclear whether the

conditions (C1) and (C2) are absolutely necessary for Yankee Swap to work. If they are not, it would be

interesting to see how they can be relaxed to allow for the optimization of a larger class of fairness properties.

Acknowledgements

The authors would like to thank Cyrus Cousins and anonymous reviewers at EC 2023 for useful feedback

and suggestions.

References

Haris Aziz, Hau Chan, and Bo Li. 2019. Weighted Maxmin Fair Share Allocation of Indivisible Chores. In

Proceedings of the 28th International Joint Conference on Artificial Intelligence (IJCAI). 46–52.

Haris Aziz, Hervé Moulin, and Fedor Sandomirskiy. 2020. A polynomial-time algorithm for computing a

Pareto optimal and almost proportional allocation. Operations Research Letters 48, 5 (2020), 573–578.

Moshe Babaioff, Tomer Ezra, and Uriel Feige. 2021a. Fair and Truthful Mechanisms for Dichotomous

Valuations. In Proceedings of the 35th AAAI Conference on Artificial Intelligence (AAAI). 5119–5126.

Moshe Babaioff, Tomer Ezra, and Uriel Feige. 2021b. Fair-Share Allocations for Agents with Arbitrary

Entitlements. In Proceedings of the 22nd ACM Conference on Economics and Computation (EC). 127.

Moshe Babaioff and Uriel Feige. 2022. Fair Shares: Feasibility, Domination and Incentives. In Proceedings

of the 23rd ACM Conference on Economics and Computation (EC). 435.

Siddharth Barman and Paritosh Verma. 2021. Existence and Computation of Maximin Fair Allocations

Under Matroid-Rank Valuations. In Proceedings of the 20th International Conference on Autonomous

Agents and Multi-Agent Systems (AAMAS). 169–177.

Siddharth Barman and Paritosh Verma. 2022. Truthful and Fair Mechanisms for Matroid-Rank Valuations.

In Proceedings of the 36th AAAI Conference on Artificial Intelligence (AAAI). 4801–4808.

Nawal Benabbou, Mithun Chakraborty, Edith Elkind, and Yair Zick. 2019. Fairness Towards Groups of

Agents in the Allocation of Indivisible Items. In Proceedings of the 28th International Joint Conference

on Artificial Intelligence (IJCAI). 95–101.

Nawal Benabbou, Mithun Chakraborty, Ayumi Igarashi, and Yair Zick. 2021. Finding Fair and Efficient

Allocations for Matroid Rank Valuations. ACM Transactions on Economics and Computation 9, 4, Article

21 (2021).

18



Sylvain Bouveret, Yann Chevaleyre, and Nicolas Maudet. 2016. Fair Allocation of Indivisible Goods. In

Handbook of Computational Social Choice, Felix Brandt, Vincent Conitzer, Ulle Endriss, Jérôme Lang,

and Ariel D. Procaccia (Eds.). Cambridge University Press, Chapter 12.

Eric Budish. 2011. The Combinatorial Assignment Problem: Approximate Competitive Equilibrium from

Equal Incomes. Journal of Political Economy 119, 6 (2011), 1061 – 1103.

Ioannis Caragiannis, David Kurokawa, Hervé Moulin, Ariel D. Procaccia, Nisarg Shah, and Junxing Wang.

2016. The Unreasonable Fairness of Maximum Nash Welfare. In Proceedings of the 17th ACM Conference

on Economics and Computation (EC). 305–322.

Deeparnab Chakrabarty, Yin Tat Lee, Aaron Sidford, Sahil Singla, and Sam Chiu-wai Wong. 2019. Faster

Matroid Intersection. In Proceedings of the 60th Symposium on Foundations of Computer Science (FOCS).

1146–1168.

Mithun Chakraborty, Ayumi Igarashi, Warut Suksompong, and Yair Zick. 2021a. Weighted Envy-Freeness

in Indivisible Item Allocation. ACM Transactions on Economics and Computation 9 (2021).

Mithun Chakraborty, Ulrike Schmidt-Kraepelin, and Warut Suksompong. 2021b. Picking sequences and

monotonicity in weighted fair division. Artificial Intelligence 301 (2021).

Mithun Chakraborty, Erel Segal-Halevi, and Warut Suksompong. 2022. Weighted Fairness Notions for

Indivisible Items Revisited. Proceedings of the 36th AAAI Conference on Artificial Intelligence (AAAI)

(2022), 4949–4956.

Nina Chiarelli, Matjaž Krnc, Martin Milanič, Ulrich Pferschy, Nevena Pivač, and Joachim Schauer. 2022.

Fair Allocation of Indivisible Items with Conflict Graphs. Algorithmica (2022).

Cyrus Cousins. 2021a. An Axiomatic Theory of Provably-FairWelfare-Centric Machine Learning. In Proceed-

ings of the 35th Annual Conference on Neural Information Processing Systems (NeurIPS). 16610–16621.

Cyrus Cousins. 2021b. Bounds and Applications of Concentration of Measure in Fair Machine Learning and

Data Science. Ph.D. Dissertation. Brown University.

Alireza Farhadi, Mohammad Ghodsi, MohammadTaghi Hajiaghayi, Sébastien Lahaie, David Pennock, Ma-

soud Seddighin, Saeed Seddighin, and Hadi Yami. 2019. Fair Allocation of Indivisible Goods to Asymmetric

Agents. Journal of Artificial Intelligence Research 64, 1 (2019), 1–20.

Jugal Garg, Edin Husić, Aniket Murhekar, and László Végh. 2021. Tractable Fragments of the Maximum

Nash Welfare Problem. https://doi.org/10.48550/ARXIV.2112.10199

Mohammad Ghodsi, MohammadTaghi HajiAghayi, Masoud Seddighin, Saeed Seddighin, and Hadi Yami.

2018. Fair allocation of indivisible goods: Improvements and generalizations. In Proceedings of the 19th

ACM Conference on Economics and Computation (EC). 539–556.

Daniel Halpern, Ariel D. Procaccia, Alexandros Psomas, and Nisarg Shah. 2020. Fair Division with Binary

Valuations: One Rule to Rule Them All. In Proceedings of the 16th Conference on Web and Internet

Economics (WINE). 370–383.

Hoda Heidari, Claudio Ferrari, Krishna Gummadi, and Andreas Krause. 2018. Fairness behind a veil of ig-

norance: A welfare analysis for automated decision making. In Advances in Neural Information Processing

Systems. 1265–1276.

Bo Li, Yingkai Li, and Xiaowei Wu. 2022. Almost (Weighted) Proportional Allocations for Indivisible Chores.

In Proceedings of the ACM Web Conference 2022. 122–131.

R. J. Lipton, E. Markakis, E. Mossel, and A. Saberi. 2004. On Approximately Fair Allocations of Indivisible

Goods. In Proceedings of the 5th ACM Conference on Economics and Computation (EC). 125–131.

19

https://doi.org/10.48550/ARXIV.2112.10199


Luisa Montanari, Ulrike Schmidt-Kraepelin, Warut Suksompong, and Nicholas Teh. 2022. Weighted Envy-

Freeness for Submodular Valuations. https://doi.org/10.48550/ARXIV.2209.06437

Hervé Moulin. 2004. Fair division and collective welfare. MIT Press.

Benjamin Plaut and Tim Roughgarden. 2017. Almost Envy-Freeness with General Valuations. ArXiv

abs/1707.04769 (2017).

Ariel D. Procaccia and Junxing Wang. 2014. Fair Enough: Guaranteeing Approximate Maximin Shares. In

Proceedings of the 15th ACM Conference on Economics and Computation (EC). 675–692.

A. Schrijver. 2003. Combinatorial Optimization - Polyhedra and Efficiency. Springer.

Warut Suksompong and Nicholas Teh. 2022. On maximum weighted Nash welfare for binary valuations.

Mathematical Social Sciences 117 (2022), 101–108.

Vignesh Viswanathan and Yair Zick. 2023. Yankee Swap: a Fast and Simple Fair Allocation Mechanism for

Matroid Rank Valuations. In Proceedings of the 22nd International Conference on Autonomous Agents

and Multi-Agent Systems (AAMAS).

20

https://doi.org/10.48550/ARXIV.2209.06437


A Missing Proofs from Section 4

Lemma 4.2. Let X be the output allocation of the Yankee Swap mechanism with input valuation profile

{vi}i∈N . For some agent i ∈ N , replace vi with some v′i such that v′i(S) ≥ vi(S) for all S ⊆ G and run the

mechanism again to get an allocation Y . We must have |Yi| ≥ |Xi|.

Proof. Define the new valuation functions by {v′j}j∈N where v′j = vj for all j ∈ N − i. To prevent any

ambiguity, whenever we discuss the Ψ value of X , we implicitly discuss it with respect to the valuations v.

Similarly, whenever we discuss the Ψ value of Y we implicitly discuss it with respect to the valuations v′.

Assume for contradiction that |Yi| < |Xi|. Let T be a subset of Yi such that |T | = vi(T ) = vi(Yi).

Define an allocation Z as Zh = Yh for all h ∈ N − i and Zi = T ; allocate the remaining goods in Z to

Z0. Note that both X and Z are non-redundant under both valuation profiles. This implies for all j ∈ N ,

v′j(Xj) = vj(Xj) = |Xj| and v′j(Zj) = vj(Zj) = |Zj |.
Let us compare X and Y . Let p ∈ N be the agent with highest φ(Y, p) such that |Yp| < |Xp|; break ties

by choosing the least p. Such an element is guaranteed to exist since |Yi| < |Xi|.
If there exists no q ∈ N such that |Yq| > |Xq|, we must have |Y0| > |X0| (since |Xi| > |Yi|). Using Lemma

2.3 with the allocations Y and X with p, we get that there is a path from p to 0 in the exchange graph

of Y . Transferring goods along the shortest such path results in an allocation with a higher USW than Y

contradicting the fact that Y is MAX-USW.

Let q ∈ N be the agent with highest φ(X, q) such that |Yq| > |Xq|. Break ties by choosing the least

q. Note that since Z and Y only differ in i’s bundle and |Yi| < |Xi|, we must have |Yq| = |Zq|. Therefore,

|Zq| > |Xq| as well.
Consider two cases:

(i) φ(X, q) > φ(Y, p),

(ii) φ(X, q) = φ(Y, p) and q < p

If any of the above two conditions occur, then invoking Lemma 2.3 with allocations X , Z and the agent

q, there exists a transfer path from q to some agent k where |Zk| < |Xk|. Transferring along the shortest

such path gives us a non redundant (w.r.t. the valuation profile v) allocation X ′ where |X ′
q| = |Xq| + 1

and |X ′
k| = |Xk| − 1 (Lemma 2.2). Since v′j(X

′
j) ≥ vj(X

′
j) for all j ∈ N , we must have that X ′ is non-

redundant with respect to both valuation profiles v and v′. By our definition of Z, if k ∈ N − i, we have

|Xk| > |Zk| = |Yk| and if k = i, we have |Xi| > |Yi|. Therefore, we have |Xk| > |Yk| if k 6= 0.

If k = 0, we improve USW (w.r.t. the valuation profile v) contradicting the fact that X is Ψ maximizing.

Let X ′′ be an allocation obtained from starting at X and removing a good from k. From (G1), we have

that if φ(X ′′, q) ≥ φ(X ′′, k), we have X ′ �Ψ X (with respect to the valuations v) with equality holding if

and only if φ(X ′′, k) = φ(X ′′, q).

X,X ′, X ′′ and Y are non-redundant with respect to the new valuation function profile v′. We can

therefore, compare their φ values using (G2).

For case (i): If k 6= 0, we have φ(X ′′, k) = φ(X ′, k) ≤ φ(Y, k) ≤ φ(Y, p) < φ(X, q) = φ(X ′′, q). This

gives us φ(X ′′, k) < φ(X ′′, q): a contradiction.

For case (ii): If k 6= 0, we have φ(X ′′, k) ≤ φ(Y, k) ≤ φ(Y, p) = φ(X, q) = φ(X ′′, q). If any of these

weak inequalities are strict, we can use analysis similar to that of case (i) to show that X does not maximize

Ψ. Therefore, all the weak inequalities must be equalities and we must have φ(X ′′, k) = φ(Y, k) = φ(Y, p) =

φ(X, q) = φ(X ′′, q).

Since φ(X ′′, k) = φ(X ′′, p), we have X ′ =Ψ X . Moreover, by our choice of p we have p ≤ k and by

assumption, we have q < p. Combining the two, this gives us q < k. Therefore, X ′ lexicographically

dominates X — a contradiction to Theorem 3.2.

Let us now move on to the remaining two possible cases

(iii) φ(X, q) < φ(Y, p),

(iv) φ(X, q) = φ(Y, p) and q > p

21



Recall that X and Y are non-redundant with respect to the new valuation functions v′. If any of the

above two conditions occur, then invoking Lemma 2.3 with allocations Y , X and the agent p, there exists a

transfer path from p to some agent l in the exchange graph of Y where |Yl| > |Xl|. Transferring along the

shortest such path gives us a non-redundant allocation Y ′ (according to the valuation v′) where |Y ′
p | = |Yp|+1

and |Y ′
l | = |Yl| − 1 (Lemma 2.2).

Let Y ′′ be an allocation obtained from starting at Y and removing a good from l. From (G1), we have

that if φ(Y ′′, p) ≥ φ(Y ′′, l), we have Y ′ �Ψ Y (with respect to the valuations v′) with equality holding if and

only if φ(Y ′′, l) = φ(Y ′′, p).

If l = 0, we improve USW (according to the valuations v′) contradicting the fact that Y is MAX-USW.

For case (iii): If l 6= 0, we have φ(Y ′′, l) ≤ φ(X, l) ≤ φ(X, q) < φ(Y, p) = φ(Y ′′, p). Compressing the

inequality, we get that φ(Y ′′, l) < φ(Y ′′, p): a contradiction.

For case (iv): If l 6= 0, we have φ(Y ′′, l) ≤ φ(X, l) ≤ φ(X, q) = φ(Y, p) = φ(Y ′′, p). If any of these weak

inequalities are strict, we can use analysis similar to that of case (iii) to show that Y does not maximize

Ψ. Therefore, all the weak inequalities must be equalities and we must have φ(Y ′′, l) = φ(X, l) = φ(X, q) =

φ(Y, p) = φ(Y ′′, p). This implies that Y ′ =Ψ Y .

Moreover, by our choice of q we have q ≤ l and by assumption, we have p < q. Combining the two, this

gives us p < l. Therefore, Y ′ lexicographically dominates Y — a contradiction to Theorem 3.2.

Since cases (i)–(iv) cover all possible cases, our proof is complete.

B Missing Proofs from Section 5

Lemma 5.1. The procedure Find-Desired(i, S,B) runs in O(Tv log |B|) time and finds a good g ∈ B such

that ∆i(S, g) = 1 if it exists; otherwise, the procedure outputs ∅.

Proof. Since agents have MRF valuations, if vi(S ∪ B) > vi(S) there must be some good g ∈ B such that

∆i(S, g) = 1. Such a good g must be either in B1 or in B2. Therefore, either vi(S ∪ B1) > vi(S) or

vi(S∪B2) > vi(S). So the procedure must be correct. The time complexity comes from the fact that the set

B gets halved at every iteration and all other steps in the iteration can be done in O(m) = O(Tv) time.

Lemma 5.2. On input a non-redundant allocation X and an agent i, the procedure Get-Distances(X, i)

runs in O(mTv logm) time and computes the distances and the shortest paths from the node s to each good

g ∈ G.

Proof. Note that the procedure Find-Desired(i,Xi, B) outputs goods in B that the node s has outgoing

edges to in G(X); that is, goods in Fi(X) ∩B. Similarly, when the allocation X is non-redundant, for some

good a ∈ Xj , the procedure Find-Desired(j,Xj − a,B) outputs goods in B that the node a has edges to in

G(X). The correctness then follows from the breadth first search approach of the procedure.

Each in node is added only once to Q and removed only once from B. Therefore, Find-Desired is called

only O(m) times. Since, all other steps can be done in O(1) time, the total complexity of this algorithm is

O(mTv logm) (from Lemma 5.1).

C Missing Proofs from Section 6

Theorem 6.3. When agents have MRF valuations and each agent i has a weight wi, General Yankee Swap

with φ(X, i) = (− vi(Xi)
wi

,−wi) computes a weighted leximin allocation.

Proof. Formally, for any two allocations X ≻Ψ Y if ~eX lexicographically dominates ~eY . It is easy to see that

Ψ trivially satisfies (C1) and φ trivially satisfies (G2); so we only show (G1).

Assume φ(~x, i) > φ(~x, j) for some agents i, j ∈ N and vector ~x ∈ Z
n
≥0. Let ~y be the allocation that

results from starting at ~x adding one unit to xi and let ~z be the allocation that results from starting at ~x

adding one unit to xj .

If φ(~x, i) > φ(~x, j), then one of the following two cases must be true.

22



Case 1: xi

wi
<

xj

wj
. Since it is always better to add utility to agents with lower weighted utility, we have

~y ≻Ψ ~z.

Case 2: xi

wi
=

xj

wj
and wi < wj . If this is true, we have

yj

wj
= zi

wi
by assumption. However, yi

wi
= xi+1

wi
>

xj+1
wj

=
zj
wj

. Since the two vectors differ only in the values of the indices j and i, we can conclude that

~y ≻Ψ ~z.

This implies that when φ(~x, i) > φ(~x, j), we have ~y ≻Ψ ~z as required.

When φ(~x, i) = φ(~x, j), we must have xi

wj
=

xj

wj
and wi = wj . This gives us

yj

wj
= zi

wi
and yi

wi
= xi+1

wi
=

xj+1
wj

=
zj
wj

which implies that ~y =Ψ ~z.

Theorem 6.8. When agents have MRF valuations and each agent i has a weight wi, General Yankee Swap

with φ given by (7) computes a max weighted p-mean welfare allocation for any p ≤ 1.

Proof. Formally, X ≻Ψ Y if and only if one of the following conditions hold:

(a) |PX | > |PY |

(b) |PX | = |PY | and
(
∑

i∈PX
wi × vi(Xi)

p
)1/p

>
(
∑

i∈PY
wi × vi(Yi)

p
)1/p

It is easy to see that Ψ satisfies (C1) and φ satisfies (G2). Similar to the previous results, we only show

(G1). For any vector ~x ∈ Z
n
≥0, consider two agents i and j. Let ~y be the vector that results from starting at

~x and adding 1 to xi and ~z be the vector that results from starting at ~x and adding 1 to xj . Let P~x be the

number of indices in ~x with a positive value. We have the following three cases.

Case 1: xi ≥ xj = 0. The proof for this case is the same as those of Cases 1 and 2 in Theorem 6.6.

Case 2: p ∈ (0, 1] and xi, xj > 0. We have P~y = P~z = P~x. This gives us:

~y �Ψ ~z ⇔
∑

i∈P~x

wiy
p
i ≥

∑

i∈P~x

wiz
p
i ⇔

∑

i∈P~x

wiy
p
i −

∑

i∈P~x

wix
p
i ≥

∑

i∈P~x

wiz
p
i −

∑

i∈P~x

wix
p
i

⇔ wi[(xi + 1)p − xp
i ] ≥ wi[(xj + 1)p − xp

j ]

⇔ φ(~x, i) ≥ φ(~x, j)

Case 3: p < 0 and xi, xj > 0. We still have P~y = P~z = P~x. We have:

~y �Ψ ~z ⇔
∑

i∈P~x

wiy
p
i ≤

∑

i∈P~x

wiz
p
i ⇔

∑

i∈P~x

wiy
p
i −

∑

i∈P~x

wix
p
i ≤

∑

i∈P~x

wiz
p
i −

∑

i∈P~x

wix
p
i

⇔ wi[(xi + 1)p − xp
i ] ≤ wj [(xj + 1)p − xp

j ]

⇔ φ(~x, i) ≥ φ(~x, j)

In both Cases 2 and 3, we can replace the inequalities with equalities.

23


	1 Introduction
	1.1 Our Contribution
	1.2 Our Techniques
	1.3 Related Work

	2 Preliminaries
	2.1 Item Exchange Graph
	2.2 Justice Criteria
	2.3 Important Definitions

	3 General Yankee Swap
	3.1 Sufficient Conditions for General Yankee Swap
	3.2 Analysis

	4 Strategyproofness
	5 Time Complexity
	6 Applying General Yankee Swap
	6.1 Prioritized Lorenz Dominating Allocations
	6.2 Weighted Leximin Allocations
	6.3 Individual Fair Share Allocations
	6.4 Max Weighted Nash Welfare Allocations
	6.5 Max Weighted p-Mean Welfare Allocations
	6.6 On the Complexity of Computing 

	7 Limitations
	8 Conclusions and Future Work
	A Missing Proofs from Section 4
	B Missing Proofs from Section 5
	C Missing Proofs from Section 6

