
ar
X

iv
:2

30
5.

01
33

9v
1

 [
cs

.G
T

]
 2

 M
ay

 2
02

3

Guaranteeing Envy-Freeness under Generalized

Assignment Constraints

Siddharth Barman* Arindam Khan† Sudarshan Shyam‡ K. V. N. Sreenivas§

Abstract

We study fair division of goods under the broad class of generalized assignment constraints.
In this constraint framework, the sizes and values of the goods are agent-specific, and one
needs to allocate the goods among the agents fairly while further ensuring that each agent
receives a bundle of total size at most the corresponding budget of the agent. Since, in such
a constraint setting, it may not always be feasible to partition all the goods among the agents,
we conform—as in recent works—to the construct of charity to designate the set of unassigned
goods. For this allocation framework, we obtain existential and computational guarantees for
envy-free (appropriately defined) allocation of divisible and indivisible goods, respectively,
among agents with individual, additive valuations for the goods.

We deem allocations to be fair by evaluating envy only with respect to feasible subsets. In
particular, an allocation is said to be feasibly envy-free (FEF) iff each agent prefers its bundle
over every (budget) feasible subset within any other agent’s bundle (and within the charity).
The current work establishes that, for divisible goods, FEF allocations are guaranteed to exist
and can be computed efficiently under generalized assignment constraints. Note that, in the
presence of generalized assignment constraints, even the existence of such fair allocations of
divisible goods is nonobvious, a priori. Our existential and computational guarantee for FEF

allocations is built upon an incongruity property satisfied across a family of linear programs.
This novel proof template is interesting in its own right.

In the context of indivisible goods, FEF allocations do not necessarily exist, and hence,
we consider the fairness notion of feasible envy-freeness up to any good (FEFx). Under this
notion, an allocation of indivisible goods is declared to be fair iff for each pair of agents, a
and b, envy-freeness holds for agent a against every feasible and strict subset of b’s bundle;
a similar guarantee is required with respect to the charity. We show that, under generalized
assignment constraints, an FEFx allocation of indivisible goods always exists. In fact, our FEFx
result resolves open problems posed in prior works, which provide existence guarantees under
weaker fairness notions and more specialized constraints. Further, for indivisible goods and
under generalized assignment constraints, we provide a pseudo-polynomial time algorithm
for computing FEFx allocations, and a fully polynomial-time approximation scheme (FPTAS)
for computing approximate FEFx allocations.

1 Introduction

A significant body of research—at the interface of mathematical economics and computer science—
addresses fairness in resource allocation settings [Mou04, BCE+16]. This growing literature cap-
tures various real-world application domains, e.g., fair division of land [SGSH21], public housing

*Indian Institute of Science. barman@iisc.ac.in
†Indian Institute of Science. arindamkhan@iisc.ac.in
‡Aarhus University. shyam@cs.au.dk
§Indian Institute of Science. venkatanaga@iisc.ac.in

1

http://arxiv.org/abs/2305.01339v1

units [DSR13, BCIZ20], electricity [BLSH22], courses among students [BCKO17], and food dona-
tions [AAGW15]. The fair division literature is typically categorized based on the nature of the
underlying resources. In particular, resources that can be fractionally assigned (referred to as di-
visible goods) have been the focus of classic fair division results; see, e.g., [BT96] and [Var74]. The
complementary case of indivisible goods (which have to be integrally assigned) has received more
attention in recent years [AAB+22]. Note that divisible goods capture resources such as land and
processing time on machines, and indivisible ones provide a framework for discrete resources,
like housing units and inheritance.

While fairly allocating heterogeneous resources, divisible or indivisible, we are often required
to respect allocation constraints. Indeed, in many settings, not all allocations of the goods among
the participating agents are feasible. For instance, in the context of land division, a typical require-
ment is to assign each agent a single, connected plot [BT96]. Motivated by such considerations, a
budding thread of research in fair division focuses on fair allocations that further satisfy relevant
constraints; see [Suk21] for a survey on constraints in fair division. Contributing to this active
line of work, the current paper extends the reach of fair division guarantees to a broad class of
constraints, namely to generalized assignments constraints.

In the generalized assignment constraints framework, goods have agent-specific values and
sizes, and one needs to allocate the goods among the agents such that each agent receives a bundle
of total size at most the corresponding budget of the agent. Note that, in a constraint setting, it
may not always be feasible to partition all the goods among the agents. Hence, as in recent works
(see, e.g., [CKMS21, CGH19, WLG21]), we conform to the construct of charity to designate the set
of unassigned goods.

Under generalized assignment constraints, the problem of maximizing agents’ social welfare
(without fairness considerations) is referred to as the Generalized Assignment Problem (GAP).
This optimization problem has been extensively studied in combinatorial optimization, approx-
imation algorithms, and operations research [MT90]. GAP captures many prominent problems,
such as AdWords [MSVV07], display ads problem [FKM+09], the (multiple) knapsack problem
[CK05], and weighted bipartite matching [KMV94]. These instantiations highlight the encom-
passing nature of generalized assignment constraints and their significance in various application
domains; additional applications of GAP, in particular, are provided in the survey article [Önc07].

Complementing the utilitarian objective of GAP with a focus on fairness, we study the alloca-
tion of goods—divisible and indivisible, respectively—under generalized assignment constraints.
Our fairness guarantees are in terms of envy-freeness. Under this quintessential notion, an allo-
cation is deemed to be fair (envy-free) iff every agent values the bundle assigned to her over that
of any other agent. Note that, in the presence of agent-specific constraints, the bundle assigned
to an agent b might not be feasible for another agent a. Hence, for fair division under constraints,
it is not justified to evaluate envy by considering the value that agent a has for another agent b’s
entire bundle. Addressing this issue, prior works (see, e.g., [DFS21, WLG21]) adapt the notion
of envy-freeness (to settings with constraints) by evaluating envy only with respect to feasible
subsets.

Specifically, an allocation is said to be feasibly envy-free (FEF) iff each agent prefers its bundle
over every budget-feasible subset1 within any other agent’s bundle; a similar guarantee is required
with respect to the charity. The current work establishes that, for divisible goods, FEF allocations
are guaranteed to exist and can be computed efficiently under generalized assignment constraints
(Theorem 1). It is relevant to note that, before the current work, even the existence of FEF alloca-

1Here, in the context of divisible goods and for ease of exposition, we use the term subset (of goods) to denote
fractional assignments of the goods.

2

tions of divisible goods under generalized assignment constraints was not known. Indeed, FEF
is a refinement of envy-freeness and not a restriction. In particular, existence of FEF allocations is
not implied by the fact that, in the absence of constraints, envy-free allocations exist: In the un-
constrained setting, one can directly obtain an envy-free allocation of divisible goods by dividing
each good equally among the agents. However, such a uniform allocation might not be feasible in
the presence of generalized assignment constraints. Furthermore, in the unconstrained setting, al-
locations of divisible goods that maximize Nash welfare are known to be envy-free [Var74]. Even
this standard approach (i.e., maximizing Nash welfare subject to the constraints) fails to provide
FEF allocations of divisible goods under the current constraint setup; see Appendix D.

In the context of indivisible goods, FEF allocations do not necessarily exist,2 and hence, we
consider the fairness notion of feasible envy-freeness up to any good (FEFx). Under this notion,
an allocation of indivisible goods is declared to be fair iff for each pair of agents, a and b, envy-
freeness holds for agent a against every feasible and strict subset of b’s bundle; a similar guarantee
is required with respect to the charity. In other words, FEFx mandates that, for each pair of agents,
a and b, after the removal of any good g from agent b’s bundle, say Ab, envy-freeness holds for
agent a with respect to all feasible subsets S ⊆ Ab \{g}. We note that FEFx is a direct adaptation—
to the constraint setting—of envy-freeness up to any good (EFx). This notion has received signifi-
cant attention in recent works on fair division of indivisible goods, see, e.g., [CKMS21, CKM+19].
In particular, the existence of EFx allocations in the unconstrained setting (and notably without
charity) is a central open problem in discrete fair division [Pro20]. For indivisible goods, EFx pro-
vides a persuasive analog of envy-freeness. Similarly, FEFx renders a strong fairness guarantee in
constraint settings. To appreciate the high benchmark set by FEFx, note that if in an FEFx alloca-
tion, an agent b is assigned a good g which, by itself, is infeasible for agent a, then we must have
envy-freeness for a against every feasible subset within b’s bundle.

We show that, under generalized assignment constraints and with charity, an FEFx allocation
of indivisible goods always exists (Theorem 2). The existential guarantee obtained in the current
work strengthens the ones provided in [WLG21], [GLW21], and [BKSS22]. The strengthening here
is in the following two senses: (i) the prior works address fairness notions which are implied
by FEFx, and (ii) the works consider settings in which the size of each good is the same for all the
agents, though the budgets can be agent-specific. Notably, the obtained FEFx existential guarantee
(Theorem 2) positively resolves open problems posed in these prior works; see, e.g., Open Problem
7.2 in [Suk21].

Furthermore, we provide a pseudo-polynomial time algorithm for computing FEFx allocations
of indivisible goods under generalized assignment constraints (Theorem 3). Complementing this
algorithmic result, we show that, in the current context, computing an FEFx allocation is NP-
hard (Theorem 5 in Appendix C). Note that this hardness result for FEFx stands in contrast to the
known polynomial-time algorithms for weaker notions; see [WLG21] and [BKSS22]. Building on
the constructive proof of existence for FEFx allocations, we also provide a fully polynomial-time
approximation scheme (FPTAS) for computing approximate FEFx allocations (Theorem 4). These
algorithmic results for FEFx hold even under matroid constraints (see Remark 1 in Section 4.2).

Our Techniques and Additional Related Work. We obtain the universal existence and efficient
computation of FEF allocations of divisible goods by developing a property called density domina-
tion (Definition 4). At a high level, an allocation of divisible goods is said to satisfy this property

2Consider a single indivisible good and two identical agents, for whom the good has unit value and zero size. In
this fair division instance, no allocation (even the one in which the good it given to charity) is FEF.

3

iff the fractional assignment of each agent a is supported only on its top-τa most dense goods,3

for some threshold τa ∈ Z+. Furthermore, for each of the (τa − 1) most dense goods, the frac-
tional assignment of the good to agent a is at least as much as the good’s assignment to any other
agent. Also, each of these (τa − 1) goods need to be completely allocated among the agents, i.e.,
no fraction of such a good is left in the charity. Note that this property is defined with respect
to thresholds, τa, for each agent a. Moreover, for any given tuple of thresholds, one can write a
polynomially-large linear program to test whether there exists an allocation that upholds density
domination. This is in contrast to the FEF definition, which, in and of itself, does not admit such a
succinct verification. We prove that density domination implies envy-freeness (Lemma 2).

However, it is a priori nonobvious if there exists any allocation that satisfies density domina-
tion, i.e., whether there exist thresholds for which the above-mentioned linear program is feasible.
A key technical contribution of the work is to prove that, in fact, a density dominating allocation
necessarily exists and the corresponding thresholds can be computed efficiently. This gives us the
desired existential and the computational guarantee for FEF allocations, since density domination
implies FEF. Our proof of existence of density dominating allocations is based on a novel incon-
gruity property between the above-mentioned linear program and its relaxation (Lemma 4). Our
proof template is distinctive in its own right; in particular, it does not invoke a fixed-point theorem
or a parity argument.

Our FEFx guarantee is obtained by utilizing the idea of swapping minimally envied subsets
(Definition 7) from the charity. This iterative rule was used in [CKMS21] (albeit in the absence of
constraints) to find EFx allocations, with the overarching goal of bounding the size of the charity.
When executed in constraint settings, the method from [CKMS21] yields a pseudo-polynomial
time algorithm for computing FEFx allocations under generalized assignment constraints. Fur-
thermore, using the known FPTAS for the standard Knapsack problem, one obtains an FPTAS for
computing approximate FEFx allocations.

In discrete fair division, another interesting constraint class is obtained via requiring that the
bundle assigned to each agent is an independent set of a matroid; see [DFS21, BB18, KSV20]. As
mentioned previously, under matroid constraints and in the presence of charity, FEFx computation
continues to admit both a pseudo-polynomial time algorithm and an FPTAS.

2 Notation and Preliminaries

We study the problem of fairly allocating a set of m ∈ Z+ goods among a set of n ∈ Z+ agents
with individual budget constraints. Our work addresses the fair allocation of divisible goods and
indivisible goods, respectively. Recall that a divisible good is one that can be assigned fractionally
among the agents, whereas an indivisible good has to be integrally allocated.

The cardinal preference of each agent a ∈ [n], over the goods, is expressed via the valuation
function va(·). Specifically, we will write va(g) ∈ Q+ to denote the value of a good g ∈ [m] for
an agent a ∈ [n] and focus on settings in which that agents have additive valuations over the
goods. Furthermore, the agent-specific budget constraints are expressed in terms of sizes: write
sa(g) ∈ Q+ to denote the size of any good g ∈ [m] for each agent a ∈ [n]. Also, with each agent
a ∈ [n], we have an associated budget Ba ∈ Q+. Our work addresses generalized assignment
constraints, i.e., we address fair division while conforming to the constraint that each agent a ∈ [n]
is assigned goods with cumulative size (under sa(·)) at most Ba. Below we detail these constraints
for the case of indivisible and divisible goods, respectively. Also, via scaling and without loss of

3For an agent a, the density of a good g is defined as g’s value for a divided by its size for a.

4

generality, we assume that all the values and sizes are integral, va(g), sa(g) ∈ Z+, for all agents
a ∈ [n] and goods g ∈ [m].

For generalized assignment constraints, an important construct is that of goods’ densities. In

particular, we will write ρa(g) :=
va(g)
sa(g)

to denote the density of the good g ∈ [m] for agent a ∈ [n].

Throughout, an instance of the fair division problem, under generalized assignment con-
straints, will be specified as a tuple 〈[n], [m], {va(g)}a,g , {sa(g)}a,g , {Ba}a〉.

Indivisible Goods. In the context of indivisible goods, each agent a ∈ [n] is assigned a subset of
goods, Aa ⊆ [m], which we will refer to as the bundle assigned to agent a ∈ [n]. Recall that the
agents have additive valuations and, hence, agent a’s value for any subset of indivisible goods
S ⊆ [m] satisfies va(S) =

∑
g∈S va(g).

In the indivisible-goods setting, an allocation A = (A1, . . . , An) refers to an n-tuple of pairwise
disjoint subsets of the goods (i.e., Aa ∩ Ab = ∅ for a 6= b), wherein bundle Aa is assigned to agent
a.

For an agent a ∈ [n], a subset of goods S ⊆ [m] is said to be feasible iff the total size of S,
according to agent a, is at most a’s budget Ba, i.e., sa(S) =

∑
g∈S sa(g) ≤ Ba. Furthermore,

an allocation A = (A1, . . . , An) is said to be feasible iff for each agent a the assigned bundle,
Aa, is feasible, sa(Aa) =

∑
g∈Aa

sa(g) ≤ Ba, for all a ∈ [n]. Unless otherwise stated, all the
allocations that we encounter are feasible. Hence, for ease of exposition, we will directly use the
term allocation instead of feasible allocation.

Note that in a constrained fair division setting, it may not always be feasible to partition all
the indivisible goods among the agents. For instance, consider a fair division instance in which
the size of each good g with respect to any two agents, a and b, is the same (sa(g) = sb(g)), but the
combined budget of all the agents is strictly less than the total size of the m goods. In such settings,
under any feasible allocation, a subset of the goods must remain unassigned. Conforming to prior
works, we utilize the notion of charity of denote the set of unassigned goods. Formally, for any
allocation A = (A1, . . . , An), the set of goods given to the charity is denoted as CA = [m] \ ∪ni=1Ai.
When the allocation A is clear from context, we will drop the subscript and write C to denote the
set of goods in charity.

To simplify notation, for any subset of indivisible goods S ⊆ [m] and any good g ∈ [m], we
write S − g to denote S \ {g} and S + g to denote S ∪ {g}.

Divisible Goods. In the case of divisible goods, we will utilize m-dimensional vectors, xa =
(xa,1, xa,2, . . . , xa,m) ∈ [0, 1]m, to denote the fractional assignment of the goods to each agent a ∈
[n]; in particular, the gth component, xa,g ∈ [0, 1], denotes the fraction of the good g assigned
to agent a. Here, a (fractional) allocation x = (x1, . . . , xa, . . . , xn) ∈ [0, 1]n×m refers to a tuple of
assignment vectors (one for each agent) such that at most one unit of each good is assigned among
the agents, i.e.,

∑n
a=1 xa,g ≤ 1 for all goods g ∈ [m].

For any assignment vector y = (y1, y2, . . . , ym) ∈ [0, 1]m, agent a has value va(y) =
∑m

g=1 yg va(g)
and size sa(y) =

∑m
g=1 yg sa(g). In the divisible goods setting, an allocation x = (x1, . . . , xn) ∈

[0, 1]n×m is deemed to be feasible iff the fractional assignments uphold the budget constraints of
all the agents, i.e., sa(xa) ≤ Ba for all agents a ∈ [n]. Analogous to the indivisible goods setting,
we will use the construct of charity to denote the unassigned fractions of the goods. In particular,
for any allocation x = (x1, . . . , xn) ∈ [0, 1]n×m, write xcharity,g to denote the fraction of good g given
to charity, xcharity,g = 1−

∑n
a=1 xa,g .

In the divisible goods setting, for any good g and agent a, we continue to denote the density
as ρa(g) = va(g)/sa(g).

5

Vector operations. Since, in the divisible goods setting we denote an allocation by a tuple of m-
dimensional vectors, we will define some operations on vectors that will be useful. For any pair
of vectors u,w ∈ [0, 1]m, we write u ≤ w to denote that u is component-wise dominated by w, i.e.,
u ≤ w iff ui ≤ wi for all components i ∈ [m]. Note that, if u and w are binary vectors (i.e., are
characteristic vectors of subsets), then u ≤ w corresponds to subset containment.

In addition, for vectors u,w ∈ [0, 1]m, we will write w − u ∈ [0, 1]m to denote the vector whose
ith component is equal to max{0, wi − ui}, for all i ∈ [m]. Furthermore, w + u denotes the vector
whose ith component is equal to min{1, wi + ui}, for all i ∈ [m]. Indeed, if u and w are binary
(characteristic) vectors then the vector w − u corresponds to set difference and w + u to set union.
Furthermore, the vector w ∩ u is defined, component-wise, as min{wi, ui}, for all i ∈ [m].

The vector ei denotes the ith standard basis vector in Rm. For a vector u ∈ [0, 1]m, the support
supp(u) := {i ∈ [m] : ui > 0}. Hence, supp(u) denotes the subset of goods that are fractionally
assigned under vector u.

Fairness notions. Our work obtains universal existential guarantees for two central notions of
fairness: (i) envy-freeness (in the divisible goods setting) and (ii) envy-freeness up to any good (in
the indivisible goods context).

An allocation is said to be envy-free (EF) iff every agent a values the bundle assigned to her
at least as much as any other agent’s bundle. Classic results in fair division literature (see, e.g.,
[Var74]) show that, in the absence of constraints, an envy-free division of divisible goods is guar-
anteed to exist. The current work establishes that a universal existential guarantee holds even
under generalized assignment constraints, with a natural adaptation of envy-freeness (defined to
accommodate constraints).

Note that, in the presence of agent-specific constraints, the bundle assigned to an agent b might
not be feasible for another agent a. Hence, for fair division under constraints, it is not justified
to evaluate envy by considering the value that agent a has for another agent b’s entire bundle.
Addressing this issue, in particular, prior works (see, e.g., [DFS21]) adapt the notion of envy-
freeness (to settings with constraints) by evaluating envy only with respect to feasible subsets.
That is, an agent a is said to be envious of another agent b (or the charity) only if there exists
a subset—within b’s bundle (or within charity)—that is both feasible for a and has value more
than a’s bundle. An allocation wherein no such envy exists is said to be feasibly envy-free (FEF).
Formally,4

Definition 1 (FEF). In an allocation x = (x1, . . . , xn) ∈ [0, 1]n×m (of divisible goods), an agent a ∈ [n]
is said to be envy-free towards agent b ∈ [n] iff for all fractional assignments y ≤ xb, with the property
that sa(y) ≤ Ba, we have va(xa) ≥ va(y). Similarly, an agent a ∈ [n] is said to be envy-free towards the
charity iff for all y ≤ xcharity, with the property that sa(y) ≤ Ba, we have va(xa) ≥ va(y).

An allocation x = (x1, . . . , xn) ∈ [0, 1]n×m is said to be feasibly envy-free (FEF) iff every agent a ∈ [n]
is envy-free towards all other agents b ∈ [n] and the charity.

One can identify FEF allocations for indivisible goods by instantiating Definition 1 with binary
(characteristic) vectors. However, simple examples rule out the general existence of FEF alloca-
tions in the discrete fair division context. Indeed, even in the absence of constraints, envy-free allo-
cations of indivisible goods are not guaranteed to exist. Motivated, in part, by this consideration,
prior works in discrete fair division have considered multiple relaxations of envy-freeness; see
[AAB+22] for a survey. In this thread of work on discrete fair division, one of the most compelling

4Recall that for an allocation x = (x1, . . . , xa, . . . , xn), the vector xcharity ∈ [0, 1]m denotes the unassigned fractions
of all the goods, i.e., xcharity,g = 1−

∑n

a=1
xa,g , for all g ∈ [m].

6

analogs of envy-freeness is the notion of envy-freeness up to any good (EFx). Specifically, an allo-
cation A = (A1, . . . , An) (of indivisible goods) is said to be EFx iff for all pairs of agents a, b ∈ [n],
we have va(Aa) ≥ va(Ab − g) for all goods g ∈ Ab. In other words, allocation A = (A1, . . . , An)
is EFx iff, for each pair of agents a, b ∈ [n], agent a is not envious of any strict subset of agent b’s
bundle.

For generalized assignment constraints and with charity, we next define an adaptation of EFx
– namely feasibly envy-free up to any good (FEFx). Such an adaptation was considered in [DFS21]
for matroid constraints.

Definition 2 (FEFx). In an allocation A = (A1, . . . , An) of indivisible goods, an agent a ∈ [n] is said to
be FEFx towards an agent b ∈ [n] iff for every strict subset S (Ab, with the property that sa(S) ≤ Ba, we
have va(Aa) ≥ va(S). Similarly, an agent a ∈ [n] is said to be FEFx towards the charity C = [m]\∪ni=1Ai

iff, for every strict and feasible subset S (C , we have va(Aa) ≥ va(S).
An allocation A is said to be FEFx iff every agent a ∈ [n] is FEFx towards every agent b ∈ [n] and the

charity.

Note that, by definition, in an FEFx allocation A = (A1, . . . , An), for each pair of agents a, b ∈
[n] (with Ab 6= ∅), for any good g ∈ Ab and, subsequently, for every subset S ⊆ Ab − g, with the
property that sa(S) ≤ Ba, we have va(Aa) ≥ va(S). A similiar guarantee holds for every agent
a ∈ [n] and with respect to the charity.

3 FEF Allocations of Divisible Goods

This section develops a polynomial-time algorithm for finding FEF allocations of divisible goods
under generalized assignment constraints. The guaranteed success of the algorithm establishes
the universal existence of FEF allocations under these constraints.

Given any fair division instance, 〈[n], [m], {va(g)}a,g , {sa(g)}a,g , {Ba}a〉, for design and analysis
purposes, we will include a ‘fictional’ good m+ 1 with value va(m+ 1) = 0 and size sa(m+ 1) =
2nmaxb Bb, for all agents a ∈ [n]. The inclusion of this good, m+ 1, ensures, in particular, that we
can always work with allocations x = (x1, . . . , xn) ∈ [0, 1]n×(m+1) in which the budget constraint
of every agent holds with equality, i.e., sa(xa) = Ba.5

The inclusion of the (m+ 1)th good also implies that, in this section, the fractional assignment
to each agent a is denoted by an (m + 1)-dimensional vector xa = (xa,1, xa,2, . . . , xa,m, xa,m+1).
Here, xa,g denotes the fraction of the good g assigned to a. The following proposition notes that
the included good m+ 1 has no bearing on feasible envy-freeness (FEF).

Proposition 1. Let 〈[n], [m], {va(g)}a,g , {sa(g)}a,g , {Ba}a〉 be a fair division instance with generalized
assignment constraints and let x ∈ [0, 1]n×(m+1) be an FEF allocation in the constructed instance, with
m+1 goods. Then, setting xa,g = xa,g for all agents a ∈ [n] and all goods g ∈ [m] yields an FEF allocation
x ∈ [0, 1]n×m, for the underlying instance with m goods.

The proof of the proposition is deferred to Appendix A.

3.1 Density Domination implies Feasible Envy-Freeness

As mentioned previously, considering the densities of the goods provides important insights for
achieving envy-freeness under generalized assignment constraints. Recall that for any good g and

agent a, the density ρa(g) :=
va(g)
sa(g)

.

5One can obtain this equality by appropriately setting xa,m+1 ∈

[

0, 1

2n

]

.

7

In this subsection, we will define the density domination property (Definition 4) and prove
that any fractional allocation that satisfies this property is feasibly envy-free. The idea of density
domination and its connection to envy-freeness are novel contributions of this work.

To define density domination, we will consider, for each agent a ∈ [n], the density ordering
πa : [m + 1] 7→ [m + 1] across the goods. Specifically, πa(t) denotes the tth most dense good
according to ρa(·), for each index 1 ≤ t ≤ (m + 1). If two goods have the same density for a, we
break the ties according to the original indexing for goods. Note that the definition of the density
ordering πa ensures that, for each index 1 ≤ t ≤ m, exactly one of the following conditions hold

• ρa(πa(t)) > ρa(πa(t+ 1)).

• ρa(πa(t)) = ρa(πa(t+ 1)) and πa(t) < πa(t+ 1).

Also, for each agent a ∈ [n], we have πa(m+ 1) = m+ 1.
Next, we define sets that, for each agent a ∈ [n] and threshold τa ∈ Z+, denote the τa most

dense goods for agent a.

Definition 3 (Internal goods and Edge good). For any integer vector τ = (τ1, τ2, . . . , τn) ∈ Zn
+, with

‖τ‖∞ ≤ m + 2, and for any agent a ∈ [n], the set of internal goods, Ia(τ), is defined as the set of the
(τa − 1) most dense goods for agent a, i.e.,

Ia(τ) := {πa(1), πa(2), . . . , πa(τa − 1)}.

In addition, for agent a, the edge good set Ea(τ) is defined as

Ea(τ) :=

{
{πa(τa)} if τa ≤ m+ 1

∅ otherwise, if τa = m+ 2.

In addition, the sets I(τ) := ∪na=1Ia(τ) and E(τ) := ∪na=1Ea(τ) are called the set of internal and edge
goods, respectively.

Note that in this definition, τa = m+2 denotes that, for agent a ∈ [n], all the goods are internal
(Ia(τ) = [m + 1]) and the edge set is empty (Ea(τ) = ∅). Complementarily, if τa = 1, then the set
of internal goods, Ia(τ), is empty.

We are now ready to define the density domination property.6

Definition 4 (Density Domination). An allocation x = (x1, . . . , xn) is said to satisfy the density dom-
ination property iff there exists an integer vector τ̂ ∈ Zn

+ (with ‖τ̂‖∞ ≤ m + 2) such that for all agents
a, b ∈ [n] we have

xa,g ≥ xb,g for all goods g ∈ Ia(τ̂),∑

g∈Ia(τ̂)∪Ea(τ̂)

xa,g sa(g) = Ba, and

n∑

a=1

xa,g = 1 for all goods g ∈ I(τ̂).

6Recall that, by convention, we use the term allocation to refer to a feasible allocation, i.e., one that satisfies the
budget constraints of all the agents.

8

In this definition, the first set of inequalities assert that, if good g is internal to an agent a, then
the fraction of g assigned to a is at least as much as the good’s fractional assignment to any other
agent. The second equation requires that under the allocation x, for every agent a, the budget
constraint is satisfied with an equality. The final condition mandates that if a good g is internal to
any agent, then no fraction of g is left unassigned, i.e., it is entirely divided among all the agents
in allocation x.

It is also relevant to note that the first set of inequalities in the definition of density domination
ensure that, if a good g is internal to two agents a and b, then the fractions of g that a and b receive
must be exactly equal, xa,g = xb,g Further, we note that in an allocation that satisfies the density
domination property, each agent a is allocated fractions of only the top τ̂a densest goods according
to her, i.e., Ia(τ̂) ⊆ supp(xa) ⊆ Ia(τ̂) ∪ Ea(τ̂). This follows from the second set of constraints in
Definition 4. Hence, we also have sa(xa) = Ba.

We next establish a crucial result about density domination.

Lemma 2. Any allocation x = (x1, . . . , xn) that satisfies the density domination property is FEF.

Proof. To show that the given allocation x is FEF—i.e., it satisfies Definition 1—consider any two
agents a, b ∈ [n] and any fractional assignment y ≤ xb with the property that sa(y) ≤ Ba.

To prove that va(xa) ≥ va(y), we consider the fractional assignments (y − xa) ∈ [0, 1]m+1

and (xa − y) ∈ [0, 1]m+1; recall the vector operations detailed in Section 2. In addition, write
τ̂ = (τ̂1, . . . , τ̂n) to denote the integer vector that certifies the density domination of x. Note that
the density domination property implies that, for all internal goods g ∈ Ia(τ̂), we have xa,g ≥
xb,g ≥ yg. Using this inequality and the definition of Ia(τ̂), we obtain that all the goods in the set
supp(y − xa) =

{
g′ ∈ [m+ 1] : yg′ > xa,g′

}
have density at most ρa(πa(τ̂a)).

As mentioned previously, the density domination property also mandates that all the goods
in the set supp(xa) have density at least ρa(πa(τ̂a)). Since supp(xa − y) ⊆ supp(xa), the density of
every good in supp(xa − y) is at least ρa(πa(τ̂a)).

Note that xa = (xa − y) + (xa ∩ y) and y = (y − xa) + (xa ∩ y). These equations lead to the
following size bound

sa(xa − y) + sa(xa ∩ y) = sa(xa)

= Ba (via density domination)

≥ sa(y) (via feasibility of y)

= sa(y − xa) + sa(xa ∩ y).

The last inequality reduces to sa(xa − y) ≥ sa(y − xa). These observations establish that agent a
values its bundle at least as much as the fractional assignment y:

va(xa) = va(xa ∩ y) + va(xa − y)

≥ va(xa ∩ y) + ρa(πa(τ̂a)) sa(xa − y)

≥ va(xa ∩ y) + ρa(πa(τ̂a)) sa(y − xa)

≥ va(xa ∩ y) + va(y − xa)

= va(y).

Therefore, we get that, in the density dominating allocation x, every agent a ∈ [n] is envy-free
towards all other agents (see Definition 1).

We now prove that no agent envies the charity. Let xcharity,g denote the fraction of good g
allocated to the charity, i.e., xcharity,g = 1−

∑n
a=1 xa,g. Fix any agent a ∈ [n] and any good ĝ ∈ Ia(τ̂).

9

Note that the third set of equations in the density domination property (see Definition 4) implies
that, for all internal goods ĝ ∈ Ia(τ̂), we have xa,ĝ ≥ xcharity,ĝ = 0. Therefore, by arguments similar
to those above, we obtain that a does not envy the charity. The lemma stands proved.

It is relevant to note that Lemma 2 and Proposition 1 imply that from a density dominating al-
location x (and by removing the (m+1)th good from consideration), one obtains an FEF allocation
for the underlying instance.

3.2 FEF Algorithm

To capture the density domination property and develop our algorithm, we first define linear
programs, LP1(·), that are parameterized by integer vectors τ ∈ Zn

+.

Definition 5. Given any integer vector τ = (τ1, . . . , τn) ∈ Zn
+ (with ‖τ‖∞ ≤ m + 2), we define the

following linear program, LP1(τ), over decision variables {za,g ∈ [0, 1]}a,g :

za,g ≥ zb,g for all a, b ∈ [n] and g ∈ Ia(τ)∑

g∈Ia(τ)∪Ea(τ)

za,g sa(g) = Ba for all a ∈ [n]

n∑

a=1

za,g = 1 for all g ∈ I(τ)

za,h = 0 for all a ∈ [n] and h /∈ (Ia(τ) ∪ Ea(τ))
n∑

a=1

za,h ≤ 1 for all h ∈ [m+ 1] \ I(τ).

In addition to the requirements from density domination, the linear program LP1(τ) contains
a fourth and fifth set of constraints. These additional constraints ensure that the za,g-s induce an
allocation. Also, we note that, the fourth set of constraints are redundant in LP1(·), since they
follow from the second set of constraints. Nonetheless, the fourth set of constraints will become
relevant in the relaxation mentioned below.

Moreover, as stated in the following proposition, the feasibility of LP1(·) implies existence of
density dominating allocations; the proof of the proposition is direct and, hence, omitted.

Proposition 3. If for an integer vector τ ∈ Zn
+ the linear program LP1(τ) is feasible, then a feasible solu-

tion {za,g ∈ [0, 1]}a,g corresponds to an allocation z ∈ [0, 1]n×(m+1) that satisfies the density domination
property.

Note that, a priori, it is not clear that LP1(τ) is feasible for any integer vector τ ∈ Zn
+. However,

if there exists a τ that induces a feasible LP1(τ), then, by Proposition 3 and Lemma 2, we will
obtain the desired existential guarantee for FEF. The rest of the section is dedicated to showing
that such a τ indeed exists and, moreover, it can be computed in polynomial time.

As a first step, we formulate a new family of linear programs, LP2(τ) (again parameterized by
integer vectors), by relaxing the second set of constraints of LP1(τ), i.e., we relax the requirement
that for every agent the budget constraint holds with an equality.

10

Definition 6. Given any integer vector τ = (τ1, . . . , τn) ∈ Zn
+ (with ‖τ‖∞ ≤ m + 2), we define the

following linear program, LP2(τ), over decision variables {za,g ∈ [0, 1]}a,g :

(C1) za,g ≥ zb,g for all a, b ∈ [n] and g ∈ Ia(τ)

(C2)
∑

g∈Ia(τ)∪Ea(τ)

za,g sa(g) ≤ Ba for all a ∈ [n]

(C3)
n∑

a=1

za,g = 1 for all g ∈ I(τ)

(C4) za,h = 0 for all a ∈ [n] and h ∈ [m+ 1] \ (Ia(τ) ∪ Ea(τ))

(C5)

n∑

a=1

za,h ≤ 1 for all h ∈ [m+ 1] \ I(τ).

Now, we prove an important lemma of the section, which establishes an incongruity between
the linear programs.

Lemma 4. Let τ ∈ Zn
+ be an integer vector with ‖τ‖∞ ≤ m+ 1. If linear program LP2(τ) is feasible and

LP1(τ) is infeasible, then there exists an agent k ∈ [n] such that LP2(τ + ek) is feasible.

Proof. For vector τ ∈ Zn
+, given that the program LP2(τ) is feasible, we consider among its fea-

sible solutions one that maximizes
∑n

a=1 za,πa(τa). Write z∗ =
{
z∗a,g

}
a,g

to denote such a feasible

solution, i.e., among all feasible solutions (of LP2(τ)), the solution z∗ maximizes the fractional
assignment across the edge goods {πa(τa)}a.

In addition, consider an agent b for whom the budget constraint holds with a strict inequal-
ity, i.e., for whom

∑
g∈Ib(τ)∪Eb(τ)

z∗b,g sb(g) < Bb. Note that such an agent b necessarily exists,
otherwise LP1(τ) would be feasible. Write ĝ := πb(τb) to denote the edge good of agent b, i.e.,
Eb(τ) = { ĝ }. First, we claim that

n∑

a=1

z∗a,ĝ = 1 (1)

Say, towards a contradiction, that
∑n

a=1 z
∗
a,ĝ < 1. This strict inequality and the feasibility of z∗ im-

plies that ĝ is not an internal good for any agent, i.e., ĝ /∈ I(τ). Hence, ĝ does not participate in C1

(the first set of constraints) in LP2(τ). In such a case, we can increment z∗b,ĝ by a sufficiently small
ε > 0, while maintaining feasibility and, in particular, satisfying the budget constraint of agent b.
Such an update, however, increases the objective function

∑n
a=1 za,πa(τa) and, hence, contradicts

the fact that z∗ maximizes this objective function. Therefore, equation (1) holds for good ĝ.
Now, let N denote the set of agents that have received a nonzero fraction of good ĝ under z∗,

i.e., N := {a ∈ [n] : z∗a,ĝ > 0}. Equation (1) ensures that N 6= ∅. In addition, let M denote the set of
agents who have received the maximum fraction of ĝ, i.e., M := argmaxa z

∗
a,ĝ . Note that M ⊆ N .

Also, let Fe and Fi be the set of agents for whom ĝ is an edge good and internal good, re-
spectively, Fe := {a ∈ [n] : ĝ ∈ Ea(τ)} and Fi := {a ∈ [n] : ĝ ∈ Ia(τ)}. Indeed, the above-identified
agent b is necessarily contained in Fe, and it is possible that there exists an agent a ∈ Fe with
z∗a,ĝ = 0, i.e., we can have (Fe \N) 6= ∅. By contrast, the C1 constraints in LP2(τ) ensure that, for
every agent ℓ for whom ĝ is an internal good, it holds that z∗ℓ,ĝ = maxa∈[n] z

∗
a,ĝ > 0, i.e.,

Fi ⊆M ⊆ N (2)

11

We obtain another useful containment via the C4 constraints in LP2(τ): for z∗ and all agents a ∈ N ,
either ĝ ∈ Ea(τ) or ĝ ∈ Ia(τ). Hence,

N ⊆ Fi ∪ Fe (3)

Building on the above-mentioned observation, we will next show (in Claim 5 below) that the
two sets Fe and M must intersect; the claim essentially follows from the optimality of z∗. Using
this claim, we will then complete the proof of the lemma.

Claim 5. Fe ∩M 6= ∅.

Proof. Towards a contradiction, assume that Fe ∩M = ∅. Then, containments (2) and (3) lead to
the following equality M = Fi. This equality shows that Fi 6= ∅ and

z∗ℓ,ĝ > z∗p,ĝ for each ℓ ∈ Fi and any p /∈ Fi (4)

Relying on this strict inequality, we can select a sufficiently small, but positive, ε > 0 and update
z∗ to obtain another feasible solution z′ as follows: set z′ℓ,ĝ = z∗ℓ,ĝ −

ε
|Fi|

, for all agents ℓ ∈ Fi, and

z′b,ĝ = z∗b,ĝ + ε. For all other agent-good pairs, the fractional assignment in z′ is the same as in z∗.
We now show that the solution z′ is feasible for LP2(τ): recall that for agent b, under z∗, the

budget constraint was not tight. Hence, increasing z∗b,ĝ by a sufficiently small ε (as in z′) maintains
feasibility with respect to the C2 constraints. Good ĝ continues to be fully assigned among the
agents, since we have cumulatively reduced the fractional assignments of ĝ among the agents in
Fi by ε and increased the assignment to agent b by ε. Therefore, the C3 constraints continue to
hold for z′. Furthermore, the C4 and C5 constraints in LP2(τ) also hold for z′. Moreover, the strict
inequality (4) implies that there exists an appropriately small ε > 0 such that even after uniformly
decrementing z∗ℓ,ĝ, for agents ℓ ∈ Fi = M , the C1 constraints in LP2(τ) are maintained. Therefore,
z′ satisfies all the constraints in LP2(τ).

Note, however, that the objective function value
∑n

a=1 za,πa(τa) of z′ is strictly greater than that
of z∗; recall that πb(τb) = ĝ. This contradicts the optimality of z∗. Hence, by way of contradiction,
we obtain the stated claim, Fe ∩M 6= ∅.

We will now complete the proof of the lemma using Claim 5. In particular, we will show that,
for any agent k ∈ Fe ∩M , the program LP2(τ + ek) is feasible; in fact, z∗ itself is a feasible solution
for LP2(τ + ek).

Fix any agent k ∈ Fe ∩ M . Since k ∈ Fe, we have Ik(τ + ek) = Ik(τ) + ĝ. Additionally,
k ∈M = argmaxa z

∗
a,ĝ and, hence, solution z∗ satisfies the C1 constraints in LP2(τ + ek), for agent

k and other relevant agents as well. The C2 constraints in LP2(τ + ek) are the same as in LP2(τ),
hence, z∗ continues to be feasible with respect to these budget constraints. In addition, equation (1)
enforces the C3 constraints for good ĝ. The C3 constraints hold for all the other goods in I(τ + ek)
– this follows from the facts that I(τ + ek) = I(τ)∪{ĝ} and z∗ is a feasible solution with respect to
I(τ). Finally, using the containments that Ia(τ + ek) ∪Ea(τ + ek) ⊇ Ia(τ) ∪Ea(τ), for all agents a,
we obtain that the C4 and C5 constraints are satisfied by z∗ in LP2(τ + ek) as well.

Overall, we obtain that LP2(τ + ek) is feasible and the lemma stands proved.

The following lemma shows that LP2(·) cannot be incessantly feasible.

Lemma 6. For any integer vector τ ∈ Zn
+, with ‖τ‖∞ = m+ 2, the program LP2(τ) is infeasible.

12

Proof. Given that, for the given vector τ ∈ Zn
+, one of the components is equal to m+ 2, we have

that the good m+ 1 ∈ I(τ); see Definition 3.
Now, for LP2(τ) to be feasible, the good m+1 must be fully assigned among the agents; see the

C3 constraints in LP2(τ). However, since sa(m+ 1) = 2n maxb Bb, for all agents a ∈ [n], such an
assignment is not possible while maintaining the budget constraints C2 of the agents. The lemma
stands proved.

With Lemmas 2, 4 and 6 in hand, we now state our algorithm for computing FEF allocations
in polynomial time.

Algorithm 1 DIVISIBLEFEF

Input: Fair division instance 〈[n], [m], {va(g)}a,g , {sa(g)}a,g , {Ba}a〉 with divisible goods and gen-
eralized assignment constraints.
Output: An FEF allocation.

1: Initialize n-dimensional integer vector τ ← (1, 1, . . . , 1).
2: while LP1(τ) is infeasible do

3: Find k ∈ [n] such that LP2(τ + ek) is feasible. // Such an agent k always exists

(Lemma 4).

4: Update τ ← τ + ek.
5: end while

6: return Allocation x = (x1, x2, . . . , xn) corresponding to a feasible solution of LP1(τ).

Theorem 1. For any given fair division instance with divisible goods and generalized assignment con-
straints, DIVISIBLEFEF computes an FEF allocation in polynomial time.

Proof. For the initial integer vector τ = (1, . . . , 1), the linear program LP2(τ) is feasible. This
follows from the fact that, for this vector and all agents a ∈ [n], we have Ia(τ) = ∅. Hence, the
C1 and C3 constraints are satisfied vacuously. Now, by selecting the all-zeros solution, we can
satisfy all the remaining constraints. Hence, at the beginning of the while-loop in the algorithm,
the program LP2(τ) is feasible, and the algorithm maintains this feasibility as an invariant of the
loop.

In particular, at the beginning of each iteration of the while-loop, the programLP2(τ) is feasible
for the maintained vector τ . Now, if for the current τ , the program LP1(τ) is feasible, then we
return an allocation that is guaranteed to be FEF (Lemma 2 and Proposition 3). Otherwise, if
LP1(τ) is infeasible, then the loop executes and we update τ to τ + ek. Lemma 4 guarantees that
in the current case we successfully find a k ∈ [n] such that LP2(τ + ek) is feasible. Therefore, the
desired invariant—feasibility of LP2(·)—is maintained.

Finally, we note that the while-loop cannot iterate indefinitely. After at most n(m+1) iterations,
the maintained vector τ increments up to satisfy ‖τ‖∞ = m+ 2. However, by Lemma 6, we know
that for such a τ the program LP2(τ) is infeasible. These observations imply that the while-loop
necessarily terminates in O(nm) iterations and the algorithm returns an FEF allocation.

Since each iteration of the while-loop entails solving polynomially-large linear programs, the
runtime of the algorithm is polynomially bounded. The theorem stands proved.

4 Existence of FEFx Allocations

This section presents a constructive proof of existence of FEFx allocations under generalized as-
signment constraints. The proof relies on an algorithm (Algorithm 2) that continually finds a

13

minimal envied subset T (while one exists) in the charity and swaps T with the bundle of an agent
who envies it. We first define the concepts of envied set and minimal envied sets (Definition 7),
and, subsequently, use them in the algorithm.

As mentioned previously, in the case of generalized assignment constraints, a subset of indi-
visible goods S ⊆ [m] is said to be feasible for an agent a ∈ [n], iff sa(S) ≤ Ba.

Definition 7 (Envied and Minimal Envied Subsets). For an allocation A = (A1, . . . , An), we say that
a set of goods T ⊆ [m] is envied by an agent a ∈ [n] iff there exists a subset S ⊆ T that is feasible for agent
a and satisfies va(S) > va(Aa).

Further, for allocation A = (A1, . . . , An), a set of goods T ⊆ [m] is said to be a minimal envied set iff
the following conditions hold

• T is envied by some agent k ∈ [n].

• No strict subset T ′ (T is envied by any agent k′ ∈ [n].

Note that if a set T is envied (by some agent a ∈ [n]), then there necessarily exists T ′ ⊆ T that
is a minimal envied set.

The algorithm COMPUTEFEFX (Algorithm 2) is detailed next. We will show that it finds an
FEFx allocation in finite time. A finite-time termination guarantee for Algorithm 2 suffices for the
desired existential guarantee (Theorem 2). The time complexity of the algorithm for generalized
assignment constraints and pseudo-polynomial-time implementations of its steps are addressed
in Section 4.1.

Algorithm 2 COMPUTEFEFX

Input: Fair division instance 〈[n], [m], {va(g)}a,g , {sa(g)}a,g , {Ba}a〉 with indivisible goods and
generalized assignment constraints.
Output: An FEFx allocation.

1: Initialize allocation A = (A1, . . . , An) = (∅, . . . , ∅) and charity C = [m].
2: while the charity C is envied by any agent a ∈ [n] do

3: Select a minimal envied set T ⊆ C and let k be the agent that envies T .
4: Update bundle Ak ← T and charity C ← [m] \ (∪na=1Aa).
5: end while

6: return Allocation A.

For the purposes of analysis, write A(t) =
(
A

(t)
1 , A

(t)
2 , . . . , A

(t)
n

)
to denote the allocation main-

tained by Algorithm 2 just before the tth iteration of the while loop of Algorithm 2. In particular,
A(1) = (∅, . . . , ∅). Also, write C(t) to denote the set of goods in charity just before the tth iteration,

i.e., C(t) = [m] \
(
∪na=1A

(t)
a

)
.

Towards establishing that Algorithm 2 computes an FEFx allocation, we will first show that
for any maintained allocation A(t), the FEFx property is satisfied among the agents. Then, we
will show that when the algorithm ends, the FEFx property (in fact, the stronger FEF property)
is satisfied for every agent against the charity. The proofs of the following two lemmas are direct
and delegated to Appendix B.

Lemma 7. For each iteration count t ≥ 1, the maintained allocation A(t) =
(
A

(t)
1 , . . . , A

(t)
n

)
is feasible

and it upholds the FEFx criterion among all the agents: for each pair of agents a, b ∈ [n] (with A
(t)
b 6= ∅),

and every strict subset S (Ab, that is feasible for a, the following inequality holds va

(
A

(t)
a

)
≥ va(S).

14

The next lemma states that, in Algorithm 2, if and when the while-loop terminates, every agent
bears FEF against the charity.

Lemma 8. Let the while-loop of Algorithm 2 terminate with allocation A = (A1, . . . , An). Then, every
agent is FEF against the charity C = [m] \ (∪na=1Aa), i.e., for each agent a ∈ [n] and every feasible subset
S ⊆ C , we have va(Aa) ≥ va(S).

The main result of this section is established next.

Theorem 2. Any fair division instance of indivisible goods with generalized assignment constraints admits
an FEFx allocation.

Proof. In each iteration t > 1 of while-loop, the algorithm updates the allocation from A(t−1) =(
A

(t−1)
1 , . . . , A

(t−1)
n

)
to A(t) =

(
A

(t)
1 , . . . , A

(t)
n

)
. Note that, here, for some agent k ∈ [n], the value

of the assigned bundle strictly increases, vk

(
A

(t−1)
k

)
> vk

(
A

(t)
k

)
. This follows from the fact that

k receives a set
(
A

(t)
k = T

)
that it envies. Furthermore, the bundles of all agents a 6= k remain

unchanged. Therefore, the social welfare of the agents strictly increases in each iteration of COM-

PUTEFEFX:
∑n

a=1 va

(
A

(t)
a

)
>

∑n
a=1 va

(
A

(t−1)
a

)
.

Since the social welfare under the initial allocation is zero and the social welfare of any A(t)

cannot exceed
∑n

a=1 va([m]), we get that the loop terminates in finite time. Furthermore, Lemmas
7 and 8 imply that the returned allocation is indeed FEFx.

The guaranteed success of the algorithm establishes the existence of an FEFx allocation. The
theorem stands proved.

4.1 Pseudo-Polynomial Time Algorithm for Finding FEFx Allocations

This section shows that, for generalized assignment constraints, the steps in Algorithm 2 can be
implemented such that the algorithm executes in pseudo-polynomial time. Hence, under these
constraints, we obtain a pseudo-polynomial time algorithm for finding FEFx allocations.

Recall that in the classic Knapsack problem, we are given set of items—each with a weight
wt ∈ Q+ and a value vt ∈ Q+—along with a capacity W ∈ Q+. The objective here is to find a
maximum-valued subset of items with total weight at most W .

Indeed, the problem of determining whether an agent a ∈ [n] envies a set of goods T (see
Definition 7) corresponds to the Knapsack problem, in which the weights wt = sa(t) and values
vt = va(t), for all items t, along with the capacity W = Ba. We will write Kns(a, T) to denote the
solution (subset) obtained from such an instantiation of the Knapsack problem. That is, for any
agent a ∈ [n] and set of goods T ⊆ [m], write

Kns(a, T) := argmax
S⊆T :sa(S)≤Ba

va(S) (5)

It is well-known that the Knapsack problem admits a pseudo-polynomial time algorithm; see,
e.g., [KPP04]. Hence, for any agent a and any set of goods T , the subset Kns(a, T) can be computed
in time O(mBa). Alternatively, one can compute Kns(a, T) in time O(m va(T)).

Note that, under an allocation A = (A1, . . . , An), an agent a ∈ [n] envies set T ⊆ [m] iff
va(Kns(a, T)) > va(Aa). These observations imply that the execution condition of the while-loop
in Algorithm 2 can be implemented in time O(nmmaxaBa).

Next, we detail a subroutine (Algorithm 3) that provides a pseudo-polynomial implementation
of Line 3 of Algorithm 2. That is, the subroutine finds a minimal envied set within the charity.

15

Algorithm 3 FindMinimalEnviedSubset(C,A) – Under allocation A, find a minimal envied set
within the charity C and an envying agent k.

1: Initialize set of goods T = C and initialize k ∈ [n] to be an agent that envies C . // This

routine is called only when C is envied by some agent.

2: while there exists a good g′ ∈ T and agent a′ ∈ [n] such that va′(Kns(a
′, T − g′)) > va′(Aa′)

(i.e., a′ envies (T − g′)) do

3: Update T ← T − g′ and set agent k = a′.
4: end while

5: return (T, k)

Lemma 9. The subroutine FindMinimalEnviedSubset(C,A) correctly computes a minimal envied sub-
set of C , along with a corresponding envying agent k, and it executes in time O(poly(n,m)maxaBa).

The proof of Lemma 9 appears in Appendix B.1. Building up on the lemma, the following
theorem establishes that FEFx allocations can be computed in pseudo-polynomial time.

Theorem 3. For any given fair division instance 〈[m], [n], {va(g)}a,g , {sa(g)}a,g , {Ba}a〉with generalized
assignment constraints, we can compute an FEFx allocation in time

O

(
poly(n,m) max

a∈[n]
Ba max

a∈[n]
va([m])

)
.

Proof. We know that Algorithm 2 finds an FEFx allocation (Theorem 2). Hence, to complete the
proof of the theorem it remains to show that the algorithm admits a pseudo-polynomial time
implementation. Towards this, first, note that the execution condition of the while-loop (Line 2) in
Algorithm 2 can be evaluated in O(nmmaxaBa) time. Recall that testing if an agent a envies the
charity C corresponds to verifying whether the following strict inequality holds: va(Kns(a,C)) >
va(Aa).

Next, invoking subroutine FindMinimalEnviedSubset, we can execute Line 3 of Algorithm
2. Since the time complexity of this subroutine is O(poly(n,m)maxaBa) (Lemma 9), even this
line of Algorithm 2 runs in pseudo-polynomial time. Hence, each step of the algorithm can be
implemented in pseudo-polynomial time.

To complete the runtime analysis, we show that the algorithm iterates at mostnmaxa∈[n] va([m])
times. As observed in the proof of Theorem 2, the social welfare

∑n
a=1 va(Aa) strictly increases

in each iteration of Algorithm 2. Also, recall the assumption that the values and sizes are in-
tegral. Hence, in each iteration the welfare increases by at least 1. Given that the welfare is
upper bounded by nmaxa va([m]), we get that the algorithm iterates at most nmaxa∈[n] va([m])
times. The above-mentioned observations show that Algorithm 2 finds an FEFx allocation in time
O
(
poly(n,m)maxa∈[n]Bamaxa∈[n] va([m])

)
. This completes the proof of the theorem.

4.2 FPTAS for FEFx Allocations

This section shows that the pseudo-polynomial time algorithm—detailed in the Section 4.1—can
be altered to obtain a polynomial-time algorithm for computing approximate FEFx allocations. We
formally define the notion of approximate FEFx next.

Definition 8 ((1 − ε)-FEFx allocation). For parameter ε ∈ [0, 1), an allocation A = (A1, . . . , An) of
indivisible goods is said to be (1− ε)-FEFx iff the following two conditions hold

16

• For each pair of agents a, b ∈ [n], and every strict subset S (Ab, with the property that sa(S) ≤ Ba,
we have va(Aa) ≥ (1− ε)va(S).

• Similarly, for each agent a ∈ [n], and every strict subset S of the charity (i.e., S (C = [m] \
(∪ni=1Ai)), with the property that sa(S) ≤ Ba, we have va(Aa) ≥ (1− ε)va(S).

We next define the approximate counterparts of envied sets and minimal envied sets.

Definition 9. For parameter ε ∈ (0, 1] and allocation A = (A1, . . . , An), we say that a set of goods
T ⊆ [m] is (1 − ε)-envied by an agent a ∈ [n] iff there exists a subset S ⊆ T that is feasible for agent a
and satisfies (1− ε)va(S) > va(Aa).

Further, for allocation A, a set of goods T ⊆ [m] is said to be a (1 − ε)-minimal envied set iff the
following conditions hold

• T is
(
1− ε

2

)
-envied by some agent k ∈ [n], for whom T is feasible as well (i.e., sk(T) ≤ Bk).

• No strict subset T ′ (T is (1− ε)-envied by any agent k′ ∈ [n].

Note that, by definition, a minimal envied set T is feasible for some agent k. Also, the envy
requirements in the definition of a minimal envied set T are asymmetric; in particular, there exists
an agent that

(
1− ε

2

)
-envies T and no agent (1− ε)-envies any strict subset of T .

Recall that, for any agent a and set of goods T , we write Kns(a, T) to denote a maximum-
valued and feasible (according to a) subset S ⊆ T ; see equation (5). Also, under an allocation
A = (A1, . . . , An), an agent a envies a set T (see Definition 7) iff va(Kns(a, T)) > va(Aa).

To obtain an approximation guarantee for FEFx, we will utilize the known fully polynomial-
time approximation scheme (FPTAS) for the Knapsack problem; see, e.g., [KPP04]. Specifically, we
write ApxKns(a, T, ε) to denote a feasible subset (solution) obtained by running the FPTAS with in-
put set T , knapsack capacity Ba, and accuracy parameter ε > 0. Hence, the subset ApxKns(a, T, ε)
can be computed in time that is polynomial in 1

ε and the input size. In addition, for any ε ∈ (0, 1],
we have

va(Kns(a, T)) ≥ va(ApxKns(a, T, ε)) ≥ (1− ε)va(Kns(a, T)).

These inequalities directly imply the following proposition.

Proposition 10. For any allocation A = (A1, . . . , An), parameter ε ∈ (0, 1/2], agent a ∈ [n], and set
T ⊆ [m], if we have va(Aa) < (1 − ε) va(ApxKns(a, T, ε)), then the set T is (1 − ε)-envied by agent a.
Complementarily, the inequality va(Aa) ≥ (1− ε)va(ApxKns(a, T, ε)) implies that the agent a does not
(1− 2ε)-envy the set T .

We now present the algorithm (Algorithm 4) to compute approximate FEFx allocations. The
algorithm uses ApxMinEnvied (Algorithm 5) as a subroutine.

Lemma 11. Given any allocation A = (A1, . . . , An), any parameter ε ∈ (0, 1], and charity C = [m] \
(∪aAa), the subroutine ApxMinEnvied(C,A, ε) (Algorithm 5) correctly computes a (1−ε)-minimal envied
subset of C and a corresponding (1− ε/2)-envying agent k. The runtime of the subroutine is polynomial
in 1

ε and the input size.

Proof. We first establish the time complexity of the subroutine. As mentioned previously, for any
set of goods S, any agent a ∈ [n], and parameter ε ∈ (0, 1], the subset ApxKns(a, S, ε) is computed
via the standard FPTAS for the Knapsack problem. Hence, in the subroutine (Algorithm 5), the
initialization and the execution condition of the while-loop can be implemented in time that is

17

Algorithm 4 APXFEFX

Input: Fair division instance 〈[n], [m], {va(g)}a,g , {sa(g)}a,g , {Ba}a〉 with indivisible goods and
generalized assignment constraints along with a parameter ε ∈ (0, 1].
Output: A (1− ε)-FEFx allocation.

1: Initialize allocation A = (A1, . . . , An) = (∅, . . . , ∅) and charity C = [m].
2: while there exists an agent a ∈ [n] such that va(Aa) <

(
1− ε

2

)
va
(
ApxKns

(
a,C, ε2

))
do

3: (T, k) = ApxMinEnvied(C,A, ε).
4: Update bundle Ak = T and charity C = [m] \ (∪na=1Aa).
5: end while

6: return Allocation A = (A1, . . . , An).

Algorithm 5 ApxMinEnvied(C,A, ε) – Under allocation A, find a (1− ε)-minimal envied subset of
C and an associated (1− ε/2)-envying agent k.

1: Initialize set of goods T = C .
2: Initialize k ∈ [n] to some agent for whom vk(Ak) <

(
1− ε

2

)
vk
(
ApxKns

(
k, T, ε2

))
.

// This strict inequality holds for some agent k, whenever the subroutine is

called.

3: while there exists a good g′ ∈ T and agent a′ ∈ [n] such that
va′(Aa′) < (1− ε/2) va′(ApxKns(a

′, T − g′, ε/2)) do

4: Update T ← T − g′ and set agent k = a′.
5: end while

6: Update T ← ApxKns
(
k, T, ε2

)
.

7: return (T, k)

polynomial in 1/ε and the input size. Furthermore, note that the while-loop of the subroutine
iterates at most m times, since in each iteration the size of the maintained set T is decremented by
1. Therefore, as stated in the lemma, runtime of the subroutine is polynomial in 1

ε and the input
size.

Now, we establish the correctness of the subroutine. Throughout the execution of the while-
loop in the subroutine, the maintained set T and the corresponding agent k satisfy

vk(Ak) <
(
1−

ε

2

)
va

(
ApxKns

(
k, T,

ε

2

))
(6)

Indeed, this property is upheld by the selection criterion of the loop and the update in Line 4.
Hence, the while-loop terminates with a set T and an agent k that satisfy inequality (6). In Line 6
of Algorithm 5, we update T to be the subset ApxKns

(
k, T, ε2

)
. By definition of ApxKns, we get that

this update renders T to be a feasible set of k that additionally satisfies vk(Ak) <
(
1− ε

2

)
vk(T).

Hence, we obtain that, for returned set T , the corresponding agent k satisfies the first condition
in the definition of a (1− ε)-minimal envied set; see Definition 9.

Therefore, to prove that the returned set T is a (1 − ε)-minimal envied set, it remains to show
that there does not exist a strict subset T ′ (T and an agent k′ ∈ [n] such that T ′ is (1−ε)-envied by
k′ (see Definition 9). Here, the fact that the while-loop has terminated with set T implies that for
all agents a′ ∈ [n] and all goods g′ ∈ T we have va′(Aa′) ≥ (1− ε/2) va′(ApxKns(a

′, T − g′, ε/2)).
Now, using Proposition 10, we get that no agent (1− ε)-envies T − g′ for every g′ ∈ T . That is, no
agent (1−ε)-envies any strict subset of T . Line 6 in fact updates T to one of its subsets and, overall,
we get that the returned set T is a (1− ε)-minimal envied set. The lemma stands proved.

18

Now, we proceed to analyze the algorithm APXFEFX (Algorithm 4). Here, we write A(t) =(
A

(t)
1 , A

(t)
2 , . . . , A

(t)
n

)
to denote the allocation maintained by APXFEFX just before the tth iteration

of the while loop of Algorithm 4. In particular, A(1) = (∅, . . . , ∅).
We first note that the agents’ valuations increase multiplicatively as APXFEFX progresses.

Claim 12. Let k ∈ [n] be the agent whose bundle is updated in iteration t ≥ 1 of APXFEFX . Then, in the
tth iteration, agent k’s value increases by a multiplicative factor of 1

1−ε/2 :

vk

(
A

(t)
k

)
>

(
1

1− ε/2

)
vk

(
A

(t−1)
k

)
.

Proof. In Line 3 of APXFEFX we select a (1 − ε)-minimal envied set T and assign it to the cor-

responding agent k (i.e., set A
(t)
k = T). By definition of minimal envied sets, we have that T is

(
1− ε

2

)
-envied by agent k. Hence, vk

(
A

(t)
k

)
= vk(T) >

(
1

1−ε/2

)
vk

(
A

(t−1)
k

)
. This completes the

proof.

The next lemma provides a useful invariant maintained by APXFEFX .

Lemma 13. In Algorithm 4 (APXFEFX), for each iteration count t ≥ 1, the maintained allocation A(t) =(
A

(t)
1 , . . . , A

(t)
n

)
is feasible and it upholds the (1− ε)-FEFx criterion among all the agents: for each pair

of agents a, b ∈ [n] (with A
(t)
b 6= ∅), and every strict subset S (Ab, that is feasible for a, the following

inequality holds va

(
A

(t)
a

)
≥ (1− ε)va(S).

Proof. We provide an inductive proof of the lemma. For the base case, note that the (1− ε)-FEFx
property trivially holds among all the agents before the first iteration, since the initial allocation
A(1) = (∅, . . . , ∅). Also, note that this allocation is feasible.

For the induction step, consider any iteration count t > 1. By the induction hypothesis, we
know that the allocationA(t−1) is feasible and it bears the (1− ε)-FEFx property among the agents.
In addition, note that in the tth iteration, the bundle of exactly one agent gets changed - let that

agent be k ∈ [n]. That is, we have A
(t)
k = T and the bundles of all other agents remain unchanged.

Lemma 11 implies that, in the iteration, the selected set T (see Line 3 of Algorithm 4) is a (1 − ε)-
minimal envied set, with corresponding agent k. By definition of minimal envied sets, we get that
T is feasible for k and, hence, the feasibility of the allocation A(t) follows.

We will next complete the induction step by showing that, in the updated allocation A(t) and
for each agent a ∈ [n], the (1− ε)-FEFx property holds with respect to all other agents b ∈ [n].
Note that for any pair of agents a, b ∈ [n] one of the following cases apply.
Case 1: Agent a 6= k and agent b = k. Here, we use the fact that the set T selected in Line 3 is a
(1 − ε)-minimal envied set; see Lemma 11. Hence, by definition of minimal envied sets, we get

that agent a does not (1 − ε)-envy any strict subset of A
(t)
b = T . Considering Definitions 9 and 8,

we get that, in this case, a is (1− ε)-FEFx towards agent b = k.
Case 2: Agent a = k and agent b 6= k. In this case, by the induction hypothesis, for every strict

subset S (A
(t−1)
b = A

(t)
b , we have

(1− ε)va(S) ≤ va

(
A(t−1)

a

)

< va

(
A(t)

a

)
(via Claim 12)

19

Hence, in this case as well the desired (1− ε)-FEFx guarantee holds.

Case 3: Agent a 6= k and agent b 6= k. In this case, A
(t−1)
a = A

(t)
a and A

(t−1)
b = A

(t)
b . Hence, by the

induction hypothesis, agent a bears (1− ε)-FEFx towards b.
This exhaustive case analysis completes the proof of the lemma.

The lemma below states that, in Algorithm 4, if and when the while-loop terminates, every
agent bears (1− ε)-FEFx against the charity.

Lemma 14. Let the while-loop of APXFEFX (Algorithm 4) terminate with allocation A = (A1, . . . , An).
Then, every agent is (1− ε)-FEFx against the charity C = [m] \ (∪na=1Aa); in particular, for each agent
a ∈ [n] and every feasible subset S ⊆ C , we have va(Aa) ≥ (1− ε)va(S).

Proof. The termination condition of the while-loop in APXFEFX ensures that, with respect to the
allocation A and for all a ∈ [n], we have va(Aa) ≥

(
1− ε

2

)
va
(
ApxKns

(
a,C, ε

2

))
. Using Proposition

10, we get that no agent (1 − ε)-envies the charity. Therefore, every agent is (1− ε)-FEFx against
the charity C ; see Definitions 9 and 8. The lemma stands proved.

We now establish the main result of this section.

Theorem 4. Given any fair division instance 〈[m], [n], {va(g)}a,g , {sa(g)}a,g , {Ba}a〉 with generalized
assignment constraints and parameter ε ∈ (0, 1), APXFEFX (Algorithm 4) computes a (1− ε)-FEFx
allocation in time polynomial in 1

ε and the input size.

Proof. Lemmas 13 and 14 show that APXFEFX computes a (1− ε)-FEFx allocation.
It remains to bound the runtime of the algorithm. Towards this, note that, when the bundle of

any agent a gets updated for the first time (i.e., gets updated from the initialized empty bundle),
the agent receives a value of at least ming va(g). Subsequently, in any iteration in which agent
a’s bundle is updated, a’s value strictly increases by a factor of δ := 1

1−ε/2 (Claim 12). Hence,

for any agent a, the number of iterations in which its bundle gets updated is upper-bounded by

logδ

(
va([m])

ming va(g)

)
+ 1. Summing over all the agents, we obtain that the total number of iterations in

APXFEFX is upper bounded by a polynomial in 1
ε and the input size (in particular, the bit complex-

ity of the values). Recall that the subset ApxKns(·) can be computed via an FPTAS for the Knapsack
problem and ApxMinEnvied takes time polynomial in 1

ε and the input size (see Lemma 11). Com-
bining these arguments, we obtain the stated bound on the time complexity of APXFEFX . This
completes the proof of the theorem.

Remark 1. As mentioned previously, discrete fair division under matroid constraints entails assigning
each agent a ∈ [n] a bundle Aa that is independent with respect to a matroid Ma = ([m],Ia). Recall
that, for any matroid, one can find, in polynomial-time, an independent set with maximum possible value
[Sch03]. That is, the matroid-analog of Kns(a, T) (see equation (5)) can be computed in polynomial time.
Hence, COMPUTEFEFX can be used to design a pseudo-polynomial time algorithm to find FEFx allocations
even under matroid constraints.

Similarly, APXFEFX can be slightly modified to obtain an FPTAS for computing FEFx allocations
under matroid constraints.

5 Conclusion and Future Work

We obtain strong fairness guarantees under generalized assignment constraints. We establish that,
under the assignment constraints, feasibly envy-free allocations of divisible goods always exist

20

and can be computed efficiently. Our proof template for this result is interesting in its own right.
Furthermore, in the context of indivisible goods and for the assignment constraints, we obtain
universal existence of allocations that are feasibly envy-free up to any good. The constructive
proof here extends to a pseudo-polynomial time algorithm and an FPTAS.

Given the positive result for FEF allocations, it would be interesting to establish an analog
of Weller’s theorem [Wel85], i.e., to show that, under generalized assignment constraints, there
always exists an FEF allocation of divisible goods that is also Pareto efficient (among all feasi-
ble allocations). Studying polyhedral constraints—as a generalization of the assignment ones—is
another interesting direction of work.

Under generalized assignment constraints, the computation of FEFx allocations of indivisible
goods is NP-hard. However, under matroid constraints, the polynomial-time tractability of FEFx
allocations remains an interesting, open question.

References

[AAB+22] Georgios Amanatidis, Haris Aziz, Georgios Birmpas, Aris Filos-Ratsikas, Bo Li, Hervé
Moulin, Alexandros A Voudouris, and Xiaowei Wu. Fair division of indivisible goods:
A survey. arXiv preprint arXiv:2208.08782, 2022.

[AAGW15] Martin Damyanov Aleksandrov, Haris Aziz, Serge Gaspers, and Toby Walsh. Online
fair division: Analysing a food bank problem. In Twenty-Fourth International Joint
Conference on Artificial Intelligence, 2015.

[BB18] Arpita Biswas and Siddharth Barman. Fair division under cardinality constraints. In
IJCAI, pages 91–97, 2018.

[BCE+16] Felix Brandt, Vincent Conitzer, Ulle Endriss, Jérôme Lang, and Ariel D. Procaccia.
Handbook of Computational Social Choice. Cambridge University Press, 2016.

[BCIZ20] Nawal Benabbou, Mithun Chakraborty, Ayumi Igarashi, and Yair Zick. Finding fair
and efficient allocations when valuations don’t add up. In International Symposium on
Algorithmic Game Theory, pages 32–46. Springer, 2020.

[BCKO17] Eric Budish, Gérard P. Cachon, Judd B. Kessler, and Abraham Othman. Course match:
A large-scale implementation of approximate competitive equilibrium from equal in-
comes for combinatorial allocation. Oper. Res., 65:314–336, 2017.

[BKSS22] Siddharth Barman, Arindam Khan, Sudarshan Shyam, and K. V. N. Sreenivas. Find-
ing fair allocations under budget constraints. arXiv preprint arXiv:2208.08168, 2022.

[BLSH22] Dinesh Kumar Baghel, Vadim E Levit, and Erel Segal-Halevi. Fair division algorithms
for electricity distribution. arXiv preprint arXiv:2205.14531, 2022.

[BT96] Steven J Brams and Alan D Taylor. Fair Division: From cake-cutting to dispute resolution.
Cambridge University Press, 1996.

[CGH19] Ioannis Caragiannis, Nick Gravin, and Xin Huang. Envy-freeness up to any item
with high nash welfare: The virtue of donating items. In Proceedings of the 2019 ACM
Conference on Economics and Computation, pages 527–545, 2019.

21

[CK05] Chandra Chekuri and Sanjeev Khanna. A polynomial time approximation scheme for
the multiple knapsack problem. SIAM Journal on Computing, 35(3):713–728, 2005.

[CKM+19] Ioannis Caragiannis, David Kurokawa, Hervé Moulin, Ariel D Procaccia, Nisarg
Shah, and Junxing Wang. The unreasonable fairness of maximum nash welfare. ACM
Transactions on Economics and Computation (TEAC), 7(3):1–32, 2019.

[CKMS21] Bhaskar Ray Chaudhury, Telikepalli Kavitha, Kurt Mehlhorn, and Alkmini Sgouritsa.
A little charity guarantees almost envy-freeness. SIAM Journal on Computing,
50(4):1336–1358, 2021.

[DFS21] Amitay Dror, Michal Feldman, and Erel Segal-Halevi. On fair division under hetero-
geneous matroid constraints. In Thirty-Fifth AAAI Conference on Artificial Intelligence
(AAAI), pages 5312–5320, 2021.

[DSR13] Yongheng Deng, Tien Foo Sing, and Chaoqun Ren. The story of singapore’s public
housing: From a nation of home-seekers to a nation of homeowners. In The future of
public housing, pages 103–121. Springer, 2013.

[FKM+09] Jon Feldman, Nitish Korula, Vahab Mirrokni, Shanmugavelayutham Muthukrishnan,
and Martin Pál. Online ad assignment with free disposal. In International workshop on
internet and network economics, pages 374–385. Springer, 2009.

[GLW21] Jiarui Gan, Bo Li, and Xiaowei Wu. Approximately envy-free budget-feasible alloca-
tion. arXiv preprint arXiv:2106.14446, 2021.

[KMV94] Samir Khuller, Stephen G Mitchell, and Vijay V Vazirani. On-line algorithms for
weighted bipartite matching and stable marriages. Theoretical Computer Science,
127(2):255–267, 1994.

[KPP04] Hans Kellerer, Ulrich Pferschy, and David Pisinger. Knapsack Problems. 01 2004.

[KSV20] Maria Kyropoulou, Warut Suksompong, and Alexandros A Voudouris. Almost envy-
freeness in group resource allocation. Theoretical Computer Science, 841:110–123, 2020.

[Mou04] Hervé Moulin. Fair division and collective welfare. MIT press, 2004.

[MSVV07] Aranyak Mehta, Amin Saberi, Umesh Vazirani, and Vijay Vazirani. Adwords and
generalized online matching. Journal of the ACM (JACM), 54(5):22–es, 2007.

[MT90] Silvano Martello and Paolo Toth. Knapsack problems: algorithms and computer implemen-
tations. John Wiley & Sons, 1990.

[Önc07] Temel Öncan. A survey of the generalized assignment problem and its applications.
INFOR: Information Systems and Operational Research, 45(3):123–141, 2007.

[Pro20] Ariel D Procaccia. Technical perspective: An answer to fair division’s most enigmatic
question. Communications of the ACM, 63(4):118–118, 2020.

[Sch03] Alexander Schrijver. Combinatorial Optimization: Polyhedra and Efficiency, volume B. 01
2003.

[SGSH21] Itay Shtechman, Rica Gonen, and Erel Segal-Halevi. Fair cake-cutting algorithms with
real land-value data. Autonomous Agents and Multi-Agent Systems, 35(2):1–28, 2021.

22

[Suk21] Warut Suksompong. Constraints in fair division. ACM SIGecom Exchanges, 19(2):46–
61, 2021.

[Var74] Hal Varian. Equity, envy, and efficiency. Journal of Economic Theory, 9(1):63–91, 1974.

[Wel85] Dietrich Weller. Fair division of a measurable space. Journal of Mathematical Economics,
14(1):5–17, 1985.

[WLG21] Xiaowei Wu, Bo Li, and Jiarui Gan. Budget-feasible maximum nash social welfare
is almost envy-free. In The 30th International Joint Conference on Artificial Intelligence
(IJCAI 2021), pages 1–16, 2021.

23

A Missing Proof from Section 3

We restate and prove Proposition 1 here.

Proposition 1. Let 〈[n], [m], {va(g)}a,g , {sa(g)}a,g , {Ba}a〉 be a fair division instance with generalized
assignment constraints and let x ∈ [0, 1]n×(m+1) be an FEF allocation in the constructed instance, with
m+1 goods. Then, setting xa,g = xa,g for all agents a ∈ [n] and all goods g ∈ [m] yields an FEF allocation
x ∈ [0, 1]n×m, for the underlying instance with m goods.

Proof. The allocation x = (x1, . . . , xn) is obtained from x = (x1, . . . , xn) by removing the (fictional)
good m+1 from consideration. Recall that the good m+1 has zero value for all the agents. Hence,
for all agents a ∈ [n], the value under the two allocations remains unchanged, va(xa) = va(xa).

Furthermore, we will show that Definition 1 holds for allocation x, i.e., x is an FEF allocation
in the underling instance. Towards this, fix an agent a ∈ [n]. Now, consider any relevant (feasible)
fractional assignment y ∈ [0, 1]m considered for a in the definition; in particular, y ≤ xb, for some
agent b, or y ≤ xcharity. Extend y to obtain the fractional assignment y ∈ [0, 1]m+1 as follows: set
yg = yg, for all g ∈ [m], along with ym+1 = 0. Note that fractional assignment y ∈ [0, 1](m+1) is

considered when applying Definition 1 for allocation x ∈ [0, 1]n×(m+1) and the fact that x is FEF

implies va(xa) ≥ va(y). Therefore, va(xa) = va(xa) ≥ va(y) = va(y). Since this inequality holds for
all agents and relevant fractional assignments y ∈ [0, 1]m, we obtain that x is an FEF allocation.

B Missing Proofs from Section 4

This section restates and proves Lemmas 7 and 8.

Lemma 7. For each iteration count t ≥ 1, the maintained allocation A(t) =
(
A

(t)
1 , . . . , A

(t)
n

)
is feasible

and it upholds the FEFx criterion among all the agents: for each pair of agents a, b ∈ [n] (with A
(t)
b 6= ∅),

and every strict subset S (Ab, that is feasible for a, the following inequality holds va

(
A

(t)
a

)
≥ va(S).

Proof. The lemma directly follows from an inductive argument. For the base case, note that just
before the first iteration, the FEFx property trivially holds among all the agents, since we start with
A(1) = (∅, . . . , ∅). Also, note that this allocation is feasible.

For the induction step, consider any iteration count t > 1. By the induction hypothesis, we
know that the allocation A(t−1) is feasible and it bears the FEFx property among the agents. In
addition, note that in the tth iteration, the bundle of exactly one agent gets changed - let that agent
be k ∈ [n]. In this iteration, the selected set T (see Line 3) is a minimal envied set and is envied
by agent k. Here, the minimality of T ensures that it is a feasible set for agent k (see Definition 7).

Hence, setting A
(t)
k = T , and keeping the bundles of all other agents unchanged, yields a feasible

allocation A(t).
We will next complete the induction step by showing that, in the updated allocation A(t) and

for each agent a ∈ [n], the FEFx property holds with respect to all other agents b ∈ [n]. Note that
for any pair of agents a, b ∈ [n] one of the following cases apply.
Case 1: Agent a 6= k and agent b = k. Here, we use the fact that the set T selected in Line 3 is a
minimal envied set. Assume, towards a contradiction, that, in the updated allocation, agent a is

not FEFx towards agent b = k. That is, there exists a strict subset S (A
(t)
b = T , that is feasible for

a and it satisfies va(S) > va(Aa). This, however, contradicts the minimality of T , since it admits a
strict subset (namely, S) that is envied (by agent a). Hence, in the current case, a is FEFx towards
agent b = k.

24

Case 2: Agent a = k and agent b 6= k. An important property of Algorithm 2 is that whenever

the bundle of an agent a = k gets updated in an iteration, its value strictly increases, va

(
A

(t)
a

)
>

va

(
A

(t−1)
a

)
. This follows from the fact that in Line 3, we select a set T which is envied by a = k

and, hence, has strictly higher value than A
(t−1)
a , under valuation va; see Definition 7. Then, we

swap A
(t−1)
a with T . Using this observation and the induction hypothesis, we have va

(
A

(t)
a

)
>

va

(
A

(t−1)
a

)
≥ va(S), for every strict and feasible subset S ⊆ A

(t−1)
b = A

(t)
b . That is, in this case as

well the desired FEFx guarantee holds.

Case 3: Agent a 6= k and agent b 6= k. In this case, A
(t−1)
a = A

(t)
a and A

(t−1)
b = A

(t)
b . Hence, by the

induction hypothesis, agent a bears FEFx towards b.
This exhaustive case analysis completes the proof of the lemma.

Lemma 8. Let the while-loop of Algorithm 2 terminate with allocation A = (A1, . . . , An). Then, every
agent is FEF against the charity C = [m] \ (∪na=1Aa), i.e., for each agent a ∈ [n] and every feasible subset
S ⊆ C , we have va(Aa) ≥ va(S).

Proof. The execution condition of the while loop ensures that the loop terminates only when no
agent a ∈ [n] envies the charity C . That is, for every feasible subset S ⊆ C we have va(Aa) ≥ va(S).
Hence, the stated FEF guarantee holds for all agents a ∈ [n]. This completes the proof.

B.1 Missing Proof from Section 4.1

Here, we provide a proof of Lemma 9.

Lemma 9. The subroutine FindMinimalEnviedSubset(C,A) correctly computes a minimal envied sub-
set of C , along with a corresponding envying agent k, and it executes in time O(poly(n,m)maxaBa).

Proof. We first establish the time complexity of the subroutine FindMinimalEnviedSubset. Re-
call that, for any agent a and set of goods T , the subset Kns(a, T) can be computed in time
O(mBa). Hence, the execution condition of the while-loop in the subroutine can be evaluated
in O(nm2maxaBa) time. In addition, note that, in each iteration of its while-loop, the subrou-
tine decrements the size of the maintained set T . Hence, FindMinimalEnviedSubset iterates at
most O(m) times. Therefore, as stated in the lemma, the time complexity of the subroutine is
O(poly(n,m)maxaBa).

To complete the proof of the lemma, we show that the returned set is a minimal envied set
for the associated agent. Note that throughout the execution of the while-loop in the subroutine,
the maintained set T is envied by the corresponding agent k – this invariant is maintained by
update rule (Line 3) and selection criterion of the loop. Hence, to prove that the returned set T is
a minimal envied set, we need to further show that there does not exist a strict subset T ′ (T and
an agent k′ ∈ [n] such that k′ envies T ′; see Definition 7. However, if such a strict subset T ′ (T
exists, then we have a good g′ ∈ T such that T − g′ ⊇ T ′ is envied by k′. This would contradict
that fact that the while-loop terminated with set T in hand. Therefore, the set T returned by the
subroutine is a minimal envied set and the corresponding envying agent is k. The lemma stands
proved.

C Computational Hardness of FEFx Allocations

This section establishes that finding any FEFx allocation under generalized assignment constraints
is NP-Hard.

25

Theorem 5. Given a fair division instance 〈[n], [m], {va(g)}a,g , {sa(g)}a,g, {Ba}a〉 with generalized as-
signment constraints, computing an FEFx allocation is NP-Hard.

C.1 Proof of Theorem 5

We provide a polynomial-time reduction from the well-known Knapsack problem to that of find-
ing an FEFx allocation under generalized assignment constraints. This Cook reduction establishes
the theorem.

Recall that in the Knapsack problem, we are given a set of items, [m], and a knapsack of
capacity W ∈ Q+. Each item j ∈ [m] has a weight wj ∈ Q+ and a value vj ∈ Q+. The ob-
jective here is to find a maximum-valued subset of items with total weight at most W . Write
I =

〈
[m], {wi}i∈[m], {vi}i∈[m],W

〉
to denote a knapsack instance and let Opt(I) denote an optimal

solution of the instance, i.e., Opt(I) denotes a maximum-valued subset of weight at most W . Also,
let v∗(I) denote the optimal value, v∗(I) =

∑
j∈Opt(I) vj .

Towards a Cook reduction, we will show that an algorithm for finding FEFx allocations can
be used as a subroutine to compute, in polynomial time, the optimal value v∗(I) for any given
Knapsack instance I . Here, let FINDFEFX denote an algorithm that finds an (arbitrary) FEFx

allocation for any given fair division instance with generalized assignment constraints.
Given a Knapsack instance I =

〈
[m], {wi}i∈[m], {vi}i∈[m],W

〉
, we assume, without loss of gen-

erality, that the values of all the items, vj-s, are even integers; otherwise, we can scale the values to
be integers and then multiply each by 2. This assumption ensures that, for the Knapsack instance
at hand, the optimal value is an even integer.

To solve the Knapsack problem with instance I =
〈
[m], {wi}i∈[m], {vi}i∈[m],W

〉
, we will con-

struct fair division instances F(µ), parameterized by nonnegative integers µ, and consisting of
(m + 2) goods and one agent (i.e., n = 1). We set the budget of the agent B1 = W and define the
sizes and the values of the (m+ 2) goods for the agent as follows

v1(g) =

vg if g ∈ [m]

2µ + 1 if g = m+ 1

0 if g = m+ 2

s1(g) =

wg if g ∈ [m]

W if g = m+ 1

(W + 1) if g = m+ 2

Note that, for any nonnegative integer µ, in the constructed fair division instance the (m+1)th

good has an odd value (2µ + 1) for the agent. Also, the (m + 2)th good is infeasible for the agent:
s1(m+ 2) = W + 1 > B1.

The following lemma will be used in the analysis of the reduction.

Lemma 15. For any nonnegative integer µ and constructed fair division instance F(µ), let A1(µ) be
the bundle assigned to the agent in an FEFx allocation returned by FINDFEFX. Then, for all integers

µ ≤ v∗(I)
2 − 1, the value v1(A1(µ)) is even. On the other hand, for all µ ≥ v∗(I)

2 , the value v1(A1(µ)) is
odd.

Proof. As mentioned previously, the good (m+ 2) cannot be assigned to the agent by FINDFEFX,
since s1(m + 2) = W + 1 > W = B1. That is, the good m + 2 will always be in the charity
C(µ) := [m+ 2] \ A1(µ). Hence, for the returned allocation to be FEFx (see Definition 2), we must
have

v1(A1(µ)) ≥ v1(S) for any feasible subset S ⊆ C(µ) \ {m+ 2} (7)

26

Recall that, by definition, a set S is feasible iff s1(S) ≤ B1 = W . Also, note that the good m+1 has
size s1(m+ 1) = W = B1 and, hence, if this good is assigned to the agent by FINDFEFX, then it is
the only assigned good and all the remaining goods are in charity.

Now, we consider the two specified ranges for the nonnegative integer parameter µ.

Case 1: µ ≤ v∗(I)/2 − 1. Here, in any FEFx allocation, the good m + 1 cannot be assigned to the
agent. Otherwise, it must be the case that Opt(I) ⊆ C(µ) \ {m + 2}. This would contradict (7),
since we would have a strict, feasible subset S (C(µ) (namely, S = Opt(I)) which the agent
envies: v1(A1(µ)) = v1(m+ 1) = 2µ+ 1 < 2µ+ 2 ≤ v∗(I).

Hence, we must have A1(µ) ⊆ [m]. Now, given that the value of each of the first m items is
even, we obtain that the value v1(A1(µ)) is even.

Case 2: µ ≥ v∗(I)/2. In this case, in any FEFx allocation, the good m + 1 must be allocated to the
agent. Otherwise, {m+ 1} (C(µ) which implies that there exists a strict subset in C(µ) (namely
the singleton set {m+ 1}) which the agent envies: v1(A1(µ)) ≤ v∗(I) ≤ 2µ < 2µ + 1 = v1(m+ 1).
This is again a contradiction of (7). Hence, it must be the case that A1(µ) = {m + 1} and, hence,
the value v1(A1(µ)) is odd.

This completes the proof of the lemma.

Using Lemma 15, we infer that for µ ∈ {0, 1, . . . , v∗(I)/2− 1}, the value v1(A1(µ)) is even, and

for µ ∈
{
v∗(I)/2, . . . ,

∑
j∈[m] vj

}
, the value v1(A1(µ)) is odd. Therefore, via a binary search and,

hence, in time O
(
log

(∑
j∈[m] vj

))
, we can find the smallest value of µ for which v1(A1(µ)) is odd.

Write µ∗ to denote this value; the runtime guarantee of the binary search ensures that µ∗ can be
computed in time that is polynomial in the bit complexity of the Knapsack instance I .

Lemma 15 implies that, for the given Knapsack instance, the optimal value v∗(I) = 2µ∗.
Hence, using the FINDFEFX algorithm as a subroutine, we can solve the Knapsack problem in
polynomial-time. That is, we have a polynomial-time reduction from the NP-hard Knapsack prob-
lem to that of finding FEFx allocations. The theorem stands proved.

D Maximum Nash Welfare does not imply Feasible Envy-Freeness

The Nash social welfare of a given allocation is defined as the geometric mean of the agents’ val-
uations of their respective bundles. Results in the fair division literature highlight the objective
of maximizing the Nash social welfare as a means to achieve fairness [CKM+19, Var74]. This ap-
proach, however, does not work in constrained settings. In particular, via an example below, we
show that maximizing Nash social welfare over feasible fractional assignments does not necessar-
ily achieve feasible envy-freeness.

Consider a fair division instance with two agents {1, 2} and two goods {1, 2}. The agents have
equal budgets B1 = B2 = 1. The sizes and values for the two goods are specified in Figure 1; the
left table lists the values and the sizes for the first agent, and the right table is for the second agent.

Good Value Size

1 1 1

2 0.5 1

Good Value Size

1 1 1

2 0.5 8

Figure 1: The left table contains the values and sizes of the two goods, respectively, for agent 1.
The right table lists these quantities for agent 2.

27

Write x∗ = (x∗1, x
∗
2) to denote the allocation with the following fractional assignments, x∗1 =

(1/30, 29/30) and x∗2 = (29/30, 1/240). That is, agent 1 gets 1/30th fraction of good 1 and 29/30th

of good 2, whereas agent 2 receives 29/30th of good 1 and 1/240th of good 2. Note that x∗ = (x∗1, x
∗
2)

is a feasible allocation: s1(x
∗
1) = 1/30 + 29/30 = 1 and s2(x

∗
2) = 29/30 + 8/240 = 1.

We will show that allocation x∗ maximizes Nash social welfare among all feasible allocations
(Claim 16). At the same time, x∗ is not FEF (Claim 17). The two claims will establish the stated
non-implication.

Claim 16. The allocation x∗ has the maximum Nash Social Welfare among all fractional, feasible alloca-
tions.

Proof. Consider an arbitrary, feasible allocation x = (x1, x2), in which xa,g denotes the fraction of
the good g ∈ {1, 2} allocated to agent a ∈ {1, 2}. Also, let parameter δ := 1/8. Since allocation x is
feasible for the given instance, it must satisfy the linear inequalities K1 to K5 stated below:

(K1) x1,1 + x1,2 ≤ 1 (budget constraint of agent 1)

(K2) x2,1 +
1

δ
x2,2 ≤ 1 (budget constraint of agent 2)

(K3) x1,1 + x2,1 ≤ 1 (at most unit fraction of good 1 allocated to the agents)

(K4) x1,2 + x2,2 ≤ 1 (at most unit fraction of good 2 allocated to the agents)

(K5) x1,1, x1,2, x2,1, x2,2 ∈ [0, 1].

Under allocation x, the product of the agents’ values (i.e., square of the Nash welfare) is equal
to (x1,1 + 0.5x1,2)(x2,1 + 0.5x2,2). We upper bound this quantity as follows

(x1,1 + 0.5x1,2)(x2,1 + 0.5x2,2) ≤ (x1,1 + 0.5x1,2)

(
x2,1 +

δ

2
(1− x2,1)

)
(via (K2))

= (x1,1 + 0.5x1,2)

(
δ

2
+ (1− δ/2)x2,1

)

≤
1

2
(1 + x1,1)

(
δ

2
+ (1− δ/2)x2,1

)
(via (K1))

≤
1

2
(1 + x1,1)

(
δ

2
+ (1− δ/2)(1 − x1,1)

)
(via (K3))

Define function f(y) := (1 + y)(δ/2 + (1− δ/2)(1 − y)). Considering the derivative f ′(y) = δ/2 −
(2− δ)y, one can show that the function f(y) is maximized in [0, 1] at y = δ

2(2−δ) .

Hence, we define x1,1 = δ
2(2−δ) , x1,2 = (1− x1,1), x2,1 = (1− x1,1), x2,2 = δ(1 − x2,1). With this

instantiation, all the inequalities (K1) to (K3) become equalities and (K4) along with (K5) are not
violated. Furthermore, these choices of fractional assignments insure that all the inequalities in the
above-mentioned upper bound hold with equality. That is, under this instantiation, the product
of agents’ values achieves the upper bound, which is also maximized (via the choice of x1,1).

Therefore, this instantiation provides a feasible allocation with maximum Nash social welfare.
Substituting back δ = 1/8, we obtain x1,1 = 1/30, x1,2 = 29/30, x2,1 = 29/30, x2,2 = 1/240. These
fractional assignments are exactly the same as in allocation x∗ and, hence, x∗ is a Nash optimal
allocation. The claim stands proved.

28

Claim 17. The allocation x∗ is not feasibly envy-free (FEF).

Proof. Agent 1 envies agent 2 in allocation x∗ = (x∗1, x
∗
2). Note that, x∗2 is a feasible fractional

assignment for agent 1, since s1(x
∗
2) = 29/30 + 1/240 < 1 = B1. Furthermore, agent 1’s value for

the two bundles satisfy: v1(x
∗
1) = 1/30+(1/2)(29/30) = 31/60 and v1(x

∗
2) = 29/30+(1/2)(1/240) =

465/480. Hence, v1(x
∗
1) < v1(x

∗
2), which shows that agent 1 envies agent 2. This completes the

proof.

Claim 16 and 17 establish that a Nash social welfare maximizing allocation need not be feasibly
envy-free.

29

	1 Introduction
	2 Notation and Preliminaries
	3 FEF Allocations of Divisible Goods
	3.1 Density Domination implies Feasible Envy-Freeness
	3.2 FEF Algorithm

	4 Existence of FEFx Allocations
	4.1 Pseudo-Polynomial Time Algorithm for Finding FEFx Allocations
	4.2 FPTAS for FEFx Allocations

	5 Conclusion and Future Work
	A Missing Proof from Section 3
	B Missing Proofs from Section 4
	B.1 Missing Proof from Section 4.1

	C Computational Hardness of FEFx Allocations
	C.1 Proof of Theorem 5

	D Maximum Nash Welfare does not imply Feasible Envy-Freeness

