
Simplicity in Auctions Revisited: The Primitive Complexity

MOSHE BABAIOFF*, Hebrew University of Jerusalem, Israel
SHAHAR DOBZINSKI*, Weizmann Institute of Science, Israel
RON KUPFER*, Harvard University, USA

In this paper we revisit the notion of simplicity in mechanisms. We consider a seller of𝑚 heterogeneous items,
facing a single buyer with valuation 𝑣 . We observe that previous attempts to define complexity measures often
fail to classify mechanisms that are intuitively considered simple (e.g., the “selling separately” mechanism)
as such. We suggest to view a menu as simple if a bundle that maximizes the buyer’s profit can be found
by conducting a few primitive operations that are considered simple. The primitive complexity of a menu is
the number of primitive operations needed to (adaptively) find a profit-maximizing entry in the menu. In this
paper, the primitive operation that we study is essentially computing the outcome of the “selling separately”
mechanism.

Does the primitive complexity capture the simplicity of other auctions that are intuitively simple? We consider
bundle-size pricing, a common pricing method in which the price of a bundle depends only on its size. Our main
technical contribution is determining the primitive complexity of bundle-size pricing menus in various settings.
First, we connect the notion of primitive complexity to the vast literature on query complexity. We then show
that for any distribution D over weighted matroid rank valuations, even distributions with arbitrary correlation
among their values, there is always a bundle-size pricing menu with low primitive complexity that achieves
almost the same revenue as the optimal bundle-size pricing menu. As part of this proof we provide a randomized
algorithm that for any weighted matroid rank valuation 𝑣 and integer 𝑘, finds the most valuable set of size 𝑘
with only a poly-logarithmic number of demand and value queries. We show that this result is essentially tight
in several aspects. For example, if the valuation 𝑣 is submodular, then finding the most valuable set of size 𝑘
requires exponentially many queries (this solves an open question of Badanidiyuru et al. [EC’12]). We also
show that any deterministic algorithm that finds the most valuable set of size 𝑘 requires Ω(

√
𝑚) demand and

value queries, even for additive valuations.

CCS Concepts: • Theory of computation → Algorithmic game theory.

ACM Reference Format:
Moshe Babaioff, Shahar Dobzinski, and Ron Kupfer. 2023. Simplicity in Auctions Revisited: The Primitive
Complexity. In Proceedings of the 24th ACM Conference on Economics and Computation (EC ’23), July 9–12,
2023, London, United Kingdom. ACM, New York, NY, USA, 30 pages. https://doi.org/10.1145/3580507.3597695

1 INTRODUCTION
The search for simple mechanisms is a central theme in the Mechanism Design literature (e.g.,
[Cai and Zhao 2017; Dütting et al. 2011; Hartline and Roughgarden 2009; Ronen 2001; Rubinstein
and Weinberg 2018]). While complex mechanisms might be theoretically superior in terms of, e.g.,
extracting more revenue from the participants, they are often inferior in practice. For example,

*Part of the work done while the authors were affiliated with Microsoft Research. The second author is supported by ISF grant
2185/19 and BSF-NSF grant (BSF number: 2021655, NSF number: 2127781).

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the
full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee. Request permissions from Permissions@acm.org.

EC '23, July 9–12, 2023, London, United Kingdom
© 2023 Copyright is held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0104-7/23/07…
https://doi.org/10.1145/3580507.3597695

153

HTTPS://ORCID.ORG/0000-0002-7066-2005
HTTPS://ORCID.ORG/0000-0003-1935-5808
HTTPS://ORCID.ORG/0009-0004-1491-8020
https://doi.org/10.1145/3580507.3597695
https://doi.org/10.1145/3580507.3597695
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3580507.3597695&domain=pdf&date_stamp=2023-07-07

EC ’23, July 9–12, 2023, London, United Kingdom. Moshe Babaioff, Shahar Dobzinski, and Ron Kupfer

complicated rules might be harder for the designer to implement and for the bidders to understand
and to interact with, thus making them less attractive.

Of course, simplicity is a vague and elusive notion, and, unfortunately, there is little hope of
finding a formal mathematical definition that sharply separates simple mechanisms from complex
ones. Furthermore, a mechanism that is simple in one setting or for one group of participants might
not be considered simple in other situations. To a large extent, simplicity is in the eye of the beholder.
But to an even larger extent, the “I know it when I see it” test perfectly applies here.

Yet, a mathematical treatment of simplicity in auctions must be based on some formal definition,
as imperfect as may be. Broadly speaking, many papers identify simplicity with particular forms of
mechanisms (e.g., second price auctions [Moldovanu and Tietzel 1998; Thompson and Leyton-Brown
2013], ascending auctions [Cramton 1998; Gul and Stacchetti 2000; Mishra and Parkes 2007], posted
prices auctions [Chawla et al. 2010; Hartline and Roughgarden 2009]) and analyze these classes of
mechanisms.

In some settings, e.g., selling a single item, identifying simplicity with a specific auction format is
an extremely useful idea. The canonical example is Myerson’s optimal auction characterization that
shows that second price auctions with reserve are optimal when values are drawn i.i.d. from a regular
distribution; Other papers show that such auctions are approximately optimal in some other settings
[Alaei 2014; Alaei et al. 2019; Chawla et al. 2010; Hartline and Roughgarden 2009]. Yet, the more
complex the setting is, the less likely it is that a rigid list of permissible “simple” auction formats will
provide optimal or approximately optimal results. Note also that a binary classification of auctions as
either ”simple” or not, does not allow the ranking and quantification of different auctions: which
auction is simpler, a “selling separately” auction where each item has a different price, or the auction
that sells any bundle of 10 items at price 1? And by how much?

This calls for using simplicity measures as an additional tool for analyzing auctions – focusing on
quantitative approaches to simplicity. One of the most influential measures, the menu complexity,
was suggested by Hart and Nisan [2019]. Consider a pricing problem in which a monopolist wants to
sell a set 𝑀 of𝑚 heterogeneous items. A deterministic menu M is a set of pairs (𝑆, 𝑝𝑆), in which
every such pair specifies the price of the bundle 𝑆 ⊆ 𝑀 . The buyer has a valuation 𝑣 : 2𝑀 → R≥0 that
specifies her value for every possible subset of the items. The valuation is drawn from some known
distribution D. Given deterministic menu M, the buyer is assigned a bundle 𝑂 that maximizes her
profit, that is, bundle 𝑂 ∈ argmax𝑆⊆𝑀 𝑣 (𝑆) − 𝑝𝑆 . The revenue of the mechanism is the expected
payment of the buyer. The menu complexity of the mechanism is the minimal number of pairs (of a
bundle and its price) needed to describe the mechanism.

In many cases the notion of menu complexity captures the simplicity of auctions very well. Menus
with few entries tend to be “simpler” than menus with many entries, whatever the precise meaning of
simplicity is. Indeed, in recent years we have seen the notion of menu complexity grows in popularity
and being extended to more settings [Babaioff et al. 2021; Chawla et al. 2020; Dughmi et al. 2014;
Gonczarowski 2018; Saxena et al. 2018] and to richer classes of valuations [Eden et al. 2021;
Rubinstein and Weinberg 2018]. In general, the literature tends to draw the simplicity/complexity
borderline by treating menu complexity 𝑝𝑜𝑙𝑦 (𝑚) as a proxy for simplicity.

However, intuitive simplicity and menu complexity do not always go hand by hand. Consider
an additive valuation over items and the mechanism that sells item separately, with item 𝑗 sold
at price 𝑝 𝑗 . The menu complexity of this mechanism is exponential1, as for each set 𝑆 out of the
2𝑚 − 1 non-empty sets, it needs to list it with price

∑
𝑗∈𝑆 𝑝 𝑗 . Yet, this menu is intuitively very simple.

Moreover, a simple variant of this mechanism was shown to have very attractive properties. In fact,

1The complexity of the “selling separately” menu is exponential also for the symmetric menu complexity [Kothari et al. 2019],
which is a generalization of the menu complexity.

154

Simplicity in Auctions Revisited: The Primitive Complexity EC ’23, July 9–12, 2023, London, United Kingdom.

Babaioff et al. [2020] show that for additive valuations, when the value of every item 𝑗 is drawn
independently from a known distribution D𝑗 , then one of the following mechanisms extracts a
constant fraction of the optimal revenue: sell the bundle of all items at the monopolist price (with
respect to the distribution of the bundle of all items), or separately sell each item 𝑗 at the monopolist
price of the distribution D𝑗 . Most would agree that the Babaioff et al. mechanism is simple, but
unfortunately its menu complexity is huge due to the “selling separately” component.

Another example of the limits of the notion of menu complexity can be found in the popular
and practically-used “bundle-size” pricing (see, e.g., [Abdallah et al. 2021; Chu et al. 2011] and
their followups) which prices all bundles of the same size at the same price. Although this menu is
intuitively simple, its menu complexity is high. Indeed, observe that when the price of every bundle
of size 𝑚

2 is 1, the menu complexity of this mechanism is exponential, since each of the exponentially
many bundles of size 𝑚

2 requires an entry in the menu.

The Primitive Complexity of Auctions. We have exhibited several examples of mechanisms that
pass the “I know it when I see it” test for simplicity, yet have high menu complexity. This calls for a
more nuanced approach toward measuring simplicity. Before presenting our approach, we would
like to stress again that an “ultimate” mathematical definition of simplicity is unlikely to exist. In all
likeliness, inevitably, as any other simplicity notion, our new notion will fail for some mechanisms
that “should” be considered simple and will include mechanisms that “should” be classified as
complex. Yet, we believe that our approach would better capture the simplicity of many mechanisms.
For other mechanisms, different approaches, possibly tailored to the specific application, might be
useful.

The basic intuition that leads our work is that mechanisms are often considered simple if they
can be implemented by applying only a small number of primitive operations that are considered
“simple”. In our case, the primitive operation is computing the outcome of the “selling separately”
auction, perhaps the canonical example for a simple auction that is not captured as such by the notion
of menu complexity. That is, given prices per item 𝑝1, . . . , 𝑝𝑚 , return a bundle 𝑆 that maximizes the
buyer’s profit (return 𝑆 ∈ argmax𝑇 𝑣 (𝑇) −

∑
𝑗∈𝑇 𝑝 𝑗), as well as the value 𝑣 (𝑆) of the bundle 𝑆 . The

primitive complexity of a menu is the number of times the primitive operation has to be (adaptively)
applied to find a bundle that maximizes the buyer’s profit for any given valuation. The fewer times
the primitive operation has to be invoked, the simpler the menu is.

The primitive complexity was defined here for deterministic algorithms using worst case approach
on valuations, yet the definition naturally extends to randomized algorithms and to valuations sampled
from a Bayesian prior.2 Similarly, the definition can be extended by restricting the valuations to
belong to a specific class (e.g., only additive or submodular valuations). Note that in principle,
only the number of queries that the algorithm makes is restricted, not the running time, though all
algorithms that we develop in this paper are computationally efficient. The definition of primitive
complexity can also be naturally extended to randomized menus, i.e., menus that allow lotteries over
bundles.

Our focus is in understanding whether the primitive complexity of the intuitively-simple class
of bundle-size pricing menus is indeed low (mostly when the primitive operation is computing the
outcome of the “selling separately” mechanism). Towards this end, we rely on (and advance) the
literature on query complexity and valuation functions. In fact, since we will observe that the primitive
complexity is essentially equivalent to a query complexity of finding a buyer’s profit-maximizing
bundle (as discussed below), our work also suggests that simple mechanisms are those for which a
profit-maximizing bundle can be “easily” found.

2A related notion is the randomized communication complexity of finding the profit-maximizing bundle in the menu. See
[Rubinstein and Zhao 2021].

155

EC ’23, July 9–12, 2023, London, United Kingdom. Moshe Babaioff, Shahar Dobzinski, and Ron Kupfer

Connection to Query Complexity. We now discuss the connection of primitive complexity to query
complexity. Recall that as usual in algorithmic game theory, the size of a naive description of the
valuation 𝑣 is exponential in the number of items. Thus it is common to assume that 𝑣 is given as
a black box that can only answer a limited number of types of queries. The two standard queries
are value queries (given 𝑆 , what is 𝑣 (𝑆)?) and demand queries (given item prices 𝑝1, . . . , 𝑝𝑚 , return
a bundle 𝑆 that maximizes the profit of the buyer. That is, find 𝑆 ∈ argmax𝑇 𝑣 (𝑇) −

∑
𝑗∈𝑇 𝑝 𝑗). It is

not hard to see that the outcome of a “selling seperately” operation can be simulated by a demand
query. Also note that a value query to a bundle 𝑆 can be simulated by considering the outcome of one
“selling seperately” operation that assigns a price 0 for every item in 𝑆 and ∞ for any other item (as
the operation returns the value of the demanded set). Thus, the primitive complexity and the query
complexity are related up to a constant multiplicative factor.

Value queries are extensively used in various optimization problems [Calinescu et al. 2011;
Nemhauser et al. 1978; Vondrák 2008]. Demand queries are standard in the algorithmic game theory
literature and appear naturally in various posted prices auctions [Assadi and Singla 2019; Feldman
et al. 2014], as the separation oracle needed to solve the natural LP relaxation for combinatorial
auctions [Nisan and Segal 2006], and in various (not necessarily incentive compatible) approximation
algorithms [Dobzinski et al. 2006; Feige and Vondrak 2006; Feige and Vondrák 2010].3

With this interpretation of primitive complexity in mind, the primitive complexity of a deterministic
menu is at most its menu complexity: every menu with menu complexity 𝑐 can be implemented by
making 𝑐 value queries to query 𝑣 (𝑆) for each bundle 𝑆 which has an entry in the menu. The converse
is far from being true: the primitive complexity of the mechanism that separately sells each item 𝑗 at
price 𝑝 𝑗 is just 1, while its menu complexity is exponential.

Our Results. In this paper we analyze the primitive complexity of the extensively studied class of
bundle-size pricing menus for various classes of valuations. Recall that bundle-size pricing menu
gives a price of 𝑝𝑟 for every number of items 𝑟 ∈ [𝑚]. We start by considering the family of
additive valuations (𝑣 (𝑆) = ∑

𝑗∈𝑆 𝑣 ({ 𝑗}) for every bundle 𝑆). We then move on to more complicated
families of valuations. For additive valuations, the primitive complexity of every menu is at most𝑚:
querying the value 𝑣 ({ 𝑗}) of every item 𝑗 gives the entire valuation and thus suffices to compute a
profit-maximizing bundle. Thus, in the context of additive valuations, simplicity will be captured by
sub-linear primitive complexity, ideally achieving complexity that is poly-logarithmic in𝑚, or even
a constant. We prove that the primitive complexity of (approximately) maximizing the revenue is
much better than linear in𝑚, showing that it is only poly-logarithmic.

Theorem I: Let D be some distribution over additive valuations. Then, for any Y > 0 there is a
bundle-size pricing menu M with primitive complexity 𝑝𝑜𝑙𝑦 (log𝑚, 1

Y
) such that the revenue of M is

in expectation at least (1 − Y) of the revenue of any other bundle-size pricing menu on D.

Note that the distribution D can be arbitrary. In particular, we do not assume that the values of
the items are drawn from independent distirbutions4. To prove the theorem we show that for any
bundle-size pricing menu M′, there is a low complexity bundle-size pricing menu M with revenue
comparable to that of M′. Specifically, we show that although M might contain many distinct prices
and bundles sizes, only 𝑝𝑜𝑙𝑦 (log𝑚, 1

Y
) bundle sizes need to be considered (in expectation over the

3Mathematically speaking, if 𝑏 is the known number of bits used to represent numbers then a value query can be computed
with 𝑏 demand queries, whereas computing a demand query might require 𝑒𝑥𝑝 (𝑚) value queries [Blumrosen and Nisan
2010]. To some extent, some would argue that in practice it is common to solve a demand query (what would you buy in the
grocery store?) where as value queries are harder (what is your value for 12 eggs, bread, and a bottle of orange juice?)
4For additive valuations, when item values are sampled independently, Babaioff et al. [2021] prove that the auction that
separately sells each item can be well approximated by a menu with a polynomial size. In contrast, our result does not assume
independence, it holds for any menu, and moreover, as we will see later, generalizes to much richer classes of valuations.

156

Simplicity in Auctions Revisited: The Primitive Complexity EC ’23, July 9–12, 2023, London, United Kingdom.

distribution D) to find a profit-maximizing bundle. Thus, the profit-maximization problem was
reduced to the problem of finding a set of highest value for a given set size (maximization under
a cardinality constraint), using “selling seperately” operations or, almost equivalently, value and
demand queries: given a valuation 𝑣 and bundle size 𝑘 , find a bundle 𝑆𝑘 that maximizes 𝑣 (𝑆) subject
to |𝑆𝑘 | = 𝑘 (in this case we say that 𝑆𝑘 is a 𝑘-optimal set). Let 𝑝𝑘 be the price of bundles of size 𝑘 in
M. A profit maximizing bundle of M is in argmax{𝑣 (𝑆𝑘) − 𝑝𝑘 } (or the empty set, if this maximum
profit is negative). Thus, to complete the proof we prove the following algorithmic result:

Theorem II: Fix some bundle size 𝑘. There exists a randomized algorithm that given an additive
valuation 𝑣 finds a bundle 𝑆𝑘 ∈ argmax𝑆 : |𝑆 |=𝑘 𝑣 (𝑆) by making, in expectation, 𝑝𝑜𝑙𝑦 log(𝑚) value and
demand queries (the expectation is over the randomness of the algorithm).

Note that our algorithm for finding a 𝑘-optimal set does not assume that the valuations are drawn
from some distribution: the guarantee is in the worst case, for every possible additive valuation.
Furthermore, our algorithm always finds a value-maximizing bundle of size 𝑘 , randomization is only
use to accelerate the running time. Moreover, a significant challenge in developing our algorithms is
that we want the algorithms to work with every implementation of the demand oracle. That is, the
demand query is required to return a profit-maximizing bundle, but if there are several such bundles
we want our algorithms to work with any implementation of the tie-breaking rule, even an adversarial
one.

We show that our algorithm for additive valuations is qualitatively optimal in multiple respects:

• Deterministic algorithms with value queries: We show that any deterministic algorithm that
uses only value queries must make at least 𝑚 − 1 queries in order to find the item with the
highest value (𝑘 = 1).

• Randomized algorithms with value queries: We provide two different proofs that show with
no demand queries, Ω(𝑚

log𝑚) value queries are needed to find the 𝑘-optimal bundle, even if
the algorithm is randomized. One proof assumes 𝑘 = 𝑚

2 and is based on a simple counting
argument. The second proof is based on a slightly more involved communication complexity
argument and shows this impossibility even for the simple case of 𝑘 = 1 (i.e., finding the most
valuable item).

• Randomization is required: We prove that even if demand queries are allowed but the
algorithm must be deterministic, then Ω(

√
𝑚) queries are required.

The proofs of the first two impossibilities are easier than the proof of the last result, which is more
subtle and involved. We then move on to consider richer valuation classes, starting with weighted
matroid rank functions:

Theorem III: Fix a bundle size 𝑘. There is a randomized algorithm that finds a bundle 𝑆𝑘 ∈
argmax𝑆 : |𝑆 |=𝑘 𝑣 (𝑆) for every weighted matroid rank valuation 𝑣 and makes in expectation 𝑝𝑜𝑙𝑦 log(𝑚)
value and demand queries.

Using Theorem III we are able to extend Theorem I to hold for weighted matroid rank valuations, not
just additive ones. For weighted matroid rank valuations, the greedy algorithm finds a 𝑘-optimal set
with Θ(𝑚 · 𝑘) value queries. We thus see that with demand queries it is possible to find a 𝑘-optimal
set exponentially faster. Furthermore, even if all weights of the items are either 0 and 1, the number
of matroid rank functions is doubly exponential [Knuth 1974]. Nevertheless, we find a 𝑘-optimal set
in only 𝑝𝑜𝑙𝑦 log(𝑚) queries.

This paper is not the first to consider maximization subject to cardinality constraint with value
and demand queries. The first was [Badanidiyuru et al. 2012], and it considered richer classes:
submodular, XOS, and subadditive valuations. However, while the current paper considers exact

157

EC ’23, July 9–12, 2023, London, United Kingdom. Moshe Babaioff, Shahar Dobzinski, and Ron Kupfer

optimization algorithms, the focus of [Badanidiyuru et al. 2012] was in approximation algorithms.
Approximation algorithms are not useful for finding a profit maximizing bundle in a menu, which
must be done exactly, otherwise the incentive constraints are likely to be violated. One of the main
results of [Badanidiyuru et al. 2012] is a 9

8 -approximation algorithm for maximizing a submodular
function subject to a cardinality constraint using value and demand queries (recall that with value
queries only, the greedy algorithm provides an approximation ratio of 𝑒

𝑒−1 [Nemhauser et al. 1978]).
However, the paper [Badanidiyuru et al. 2012] proves no impossibility at all for this setting, asking
whether an exact solution can be found with polynomially many value and demand queries. We solve
this open question:

Theorem IV: Fix a randomized algorithm 𝐴 for maximizing a submodular function subject to
cardinality constraint that succeeds with constant probability. Then, 𝐴 makes at least 𝑒𝑥𝑝 (𝑚) value
and demand queries.

This result highlights the importance of the valuations class in measuring the primitive complexity:
the primitive complexity of the menu that corresponds to maximization subject to a cardinality
constraint is poly logarithmic for the class of additive valuations, but exponential for the richer class
of submodular valuations.

Connections to other Problems. The problem of maximization subject to cardinality constraint
with demand queries has interesting connections to some well-studied problems. One such problem
is unordered partial sorting [Chambers 1971]: we are given an array that contains 𝑛 numbers and
the goal is to find a set with 𝑘 highest numbers (in any order). Note that unordered partial sorting is
equivalent to finding a 𝑘-optimal set in an additive valuation.

Unordered partial sorting can be solved in O (𝑚) time by QuickSelect [Hoare 1961], a variant
of QuickSort. Note that the pivot procedure of QuickSort and QuickSelect – divide the array into
two, one includes all numbers bigger than some 𝑝, and the other contains all number smaller than
𝑝 – is essentially a demand query at price 𝑝 per item (with some tie-breaking rule that depends on
the implementation). Indeed, QuickSelect makes in expectation O (log𝑚) pivot calls. Our lower
bound for deterministic algorithms implies that randomization is essential to QuickSelect and other
pivot-based algorithms in the sense that any deterministic algorithm requires Ω(

√
𝑚) pivot and

value queries. Note that algorithms like IntroSelect [Musser 1997] use more advanced methods to
deterministically ensure a good selection of the pivot for QuickSelect. However, these algorithms use
many value queries, and our results show that this is unavoidable.

There are also connections to various coin weighting problems. For example, consider the following
problem studied in [Bshouty 2009; Djackov 1975; Du et al. 2000; Lindstrom 1975]: we are given
𝑛 coins. We know that 𝑑 of them are counterfeit. The weight of each real coin is 𝑤1 and the
weight of each counterfeit coin is 𝑤2. We are also given a spring weight. How many weightings
are needed to find all counterfeit coins? Note that every use of the spring weight is equivalent to a
value query. If 𝑑 is big then a simple counting argument – similar to the one that prove that even
randomized algorithms must make many value queries – shows that many weightings are needed.
However, our communication-complexity based proof shows that if there are three types of coins
with 𝑤3 > 𝑤2 > 𝑤1 then finding just one coin with weight 𝑤3 requires almost linear number of
weightings, a result that was not known before, to the best of our knowledge.

Future Directions. In this paper we introduced a new measure of complexity for auctions: the
primitive complexity. We have examined this notion in the context of a pricing problem, and obtained
some algorithms with low primitive complexity as well as some impossibilities. Obviously, studying
the primitive complexity of other problems is an exciting future direction.

158

Simplicity in Auctions Revisited: The Primitive Complexity EC ’23, July 9–12, 2023, London, United Kingdom.

We propose a number of open questions. We have shown that bundle-size pricing menus have
poly-logarithmic primitive complexity if the valuation belongs to the class of weighted matroid
rank functions, and that if the valuation belongs to the class of submodular valuations the primitive
complexity is exponential. The class of gross substitutes valuations contains all weighted matroid
rank functions and is contained in the class of submodular valuations. We know that the greedy
algorithm finds a 𝑘-optimal bundle with polynomially many value queries, but can we find a 𝑘-optimal
bundle with poly-logarithmic number of value and demand queries?

In addition, it will be extremely interesting to understand whether bundle-size pricing can well
approximate the revenue that can be obtained by any deterministic mechanism. Of course, for this
question to make sense we have to consider some kind of symmetry in the distribution. For additive
valuations, if the values of the items are sampled i.i.d. then the mechanisms of Li and Yao [2013] and
Babaioff et al. [2020] already imply that bundle-size pricing can provide a constant fraction of the
optimal revenue. But what if the joint distribution of item values is symmetric, yet item values are not
sampled i.i.d.? Can bundle-size pricing provide a constant fraction of the optimal revenue that can be
achieved by a deterministic mechanism then? See also [Babaioff et al. 2018] for some related work.

Finally, a fascinating direction is to obtain mechanisms with polylogarithmic primitive complexity
that obtain (1 − 𝜖) fraction of the optimal revenue. We do not know how to obtain such a mechanism
even for independent distributions and additive valuations.

2 MODEL AND PRELIMINARIES
Valuations. Given a set 𝑀 = [𝑚] = {1, 2, . . . ,𝑚} of 𝑚 indivisible items, a valuation function

𝑣 : 2𝑀 → R+ determines a non-negative value 𝑣 (𝑆) for each bundle 𝑆 ⊆ 𝑀 . We make the standard
assumptions that any valuation function 𝑣 is normalized (𝑣 (∅) = 0) and monotone (for 𝑆 ⊆ 𝑇 it holds
that 𝑣 (𝑆) ≤ 𝑣 (𝑇)). With a slight abuse of notation, for valuation 𝑣 and an item 𝑎 ∈ 𝑀 we use 𝑣 (𝑎)
to denote 𝑣 ({𝑎}). We consider several standard classes of valuations (each of the classes is strictly
contained in the class that follows it):

• A valuation 𝑣 is additive if for all 𝑆 ⊆ 𝑀 we have that 𝑣 (𝑆) = ∑
𝑎∈𝑆 𝑣 ({𝑎}). In this case we

may represent the function as a vector 𝑣 = (𝑣1, ..., 𝑣𝑚) ∈ R𝑚+ , where 𝑣𝑖 ≥ 0 is the value of the
𝑖’th item.

• A valuation function 𝑣 is called weighted matroid-rank valuation if there exists a matroid5 over
the set of elements 𝑀 and a weight function6 𝜔 : 𝑀 → R+ such that 𝑣 (𝑆) = 𝜔 (𝑆) for every
𝑆 ⊆ 𝑀 .

• A valuation 𝑣 is called submodular if it exhibits the diminishing returns property, i.e., 𝑣 (𝑆 ∪
{𝑎}) − 𝑣 (𝑆) ≥ 𝑣 (𝑇 ∪ {𝑎}) − 𝑣 (𝑇) for all 𝑆 ⊆ 𝑇 ⊆ 𝑀 and 𝑎 ∈ 𝑀 .

Maximization Subject to a Cardinality Constraint. Given a valuation 𝑣 over set 𝑀 , the cardinality
maximization problem with parameter 𝑘 is the problem of finding a maximum value set of size 𝑘 . I.e.,
finding a set 𝑆 that is 𝑘-optimal: 𝑆 ∈ argmax𝑆 : |𝑆 |=𝑘 𝑣 (𝑆).

5A matroid is a pair (𝑀, I) , with 𝑀 being a finite set of elements and I ⊆ 2𝑀 is a non-empty family of subsets of 𝑀 such
that: (1) If 𝐵 ⊆ 𝐴 ⊆ 𝑀 and 𝐴 ∈ I, then 𝐵 ∈ I and (2) If 𝐴, 𝐵 ∈ I and |𝐵 | > |𝐴 |, then there exists an item 𝑏 ∈ 𝐵 \𝐴 such
that 𝐴 ∪ {𝑏} ∈ I. A set 𝐴 ∈ I is called an independent set. An independent set 𝐴 ∈ I is called a base of the matroid, if it is
not contained in any larger independent set. The rank of the matroid is the size of any base (all have the same size).
6A weight function 𝜔 : 𝑀 → R+ assigns a weight to each element. The weight function is extended to sets as follows: the
weight of a set 𝑆 ⊆ 𝑀 is defined to be 𝜔 (𝑆) = max𝐴⊆𝑆, 𝐴∈I

∑
𝑎∈𝐴 𝜔 (𝑎) . An independent set 𝐴 ∈ I is called a maximal

weight independent set if there is no independent set of larger weight.

159

EC ’23, July 9–12, 2023, London, United Kingdom. Moshe Babaioff, Shahar Dobzinski, and Ron Kupfer

Mechanisms. We consider a setting with one seller holding a set 𝑀 of𝑚 items, that faces a single
buyer with a valuation 𝑣 . A deterministic menu M is a set of pairs {𝑆, 𝑝𝑆 } of bundles and prices.7 We
assume that any menu includes the option of getting no item and paying 0. Given a menu M, a set 𝑆
is a demanded set (or a most profitable set) of a buyer with valuation 𝑣 if 𝑆 ∈ argmax𝑆 ′⊆𝑀 𝑣 (𝑆 ′) −𝑝𝑆 ′ .
The family of sets that are demanded are called the demand of the buyer. We assume that a buyer
with valuation 𝑣 that faces M selects a set that she demands, but make no assumption about how she
picks between different demanded sets. In a Bayesian setting, the valuation 𝑣 is drawn from a known
distribution F , and the revenue of the menu M is measured in expectation over F :

• REVM (𝑣): the expected revenue of the seller from menu M when the buyer’s valuation is 𝑣 ,
i.e., if the buyer picks a demanded set 𝑆 with probability 𝑔𝑆 then the revenue is

∑
𝑆⊆𝑀 𝑝𝑆 · 𝑔𝑆 .

• REV(M, F): the expected revenue where the expectation is over the buyer’s valuation 𝑣 ∼ F ,
that is REV(M, F) = E𝑣∼F [REVM (𝑣)].

A specific class of mechanisms that is considered in this paper is bundle-size pricing: the price of
each bundle of size 𝑟 is 𝑝𝑟 . Since the valuations are monotone, we assume that for any two bundle
sizes 𝑞𝑖 > 𝑞 𝑗 we have that 𝑝𝑖 > 𝑝 𝑗 (all inequalities are strict).

Queries. In this paper we consider “selling seperately” operations: given a price 𝑝𝑖 for each item 𝑖,
find some bundle in the demand, a bundle in argmax𝑆⊆𝑀 (𝑣 (𝑆) −∑

𝑖∈𝑆 𝑝𝑖)), and return this bundle
and its value.

The literature on multi-item auctions has extensively studied two types of queries as means of
accessing a valuation 𝑣 (which might have a large representation): value queries and demand queries.
A value query is given a set 𝑆 and simply returns 𝑣 (𝑆), the value of the bundle 𝑆 . A demand query
asks for a bundle of maximum profit at some given item prices, i.e., a most profitable set for the given
prices (a demanded set). Formally, the query is given an item-price vector 𝑝 = (𝑝1, · · · , 𝑝𝑚) ∈ R𝑚+
and returns an arbitrary set 𝐷 ∈ argmax𝑆⊆𝑀 (𝑣 (𝑆) − 𝑝 (𝑆)) in the demand, where 𝑝 (𝑆) = ∑

𝑖∈𝑆 𝑝𝑖 .
We assume that the demand query also returns the value of the set 𝑆 (this can always be done at the
cost of an additional value query). We make no assumption about the way ties are broken between
sets in the demand. Ties might be broken adversarially and this issue creates significant challenges
which we need to address. When all the coordinates of 𝑝 have the same value 𝑡 ∈ R, we refer to the
corresponding query as a uniform demand query for price 𝑡 .

Obviously, a “selling seperately” operation can simulate a demand query. It can also simulate a
value query for a bundle 𝑆: set the price of each item in 𝑆 to 0, and the price of every other item to
∞. It is also straightforward to see that any “selling seperately” operation can be simulated by one
demand query followed by one value query. Hence, any algorithm that uses only 𝑡 “selling seperately”
operations can be simulated with 2𝑡 value and demand queries, and every algorithm that uses 𝑡 value
and demand queries can be implemented with 𝑡 “selling seperately” operations. Thus, we will freely
switch between these two similar points of view.

The Primitive Complexity. In this paper we suggest to consider the primitive complexity of menus.
Fix a class of valuations V. The primitive complexity of an algorithm with respect to V is the
maximal number of “selling seperately” operations that it (adaptively) makes on any 𝑣 ∈ V. The
primitive complexity of a menu is the minimal primitive complexity of any algorithm that for any
valuation 𝑣 ∈ V computes a most profitable bundle in this menu.8 If the algorithm is randomized, the
randomized primitive complexity is the expected number of queries that the algorithm makes, where

7We assume that valuations are monotone non-decreasing (free disposal). Under this assumption, it is wlog to assume that for
any 𝑆,𝑇 ⊆ 𝑀 such that 𝑆 ⊆ 𝑇 we have that 𝑝𝑆 ≤ 𝑝𝑇 (otherwise 𝑆 is never being sold and the menu entry can be removed).
8As stated, this definition considers deterministic menus (as the menu entries are bundles). This definition naturally extends to
randomized menus in which an entry might be a lottery over bundles.

160

Simplicity in Auctions Revisited: The Primitive Complexity EC ’23, July 9–12, 2023, London, United Kingdom.

expectation is over the internal random coins of the algorithm. Similarly, if the valuations are drawn
from some distribution, the distributional primitive complexity is the expected number of queries
that the algorithm makes, where expectation is over valuations sampled from the prior distribution.
We note that our randomized algorithms will always return a correct solution, not just with high
probability. Randomization is only used to reduce the (expected) number of queries. In contrast, all
of our lower bounds hold even for algorithms that only succeed with constant probability.

3 ALGORITHMS FOR MAXIMIZATION SUBJECT TO A CARDINALITY CONSTRAINT
In this section we first present an algorithm that finds a 𝑘-optimal set for any additive valuation,
and then present an algorithm that does the same for any weighted matroid rank valuation. Our
algorithms are randomized and make only 𝑝𝑜𝑙𝑦 log(𝑚) queries in expectation. Note that this is
an exponential improvement in the number of queries over the “obvious” algorithms: the trivial
algorithm for additive valuations finds a 𝑘-optimal set with 𝑚 queries (one for each item). For
weighted matroid rank valuations, a 𝑘-optimal set can be found by running the greedy algorithm
(𝑝𝑜𝑙𝑦 (𝑚) value queries).

We start with the case of additive valuations. We then solve the more general case of weighted
matroid-rank valuations by first finding a maximal weight independent set 𝑅 using 𝑝𝑜𝑙𝑦 log(𝑚)
queries, and then applying the algorithm for additive valuations as a sub-procedure.

THEOREM 3.1. There exists a randomized algorithm that for any additive valuation 𝑣 over𝑚
items, finds a 𝑘-optimal set using value and demand queries, and in expectation makes O

(
log3𝑚

)
queries.

We further extend the result to weighted matroid-rank valuations.

THEOREM 3.2. There exists a randomized algorithm that for any weighted matroid-rank valuation
𝑣 over 𝑚 items, finds a 𝑘-optimal set using value and demand queries, and in expectation makes
O

(
log3𝑚

)
queries.

Proofs of these theorems can be found in Appendix A.1 and Appendix A.2. We now provide some
intuition for the case of additive valuations. We start with presenting an algorithm for the special
case in which all items have distinct values. That is, for each two items 𝑖 ≠ 𝑗 we have that 𝑣𝑖 ≠ 𝑣 𝑗 . In
this case, we can easily find the set of 𝑘 highest value items with O (log𝑚) queries: select an item
uniformly at random and denote the value of this item by 𝑣 . Make a uniform demand query with a
price of 𝑣 per item. Let 𝐷 be the returned demanded set and denote𝑚′ = |𝐷 |. If 𝑘 ≥ 𝑚′ we know
that all the𝑚′ items of 𝐷 are among the 𝑘 highest values, so we pick them and remove them from
the set, update the number of items we still need to pick to 𝑘 ′ = 𝑘 −𝑚′, and continue recursively
on the remaining items that are not in 𝐷 to select an additional 𝑘 = 𝑘 ′ items. If 𝑘 < 𝑚′ we similarly
remove the items not in 𝐷, and continue recursively, aiming to pick 𝑘 out of the items in 𝐷. The
expected number of iterations is O (log𝑚) since in each iteration, in expectation, half of the items
are removed from consideration (either picked or discarded).

The problem is more challenging if the values are not distinct. That is, if there are items of equal
value (𝑣𝑖 = 𝑣 𝑗 for items 𝑖, 𝑗 ≠ 𝑖) and we make a demand query with price 𝑝 = 𝑣𝑖 = 𝑣 𝑗 per item. The
challenge is that, unless assuming a specific tie-breaking rule (which we do not), the demanded set
might contain all items of value 𝑝, none of them, or some arbitrary subset of them. We present an
algorithm that works for any implementation of the demand query, and even if the tie breaking is
adversarial.

161

EC ’23, July 9–12, 2023, London, United Kingdom. Moshe Babaioff, Shahar Dobzinski, and Ron Kupfer

4 THE PRIMITIVE COMPLEXITY OF BUNDLE-SIZE PRICING
Recall that a bundle-size pricing menu is a set of offers {(𝑞𝑖 , 𝑝𝑖)}𝑖 , each of the form “pay 𝑝𝑖 and
choose any set of size 𝑞𝑖 of items to receive". We call the number of different quantities that are
offered the size of the bundle-size pricing menu. Given a bundle-size pricing menu, a buyer that
wants to find a profit maximizing set can do so by finding a 𝑞𝑖-optimal set for each of quantity 𝑞𝑖
specified by the menu, and picking the one of highest profit among the candidates sets. As with
𝑚 items there can be 𝑚 different quantities specified, this approach will result in polynomial (in
𝑚) number of 𝑘-optimal set problems that need to be solved, and thus require at least polynomial
number of demand queries. We aim for sub-linear number of queries.

We first observe, using a variant of a result of Hart and Nisan [2019], that any bundle-size pricing
menu can be transformed to another bundle-size pricing, losing only 𝜖-fraction of the revenue, but
with the size of the new menu only depending on the revenue loss parameter 𝜖 and on the largest ratio
of prices in the original bundle-size pricing menu, but not on𝑚. Specifically, the new bundle-size
pricing menu size will only be polynomial in 1/𝜖 and in the logarithm of the maximal ratio of prices
in the menu, but independent of the number of items𝑚. For valuation classes for which the 𝑘-optimal
set problem is solvable in poly-logarithmic number of demand queries (as additive and weighted
matroid-rank valuations), we can thus derive a bound on the number of demand queries needed to
pick a profit-maximizing bundle from this smaller bundle-size pricing menu. Yet, the number of
demand queries in above result depends on the maximum price-ratio not being too large, and will be
polynomial in𝑚 when this ratio is exponential.

Our main result in this section is that we can get rid of this limitation when optimizing the expected
revenue for a given distribution D over valuations (rather than ex-post, for any given valuation). We
consider the expected revenue of the menu for the given distribution D and further shrink the menu
size by removing some of the priced bundles sizes. Specifically, we remove each bundle size that
contributes at most 𝜖

𝑚
fraction of the expected revenue (over D), losing another 𝜖 fraction of the

total revenue. Yet, even after this additional processing step that reduces the size of the menu, the
menu size might still be large (not poly-logarithmic). Thus, it might well still be the case that the
size of this bundle-size menu is not small enough to get a poly-logarithmic number of queries by
always finding a profit-maximizing bundle for each size and taking the best one. Nevertheless, we
show that either the same revenue can be obtained by replacing the menu with a menu that only sells
the grand bundle, or that for the same menu a poly-logarithmic number of queries is sufficient in
expectation. That is, although the menu might contain many distinct prices and bundles sizes, only
𝑝𝑜𝑙𝑦 (log𝑚, 1

𝜖
) bundle sizes need to be considered (in expectation over the distribution D) to find a

profit-maximizing bundle for a valuation 𝑣 sampled from D. The proof is in Appendix B.

THEOREM 4.1. Given a distribution D over weighted matroid-rank valuations over a set 𝑀 of𝑚
items, a bundle-size pricing menu M1, and 𝜖 > 0, there exists a bundle-size pricing menu M2 such
that REV(M2,D) ≥ (1 − 𝜖)REV(M1,D) and such that a profit-maximizing bundle for M2 can be
found in O

(
𝜖−3 log4𝑚

)
value and demand queries in expectation, where the expectation is over the

internal random coins of the algorithm and the distribution D.

5 HARDNESS OF MAXIMIZATION SUBJECT TO A CARDINALITY CONSTRAINT
We have presented a randomized algorithm that for weighted matroid-rank valuations finds a 𝑘-
optimal set using poly-logarithmic number of demand and value queries (Theorem 3.2). In this
section we present lower bounds for several related problems, showing that our results can not be
strengthened in multiple ways. Namely, we show that:

162

Simplicity in Auctions Revisited: The Primitive Complexity EC ’23, July 9–12, 2023, London, United Kingdom.

• For submodular valuations, any randomized algorithm that for every valuation succeeds with
constant probability to find a 𝑘-optimal set, must use, in expectation, an exponential number of
value and demand queries (Section 5.1).

• Any deterministic algorithm that finds a 1-optimal set (an item with the highest value) requires
Ω(

√
𝑚) value and demand queries, even when the valuation is additive (Section 5.2).

• For additive valuations, we show, using two proof techniques, that any algorithm that given
𝑘 finds a 𝑘-optimal set and succeeds with constant probability requires Ω (𝑚/log𝑚) value
queries, even if randomization is allowed. Furthermore, for deterministic algorithms we show
that𝑚 − 1 value queries are needed. These results are presented in Section 5.3.

5.1 An Exponential Lower Bound for Submodular Valuations
We next consider submodular valuations and show that any randomized algorithm that with value and
demand queries finds (with a constant probability) a 𝑘-optimal set makes in expectation exponentially
many queries:

THEOREM 5.1. Let 𝐴 be a randomized algorithm that given a submodular valuation and 𝑘 finds
a 𝑘-optimal set by making value and demand queries. For𝑚 that is large enough, if 𝐴 succeeds with
probability at least 1

2 then 𝐴 makes at least 1.3𝑚 queries.

This solves an open question of [Badanidiyuru et al. 2012] that provided a 9
8 -approximation for this

problem, but did not even rule out the possibility that a 𝑘-optimal set can be found with a polynomial
number of value and demand queries.

The rest of this subsection is devoted to outlining the proof of the theorem. To prove a bound
for randomized algorithms, it is enough to provide a distribution D over valuations such that the
probability that a deterministic algorithm that makes subexponentially many value and demand
queries finds a 𝑘-optimal set in a valuation that is sampled from D is small, by Yao’s principle.

We will prove the theorem for an even𝑚 and 𝑘 = 𝑚
2 . Let D be the following distribution over

submodular valuations over a set of items 𝑀: each valuation 𝑣 is defined by a family B𝑣 of sets of
size 𝑘 + 1 and a set𝐺𝑣 of size 𝑘 (𝐺𝑣 will be the 𝑘-optimal bundle). Each set of size 𝑘 + 1 is included
in B𝑣 with probability 1

𝑚2 , independently at random. Out of the sets of size 𝑘 that are not contained
in any of the sets in B𝑣 , we choose one random set and denote it by𝐺𝑣 .9 It will also be convenient to
define R𝑣 to be the family of all sets of size 𝑘 − 1 that are not contained in any of the sets in B𝑣 . The
valuation 𝑣 is then defined as follows:

𝑣 (𝑆) =

𝑘 |𝑆 | > 𝑘 + 1
𝑘 |𝑆 | = 𝑘 + 1, 𝑆 ∈ B𝑣
𝑘 − 3/11 |𝑆 | = 𝑘 + 1, 𝑆 ∉ B𝑣
𝑘 − 6/11 |𝑆 | = 𝑘, 𝑆 = 𝐺𝑣

𝑘 − 7/11 |𝑆 | = 𝑘, 𝑆 ≠ 𝐺𝑣

𝑘 − 1 |𝑆 | = 𝑘 − 1, 𝑆 ∈ R𝑣
𝑘 − 14/11 |𝑆 | = 𝑘 − 1, 𝑆 ∉ R𝑣
|𝑆 | |𝑆 | < 𝑘 − 1

9There is an exponentially small probability that every set of size 𝑘 is contained in some set of B𝑣 . In this case 𝐺𝑣 is not
defined and all sets of size 𝑘 have the same value. We thus condition our analysis on having that this event does not happen
and that𝐺𝑣 is defined.

163

EC ’23, July 9–12, 2023, London, United Kingdom. Moshe Babaioff, Shahar Dobzinski, and Ron Kupfer

Fig. 1. The relation between bundles in valuations in the support of D. Blue squares denote bundles
that are in B𝑣 , the green square denote the bundle 𝐺𝑣 , and red square denote the bundles in R𝑣 . A
line between squares denotes a possible containment relationship between the bundles. Note that all
subsets of size 𝑘 − 1 of a set in B𝑣 have value 𝑘 − 14/11.

.

The set𝐺𝑣 is the 𝑘-optimal set. Roughly speaking, sets from the families B𝑣 and R𝑣 guarantee that
it is very unlikely that any information about the identity of𝐺𝑣 will be provided by any demand or
value query. See Figure 1 for an illustration of the relations between the sets.

We prove our exponential lower bound in two steps. We onsider any algorithm that uses only value
queries and on valuation that is samples from D finds a 𝑘-optimal set with non-negligible probability.
We show that any such algorithm makes, in expectation, an exponential number of value queries
(Lemma 5.2). We complete the proof by showing that, with high probability over D, all demand
queries on a valuation 𝑣 sampled from D can be simulated by value queries with only a polynomial
blowup in the number of queries (Lemma 5.3).

LEMMA 5.2. Fix some deterministic algorithm 𝐴 that makes only value queries and the set of
those queries is in a canonical form10. Suppose that 𝐴 makes 𝑡 < 1.9𝑚 value queries on valuations
that are sampled from D. Then, for a large enough 𝑚, the probability (over D) that 𝐴 finds a
𝑘-optimal set is at most 𝑡

1.9𝑚 .

LEMMA 5.3. Fix a deterministic algorithm 𝐴 that uses 𝑡 demand and value queries for valuations
sampled from D. For any 𝛼 > 1, with probability 1 − 1

𝛼
, 𝐴 can be implemented using at most

2𝑚5 · 𝑡2 · 𝛼 value queries.

The proof of Lemma 5.2 is presented in Appendix C.1.2. Before proving Lemma 5.3 in Section
5.1.2, we present some definitions and auxiliary claims.

5.1.1 Definitions and Auxiliary Claims. We first show that every valuation 𝑣 in the support of D
is indeed submodular. We then present some definitions and prove several claims that will be helpful
in the proof of the theorem. All proofs in this section are deferred to Appendix C.1.1.

LEMMA 5.4. Every valuation 𝑣 in the support of D is submodular.

10Later (Appendix C.1), we formally define what it means for a set of value queries to be in a canonical form. We comment
now that any set value queries of size 𝑡 can be converted to a canonical form by making 𝑝𝑜𝑙𝑦 (𝑡,𝑚) additional value queries.

164

Simplicity in Auctions Revisited: The Primitive Complexity EC ’23, July 9–12, 2023, London, United Kingdom.

A valuation in the support of D is completely defined by the values of all sets of size 𝑘 and 𝑘 + 1.
We say that a set of value queries Q is in a canonical form if all queries in Q are for sets of size 𝑘
or 𝑘 + 1, and for every query of size 𝑘 all of its supersets of size 𝑘 + 1 are also in Q. Essentially, all
information that a set of value queries conveys about a valuation can also be conveyed by some set of
queries that is in a canonical form and is not much larger. The next proposition shows that we can
assume that the query set is in a canonical form at a cost of a polynomial blow-up in the number of
queries:

PROPOSITION 5.5. Let 𝐴′ be an algorithm that makes 𝑡 value queries on a valuation in the
support of D. Then, there is an algorithm 𝐴 that simulates 𝐴′ while making𝑚2 · 𝑡 value queries on a
valuation in the support of D. Moreover, the set of queries that 𝐴 makes has a canonical form.

We next present several useful definitions and notations. Fix some deterministic algorithm 𝐴 that
makes only value queries and runs on valuations from D. Fix any valuation 𝑣 from the support
of D, and let Q𝑣 denote the list of 𝑡 bundles that 𝐴 queried together with their values. Let DQ𝑣

denote the distribution over valuations that is obtained by sampling according to D a valuation that
is consistent with the queries in Q𝑣 . Let B𝑦

Q𝑣
be the family of sets that includes every set 𝑆 such that

Pr𝑣′∼DQ𝑣 [𝑆 ∈ B𝑣′] = 1. Similarly, let B𝑛Q𝑣
be the family of sets that includes every set 𝑆 such that

Pr𝑣′∼DQ𝑣 [𝑆 ∈ B𝑣′] = 0. Let KQ𝑣
be the family of sets of size 𝑘 that were queried in Q𝑣 .

We now claim that assuming queries are in a canonical form, the conditional distribution for sets
not queried is essentially identical to the prior.

LEMMA 5.6. Fix any valuation 𝑣 sampled from D and assume Q𝑣 is in a canonical form. It holds
that:

• For any set 𝑆 of size 𝑘 + 1 it holds that Pr𝑣′∼DQ𝑣 [𝑆 ∈ B𝑣′] ∈ {0, 1, 1
𝑚2 }.

• The conditional probabilities are independent: for any family F of sets of size 𝑘 + 1 it holds
that Pr𝑣′∼DQ𝑣 [∀𝑆 ∈ F , 𝑆 ∉ B𝑣′] =

∏
𝑆∈F Pr𝑣′∼DQ𝑣 [𝑆 ∉ B𝑣′].

5.1.2 Proof of Lemma 5.3: Simulating Demand Queries by Value Queries. In this section we
prove Lemma 5.3, showing that for valuations drawn from D, demand queries can be simulated by
value queries, and with high probability polynomial number of queries is sufficient for the simulation.

PROOF OF LEMMA 5.3. First, we prove by induction on 𝑡 that a set of value queries in a canonical
form that is followed by a demand query, can be simulated by a set of value queries that has a canonical
form, and the expected size of that set is at most 𝑡 + 2 ·𝑚5. The claim trivially holds for 𝑡 = 0 and
Claim 5.7 proves the induction step. Second, given the claim, we use Markov’s inequality, to argue
that for any 𝛼 > 0, with probability at most 1

𝑡 ·𝛼 , more than 2𝑚5 · 𝑡 · 𝛼 value queries are needed for
the implementation of a query. Hence, using the union bound, with probability 1 − 𝑡

𝑡 ·𝛼 = 1 − 1
𝛼

all 𝑡
demand queries can be implemented using at most 2𝑚5 · 𝑡2 · 𝛼 value queries.

CLAIM 5.7. Fix a deterministic algorithm 𝐴 that runs on valuations sampled from D and up to
some point has used a set of 𝑡 value queries, and the set has a canonical form. Fix any demand query
for price vector 𝑝. Then, it is possible to simulate all these queries (including the demand query) by
a set of value queries that has a canonical form, and the expected size of that set is at most 𝑡 + 2 ·𝑚5.

PROOF. For𝑚 ≤ 3, the total number of subsets of 2𝑚 is smaller than 2 ·𝑚5 and the claim trivially
holds. We next assume that𝑚 is even and𝑚 ≥ 4.

We first present some intuition for the proof. Consider a demand query with price vector 𝑝 for
valuation 𝑣 . For a set 𝑆 , denote by 𝑈 (𝑆, 𝑝) = 𝑣 (𝑆) − 𝑝 (𝑆) the profit from buying set 𝑆 at price
𝑝 (𝑆) = ∑

𝑖∈𝑆 𝑝𝑖 . A demand query returns a set 𝑆 that has maximal profit under price vector 𝑝. Clearly,
if we can find a most profitable bundle of size 𝑑 for every 𝑑 ∈ [𝑚] then we can return a most profitable

165

EC ’23, July 9–12, 2023, London, United Kingdom. Moshe Babaioff, Shahar Dobzinski, and Ron Kupfer

set (with a set from these𝑚 bundles that is most profitable). While finding a most profitable bundle
of every size is clearly sufficient, it turns out it is not necessary, and we show that a most profitable
set can be found with polynomially many value queries, without always knowing a most profitable
bundle of size 𝑘. We first show that for each 𝑑 ≠ 𝑘, a most profitable bundle of size 𝑑 can indeed
be found by value queries to a family F 𝑝

𝑑
of sets of size 𝑑 that we can specify. Second, we show

that if every set that is a most profitable set overall is of size 𝑘 , then such a set can also be found by
value queries to a family F 𝑝

𝑘
of sets of size 𝑘 that we can specify. Finally, we show that the set of all

queries (the 𝑡 value queries as well as value queries to new sets that are in these families of sets) is
only polynomially larger than 𝑡 . We next present the formal claim and its proof.

For each 𝑑 ∈ [𝑚] we define a family F 𝑝

𝑑
of sets of size 𝑑 , such that:

• If 𝑑 ≠ 𝑘 then some set of size 𝑑 that has the highest profit among all sets of size 𝑑 in the family
F 𝑝

𝑑
.

• If every demanded set is of size 𝑑 = 𝑘 , then a demanded set of size 𝑘 belongs to the family F 𝑝

𝑘
.

• For even𝑚 ≥ 4 it holds that E𝑣∼𝐷
[∑

𝑑∈[𝑚] |F
𝑝

𝑑
\ Q𝑣 |

]
≤ 2𝑚3.

Assume algorithm 𝐴 is running on valuation 𝑣 sampled from D, and the algorithm was using the
set Q𝑣 of value queries that is a canonical form. For each size 𝑑 we consider the list of size 𝑑 from
cheapest to most expensive (breaking ties arbitrarily). Let 𝑆𝑝

𝑑
denote a cheapest set of size 𝑑 .

• For 𝑑 < 𝑘 − 1 or 𝑑 > 𝑘 + 1, all bundles of size 𝑑 have the same value, thus a profit maximizing
set of size 𝑑 is simply some cheapest set of size 𝑑 , so we define F 𝑝

𝑑
= {𝑆𝑝

𝑑
}.

• For 𝑑 = 𝑘 + 1, there are two possible values for a bundle of size 𝑘 + 1, depending on whether the
bundle is in B𝑣 or not. Let 𝑆B𝑣

be a cheapest bundle in B𝑣 that is the first in order of set prices.
A most profitable set of size 𝑑 = 𝑘 + 1 is then either 𝑆B𝑣

or 𝑆𝑝
𝑘+1. We add to F 𝑝

𝑘+1 the cheapest
sets of size 𝑑 = 𝑘 + 1 in increasing order of price, till we find the first set that belongs to B𝑣 .
Note that 𝑆𝑝

𝑘+1 is the first added set and is always in F 𝑝

𝑘+1. Since 𝑄𝑣 is in a canonical form, by
Lemma 5.6, it holds that either 𝑆 ∈ Q𝑣 or that the probability that 𝑆 ∈ B𝑣′ conditional on 𝑣 ′

being sampled according to DQ𝑣
is 1

𝑚2 . Hence the expected number of cheapest bundles of
size 𝑘 + 1 that are not in Q𝑣 till a set in B𝑣 is found is at most𝑚2, that is, E

[
|F 𝑝

𝑘+1 \ Q𝑣 |
]
≤ 𝑚2.

• For 𝑑 = 𝑘 − 1, there are two possible values for a bundle of size 𝑘 − 1, depending on whether
the bundle is in R𝑣 or not. Let 𝑆R𝑣

be a cheapest bundle in R𝑣 that is the first in order of set
prices. A most profitable set of size 𝑑 = 𝑘 − 1 is then either 𝑆R𝑣

or 𝑆𝑝
𝑘−1. We add to F 𝑝

𝑘−1 the
cheapest sets of size 𝑑 = 𝑘 − 1 in increasing order of price, till we find the first set that belongs
to R𝑣 . Note that 𝑆𝑝

𝑘−1 is the first added set and is always in F 𝑝

𝑘−1.
Consider some set 𝑆 of size 𝑘 − 1, we need bound the probability that 𝑆 is in R𝑣′ given that 𝑣 ′

is sampled according to DQ𝑣
. For given 𝑣 ′, 𝑆 ∈ R𝑣′ if none of its supersets are in B𝑣′ . Hence,

by Lemma 5.6, since Q𝑣 is in a canonical form, for any set 𝑆 of size 𝑘 − 1 we have that either
Pr𝑣′∼DQ𝑣 [𝑆 ∈ R𝑣′] = 0 or Pr𝑣′∼DQ𝑣]𝑆 ∈ R𝑣′] ≥ (1 − 1

𝑚2) (𝑚−𝑘) (𝑚−𝑘−1)/2 > (1 − 1
𝑚2)

𝑚2−1
2 >

𝑒−0.5 > 0.5. Hence the expected number of cheapest bundles of size 𝑘 − 1 that are not in Q𝑣 till
a set in R𝑣′ is found (for 𝑣 ′ ∼ DQ𝑣

) is at most 2, that is, E
[
|F 𝑝

𝑘−1 \ Q𝑣 |
]
≤ 2.

• For 𝑑 = 𝑘, there are two possible values for a bundle of size 𝑘, depending on whether the
bundle is 𝐺𝑣 or not. A most profitable set of size 𝑑 = 𝑘 is either 𝐺𝑣 or 𝑆𝑝

𝑘
. In Claim 5.8

we show that when it is not 𝑆𝑝
𝑘

then it must be either a set of size 𝑘 that is a subset of
a set in F 𝑝

𝑘+1, or a set of size 𝑘 that is a superset of a set in F 𝑝

𝑘−1. Thus we define F 𝑝

𝑘
to

include 𝑆𝑝
𝑘

, all sets of size 𝑘 that are a subset of a set in F 𝑝

𝑘+1, and all sets of size 𝑘 that are
a superset of a set in F 𝑝

𝑘−1. Note that the expected size of F 𝑝

𝑘
satisfies E𝑣∼𝐷

[
|F 𝑝

𝑘
\ Q𝑣 |

]
≤

E𝑣∼𝐷
[
|F 𝑝

𝑘−1 \ Q𝑣 | · (𝑚 − 𝑘)
]
+ E𝑣∼𝐷

[
|F 𝑝

𝑘+1 \ Q𝑣 | · (𝑘 + 1)
]
+ 1.

166

Simplicity in Auctions Revisited: The Primitive Complexity EC ’23, July 9–12, 2023, London, United Kingdom.

In total,

E𝑣∼𝐷

∑︁
𝑑∈[𝑚]

|F 𝑝

𝑑
\ Q𝑣 |

 ≤(𝑚 − 3) + E𝑣∼𝐷
[
|F 𝑝

𝑘−1 \ Q𝑣 | · (𝑚 − 𝑘 + 1)
]
+ E𝑣∼𝐷

[
|F 𝑝

𝑘+1 \ Q𝑣 | · (𝑘 + 2)
]
+ 1

≤𝑚 + 2(𝑚 − 𝑘 + 1) +𝑚2 (𝑘 + 2) =𝑚3/2 + 2𝑚2 + 2𝑚 + 2 ≤ 2𝑚3

as 𝑘 = 𝑚
2 and𝑚 ≥ 4.

Thus, each demand query can implemented by 2𝑚3 value queries in expectation. As we mentioned
earlier, moving to a canonical form requires replacing each value query with at most𝑚2 value queries.
Therefore, the demand query can be implemented while remaining in a canonical form using 2𝑚5

value queries in expectation.
We now complete the proof by showing that for 𝑑 = 𝑘, the family F 𝑝

𝑑
contains a most profitable

bundle whenever the most profitable bundle is of size 𝑘 .

CLAIM 5.8. For any price vector 𝑝, if for valuation 𝑣 every demanded set is of size 𝑘, then any
most profitable set (of size 𝑘) is either 𝑆𝑝

𝑘
(cheapest set of size 𝑘), a set of size 𝑘 that is a subset of a

set in F 𝑝

𝑘+1, or a set of size 𝑘 that is a superset of a set in F 𝑝

𝑘−1.

PROOF. Assume that every demanded set is of size 𝑘 . Fix any set that most profitable set of size 𝑘
and denote it by 𝑈 𝑝

𝑘
. If 𝑆𝑝

𝑘
= 𝐺𝑣 then it must be that 𝑈 𝑝

𝑘
= 𝐺𝑣 , that is, 𝐺𝑣 must be the unique most

profitable set of size 𝑘 (as 𝐺𝑣 has higher value than any other set of size 𝑘). So we can assume that
𝑆
𝑝

𝑘
≠ 𝐺𝑣 . If𝑈 𝑝

𝑘
≠ 𝐺𝑣 then𝑈 𝑝

𝑘
must be 𝑆𝑝

𝑘
. We thus assume that𝑈 𝑝

𝑘
= 𝐺𝑣 (and 𝑆𝑝

𝑘
≠ 𝐺𝑣), and the value

of𝑈 𝑝

𝑘
is thus 𝑘 − 6/11.

The family F 𝑝

𝑘−1 includes a set 𝑅 from R𝑣 with value 𝑘 − 1. As𝑈 𝑝

𝑘
= 𝐺𝑣 is more profitable than 𝑅,

it holds that 𝑣 (𝐺𝑣) − 𝑝 (𝐺𝑣) = 𝑘 − 6/11 − 𝑝 (𝐺𝑣) > 𝑘 − 1 − 𝑝 (𝑅) and thus 𝑝 (𝐺𝑣) − 5/11 < 𝑝 (𝑅). If
there is an item 𝑖 ∈ 𝐺𝑣 of price at least 5/11 then the set𝐺𝑣 \ {𝑖} has price smaller than 𝑝 (𝐺𝑣 \ {𝑖}) ≤
𝑝 (𝐺𝑣) − 5/11 < 𝑝 (𝑅), and thus the set 𝐺𝑣 \ {𝑖} is in F 𝑝

𝑘−1 which implies that 𝐺𝑣 ∈ F 𝑝

𝑘
as needed.

The family F 𝑝

𝑘+1 includes a set 𝐵 from B𝑣 with value 𝑘. As𝑈 𝑝

𝑘
= 𝐺𝑣 is more profitable than 𝐵, it

holds that 𝑣 (𝐺𝑣) −𝑝 (𝐺𝑣) = 𝑘 − 6/11−𝑝 (𝐺𝑣) > 𝑘 −𝑝 (𝐵) and thus 𝑝 (𝐵) −𝑝 (𝐺𝑣) > 6/11. If there is an
item 𝑖 ∉ 𝐺𝑣 of price lower than 6/11 then the set𝐺𝑣 ∪ {𝑖} has price smaller than 𝑝 (𝐺𝑣) +6/11 < 𝑝 (𝐵),
and thus the set 𝐺𝑣 ∪ {𝑖} is in F 𝑝

𝑘+1 which implies that 𝐺𝑣 ∈ F 𝑝

𝑘
as needed.

Otherwise, the price of every item in 𝑈 𝑝

𝑘
is less than 5

11 , and the price of every item not in 𝑈 𝑝

𝑘

is more than 6
11 , and thus 𝑈 𝑝

𝑘
= 𝑆

𝑝

𝑘
is the unique cheapest bundle of size 𝑘, a contradiction to

𝐺𝑣 = 𝑈
𝑝

𝑘
≠ 𝑆

𝑝

𝑘
. □

This completes the proof of Claim 5.7. □

This completes the proof of Lemma 5.3. □

We now conclude the proof of Theorem 5.1. By Lemma 5.3, we have that with probability 1 − 1
𝛼

over D, a deterministic algorithm that makes 𝑡 demand and value queries can be implemanted using
2𝑚5 · 𝑡2 · 𝛼 values queries in a canonical form. Let 𝑡 ′ = 2𝑚5 · 𝑡2 · 𝛼 . By lemma 5.2, implementation
that uses a set of 𝑡 ′ value queries that is in a canonical form, for 𝑡 ′ < 1.9𝑚 and large enough𝑚, has a
probability of at most 𝑡 ′

1.9𝑚 for finding𝐺𝑣 . Hence, the original algorithm fails with probability at least
1 − 𝛼−1 − 𝑡 ′

1.9𝑚 . Taking 𝑡 = 1.3𝑚 , 𝛼 = 3, and𝑚 large enough, we have that a deterministic algorithm
that makes at most 1.3𝑚 queries, fails with probability at least 1 − 6·𝑚5 ·1.32𝑚

1.9𝑚 − 1
3 > 1

2 over D.

167

EC ’23, July 9–12, 2023, London, United Kingdom. Moshe Babaioff, Shahar Dobzinski, and Ron Kupfer

5.2 An Ω(
√
𝑚) Deterministic Lower Bound for Additive Valuations

In this section we show that randomization is inherently required for maximizing an additive valuation
subject to a cardinality constraint. We show that every deterministic algorithm that always finds an
item with the smallest value (equivalently, finds an (𝑚 − 1)-optimal set) must make

√
𝑚 − 1 value

and demand queries. We prove the following theorem:

THEOREM 5.9. Let 𝐴 be a deterministic algorithm that for any additive valuation finds an
(𝑚 − 1)-optimal set using value and demand queries. Then, 𝐴 makes at least Ω(

√
𝑚) queries.

Since we discuss only additive valuations in this section, we abuse notation and sometimes refer to
additive valuations as vectors in R𝑚 , with each element representing the value of the corresponding
item. We start with several lemmas regarding linear constraints that will be useful in the proof. First,
recall that basic feasible solutions (BFS) are non-negative solutions to a linear system with minimal
support (see, e.g., [Eisenbrand and Shmonin 2006; Matousek and Gärtner 2007]).

LEMMA 5.10 ([MATOUSEK AND GÄRTNER 2007]). For 𝐴 ∈ Rℓ×𝑚 and 𝑏 ∈ Rℓ , if the system
(𝐴 · 𝑣 = 𝑏, 𝑣 ≥ 0) has a solution, it has a solution with support of size at most ℓ .

The following simple observation will be useful later in the proof.

CLAIM 5.11. Let 𝛼, 𝛽 ∈ R such that 𝛼 + 𝛽 = 1. If ®𝑥, ®𝑦 are solutions of the linear system 𝐴 · 𝑣 = 𝑏,
then so is ®𝑧 = 𝛼 · ®𝑥 + 𝛽 · ®𝑦.

PROOF. Since both ®𝑥 and ®𝑦 are solutions of the linear system 𝐴 · 𝑣 = 𝑏, we have that

𝐴 · ®𝑧 = 𝐴 · (𝛼 · ®𝑥 + 𝛽 · ®𝑦) = 𝛼 · 𝐴 · ®𝑥 + 𝛽 · 𝐴 · ®𝑦 = (𝛼 + 𝛽) · 𝑏 = 𝑏

□

LEMMA 5.12. Let 𝐴 ∈ Rℓ×𝑚 be a matrix of rank at most𝑚 − 1. The linear system 𝐴 · 𝑣 = 𝐴 · ®1
with the constraint 𝑣 ≥ 0 has two different solutions which disagree on the identity of the item with
the smallest value.

PROOF. The vector ®1 is a solution. In addition, since 𝐴’s rank is smaller than𝑚, there exists some
solution ®𝑤 ∈ R𝑚 such that ®𝑤 and ®1 are independent. Let ®𝑥 = (1 − 𝜖)®1 + 𝜖 · ®𝑤 and ®𝑦 = (1 + 𝜖)®1 − 𝜖 · ®𝑤
for a small enough 𝜖 > 0 to ensure that all entries in ®𝑥 and ®𝑦 are positive. Note that by Claim 5.11
both ®𝑥 and ®𝑦 are solutions of the linear system. The values in ®𝑥 and ®𝑦 are ordered according to ®𝑤
where a minimal item in ®𝑥 is maximal and ®𝑦 and vice versa. Since ®𝑤 is not the all zero vector, these
two solutions disagree on the identity of the items with the smallest value. □

We are now ready to prove Theorem 5.9. Throughout the proof, we assume that in all demand
queries that 𝐴 makes the prices are strictly positive. This assumption only doubles the number of
queries: if there is a demand query that gives 0 prices for some set of items 𝑆 , we can replace all 0
prices with ∞, run the new demand query and return the union of 𝑆 and the answer 𝑇 of the new
demand query. Since the demand query should also return the value of 𝑆 ∪ 𝑇 we can make one
value query 𝑣 (𝑆) and return 𝑣 (𝑆) + 𝑣 (𝑇) (recall that a demand query also returns the value of the
most demanded set). In addition, we assume that the first query is a value query for the entire set 𝑀 ,
increasing the total queries made by the algorithm by at most one. As the algorithm must work with
any implementation of the demand query, it must work with the one we specify here.

PROOF OF THEOREM 5.9. We show that for every deterministic algorithm𝐴 there is an adversary
that can answer all queries in a way such that as long as the algorithm did not make many queries,
there are two different valuations 𝑣, 𝑣 ′, both consistent with the queries asked, each has a unique

168

Simplicity in Auctions Revisited: The Primitive Complexity EC ’23, July 9–12, 2023, London, United Kingdom.

item with minimal value, but the items with the minimal value in 𝑣 and in 𝑣 ′ are different. Thus, the
algorithm does not distinguish between 𝑣 and 𝑣 ′ and does not find an (𝑚 − 1)-optimal bundle.

We will describe a set of valuations and inductively show that every valuation in this set is
consistent with the queries asked so far. Thus, every item that is a minimal item of a valuation in the
set is a possible solution.

The next claim is the heart of the proof. To give some intuition, let us examine some of the possible
answers of the adversary. For every bundle 𝑆 whose value is queried, the algorithm will return the
value |𝑆 |. Suppose that a demand query, all with positive prices, is made. The adversary now “defines”
a set of items 𝐿 whose value we “set” to be very big. The items in 𝐿 are the items that the demand
query returns. We consider the values of items that are not in 𝐿 to be very low, although the adversary
does not commit on their specific values (so any of them might be the minimal item). In the next
value queries we will treat every 𝑆 ⊆ 𝑀 − 𝐿 as having value 𝑣 (𝑆) = Y′ · |𝑆 |, for Y ≫ Y′ (Y′ will be
smaller than the smallest price in the demand query). Thus, the demand query will only return the
items in 𝐿.

There are several challenges in achieving this. The first is making sure that after the first demand
query we are consistent with the value queries that were done so far. The second is to be able to
answer not just the first demand query but also the following ones. The third is to make sure that the
set of items 𝐿 is small, otherwise the adversary has to commit on the values of all items too quickly.
The next claim handles all these challenges.

CLAIM 5.13. Consider an execution of the algorithm after a set of Q queries. Let 𝑡𝑟 denote the
number of value queries made before the 𝑟 ’th demand query in Q. Suppose that Q contains 𝑖 demand
queries and 𝑥 value queries. Let 𝑥 ′ denote the number of value queries made after the last (𝑖’th)
demand query. There exists an adversary, a non-empty set of valuations VQ , a set of items 𝐿Q ⊆ 𝑀

where |𝐿Q | =
∑
𝑟≤𝑖 𝑡𝑟 , a matrix 𝐴Q ∈ {0, 1} (𝑡𝑖+𝑥 ′)×(𝑚−|𝐿Q |) and YQ > 0 such that:

• All valuations in 𝑣 ∈ VQ are consistent with all the queries made so far.
• For every 𝑣, 𝑣 ′ ∈ VQ and 𝑗 ∈ 𝐿Q , 𝑣 ({ 𝑗}) = 𝑣 ′ ({ 𝑗}).
• By renaming, assume without loss of generality that the items that are not in 𝐿Q are indexed
1, . . . ,𝑚 − |𝐿Q |. For each 𝑣 ∈ VQ it holds that:

𝐴Q · 𝑣 = YQ · 𝐴Q · ®1
PROOF. We prove the claim by induction over the number of queries. The base case is when Q

includes a single query, a value query for 𝑀 that returns a value of𝑚. Let 𝐿Q = ∅, YQ = 1, and 𝐴Q
which is a single all-one line. The claim trivially holds for the case the valuation ®1 satisfies all three
requirements.

We now assume the induction hypothesis for Q′, and prove for Q, where Q is Q′ with an additional
query. We describe how the adversary answers the additional query and how to obtain 𝐴Q , 𝐿Q , YQ ,
for which the claim holds after each query. For each item 𝑗 ∈ 𝐿Q′ , let 𝐿Q′ (𝑗) be the value of item 𝑗

for all valuations in VQ′
.

We first consider the case where the additional query is a value query, and then the case where
the additional query is a demand query. If the algorithm makes a value query for some set 𝑆 , the
adversary answers that the value of 𝑆 is YQ′ · |𝑆 \ 𝐿Q′ | +∑

𝑗∈𝑆∩𝐿Q′ 𝐿Q′ (𝑗). This answer is consistent
with the previous queries since there exists a valuation 𝑣 ∈ VQ′

that obeys the conditions in the
statement of the lemma: e.g., 𝑣 ({ 𝑗}) = 𝐿Q′ (𝑗) for every 𝑗 ∈ 𝐿Q′ and 𝑣 ({ 𝑗}) = YQ′ for every 𝑗 ∉ 𝐿Q′ .
Define 𝐿Q = 𝐿Q′ , YQ = YQ′ and the set of linear equations 𝐴Q to be 𝐴Q′ with the additional constraint
that 𝑣 (𝑆 \ 𝐿Q′) = YQ′ · |𝑆 \ 𝐿Q′ |.

If the additional query is a demand query, the adversary answers it as follows. Find a solution
for the system 𝐴Q′ · 𝑣 = YQ′ · 𝐴Q′ · ®1 and 𝑣 ≥ 0, with the smallest support size. Since the vector

169

EC ’23, July 9–12, 2023, London, United Kingdom. Moshe Babaioff, Shahar Dobzinski, and Ron Kupfer

YQ′ · ®1 is a solution, by Lemma 5.10 there exists a solution ®𝑟 ∈ R𝑚−|𝐿Q′ |
+ with at most 𝑡𝑖+1= 𝑡𝑖 + 𝑥 ′

non-zero coordinates (recall that 𝑖 is the number of demand queries in Q′). According to Claim 5.11,
the vector ®𝑟 ′ = (1 − YQ

YQ′)®𝑟 + YQ · ®1 is also a valid solution.
We now show that the induction hypothesis holds for Q with any YQ < YQ′ . Let 𝐿Q be 𝐿Q′ with

all items that their value is non-zero in ®𝑟 . We set the common value 𝐿Q (𝑗) of any such newly added
item 𝑗 ∈ 𝐿Q \ 𝐿Q′ to be its value in the solution ®𝑟 ′. We define VQ to be all valuations in VQ′

that
have 𝑣 (𝑗) = 𝐿Q (𝑗) for every 𝑗 ∈ 𝐿Q \ 𝐿Q′ .

The set of linear equations𝐴Q is obtained from𝐴Q′ by updating every constraint
∑
𝑎∈𝑆\𝐿Q′ 𝑣 (𝑎) = 𝑏

in 𝐴Q′ to
∑
𝑎∈𝑆\𝐿Q 𝑣 (𝑎) = 𝑏 −

∑
𝑎∈𝑆∩𝐿Q 𝑣 (𝑎) = YQ · |𝑆 \ 𝐿Q |.

Note that VQ is not empty as it contains the valuation defined by ®𝑟 ′ and the values of the items in
𝐿Q′ . Furthermore, all valuations in VQ are consistent with all queries made so far, and in particular
with the last demand query. We now set YQ to be small enough to make sure that only items in
𝐿Q could be in the demand set. If 𝑝𝑚𝑖𝑛 is the minimal price of an item in the (𝑖 + 1)’th (last)
demand query, YQ is chosen to be strictly smaller than 𝑝𝑚𝑖𝑛

𝑚
. Since the first line in 𝐴Q has that∑

𝑎∈𝑀\𝐿Q 𝑣 (𝑎) = YQ · |𝑀 \ 𝐿Q |, this guarantees that for any item 𝑗 ∉ 𝐿Q , the maximal possible value
for 𝑗 is smaller than𝑚 · YQ < 𝑝𝑚𝑖𝑛 and thus 𝑗 is not in any most profitable set for the 𝑖 + 1’th demand
query. Hence, committing on the values of items in 𝐿Q is sufficient for the implementation of the
demand query. The adversary then answers the demand query according to the valuation defined by
the solution ®𝑟 ′. □

Using Claim 5.13 we are now ready to complete the proof of the theorem. Let 𝑞𝑣 be the total
number of value queries and 𝑞𝑑 be the total number of demand queries made by the algorithm. Let Q
be the list of queries. Since the 𝑖’th demand query adds at most 𝑡𝑖 new items to the set 𝐿Q and 𝑡𝑖 is at
most 𝑞𝑣 , the total number of items in 𝐿Q is 𝑞𝑣 · 𝑞𝑑 . Thus, the linear system has at most 𝑞𝑣 constraints.
Furthermore, each item 𝑗 ∈ 𝐿Q corresponds to a linear constraint of the form 𝑣 (𝑗) = 𝑡 for some
known value 𝑡 . That is, the set VQ is non-empty and defined by at most 𝑞𝑣 ·𝑞𝑑 +𝑞𝑣 linear constraints.
When 𝑞𝑑 , 𝑞𝑣 ≤

√
𝑚 − 1, we have that the total number of constraints is at most 𝑞𝑣 · 𝑞𝑑 + 𝑞𝑣 < 𝑚 − 1.

By Lemma 5.12 the algorithm fails for some valuation 𝑣 . □

5.3 Impossibilities for Additive Valuations using Value Queries
For deterministic algorithms, we show that𝑚 − 1 value queries are needed to find an (𝑚 − 1)-optimal
set. For randomized algorithms, we show two different proofs that Ω

(
𝑚

log𝑚

)
queries are needed to

find a 𝑘-optimal set (with each proof using a different 𝑘) with non-negligible success probability.

PROPOSITION 5.14. Let 𝐴 be a deterministic algorithm that given an additive valuation 𝑣 makes
𝑞 value queries and returns an (𝑚 − 1)-optimal set (equivalently, finds the item with the smallest
value). Then, the algorithm makes at least𝑚 − 1 value queries.

PROOF. We construct a hard valuation 𝑣 “on the fly” by observing the queries that 𝐴 makes and
(partially) defining 𝑣 appropriately (𝐴 is deterministic so the queries that it makes are only a function
of the values that were returned in the previous queries). We will see that for every set of queries that
𝐴 makes, after𝑚 − 2 queries there are at least two ways to complete the definition of 𝑣 , and each
completion has a different minimal-value item. Thus, 𝐴 cannot determine the minimal item after
𝑚 − 2 queries.

Specifically, in each of the first 𝑚 − 2 queries that 𝐴 makes, we partially define 𝑣 as follows:
whenever the algorithm queries 𝑣 (𝑆), set 𝑣 (𝑆) = |𝑆 |. Note that this construction is indeed valid in the
sense that it is easy to extend it to a fully defined additive valuation (e.g., by setting 𝑣 (𝑆) = |𝑆 | for
every bundle 𝑆).

170

Simplicity in Auctions Revisited: The Primitive Complexity EC ’23, July 9–12, 2023, London, United Kingdom.

The queries and answers naturally define a set of𝑚 − 2 linear equations with𝑚 variables, each
equation has the form Σ 𝑗∈𝑆𝑥 𝑗 = |𝑆 |, for some 𝑆 . If there are less than𝑚 − 2 independent rows in the
corresponding matrix, we add some independent rows of the same form. Note that the newly added
rows correspond to additional queries that the algorithm makes.

Since there are 𝑚 equations and 𝑚 − 2 variables, the matrix has infinitely many solutions. In
particular, there are 𝑚 − 2 variables such that if we set each of those variable to 1, there are still
two free variables, denoted𝑤, 𝑧. Note that𝑤, 𝑧 are constrained by at most one linear equation, and
since 𝑥𝑖 = 1 for every 𝑖 is a valid solution, this equation must take the form 𝑤 + 𝑧 = 2. Thus, both
𝑤 = 1

2 , 𝑧 = 2 − 1
2 , and 𝑤 = 2 − 1

2 , 𝑧 = 1
2 complete setting every other variable to 1 to two different

valid solutions to the set of equations. Moreover, each of these solutions defines an additive valuation
with a different minimal-value item. Therefore, 𝐴 cannot distinguish between these two valuations
and find the minimal-value item if it makes less than𝑚 − 1 queries. □

PROPOSITION 5.15. Let 𝐴 be a randomized algorithm that given an additive valuation 𝑣 makes
𝑞 value queries, and with a constant positive probability returns a (𝑚/2)-optimal set. Then, the

algorithm makes in expectation at least Ω
(
𝑚

log𝑚

)
value queries.

PROOF. Consider the following distribution over additive valuations: choose at random set of𝑚/2
items and set the value of each item in the set to 1. Set the value of the rest of the items to 0. By
Yao’s principle, it is enough to show that every deterministic algorithm that succeeds with probability
2
3 makes at least Ω

(
𝑚

log𝑚

)
value queries in expectation.

Fixing such a deterministic algorithm, there is a family of 2
3 ·

(
𝑚
𝑚
2

)
additive valuations on which the

algorithm succeeds. We associate each such valuation with a transcript of the run of the algorithm on
this valuation. Such transcript consists of 𝑞 answers to value queries, each takes log 𝑚2 bits to write
down since the possible values are integers between 0 to 𝑚

2 . Since the algorithm is deterministic
we have that the identity of the bundle 𝑆 that is queried is only a function of the answers to
the previous queries. Thus representing each transcript takes 𝑞 · log 𝑚2 bits. Note that each such
transcript must be different for every valuation that the algorithm succeeds on, and thus we have that
2
3 · log

(
𝑚
𝑚/2

)
≤ 𝑞 · log(𝑚/2), and since

(
𝑚
𝑚/2

)
> 2𝑚

𝑚+1 we have that 𝑞 ≥ 2
3 ·

𝑚−log(𝑚+1)
log(𝑚/2) = Ω

(
𝑚

log𝑚

)
as

needed. □

PROPOSITION 5.16. Let 𝐴 be a randomized algorithm that given an additive valuation 𝑣 makes 𝑞
value queries and returns a maximal value item (1-optimal set) with a constant positive probability.
Then, the algorithm makes in expectation at least Ω

(
𝑚

log𝑚

)
value queries.

PROOF. We prove our lower bound using a reduction to the Set Disjointness problem. In this
problem, Alice and Bob, are given two input vectors 𝑥 = (𝑥1, ..., 𝑥𝑚), 𝑦 = (𝑦1, ...𝑦𝑚) ∈ {0, 1}𝑚
respectively, and they wish to determine whether there exists an index 𝑖 such that 𝑥𝑖 = 𝑦𝑖 = 1. The
randomized communication complexity of DISJ is Ω (𝑚), see, e.g., [Razborov 1990].

Given an input 𝑥,𝑦 ∈ {0, 1}𝑚 for the disjointness problem, define an additive valuation by setting
the value of each item 𝑤𝑖 to be 𝑣 ({𝑤𝑖 }) = 𝑥𝑖 + 𝑦𝑖 . We follow the run of 𝐴 and simulate the value
queries that 𝐴 makes: when 𝐴 queries the value of the bundle 𝑆 , Alice uses log𝑚 bits to send Σ 𝑗∈𝑆𝑥 𝑗
and Bob uses log𝑚 bits to send Σ 𝑗∈𝑆𝑦 𝑗 . The value 𝑣 (𝑆) is simply the sum of these two numbers.
Thus we have that if 𝐴 makes 𝑞 queries then it can be simulated for this family of instances by a
communication protocol that takes 2·𝑞 · log𝑚 bits.

Observe that the maximal value of a single item in 𝑣 equals to 2 if and only if there exists an
index 𝑖 for which the 𝑖-th variable has value 1 for both Alice and Bob. Therefore, the communication
protocol must use Ω(𝑚) bits, which immediately implies that 𝑞 = Ω

(
𝑚

log𝑚

)
. □

171

EC ’23, July 9–12, 2023, London, United Kingdom. Moshe Babaioff, Shahar Dobzinski, and Ron Kupfer

REFERENCES
Tarek Abdallah, Arash Asadpour, and Josh Reed. 2021. Large-Scale Bundle-Size Pricing: A Theoretical Analysis. Operations

Research (2021).
Saeed Alaei. 2014. Bayesian combinatorial auctions: Expanding single buyer mechanisms to many buyers. SIAM J. Comput.

43, 2 (2014), 930–972.
Saeed Alaei, Jason Hartline, Rad Niazadeh, Emmanouil Pountourakis, and Yang Yuan. 2019. Optimal auctions vs. anonymous

pricing. Games and Economic Behavior 118 (2019), 494–510.
Sepehr Assadi and Sahil Singla. 2019. Improved truthful mechanisms for combinatorial auctions with submodular bidders. In

2019 IEEE 60th Annual Symposium on Foundations of Computer Science (FOCS). IEEE, 233–248.
Moshe Babaioff, Yannai A Gonczarowski, and Noam Nisan. 2021. The menu-size complexity of revenue approximation.

Games and Economic Behavior (2021).
Moshe Babaioff, Nicole Immorlica, Brendan Lucier, and S Matthew Weinberg. 2020. A simple and approximately optimal

mechanism for an additive buyer. Journal of the ACM (JACM) 67, 4 (2020), 1–40.
Moshe Babaioff, Noam Nisan, and Aviad Rubinstein. 2018. Optimal Deterministic Mechanisms for an Additive Buyer. In

ACM Conference on Economics and Computation (ACM-EC).
Ashwinkumar Badanidiyuru, Shahar Dobzinski, and Sigal Oren. 2012. Optimization with demand oracles. In Proceedings of

the 13th ACM conference on electronic commerce. 110–127.
Liad Blumrosen and Noam Nisan. 2010. On the computational power of demand queries. SIAM J. Comput. 39, 4 (2010),

1372–1391.
Nader H Bshouty. 2009. Optimal Algorithms for the Coin Weighing Problem with a Spring Scale. In COLT, Vol. 2009. 82.
Yang Cai and Mingfei Zhao. 2017. Simple mechanisms for subadditive buyers via duality. In Proceedings of the 49th Annual

ACM SIGACT Symposium on Theory of Computing. 170–183.
Gruia Calinescu, Chandra Chekuri, Martin Pal, and Jan Vondrák. 2011. Maximizing a monotone submodular function subject

to a matroid constraint. SIAM J. Comput. 40, 6 (2011), 1740–1766.
JM Chambers. 1971. Algorithm 410: partial sorting. Commun. ACM 14, 5 (1971), 357–358.
Shuchi Chawla, Jason D Hartline, David L Malec, and Balasubramanian Sivan. 2010. Multi-parameter mechanism design and

sequential posted pricing. In Proceedings of the forty-second ACM symposium on Theory of computing. 311–320.
Shuchi Chawla, Yifeng Teng, and Christos Tzamos. 2020. Menu-size complexity and revenue continuity of buy-many

mechanisms. In Proceedings of the 21st ACM Conference on Economics and Computation. 475–476.
Chenghuan Sean Chu, Phillip Leslie, and Alan Sorensen. 2011. Bundle-size pricing as an approximation to mixed bundling.

The American Economic Review (2011), 263–303.
Peter Cramton. 1998. Ascending auctions. European Economic Review 42, 3-5 (1998), 745–756.
AG Djackov. 1975. On a search model of false coins. In Topics in Information Theory (Colloquia Mathematica Societatis

Janos Bolyai 16). Budapest, Hungary: Hungarian Acad. Sci. 163–170.
Shahar Dobzinski, Noam Nisan, and Michael Schapira. 2006. Truthful randomized mechanisms for combinatorial auctions.

In Proceedings of the thirty-eighth annual ACM symposium on Theory of computing. 644–652.
Dingzhu Du, Frank K Hwang, and Frank Hwang. 2000. Combinatorial group testing and its applications. Vol. 12. World

Scientific.
Shaddin Dughmi, Li Han, and Noam Nisan. 2014. Sampling and representation complexity of revenue maximization. In

International Conference on Web and Internet Economics. Springer, 277–291.
Paul Dütting, Felix Fischer, and David C Parkes. 2011. Simplicity-expressiveness tradeoffs in mechanism design. In

Proceedings of the 12th ACM conference on Electronic commerce. 341–350.
Alon Eden, Michal Feldman, Ophir Friedler, Inbal Talgam-Cohen, and S Matthew Weinberg. 2021. A simple and approximately

optimal mechanism for a buyer with complements. Operations Research 69, 1 (2021), 188–206.
Friedrich Eisenbrand and Gennady Shmonin. 2006. Carathéodory bounds for integer cones. Operations Research Letters 34,

5 (2006), 564–568.
Uriel Feige and Jan Vondrak. 2006. Approximation algorithms for allocation problems: Improving the factor of 1-1/e. In 2006

47th Annual IEEE Symposium on Foundations of Computer Science (FOCS’06). IEEE, 667–676.
Uriel Feige and Jan Vondrák. 2010. The submodular welfare problem with demand queries. Theory of Computing 6, 1 (2010),

247–290.
Michal Feldman, Nick Gravin, and Brendan Lucier. 2014. Combinatorial auctions via posted prices. In Proceedings of the

twenty-sixth annual ACM-SIAM symposium on Discrete algorithms. SIAM, 123–135.
Yannai A Gonczarowski. 2018. Bounding the menu-size of approximately optimal auctions via optimal-transport duality. In

Proceedings of the 50th Annual ACM SIGACT Symposium on Theory of Computing. 123–131.
Faruk Gul and Ennio Stacchetti. 2000. The English auction with differentiated commodities. Journal of Economic theory 92,

1 (2000), 66–95.

172

Simplicity in Auctions Revisited: The Primitive Complexity EC ’23, July 9–12, 2023, London, United Kingdom.

Sergiu Hart and Noam Nisan. 2019. Selling multiple correlated goods: Revenue maximization and menu-size complexity.
Journal of Economic Theory 183 (2019), 991–1029.

Jason D Hartline and Tim Roughgarden. 2009. Simple versus optimal mechanisms. In Proceedings of the 10th ACM conference
on Electronic commerce. 225–234.

C. A. R. Hoare. 1961. Algorithm 65: Find. Commun. ACM 4, 7 (1961), 321–322.
Donald E Knuth. 1974. The asymptotic number of geometries. Journal of Combinatorial Theory, Series A 16, 3 (1974),

398–400.
Pravesh Kothari, Sahil Singla, Divyarthi Mohan, Ariel Schvartzman, and S Matthew Weinberg. 2019. Approximation schemes

for a unit-demand buyer with independent items via symmetries. In 2019 IEEE 60th Annual Symposium on Foundations of
Computer Science (FOCS). IEEE, 220–232.

Xinye Li and Andrew Chi-Chih Yao. 2013. On revenue maximization for selling multiple independently distributed items.
Proceedings of the National Academy of Sciences 110, 28 (2013), 11232–11237.

Bernt Lindstrom. 1975. Determining subsets by unramified experiments. A Survey of Statistical Design and Linear Models
(1975).

Jiri Matousek and Bernd Gärtner. 2007. Understanding and using linear programming. Springer Science & Business Media.
Debasis Mishra and David C Parkes. 2007. Ascending price Vickrey auctions for general valuations. Journal of Economic

Theory 132, 1 (2007), 335–366.
Benny Moldovanu and Manfred Tietzel. 1998. Goethe’s second-price auction. Journal of Political Economy 106, 4 (1998),

854–859.
David R Musser. 1997. Introspective sorting and selection algorithms. Software: Practice and Experience 27, 8 (1997),

983–993.
George L Nemhauser, Laurence A Wolsey, and Marshall L Fisher. 1978. An analysis of approximations for maximizing

submodular set functions—I. Mathematical programming 14, 1 (1978), 265–294.
Noam Nisan and Ilya Segal. 2006. The communication requirements of efficient allocations and supporting prices. Journal of

Economic Theory 129, 1 (2006), 192–224.
Alexander A Razborov. 1990. On the distributional complexity of disjointness. In International Colloquium on Automata,

Languages, and Programming. Springer, 249–253.
Amir Ronen. 2001. On approximating optimal auctions. In Proceedings 3rd ACM Conference on Electronic Commerce

(EC-2001), Tampa, Florida, USA, October 14-17, 2001, Michael P. Wellman and Yoav Shoham (Eds.). ACM, 11–17.
https://doi.org/10.1145/501158.501160

Aviad Rubinstein and S Matthew Weinberg. 2018. Simple mechanisms for a subadditive buyer and applications to revenue
monotonicity. ACM Transactions on Economics and Computation (TEAC) 6, 3-4 (2018), 1–25.

Aviad Rubinstein and Junyao Zhao. 2021. The randomized communication complexity of randomized auctions. In Proceedings
of the 53rd Annual ACM SIGACT Symposium on Theory of Computing. 882–895.

Raghuvansh R Saxena, Ariel Schvartzman, and S Matthew Weinberg. 2018. The menu complexity of “one-and-a-half-
dimensional” mechanism design. In Proceedings of the Twenty-Ninth Annual ACM-SIAM Symposium on Discrete Algo-
rithms. SIAM, 2026–2035.

David RM Thompson and Kevin Leyton-Brown. 2013. Revenue optimization in the generalized second-price auction. In
Proceedings of the fourteenth ACM conference on Electronic commerce. 837–852.

Jan Vondrák. 2008. Optimal approximation for the submodular welfare problem in the value oracle model. In Proceedings of
the fortieth annual ACM symposium on Theory of computing. 67–74.

A MISSING PROOFS FROM SECTION 3
A.1 Proof of Theorem 3.1
The following two lemmas will be useful for constructing an algorithm to find 𝑘-optimal set for
additive valuations with small number of value and demand queries.

LEMMA A.1. For a subadditive valuation 𝑣 over a set 𝑀 of𝑚 items and a threshold 𝑡 . Let 𝐿 be
the set of elements of value (as a singleton) larger than 𝑡 , that is 𝐿 = {𝑘 ∈ 𝑀 |𝑣 (𝑘) > 𝑡}.

There exists an algorithm such that for any 𝑣 and 𝑡 , if 𝐿 is not empty returns an element from 𝐿

picked uniformly at random. The algorithm makes O (log𝑚) value and demand queries.

PROOF. Denote the set returned by a demand query with uniform price 𝑡 by 𝐷. If 𝑡 · |𝐷 | = 𝑣 (𝐷)
we have that the profit from 𝐷 is zero (𝑣 (𝐷) − 𝑝 (𝐷) = 0) which implies that there is no item 𝑑 ∈ 𝑀

173

https://doi.org/10.1145/501158.501160

EC ’23, July 9–12, 2023, London, United Kingdom. Moshe Babaioff, Shahar Dobzinski, and Ron Kupfer

such that 𝑣 (𝑑) > 𝑡 , otherwise the profit from buying item 𝑑 alone is positive, contradicting that 𝐷 is a
set in demand. Thus, if 𝑡 · |𝐷 | = 𝑣 (𝐷) then 𝐿 is empty and the algorithm terminates.

Otherwise, 𝑣 (𝐷) > 𝑡 · |𝐷 |. By subadditivity, there exists 𝑑 ∈ 𝐷 such that 𝑣 (𝑑) > 𝑡 and thus 𝐿 is
non-empty. Given 𝑡 , the algorithm works as follows: It keeps a set 𝑁 containing all items who might
be in 𝐿, initiated as 𝑁 = 𝑀 . It then goes iteratively:

• If |𝑁 | = 1, the single element of 𝑁 is in 𝐿, and we return it.
• Otherwise, split the set 𝑁 into two random sets, 𝑁0 and 𝑁1, of sizes as equal as possible (equal

up to one item, that is, | |𝑁0 | − |𝑁1 | | ≤ 1). For each one of the two sets 𝑁0 and 𝑁1, the algorithm
makes a uniform price demand query at price 𝑡 . Denote the returned sets by 𝐷0 and 𝐷1. If the
returned set 𝐷𝑖 is empty or satisfies 𝑡 · |𝐷𝑖 | = 𝑣 (𝐷𝑖), as before, the set contains no element
from 𝐿, and is discarded. As 𝑣 (𝐷) > 𝑡 · |𝐷 |, by subadditivity, 𝑣 (𝐷𝑖) > 𝑡 · |𝐷𝑖 | for at least one
𝑖 ∈ {0, 1}, so at least one of them is not discarded. Thus, 𝐷𝑖 is discarded if and only if it does
not intersect 𝐿. We pick one of these non-discarded sets at random. Denote it corresponding
set 𝑁𝑖 by 𝑁 , and recursively run the algorithm on this new set 𝑁 and threshold 𝑡 .

First, observe that the algorithm terminates in O (log𝑚) demand queries, as the size of 𝐷 shrinks
by a constant factor (about 2) at every iteration.

Finally, we observe that if 𝐿 is non-empty then every element in 𝐿 has the same probability of
being picked. First observe that only elements in 𝐿 are ever returned. Secondly, at each iteration,
one set 𝑁𝑖 is discarded. It can be since 𝑣 (𝐷𝑖) = 𝑡 · |𝐷𝑖 |, in that case no item from 𝐿 is discarded.
In the other case, both 𝑁0 and 𝑁1 contains items from 𝐿 and the probability any item from 𝐿 to be
discarded in this round is equal. As this claim is true for every 𝑗 ∈ 𝐿, all elements in 𝐿 have the same
probability of being selected. □

If the valuation is additive, we can use Lemma A.1 to sample a random element smaller than a
given threshold in O (log𝑚) demand queries.

LEMMA A.2. For an additive valuation 𝑣 over a set 𝑀 of𝑚 items and threshold 𝑡 , let 𝑍 be the set
of elements of value (as a singleton) smaller than 𝑡 , that is 𝑍 = {𝑘 ∈ 𝑀 |𝑣 (𝑘) < 𝑡}.

There exists a randomized algorithm such that for any 𝑣 and 𝑡 , if 𝑍 is not empty returns an element
from 𝑍 picked uniformly at random, using O (log𝑚) value and demand queries in expectation.

PROOF. Let𝑊 be a large enough constant, say𝑊 = 𝑣 (𝑀) + 1. Consider the additive valuation
𝑣 ′ in which for every item 𝑗 ∈ 𝑀 the value of 𝑗 is 𝑣 ′𝑗 = 𝑊 − 𝑣 𝑗 . Picking a random item from
𝑍 = {𝑘 ∈ 𝑀 |𝑣 (𝑘) < 𝑡} is equivalent to picking a random item from 𝐿′ = {𝑘 ∈ 𝑀 |𝑣 ′ (𝑘) >𝑊 − 𝑡}.
We now use Lemma A.1 with valuation 𝑣 ′ and threshold𝑊 − 𝑡 to sample a random item from 𝐿′ (or
equivalently, a random element form 𝑍). To use the lemma we observe that both value and demand
queries for 𝑣 ′ can be simulated by value and demand queries on 𝑣 . For value query on a set 𝑆 the
value 𝑣 ′ (𝑆) is simply 𝑣 ′ (𝑆) = |𝑆 | ·𝑊 − 𝑣 (𝑆), and a demand query on 𝑣 ′ with price 𝑝 𝑗 for item 𝑗 is
replaced by a demand query on 𝑣 with price𝑊 − 𝑝 𝑗 . □

We next use the above lemma to find, for any fixed value 𝑡 , all items of value exactly 𝑡 .

LEMMA A.3. There exists a randomized algorithm that for any additive valuation 𝑣 over a set 𝑀
of size𝑚 and a value 𝑡 ∈ R, using value and demand queries finds all items in 𝑀 with value exactly 𝑡 .
The algorithm makes in expectation O

(
log2𝑚

)
queries.

PROOF. We start with a uniform demand query where the price of each item is 𝑡 , splitting the
items into a demand set 𝐷 and its complement 𝐶 = 𝑀 \ 𝐷 . Any item of value exactly 𝑡 can belong to
any of the two sets. We show how to find all items of value exactly 𝑡 in 𝐷 , the algorithm for 𝐶 is the
same up to trivial adjustments.

174

Simplicity in Auctions Revisited: The Primitive Complexity EC ’23, July 9–12, 2023, London, United Kingdom.

First, observe that either the set 𝐷 does not contain items of value 𝑡 or that 𝑡 is the minimal value
in the set. A uniform demand query for a price that is strictly larger than 𝑡 but strictly smaller than
any other item in 𝐷 will return all items of value larger than 𝑡 in 𝐷, and only them. In order to find
such a price, we run the following iterative algorithm: We maintain a set 𝑆 , initiated to have all items
in 𝐷 . The set will contain any item in 𝐷 that might have value 𝑡 . If the average value of an item in 𝑆
is 𝑡 (𝑣 (𝑆) = 𝑡 · |𝑆 |), we are done (all elements in 𝑆 must have value 𝑡). Otherwise, there is at least one
element of value higher than 𝑡 .

We now use Lemma A.1 on the set 𝑆 as the set of all items and the threshold 𝑡 to pick an element
from 𝐿 = {𝑘 ∈ 𝑆 |𝑣 (𝑘) > 𝑡} uniformly at random, in O (log𝑚) demand queries. Let 𝑞 be the value of
the element picked.

We have that in expectation, 𝑞 is smaller or equal to at least half of the items in 𝐿. Let 𝑝 =
𝑞+𝑡
2

and note that 𝑞 > 𝑝 > 𝑡 . A uniform demand query on 𝑆 at price 𝑝 returns a set of items, each of
value larger than 𝑡 , and that set is of size at least half the size of 𝐿, in expectation (as it includes all
items of value at least 𝑞). We remove all these demanded items from 𝑆 , and iterate. As the problem
size shrinks by factor of two, O (log𝑚) rounds, each with O (log𝑚) demand queries, suffice in
expectation in order of identifying all the set 𝐿 and remove it from 𝑆 completely, leaving in 𝑆 exactly
the set of items from 𝐷 that have value exactly 𝑡 .

The set 𝐶 is handled in a similar way with some minor changes. First, when using Lemma A.2 we
do so to pick an element from 𝑍 = {𝑘 ∈ 𝑆 |𝑣 (𝑘) < 𝑡} uniformly at random (instead of picking from
𝐿) and denote its value by 𝑣 . Unlike for 𝐷 , to keep items of value 𝑡 at 𝑆 we now update 𝑆 to include
items that are in the demand for uniform price 𝑝 = 𝑣+𝑡

2 which now satisfies 𝑡 > 𝑝 > 𝑞. □

We can now conclude the proof of Theorem 3.1.
The algorithm gradually builds a 𝑘-optimal set 𝐾 by maintaining a set 𝑆 that contains items that

are still candidates for inclusion in the set 𝐾 . It runs in iterations, in each iteration items are either
moved from 𝑆 to 𝐾 (if we determine that they are among the 𝑘 items with the highest value), or
removed from 𝑆 (if we know for sure they are not). In expectation, 𝑆 will shrink by a constant factor
at each round, so the expected number of rounds is O (log𝑚) rounds. The algorithm continues until
𝐾 is an 𝑘-optimal set. We move to present the algorithm more formally.

Given the parameter 𝑘 , the algorithm works as follows. It first initializes 𝑆 = 𝑀 and 𝐾 = ∅. Then it
runs the following iterative procedure:

• Sample a random item 𝑡 ∈ 𝑆 . Make a uniform demand query with its value as the price for
each item. In addition, using Lemma A.3, find all items of value 𝑡 , i.e., find a partition of 𝑆
into three sets: 𝑆𝐻 =

{
𝑗 ∈ 𝑆 | 𝑣 𝑗 > 𝑡

}
, 𝑆𝑀 =

{
𝑗 ∈ 𝑆 | 𝑣 𝑗 = 𝑡

}
and 𝑆𝐿 =

{
𝑗 ∈ 𝑆 | 𝑣 𝑗 < 𝑡

}
.

– If 𝑘 − |𝐾 | < |𝑆𝐻 |, we update 𝑆 to be the set 𝑆𝐻 (no new items are added to 𝐾). Reiterate with
the updated 𝑆 .

– If |𝑆𝐻 | ≤ 𝑘 − |𝐾 | ≤ |𝑆𝐻 ∪ 𝑆𝑀 |, the algorithm adds 𝑆𝐻 to 𝐾 and additionally adds arbitrary
items from 𝑆𝑀 to 𝐾 to complete filling it with 𝑘 items altogether. It then returns 𝐾 and
terminate.

– If |𝑆𝐻 ∪ 𝑆𝑀 | < 𝑘 − |𝐾 | then it adds 𝑆𝐻 ∪ 𝑆𝑀 to 𝐾 , update 𝑆 to be the set 𝑆𝐿. Reiterate with
the updated 𝑆 .

We first argue that the algorithm indeed returns a 𝑘-optimal set. Since the valuation function is
additive, for any 𝑟 < 𝑘 , a 𝑟 -optimal set can be extended to a 𝑘-optimal set by adding items or largest
value that are not in the set. The algorithm does this till 𝑘 items are added.

Each iteration of the algorithm makes O
(
log2𝑚

)
demand queries in expectation. In expectation, at

each round, at least half of the items in 𝑆 are classified and the algorithm terminates after O (log𝑚)
rounds in expectation.

175

EC ’23, July 9–12, 2023, London, United Kingdom. Moshe Babaioff, Shahar Dobzinski, and Ron Kupfer

A.2 Proof of Theorem 3.2
We first find a maximum weight independent set 𝑅, and denote its rank by 𝑟 . When 𝑘 ≤ 𝑟 , finding a
𝑘-optimal set reduces to finding a 𝑘-optimal set in 𝑅. Since the restriction of the valuation 𝑣 to the set
of items 𝑅 is additive (since 𝑅 is a base), we can use the algorithm described in Theorem 3.1 to find a
𝑘-optimal set. If 𝑘 > 𝑟 then 𝑘-optimal set can be constructed by adding 𝑘 − 𝑟 arbitrary items to 𝑅.

We next show that a maximum weight independent set 𝑅 can be found using O
(
log2𝑚

)
demand

queries in expectation. As by Theorem 3.1 we can find a 𝑘-optimal set in 𝑅 using O
(
log3𝑚

)
demand

queries in expectation, the bound on the number of queries follows.
In the next proof we use the notation 𝑣 (·|𝑅) to denote the marginal valuation given a set 𝑅. I.e.,

for a set 𝑆 we have that 𝑣 (𝑆 |𝑅) = 𝑣 (𝑆 ∪ 𝑅) − 𝑣 (𝑅). Given query oracle for 𝑣 , both value and demand
queries can be easily implemented for 𝑣 (·|𝑅): value queries by querying 𝑣 (𝑆 ∪ 𝑅) and 𝑣 (𝑅), and
demand queries by setting zero prices for all items in 𝑅, which by monotonicity guarantees that all
items in 𝑅 are in the demand.

LEMMA A.4. There exists a randomized algorithm that for any weighted matroid-rank valuation
𝑣 over𝑚 items, finds a maximum weight independent set 𝑅 using value and demand queries. The
algorithm makes in expectation O

(
log2𝑚

)
queries.

PROOF. The algorithm is iterative. First, initialize 𝑅 to be the empty set. At each round we consider
the valuation 𝑣 (·|𝑅) and observe that it is subadditive. Thus, we can use Lemma A.1 to pick a uniform
random item 𝑟 from the set of items satisfying 𝑣 (𝑟 |𝑅) > 0, using O (log𝑚) demand queries in
expectation. We then make a demand query with price 𝑝 = 𝑣 (𝑟 |𝑅)/2 for any item in 𝑀 \ 𝑅, and zero
for all items in 𝑅. The returned set 𝐷 contains 𝑅 and is a subset of a maximum weight independent
set. We update 𝑅 to be 𝐷 (which is a superset of the prior 𝑅), and if for the updated 𝑅 it holds that
𝑣 (𝑅) < 𝑣 (𝑀) we reiterate, again picking a random 𝑟 and so on. The process ends when 𝑅 satisfies
𝑣 (𝑅) = 𝑣 (𝑀), and thus is a maximum weight independent set.

Clearly, if the algorithm terminates with 𝑅 satisfying 𝑣 (𝑅) = 𝑣 (𝑀) then 𝑅 is indeed a maximum
weight independent set - in every iteration 𝑅 is an independent set, and as 𝑣 (𝑅) = 𝑣 (𝑀) it has maximal
weight. The algorithm must terminate with 𝑅 satisfying 𝑣 (𝑅) = 𝑣 (𝑀) as 𝑅 size monotonically
increases and is bounded, and unless 𝑣 (𝑅) = 𝑣 (𝑀) there is always an item not in 𝑅 with positive
marginal, so some item can be picked at the next iteration.

Finally, we claim that the expected number of demand queries the algorithm makes is O
(
log2𝑚

)
.

Since 𝑟 is selected randomly from all items with positive marginal value relative to 𝑅, we have that, in
expectation, at least half of the items in𝑀 \𝑅 have marginal of at least 𝑝 relative to 𝑅. Each such item
is either in the returned set 𝐷 (and hence in the updated 𝑅) or has a negative marginal utility when
added to 𝐷 . That is, at each round, in expectation, at least half of the items are either in 𝑅 or have a
marginal 0 when added to it. Hence, after O (log𝑚) rounds in expectation, all items are either in 𝑅
or have a marginal 0 relative to 𝑅. When that is the situation, 𝑅 is a maximum weight independent
set. Since each round requires O (log𝑚) queries, the total number of queries is still O

(
log2𝑚

)
. □

B PROOF OF THEOREM 4.1
Given a menu M, we normalize11 the minimal positive price to 1 and denote the highest price in the
menu by 𝐻M .

We next use Lemma 9.1 of [Hart and Nisan 2019] to show that for any bundle-size pricing menu
M there exists a bundle-size pricing menu with bundle-size pricing menu size O

(
𝜖−2 ln(𝐻M

)
) that

11It is trivial to adapt the queries to this normalization, e.g., divide the price of any demand query with this normalization
factor.

176

Simplicity in Auctions Revisited: The Primitive Complexity EC ’23, July 9–12, 2023, London, United Kingdom.

obtains at least 1 − 𝜖 fraction of M’s revenue. Our lemma makes simple observations regarding the
result of [Hart and Nisan 2019] when applied to a bundle-size pricing menu.

LEMMA B.1. Given a bundle-size pricing menu M1, for any 𝜖 > 0 there exists a bundle-size
pricing menu M2 that offers at most 2 + 5

𝜖2
· ln𝐻M1 different bundles’ sizes, such that for any

monotone valuation 𝑣 , REVM2 (𝑣) ≥ (1 − 𝜖)REVM1 (𝑣). Moreover, if 𝐻M1 > 2, the ratio of two

different prices in M2 is at least 𝑒
𝜖2
7 .

PROOF. For 𝜖 ≥ 1 the claim is trivially true with M2 being the menu that only offers nothing for
zero payment. We now assume that 𝜖 < 1. Denote 𝐻 = 𝐻M1 . We start by splitting the range [1, 𝐻]
into 𝐾 subranges, each with a ratio of 𝐻 1/𝐾 between its endpoints where 𝐾 is the smallest integer
such that 𝐻 1/𝐾 ≤ 1 + 𝜖2

4 , i.e., 𝐾 ≤ 1 + ln−1 (1 + 𝜖2

4) · log𝐻 , which is at most 1 + 5
𝜖2

· ln𝐻 for 𝜖 < 1.
All prices in the same subranges are rounded to the same single price in M2. By the monotonicity
assumption, if two different bundle sizes are offered for the same price, a larger size bundle will
always be selected. Hence, for all price in M2 we keep only entries offering the largest bundle sizes
for that price and M2 will have at most 𝐾 + 1 different price levels.

We now explain the rounding schema. For any price 𝑠 in M1, we apply the transform 𝜙 (𝑠) by
rounding 𝑠 up to the next multiple of 𝐻 1/𝐾 and then multiplying it by 1 − 𝜖

2 . Hence we have that,
(1 − 𝜖

2)𝑠 ≤ 𝜙 (𝑠) and 𝜙 (𝑠) < 𝑠 · (1 − 𝜖
2) ·𝐻

1/𝐾 < (1 − 𝜖
2) (1 +

𝜖2

4) · 𝑠 for any price 𝑠. We then have that
for any two prices 𝑠, 𝑠′:

𝜙 (𝑠) − 𝜙 (𝑠′) ≤
(
1 − 𝜖

2

) (
1 + 𝜖

2

4

)
𝑠 −

(
1 − 𝜖

2

)
𝑠′ = 𝑠 − 𝑠′ −

(𝜖
2

) ((
1 − 𝜖

2
+ 𝜖

2

4

)
𝑠 − 𝑠′

)
< 𝑠 − 𝑠′, (1)

When the last inequality holds whenever
(
1 − 𝜖

2 +
𝜖2

4

)
𝑠 − 𝑠′ > 0.

To complete the proof we show that for any valuation 𝑣 , if the profit-maximizing set in M1 was 𝐴
and has generated revenue of 𝑠, then the profit-maximizing set 𝐴′ in M2 generates revenue of at least
𝑠 · (1 − 𝜖). Denote by 𝑠′ the price of 𝐴′ in M1. Since 𝐴 is selected in M1, we have that 𝑣 (𝐴) − 𝑠 ≥
𝑣 (𝐴′) − 𝑠′. A necessary condition for a buyer to select 𝐴′ in M2 is that 𝑣 (𝐴) − 𝜙 (𝑠) ≤ 𝑣 (𝐴′) − 𝜙 (𝑠′).
Combining the two we get that a necessary condition to select 𝐴′ in M2 is that 𝜙 (𝑠) − 𝜙 (𝑠′) ≥ 𝑠 − 𝑠′.
For this not to contradict Equation (1) it must holds that

(
1 − 𝜖

2 +
𝜖2

4

)
𝑠 ≤ 𝑠′. From this inequality we

derive that for 𝐴′ that is picked in M2 the payment is 𝜙 (𝑠′) > (1 − 𝜖
2)𝑠

′ >
(
1 − 𝜖

2 +
𝜖2

4

)
(1 − 𝜖

2)𝑠 >
(1 − 𝜖)𝑠, and we conclude that REVM2 (𝑣) ≥ (1 − 𝜖)REVM1 (𝑣). In addition, we have that for 𝐻 > 2
and 0 < 𝜖 < 1, the parameter 𝐾 is smaller than 7

𝜖2
ln𝐻 which implies that 𝐻 1/𝐾 > 𝐻

(7
𝜖2

ln𝐻)−1
= 𝑒

𝜖2
7

and this is the minimal ratio between two different prices in M2. □

Recall that by Theorem 3.2, for any weighted matroid-rank valuation 𝑣 over a set of size𝑚, there
exists a randomized algorithm that finds a 𝑘-optimal set and has in expectation makes O

(
log3𝑚

)
demand queries. Combining this with the lemma above we get as an immediate corollary that for
any bundle-size pricing menu M1, there exists a bundle-size pricing menu M2 such that for any
weighted matroid-rank valuation 𝑣 it holds that REVM2 (𝑣) ≥ (1 − 𝜖)REVM1 (𝑣), and such that the
buyer can find a profit-maximizing set with O

(
log3𝑚 · 𝜖−2 log𝐻M

)
demand queries in expectation.

The number of demand queries in above result depends on the price-ratio 𝐻M being not too large.
Our main result in this section is that we can get rid of the dependence on 𝐻M when optimizing
the expected revenue for a given distribution over valuations (rather than ex-post, for any given
valuation).

Before proving our main result, we prove a lemma showing that there are cases in which many
entries of a menu can be removed without harming the expected revenue by much.

177

EC ’23, July 9–12, 2023, London, United Kingdom. Moshe Babaioff, Shahar Dobzinski, and Ron Kupfer

LEMMA B.2. Given a bundle-size pricing menu M1 over𝑚 items, a distribution D over valu-
ations, and 𝜖 > 0, let 𝑑 be smallest bundle size in M1 such that the expected revenue from selling
bundles of size 𝑑 is at least 𝜖

𝑚
REV(M1,D). Let M2 be the menu obtained from M1 by removing all

entries of bundles smaller then 𝑑 . Then, REV(M2,D) ≥ (1 − 𝜖)REV(M1,D).

PROOF. For any valuation in which a bundle of size 𝑑 ′ ≥ 𝑑 was selected in M1, it was picked
although the buyer had the option to buy a smaller and cheaper bundle. Removing an option that
was not picked will not change the selection and hence, even if every cheaper bundle is removed,
bundle 𝑑 ′ will also selected in M2. That is, removing bundles of size 𝑘 smaller than 𝑑 from the menu
will result in revenue loss that is bounded by the revenue contribution of valuations that selected
those bundles of size 𝑘 in M1, and that loss is at most 𝜖

𝑚
REV(M1,D). Since at most𝑚 bundles are

removed, REV(M2,D) ≥ (1 − 𝜖)REV(M1,D). □

We now prove our main result in this section by using the above two lemmas and applying our
main upper bound of Theorem 3.2 (which shows that for weighted matroid-rank valuations we can
find a 𝑘-optimal set in poly-logarithmic number of demand queries).

We are now ready to prove Theorem 4.1.

OF THEOREM 4.1. Denote 𝐻 = 𝐻M1 . Given M1 we use Lemma B.1 to construct a bundle-size
pricing menu M′

2 with O
(
𝜖−2 log𝐻

)
price levels such that REV(M′

2,D) ≥ (1 − 𝜖)REV(M1,D).
For 𝐻 ≤ 𝑚, we have that the number of price levels in M′

2 is O
(
𝜖−2 log𝑚

)
, and by solving for each

price level separately, we can find a profit-maximizing set with O
(
log4𝑚 · 𝜖−2

)
demand queries in

expectation.
Else, we have that 𝐻 > 𝑚 and we now modify M′

2 using the information that valuations are drawn
from D. We use Lemma B.2 to construct a bundle-size pricing menu M′′

2 , by removing entries
from M′

2 that have low expected revenue contribution, and get a menu such that REV(M′′
2 ,D) ≥

(1 − 𝜖)REV(M′
2,D). Note that since M′′

2 is obtained by deleting entries, the ratio between prices is
still at least 𝑒7/𝜖

2
. Let 𝑝 the price of the cheapest bundle in M′′

2 . By the definition of M′′
2 we have

that 𝑝 ≥ 𝑝 · Pr[cheapest bundle selected by the buyer] ≥ 𝜖
𝑚

REV(M′′
2 ,D).

Let 𝑡 = 𝜖−1𝑚3𝑝. If Pr𝑣∼D [𝑣 (𝑀) ≥ 𝑡] > 𝑚−2, we define M2 to be the menu that only sells the grand
bundle for price 𝑡 , having an expected revenue which is at least 𝑡 ·𝑚−2 =𝑚𝑝/𝜖 ≥ REV(M′′

2 ,D) >
(1 − 2𝜖)REV(M1,D). This menu is implementable using a single value query.

Else Pr𝑣∼D [𝑣 (𝑀) ≥ 𝑡] ≤ 𝑚−2. In this case we define M2 to be M′′
2 and we implement it using

the following algorithm: We start by querying the value of the grand bundle 𝑣 (𝑀). We then consider
two cases.

In the first case 𝑣 (𝑀) ≥ 𝑡 . In this case we use the fact that for matroid-rank valuations the greedy
algorithm finds a 𝑘-optimal set for every 𝑘 ∈ [𝑚]: at each point selecting the item with the highest
marginal value with respect to the set selected so far. The greedy algorithm requires 𝑂 (𝑚2) value
queries. Since the probability of running this algorithm is at most𝑚−2, and when running the number
of queries is 𝑂 (𝑚2), this case contributes only a constant to the expected query complexity, where
the expectation is taken over the distribution D.

Else, we are in the second case in which 𝑣 (𝑀) ≤ 𝑡 = 𝜖−1𝑚3𝑝. By monotonicity no bundle is
sold for a price higher than 𝑡 in this realization of 𝑣 . Since 𝑝 is the cheapest price in the menu and
𝑡 = 𝜖−1𝑚3𝑝 ≥ 𝑣 (𝑀), the ratio between the highest and lowest prices of sold bundles is at most 𝜖−1𝑚3.
As 𝐻 > 2 (which is the case since 𝐻 > 𝑚), by Lemma B.1 the ratio between any two different prices
in the menu is at least 𝑒𝜖

2/7. Thus, there are at most 21𝜖−3 · log𝑚 bundle sizes in the range between
𝑝 and 𝜖−1𝑚3𝑝 that are needed to be considered. For any weighted matroid-rank valuations we can
find a profit-maximizing set for each bundle size separately using O

(
log3𝑚

)
demand queries in

expectation, by applying our main upper bound presented in Theorem 3.2. Among those bundles, we

178

Simplicity in Auctions Revisited: The Primitive Complexity EC ’23, July 9–12, 2023, London, United Kingdom.

return the one with the highest profit when paying its price. In total, the expected number of queries
is then O

(
𝜖−3 log4𝑚

)
demand queries, where the expectation is taken over the internal random coins

of the algorithm and the distribution D.
In both of the possible menus, M′′

2 and the grand bundle, the expected revenue is at least (1 −
2𝜖)REV(M1,D). Setting 𝜖′ = 𝜖/2 in the theorem statement completes the proof. □

As an immediate corollary of the theorem we get that it is possible to take the optimal bundle-size
pricing revenue on D, and while losing at most 𝜖 fraction of the revenue, convert it to another
bundle-size pricing menu that has a primitive complexity of 𝑝𝑜𝑙𝑦 (log𝑚, 1

Y
).

C LOWER BOUNDS
C.1 Submodular Valuation (Proof of Theorem 5.1)
In this section we prove Theorem 5.1. Some definitions and auxiliary claims are presented in
Subsection C.1.1. We then prove Lemma 5.2 in Section C.1.2.

C.1.1 Definitions and Auxiliary Claims. We first show that every valuation 𝑣 in the support of D
is indeed submodular. We then present some definitions and prove several claims that will be helpful
in the proof of the theorem.

LEMMA C.1. Every valuation 𝑣 in the support of D is submodular.

PROOF. It is sufficient to show that for any 𝑆 ⊆ 𝑀 and 𝑎, 𝑏 ∈ 𝑀 \𝑆 it holds that 𝑣 (𝑆 ∪ {𝑎}) + 𝑣 (𝑆 ∪
{𝑏}) ≥ 𝑣 (𝑆 ∪ {𝑎, 𝑏}) + 𝑣 (𝑆). We split into cases and verify the inequality holds for each case:

• |𝑆 | > 𝑘 + 1: 𝑣 (𝑆 ∪ {𝑎}) + 𝑣 (𝑆 ∪ {𝑏}) = 2𝑘 = 𝑣 (𝑆 ∪ {𝑎, 𝑏}) + 𝑣 (𝑆).
• |𝑆 | = 𝑘 + 1, 𝑆 ∈ B𝑣: 𝑣 (𝑆 ∪ {𝑎}) + 𝑣 (𝑆 ∪ {𝑏}) = 2𝑘 = 𝑣 (𝑆 ∪ {𝑎, 𝑏}) + 𝑣 (𝑆).
• |𝑆 | = 𝑘 + 1, 𝑆 ∉ B𝑣: 𝑣 (𝑆 ∪ {𝑎}) + 𝑣 (𝑆 ∪ {𝑏}) = 2𝑘 > 2𝑘 − 3

11 = 𝑣 (𝑆 ∪ {𝑎, 𝑏}) + 𝑣 (𝑆).
• |𝑆 | = 𝑘, 𝑆 = 𝐺𝑣: 𝑣 (𝑆 ∪ {𝑎}) + 𝑣 (𝑆 ∪ {𝑏}) = 2𝑘 − 6

11 = 𝑣 (𝑆 ∪ {𝑎, 𝑏}) + 𝑣 (𝑆).
• |𝑆 | = 𝑘, 𝑆 ≠ 𝐺𝑣: 𝑣 (𝑆 ∪ {𝑎}) + 𝑣 (𝑆 ∪ {𝑏}) ≥ 2𝑘 − 6

11 > 2𝑘 − 7
11 = 𝑣 (𝑆 ∪ {𝑎, 𝑏}) + 𝑣 (𝑆).

• |𝑆 | = 𝑘 − 1, 𝑆 ∈ R𝑣: 𝑣 (𝑆 ∪ {𝑎}) + 𝑣 (𝑆 ∪ {𝑏}) ≥ 2𝑘 − 14
11 ≥ 𝑣 (𝑆 ∪ {𝑎, 𝑏}) + 𝑣 (𝑆).

• |𝑆 | = 𝑘 − 1, 𝑆 ∉ R𝑣: 𝑣 (𝑆 ∪ {𝑎}) + 𝑣 (𝑆 ∪ {𝑏}) = 2𝑘 − 14
11 ≥ 𝑣 (𝑆 ∪ {𝑎, 𝑏}) + 𝑣 (𝑆).

• |𝑆 | < 𝑘 − 1: 𝑣 (𝑆 ∪ {𝑎}) + 𝑣 (𝑆 ∪ {𝑏}) ≥ 2𝑘 − 28
14 ≥ 𝑣 (𝑆 ∪ {𝑎, 𝑏}) + 𝑣 (𝑆).

□

A valuation in the support of D is completely defined by the values of all sets of size 𝑘 and 𝑘 + 1.
We say that a set of value queries Q is in a canonical form if all queries in Q are for sets of size 𝑘
or 𝑘 + 1, and for every query of size 𝑘 all of its supersets of size 𝑘 + 1 are also in Q. Essentially, all
information that a set of value queries conveys about a valuation can also be conveyed by some set of
queries that is in a canonical form and is not much larger. The next proposition shows that we can
assume that the query set is in a canonical form at a cost of a polynomial blow-up in the number of
queries:

PROPOSITION C.2. Let 𝐴′ be an algorithm that makes 𝑡 value queries on a valuation in the
support of D. Then, there is an algorithm 𝐴 that simulates 𝐴′ while making𝑚2 · 𝑡 value queries on a
valuation in the support of D. Moreover, the set of queries that 𝐴 makes has a canonical form.

PROOF. We show how instead of querying directly a set 𝑆 we can compute its value by𝑚2 value
queries to bundles of size 𝑘 and 𝑘 + 1. We split into cases:

• |𝑆 | < 𝑘 − 1 or |𝑆 | > 𝑘 + 1: the value of 𝑆 is known and the query is discarded.
• |𝑆 | = 𝑘 + 1: the query remains the same.

179

EC ’23, July 9–12, 2023, London, United Kingdom. Moshe Babaioff, Shahar Dobzinski, and Ron Kupfer

• |𝑆 | = 𝑘 − 1: the query is replaced with value queries to all (𝑚−𝑘) (𝑚−𝑘−1)
2 sets of size 𝑘 + 1 that

contain 𝑆 . If the value of all these sets of size 𝑘 + 1 is 𝑘 then 𝑆 ∈ R𝑣 and its value is 𝑘 − 1,
otherwise 𝑆 ∉ R𝑣 and its value is 𝑘 − 14

11 .
• |𝑆 | = 𝑘: the query remains the same and we additionally make value queries to all (𝑚 − 𝑘) sets

of size 𝑘 + 1 containing 𝑆 .

□

We next present several useful definitions and notations. Fix some deterministic algorithm 𝐴 that
makes only value queries and runs on valuations from D. Fix any valuation 𝑣 from the support
of D, and let Q𝑣 denote the list of 𝑡 bundles that 𝐴 queried together with their values. Let DQ𝑣

denote the distribution over valuations that is obtained by sampling according to D a valuation that
is consistent with the queries in Q𝑣 . Let B𝑦

Q𝑣
be the family of sets that includes every set 𝑆 such that

Pr𝑣′∼DQ𝑣 [𝑆 ∈ B𝑣′] = 1. Similarly, let B𝑛Q𝑣
be the family of sets that includes every set 𝑆 such that

Pr𝑣′∼DQ𝑣 [𝑆 ∈ B𝑣′] = 0. Let KQ𝑣
be the family of sets of size 𝑘 that were queried in Q𝑣 .

We now claim that assuming queries are in a canonical form, the conditional distribution for sets
not queried is essentially identical to the prior.

LEMMA C.3. Fix any valuation 𝑣 sampled from D and assume Q𝑣 is in a canonical form. It holds
that:

• For any set 𝑆 of size 𝑘 + 1 it holds that Pr𝑣′∼DQ𝑣 [𝑆 ∈ B𝑣′] ∈ {0, 1, 1
𝑚2 }.

• The conditional probabilities are independent: for any family F of sets of size 𝑘 + 1 it holds
that Pr𝑣′∼DQ𝑣 [∀𝑆 ∈ F , 𝑆 ∉ B𝑣′] =

∏
𝑆∈F Pr𝑣′∼DQ𝑣 [𝑆 ∉ B𝑣′].

PROOF. We start with proving the first part. First, if 𝑆 ∈ B𝑛Q𝑣
or 𝑆 ∈ B𝑦

Q𝑣
then by definition 𝑆 ∈ B𝑣′

with probability 0 or 1, respectively. Thus, the first part of the claim holds for all sets of size 𝑘 + 1
that were queried in Q𝑣 . Next, suppose that 𝑆 was not queried in Q𝑣 . Since Q𝑣 is in a canonical form,
if 𝑇 is a set of size 𝑘 that was queried, all of its supersets of size 𝑘 + 1 were queried. Thus, as 𝑆 was
not queried, none of its subsets was queried.

Recall that the sampling process that defines B𝑣 picks every set of size 𝑘 + 1 to belong to B𝑣
independently with probability 1

𝑚2 . The posterior probability given Q𝑣 is still 1
𝑚2 , as none of sets

of size 𝑘 that were queried is a subset of 𝑆 , and conditional on this event the value of 𝑆 is sampled
independently with probability 1

𝑚2 . Thus, by the principle of deferred decisions we can think of the
membership of 𝑆 in B𝑣 as determined after the values Q𝑣 are given, and thus:

Pr
𝑣′∼DQ𝑣

[𝑆 ∈ B𝑣′] = Pr
𝑣′∼D

[𝑆 ∈ B𝑣′ |Q𝑣 = Q𝑣′] =
Pr𝑣′∼D [𝑆 ∈ B𝑣′ & Q𝑣 = Q𝑣′]

Pr𝑣′∼D [Q𝑣 = Q𝑣′]
The claim follows since Q𝑣 is in canonical form and as 𝑆 ∉ Q𝑣 it holds that:

Pr
𝑣′∼D

[𝑆 ∈ B𝑣′ & Q𝑣 = Q𝑣′] =
1
𝑚2 · Pr

𝑣′∼D
[Q𝑣 = Q𝑣′]

For the second bullet, if F ∩ B𝑦

Q𝑣
is not empty, we have that Pr𝑣′∼DQ𝑣 [∀𝑆 ∈ F , 𝑆 ∉ B𝑣′] = 0 =∏

𝑆∈F Pr𝑣′∼DQ𝑣 [𝑆 ∉ B𝑣′]. Otherwise, since the membership of each set 𝑆 in B𝑣′ is independent in
D for sets of size 𝑘 + 1, and none of the sets of size 𝑘 in Q𝑣 is contained in any set in F \ B𝑛Q𝑣

, we
again can similarly apply Bayes’ rule and the priciple of deferred decisions and get that:

Pr
𝑣′∼DQ𝑣

[∀𝑆 ∈ F , 𝑆 ∉ B𝑣′] = Pr
𝑣′∼D

[∀𝑆 ∉ F \B𝑛Q𝑣
, 𝑆 ∈ B𝑣′] = (1− 1

𝑚2)
| F\B𝑛

Q𝑣 | =
∏
𝑆∈F

Pr
𝑣′∼DQ𝑣

[𝑆 ∉ B𝑣′]

□

180

Simplicity in Auctions Revisited: The Primitive Complexity EC ’23, July 9–12, 2023, London, United Kingdom.

C.1.2 An Impossibility for Value Queries. We next prove Lemma 5.2, our lower bound for value
queries.

PROOF OF LEMMA 5.2. Fix any valuation 𝑣 in the support of D, and let Q𝑣 denote the list of 𝑡
bundles that 𝐴 queried together with their values and assume that Q𝑣 has a canonical form.

We now analyze the conditional distribution (given Q𝑣) that a specific set 𝑆 (of size 𝑘) is 𝑘-optimal,
showing that this probability is exponentially small even after the algorithm makes its 𝑡 queries, as
long as 𝑡 is not huge. Thus with high probability the algorithm cannot determine which bundle is the
good set. We start with showing that by “ignoring” queries to bundles of size 𝑘 . Then, we will show
that the effect of such queries is small.

Let DB𝑦

Q𝑣 ,B
𝑛
Q𝑣 be the distribution over valuations obtained by sampling from D a valuation that

agrees on B𝑦

Q𝑣
and B𝑛Q𝑣

.

CLAIM C.4. For any set 𝑆 , |𝑆 | = 𝑘 , Pr
𝑣′∼DB𝑦

Q𝑣
,B𝑛Q𝑣

[𝑆 = 𝐺𝑣′] < 2
(𝑚𝑘)−𝑚𝑡

.

PROOF. Observe that a 𝑆 of size 𝑘 that is a subset of some set 𝑆 ′ ∈ B𝑦

Q𝑣
cannot be 𝐺𝑣′ for

any 𝑣 ′ ∈ 𝑠𝑢𝑝𝑝 (DB𝑦

Q𝑣 ,B
𝑛
Q𝑣). Each set of size 𝑘 + 1 contains 𝑘 + 1 sets of size 𝑘. Thus there are at

most (𝑘 + 1) · 𝑡 ≤ 𝑚 · 𝑡 sets of size 𝑘 for which B𝑦

Q𝑣
dictates that they cannot be 𝐺𝑣′ for any

𝑣 ′ ∈ 𝑠𝑢𝑝𝑝 (DB𝑦

Q𝑣 ,B
𝑛
Q𝑣).

Each of the remaining sets is not contained in any set from B𝑦

Q𝑣
and is contained in𝑚 − 𝑘 other

sets of size 𝑘 + 1. There are at least
(
𝑚
𝑘

)
−𝑚 · 𝑡 such sets. Next, for every two sets 𝑆1 and 𝑆2 that

are not contained in any set from B𝑦

Q𝑣
, we compare the probabilities of the events 𝑆1 = 𝐺𝑣′ and of

𝑆2 = 𝐺𝑣′ in a valuation 𝑣 ′ sampled from DB𝑦

Q𝑣 ,B
𝑛
Q𝑣 .

For a valuation 𝑣 ′ let F𝑣′ be the family of sets of size 𝑘 who are not contained in any of the sets
from B𝑣′ . Recall that all sets of size 𝑘 that are in F𝑣′ have the same ex-ante probability of being𝐺𝑣′ .

Consider some set 𝑆 of size 𝑘 . The probability that 𝑆 = 𝐺𝑣′ when the valuation 𝑣 ′ is sampled from
DB𝑦

Q𝑣 ,B
𝑛
Q𝑣 is 0 whenever B𝑦

Q𝑣
contains a superset of 𝑆 . Else, none of the supersets of 𝑆 is in B𝑦

Q𝑣
,

and by Lemma 5.6, if the number of its supersets that are in B𝑛Q𝑣
is ℓ then Pr

𝑣′∼DB𝑦

Q𝑣
,B𝑛Q𝑣

[𝑆 = 𝐺𝑣′] =

Pr
𝑣′∼DB𝑦

Q𝑣
,B𝑛Q𝑣

[𝑆 ∈ F𝑣′] · 1
| F𝑣′ | =

(
1 − 1

𝑚2

)𝑚−𝑘−ℓ
· 1
| F𝑣′ | .

For two sets 𝑆1 and 𝑆2 that are not contained in any set from B𝑦

Q𝑣
, let ℓ𝑖 be the number of sets in

B𝑛Q𝑣
that contain 𝑆𝑖 . We have that:

Pr
𝑣′∼DB𝑦

Q𝑣
,B𝑛Q𝑣

[𝑆1 = 𝐺𝑣′]

Pr
𝑣′∼DB𝑦

Q𝑣
,B𝑛Q𝑣

[𝑆2 = 𝐺𝑣′]
=

(
1 − 1

𝑚2

)𝑚−𝑘−ℓ1(
1 − 1

𝑚2

)𝑚−𝑘−ℓ2
=

1(
1 − 1

𝑚2

) (ℓ1−ℓ2) ≤ 2

where the last inequality uses the fact that since 0 ≤ ℓ1, ℓ2 ≤ 𝑚 − 𝑘 ≤ 𝑚, we have that ℓ1 − ℓ2 < 𝑚 and
thus the ratio is at most 1(

1− 1
𝑚2

)𝑚 , which approaches to 1 as𝑚 goes to infinity.

Assume by contradiction that for some 𝑆 we have that Pr
𝑣′∼DB𝑦

Q𝑣
,B𝑛Q𝑣

[𝑆 = 𝐺𝑣′] > 2
(𝑚𝑘)−𝑚 ·𝑡 , as the

ratio of probabilities for any two sets 𝑆1, 𝑆2 to be the 𝑘-optimal set is bounded by 2, the minimal
probability for each of the sets of size 𝑘 (of positive probability) to be the 𝑘-optimal set is at least

1
(𝑚𝑘)−𝑚 ·𝑡 . As there are at least

(
𝑚
𝑘

)
−𝑚 · 𝑡 sets with positive probability, summing the probabilities

over all of them exceeds 1, a contradiction. □

181

EC ’23, July 9–12, 2023, London, United Kingdom. Moshe Babaioff, Shahar Dobzinski, and Ron Kupfer

We have shown that when conditioning on B𝑦

Q𝑣
and B𝑛Q𝑣

the probability of a set being the good
set is low. To fully condition on Q𝑣 we also need to condition on KQ𝑣

. We show that even after
conditioning on KQ𝑣

the probability for finding 𝐺𝑣 is still small.

CLAIM C.5. For |KQ𝑣
| < 1.9𝑚 and a large enough𝑚, if for any set 𝑆 ′, Pr

𝑣′∼DB𝑦

Q𝑣
,B𝑛Q𝑣

[𝑆 ′ = 𝐺𝑣′] <
1

1.95𝑚 , then for any set 𝑆 , either 𝑆 ∈ Q𝑣 or Pr𝑣′∼DQ𝑣 [𝑆 = 𝐺𝑣′] < 2
1.95𝑚 . Moreover, Pr

𝑣′∼DB𝑦

Q𝑣
,B𝑛Q𝑣

[𝑆 ∈

KQ𝑣
] ≤ 2 |KQ𝑣 |

1.95𝑚 .

PROOF. We prove the claim by induction on 𝑟 = |KQ𝑣
|. For 𝑟 = 0 the claim trivially holds. Assume

the claim holds for any 𝑟 ′ < 𝑟 , we prove that it holds for 𝑟 .
For a set 𝑆 ∈ KQ𝑣

, let Q𝑆 = Q𝑣 \ {𝑆}. By the induction hypothesis, the probability that a set 𝑆 ∈ Q𝑣
is 𝐺𝑣′ for 𝑣 ′ sampled from D conditioned on the values of sets in Q𝑆 , is at most 2

1.95𝑚 .
By the induction hypothesis, since |Q𝑆 | = 𝑟 − 1, with probability at least 1 − 2(𝑟−1)

1.95𝑚 , none of the
sets in Q𝑆 is 𝐺𝑣 . Together, with probability at least 1 − 2𝑟

1.95𝑚 , none of the sets in Q𝑣 is 𝐺𝑣 .
Fix any set 𝑇 ∉ KQ𝑣

of size 𝑘. Let 𝐶 be the event that all sets in KQ𝑣
are not 𝑘-optimal (which

also determines their exact values). By Bayes’ theorem, conditioned on 𝐶 we have that

Pr
𝑣′∼DQ𝑣

[𝑇 = 𝐺𝑣′ |𝐶] = Pr
𝑣′∼DB𝑦

Q𝑣
,B𝑛Q𝑣

[𝑇 = 𝐺𝑣′ |𝐶] =
Pr
𝑣′∼DB𝑦

Q𝑣
,B𝑛Q𝑣

[𝑇 = 𝐺𝑣′]

Pr
𝑣′∼DB𝑦

Q𝑣
,B𝑛Q𝑣

[𝐶] <

1
1.95𝑚

1 − 2𝑟
1.95𝑚

<
2

1.95𝑚

where the last inequality holds for 𝑟 < 1.9𝑚 and a large enough𝑚.
□

For 𝑡 < 1.9𝑚 , 𝑘 = 𝑚
2 and a large enough 𝑚, by Claim C.4, we have that Pr𝑣′∼DQ𝑣 [𝑆 = 𝐺𝑣′] <

2
(𝑚𝑘)−𝑚𝑡

< 2
1.95𝑚 and the conditions of Claim C.5 hold.

Considering the set 𝑆 returned by the algorithm as a 𝑡 + 1’th query, the probability that either
𝐺𝑣 ∈ Q𝑣 or 𝑆 = 𝐺𝑣 is at most 2(𝑡+1)

1.95𝑚 with probability over D. For large enough 𝑚, we have that
2(𝑡+1)
1.95𝑚 < 𝑡

1.9𝑚 .
□

182

	Abstract
	1 Introduction
	2 Model and Preliminaries
	3 Algorithms for Maximization Subject to a Cardinality Constraint
	4 The Primitive Complexity of Bundle-Size Pricing
	5 Hardness of Maximization Subject to a Cardinality Constraint
	5.1 An Exponential Lower Bound for Submodular Valuations
	5.2 An (m) Deterministic Lower Bound for Additive Valuations
	5.3 Impossibilities for Additive Valuations using Value Queries

	References
	A Missing proofs from Section 3
	A.1 Proof of Theorem 3.1
	A.2 Proof of Theorem 3.2

	B Proof of Theorem 4.1
	C Lower Bounds
	C.1 Submodular Valuation (Proof of Theorem 5.1)

