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Order-optimal Correlated Rounding for Fulfilling
Multi-item E-commerce Orders

Will Ma
Graduate School of Business, Columbia University, New York, NY 10027, wm2428@gsb.columbia.edu

We study a parsimonious correlated rounding problem motivated by e-commerce fulfill-
ment. In this problem, we are given a multi-item order of size q; for each item i= 1, . . . , q,
we are given the probability uki with which it must be shipped from each Fulfillment Center
(FC) k = 1, . . . ,K, with

∑K

k=1 uki = 1. The goal is to randomly select a FC to ship each
item following these marginal probabilities uki (motivated by trying to satisfy long-run
inventory flow), in a way that not many distinct FC’s end up being used (motivated by
reducing the number of boxes that need to be shipped). In particular, the objective is to
use each FC with probability at most α · yk, where yk :=maxi=1,...,q uki is a lower bound on
the probability with which FC k must be used, and α≥ 1 is the guarantee to be made as
small as possible.

This problem was originally introduced in Jasin and Sinha (2015), who present a round-
ing scheme that guarantees α ≈ q/4 given any q marginal distributions. Our main result
is a rounding scheme that guarantees α = ln(q) + 1, significantly improving the order-
dependence on q from linear to logarithmic. We present another rounding scheme for sparse
networks, that guarantees α = d if each item is stored in at most d FC’s. We show these
guarantees to be tight in terms of the dependence on q or d. Our schemes are simple and
fast, based on two intuitive ideas—items wait for FC’s to “open” following Poisson clocks,
and observe them on “dilated” time scales. The first idea positively correlates the FC’s
selected by items so that not many FC’s are used; the second idea ensures that the marginal
probability constraints are satisfied.

Interestingly, our main result implies a simple new correlated rounding scheme for the
Set Cover randomized rounding problem. Given a fractional set cover, it outputs an integral
cover in which each set is selected with probability at most ln(q) + 1 times its fractional
weight. This improves the constant term from existing rounding schemes for Set Cover,
which select each set with probability at least ln(q)+ω(1) times its fractional weight.

Returning to the e-commerce application, it has been shown in Jasin and Sinha (2015)
that results for this correlated rounding problem have direct implications for a dynamic
fulfillment problem in which different multi-item orders arrive over time and there are inven-
tory constraints. We numerically test our rounding schemes under the dynamic fulfillment
setups from Jasin and Sinha (2015) and find that they improve runtimes, shorten code, and
robustly improve performance. We make our code publicly available.
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1. Introduction

E-commerce has exploded in recent times, achieving unbelievable global scale, delivery speed,

and system complexity. The short-term operations of a typical e-commerce giant involves pulling

inventory from suppliers into its fulfillment centers (FC’s), including retail stores that can also be

used to fulfill online orders; awaiting purchases from online customers, which can be influenced

by a powerful search/recommendation engine; and finally delivering the goods to the customer’s

doorstep, through a flexible transportation system that allows different FC’s in the network to be

used for fulfilling demand from any particular region.

This paper focuses on the final part of these operations, which is the problem of dynamically

dispatching incoming customer orders to FC’s, while treating this customer demand (as influenced

by search/recommendation) and inventory replenishment as exogenous. The decision is on how to

dynamically allocate finite inventories, of multiple items each of which has been placed in multiple

FC’s, over a finite time horizon, representing the duration until the next inventory replenishment.

The objective is to minimize the total costs from fulfillment and inventory stockouts.

This dynamic fulfillment problem is challenging for several reasons. First, decisions must be

made with consideration of the future orders to come, since depleting inventories at the wrong

places can set off a chain reaction of long-distance and split shipments, as originally demon-

strated by Xu et al. (2009). Moreover, due to the uncertainty in future orders, forward-lookingness

requires a high-dimensional stochastic dynamic program that is intractable to solve, as noted by

Acimovic and Farias (2019). Finally, the mere scale and speed of the problem restricts us to fast and

simple heuristics, with more elaborate optimizations exacerbating the issue of system complexity.

In light of these challenges, a prevailing approach to the dynamic fulfillment problem is

deterministic-relaxation-based, as pioneered by Jasin and Sinha (2015). Namely, a linear program

(LP) that views the system as deterministic is written, describing inventory levels of every item at

every FC, and expected demands at different regions which includes information about items fre-

quently purchased together in the same order. The objective captures fixed shipping costs (mostly
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dependent on the number of distinct FC’s used to fulfill an order), variable shipping costs (depen-

dent on items and distances), and shortage costs (dependent on penalties paid for orders not

fulfilled). The LP is then solved, providing a “master plan” of matching supply to demand, which

prescribes for different orders from different regions, how frequently each FC should be used to ful-

fill each item in that order. As orders come in real-time, Jasin and Sinha (2015) randomly dispatch

the items to FC’s, making sure to follow the fulfillment frequencies outlined in the LP’s plan.

Although seemingly uninformed, this randomized fulfillment approach is simple, fast, and highly

parallelizable as it does not require real-time inventory information across the network once the

LP solution is given. Under large system scales, it also pays variable shipping and shortage costs

similar to what is outlined in the LP. However, fixed costs remain a challenge—the problem of

covering all the items in an order using a small number of distinct FC’s was already difficult, and the

LP’s fulfillment frequencies now impose additional constraints. Moreover, it has been shown that

fixed costs, capturing the number of boxes from different origins shipped, constitute the majority

of e-commerce fulfillment costs (Xu et al. 2009, Jasin and Sinha 2015), so this presents a major

issue. The seminal insight, due to Jasin and Sinha (2015), is that these frequencies are actually

helpful—when using them to randomly assign an FC to each item, if positive correlation is induced

in the assignments across items, then many items end up assigned to the same FC and not many

distinct FC’s are used. The authors derive an intricate method for inducing this correlation.

Despite its significance and impact on subsequent work (e.g. Lei et al. 2018, 2021, Zhao et al.

2020), to the best of our knowledge, the correlation method of Jasin and Sinha (2015) has never

been substantially improved, until now. This paper derives a new correlation method that is intu-

itively simpler, computationally faster, and achieves tight performance in two different regimes.

1.1. Correlated Rounding Problem of Jasin and Sinha (2015)

Consider a single order (from a particular region at a particular time) consisting of q items. For

each item in the order, denoted using i ∈ {1, . . . , q}, we are told the fraction of time uki that it

must be fulfilled from each FC k ∈ {1, . . . ,K}. Every item must be fulfilled, so
∑

k uki = 1 for all i.
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We must randomly choose an FC for each item i according to these probabilities uki, and an FC

is used if any item is assigned to it (meaning we would ship a box out of that FC).

Intuitively, the goal is to not use many distinct FC’s. This is formalized as no FC being used with

a probability greater than necessary. Specifically, for each FC k, it has to used with probability at

least uki to fulfill any item i, and hence yk :=maxi uki is a lower bound on its probability of being

used. A method that randomly assigns every item i to an FC following its marginal probability

vector (uki)
K
k=1 is called a rounding scheme, and the rounding scheme is said to be α-competitive

if it uses every FC k with probability at most α · yk, for some α≥ 1. Here, α is referred to as the

guarantee of the rounding scheme, which is ideally as small as possible.

A naive rounding scheme is to independently draw an FC for each item. However, such a random

outcome likely uses many distinct FC’s, causing FC’s to be used more frequently than necessary,

and Jasin and Sinha (2015) show that the guarantee of the independent rounding scheme can be as

bad as α= q on a q-item order. Jasin and Sinha (2015) derive an improved rounding scheme that

correlates positively the FC’s drawn across items, so that the random outcome uses fewer distinct

FC’s. They establish that given any q marginal distributions over FC’s, this correlated rounding

scheme is ≈ q/4-competitive, improving the guarantee of the naive rounding by a factor of 4.

In this paper we derive two new correlated rounding schemes. The first is (1+ln(q))-competitive,

completely improving the earlier guarantees in terms of order-dependence on q—from linear to log-

arithmic. The second is d-competitive, where d is a sparsity parameter that describes the maximum

number of options that any item has in terms of where to be fulfilled, i.e. d=maxi |{k : uki > 0}|.

Both of these guarantees are tight for the correlated rounding problem, as we will show.

Implications for dynamic fulfillment. Our rounding schemes are directly applicable to the

original dynamic fulfillment problem via the approach of Jasin and Sinha (2015). Indeed, each

incoming order can be separately and randomly dispatched, using our choice of rounding scheme.

The results of Jasin and Sinha (2015) then imply that in the dynamic fulfillment problem, the

total cost paid is asymptotically at most β times the optimum, where β is a constant that depends
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on the average value of min{1+ ln(q), d} across orders (different orders have different sizes q and

sparsity parameters d, and we can choose the rounding scheme with the better guarantee between

1 + ln(q) and d for each incoming order). As a special case, if the largest order has size q, then

the guarantee is 1 + ln(q), matching computational hardness results for the dynamic fulfillment

problem even when there is a single order. Further details can be found in Section 5.

We note, however, that reducing everything down to the correlated rounding subroutine is not

the only approach to dynamic fulfillment. Indeed, the correlated rounding problem imposes fre-

quency constraints on every order (that every item i in every order is assigned to each FC k with

marginal probability exactly uki), with the rationale being that the variable shipping and inventory

shortage costs become relatively inconsequential under large system scales; unfortunately, this can

be restrictive compared to some alternative approaches, as summarized in Acimovic and Farias

(2019). Nonetheless, this simple and fast approach performs well numerically in realistic setups,

as shown in Jasin and Sinha (2015). In Section 6, we show using the same setups that our new

rounding schemes robustly bolster the performance of the randomized fulfillment approach, while

shortening code and runtimes. Our code is made publicly available.

1.2. Main Idea behind New Rounding Schemes and Analysis

Another benefit of our rounding schemes is that they have a simple intuition—each FC draws a

random “opening time”, and each item is assigned to the first FC that it sees open under its own,

item-specific “time dilation”. We now describe in detail our two rounding schemes and analysis.

Recall that we are trying to induce positive correlation in the FC’s assigned across items. To do

this, we imagine a process where each FC is initially closed, and opens at a random time. Items

are assigned to the first FC that they see open. Importantly, each item i views the openings of

FC’s on its own dilated time scale, calibrated so that the probability of it seeing any FC k open

first is exactly uki. Because an FC opening early means that it will be seen first by more (but not

necessarily all) items, this induces positive correlation in the FC’s assigned across different items.

To make this precise, for each FC k, we draw its opening time Ek independently from an Expo-

nential distribution with mean 1/yk, where yk := maxi uki. We then define the dilated time scale
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for an item i as: it sees each FC k open at time yk
uki

Ek, which we note is no earlier than Ek, since

yk
uki
≥ 1. (If uki = 0, then yk

uki
Ek =∞, and item i never sees FC k open.) The dilated opening times

yk
uki

Ek are Exponentially distributed with means yk
uki
· 1
yk

= 1
uki

, and independent across k. Through

the lens of Poisson processes, it is easy to see that the probability of each FC k arriving first into

the view of item i is exactly uki
u1i+···+uKi

= uki, as desired.

The Poisson lens also helps us upper-bound the probability of an FC k getting used at all.

Indeed, since an FC k can only be seen at times later than Ek, it can only get used if it arrives

when at least one item is still waiting, an event whose probability is exponentially decaying over

time. Unfortunately, random variable Ek is correlated with the latter event, making the analysis

complicated. To fix this, we instead consider a related process where FC k is “repeatedly opening”

following a Poisson process of rate yk, which allows us to exploit the memoryless property and

take an elementary integral to show that the probability of FC k opening is at most (1+ ln(q))yk,

completing our sketch of why our first rounding scheme is (1+ ln(q))-competitive.

To motivate our second rounding scheme, we note that the preceding analysis is poor when q is

enormous, because for a long time at least one item will still be waiting, during which FC openings

will result in usage. Therefore, we consider a modified scheme where each FC k is “forced open” at

time 1/yk, even if Ek > 1/yk. For each item i, it will see each FC k forced open at time yk
uki
· 1
yk

= 1
uki

.

Therefore, item i will get “force-assigned” by time 1
maxk uki

, and all items will be force-assigned by

time α := 1
mini maxk uki

, regardless of how many items there are. Moreover, if d is an upper bound on

|{k : uki > 0}|, then maxk uki ≥ 1/d for all i, and hence α≤ d. The fact that all items are assigned

by time d w.p. 1 allows us to show that no FC gets used with probability more than dyk.

However, these forced openings cause each item i to be over-fulfilled from the FC m(i) that it

would first see forced open. Therefore, we make a second modification where for each item i, if the

over-fulfilled FC m(i) were to “naturally” open (i.e. Em(i) < 1/ym(i)), then it is hidden from the

view of item i (until it is forced open) with some likelihood. This likelihood can be calibrated so

that i ends up seeing every FC k open first with probability exactly uki, as desired.
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1.3. Further Technical Details and Relationship with Set Cover

We now outline all our new results for the correlated rounding problem and the related technical

results.

• Our main results are a (1+ln(q))-competitive rounding scheme, and a d-competitive rounding

scheme (where d denotes the sparsity parameter maxi |{k : uki > 0}|). These rounding schemes and

their analyses are presented in Section 2.

• The exact guarantee for the rounding scheme of Jasin and Sinha (2015) is given by a function

B of the order size, where B(q) = (q+1)2

4q
if q is odd and B(q) = q+2

4
if q is even. For small values of

q, this is better than our guarantee of 1+ ln(q); e.g. if q= 2 then B(1) = 1.

• Both of our rounding schemes have a runtime of O(qK). By contrast, the rounding scheme of

Jasin and Sinha (2015) has a runtime of O(q2K), containing a loop that is quadratic in the number

of items q.

• If there are only two FC’s, i.e. K = 2, then a 1-competitive rounding scheme was recently

discovered by Zhao et al. (2020). In this scenario, our second rounding scheme would only be 2-

competitive, since d=K = 2. However, we emphasize that parameter d represents the maximum

number of distinct FC’s that hold an item and can generally be much smaller than K, whereas

their rounding scheme only works when K = 2.

• In Section 4, we establish an additional result that computes the optimal guarantee α and

rounding scheme for a given instance, using an LP of size O(2K). Jasin and Sinha (2015) also

show how to compute instance-optimal schemes, using an LP of size O(Kq). While both are

exponentially-sized, our LP can be applied when K is small; theirs can be applied when q is small.

Relating the correlated rounding problem to Set Cover.

• In Section 3, we show that an α-competitive rounding scheme implies a procedure for round-

ing a fractional Set Cover solution into a randomized cover, that is feasible w.p. 1, and has no set

chosen with probability more than α times its fractional weight.

• Therefore, we can leverage hardness results from Set Cover to show that an α-competitive

rounding scheme must have α = Ω(log(q)) and α ≥ d. The former lower bound establishes our
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(1 + ln(q))-competitive rounding scheme to be order-optimal in q, while the latter lower bound

establishes our d-competitive rounding scheme to be exactly tight in d.

• Our (1+ ln(q))-competitive rounding scheme also improves guarantees in the aforementioned

randomized rounding problem for Set Cover. To the best of our knowledge, existing rounding

methods for Set Cover take each set with probability at least ln(q) + ω(1) times its fractional

weight (Raghavan and Tompson 1987); see also Motwani and Raghavan (1995) and Vazirani (2001,

Sec 14.2). Although our improvement to ln(q) + 1 is only in lower-order terms, our approach via

the correlated rounding problem is both new, and simpler than many of the commonly-taught

methods.

We note that for the Set Cover problem itself, which has nothing to do with randomization, the

Greedy algorithm has a guarantee of 1+1/2+ · · ·+1/q, which is slightly smaller (better) than our

1+ln(q). Nonetheless, we believe these connections highlight how the correlated rounding problem

is a harder version of Set Cover—in which a randomized solution, that must satisfy constraints on

how often each set is used to cover each element, is required. Furthermore, it is interesting to us

that a modern problem from e-commerce practice, identified by Jasin and Sinha (2015), can lead

us to improve randomized rounding schemes for the age-old Set Cover problem from CS theory.

1.4. Further Related Work

The dynamic fulfillment problem, and in particular the correlated rounding approach, is more

challenging and relevant in large fulfillment networks. Fulfillment networks have been getting larger

with the advent of omni-channel retailing, which allows for online orders to be fulfilled from small

retail stores (Acimovic and Farias 2019). Although order sizes have been decreasing with the advent

of fast shipping, online retailers have been making greater efforts to delay fulfillment and consolidate

multiple orders into one before fulfilling (Wei et al. 2021, Wang et al. 2022). Consequently, the

dynamic fulfillment problem with multi-item orders and flexibility in how to fulfill them is as

relevant as ever (DeValve et al. 2021).

In terms of the overall LP-based approach that justifies the correlated rounding problem, we

should note that LP-based approaches are also heavily employed in the revenue management lit-

erature (see e.g. Talluri and Van Ryzin 2004). They enjoy many benefits such as scalability and
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ability to incorporate side constraints, and the given probabilities uki can always be updated over

time through re-solving (see e.g. Jasin and Kumar 2012) to adjust for updated inventories and

demand predictions over time. An early work advocating for the LP-based approach in e-commerce

fulfillment is Acimovic and Graves (2015). Very recently, Amil et al. (2022) propose a novel LP

that can be used in place of the standard one, which we discuss at the end of Section 5.

2. Formal Specification and Analysis of Rounding Schemes

We recap the correlated rounding problem from the Introduction, our main object of study.

Definition 1 (Recap of Problem, Notation, and Terminology).

• An instance of the α-competitive rounding scheme problem consists of q marginal distributions

over K FC’s, given by probabilities uki satisfying
∑K

k=1 uki = 1 for all i=1, . . . , q.

• A rounding scheme must randomly assign each item i to an FC Zi ∈ {1, . . . ,K}, satisfying the

marginal conditions Pr[Zi = k] = uki for all i and k.

• An FC k is used if any item is assigned to it, denoted by the event
⋃

i=1,...,q(Zi = k), which

must occur with probability at least yk :=maxi uki. Assume without loss that yk > 0 for all k.

• A rounding scheme is α-competitive if given any instance, it uses each FC k with probability

at most α · yk. The guarantee α can depend on parameters of the instance.

• The sparsity parameter of an instance is defined as d = maxi |{k : uki > 0}|, the maximum

number of distinct FC’s that one item i could get assigned to.

We now provide efficient algorithmic specifications of our rounding schemes and analyze them.

We believe both our algorithms and proofs to be quite intuitive, and will frequently provide proof

sketches that refer back to the intuition from Subsection 1.2, where items are waiting for FC’s to

open on their own dilated time scales.

2.1. (1+ ln(q))-competitive Rounding Scheme

Our rounding scheme is specified in Algorithm 1. Relating back to the intuitive description, Ek is

the time at which FC k opens, and yk
uki

Ek is the delayed time (since yk
uki
≥ 1) at which item i sees

it open, with yk
uki

Ek =∞ if uki = 0. Every item is assigned to the first FC that it sees open.
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Algorithm 1 (1+ ln(q))-competitive Rounding Scheme

for k=1, . . . ,K do

Ek← independent draw from Exponential distribution with mean 1/yk

end for

for i=1, . . . , q do

Zi← argmink=1,...,K
yk
uki

Ek ⊲ Break ties arbitrarily

end for

We now prove that Algorithm 1 is a (1 + ln(q))-competitive Rounding Scheme, where q is the

number of items. To establish the marginals condition, we use the interpretation that from the

perspective of any individual item, the FC’s open according to independent Poisson processes.

Lemma 1. Under Algorithm 1, Pr[Zi = k] = uki for all i=1, . . . , q and k= 1, . . . ,K.

Proof of Lemma 1. Consider the perspective of any item i. Index Zi is determined by the

smallest realization among { yk
uki

Ek : k = 1, . . . ,K}, which are independent Exponential random

variables with means { 1
uki

: k=1, . . . ,K}. Equivalently, Zi is determined by the first arrival among

independent Poisson processes with rates {uki : k = 1, . . . ,K}. By the Poisson merging theorem,

each Poisson process k will be the first to arrive with probability uki
u1i+···+uKi

, which equals uki since

u1i + · · ·+uKi = 1. Therefore, Pr[Zi = k] = uki for all k= 1, . . . ,K, completing the proof. �

We now prove an intermediate lemma that, intuitively, bounds the probability of any item i

still “waiting” (to be assigned to an FC) up to time t, which can be expressed as the event

(mink
yk
uki

Ek ≥ t). The final statement then takes a union bound of having any item still waiting,

which intuitively is not too loose since these events are positively correlated—one item waiting

implies that FC’s were late to open, which makes other items more likely to also be waiting.

Lemma 2. Under Algorithm 1, Pr[
⋃q

i=1(mink
yk
uki

Ek ≥ t)]≤ qe−t for all t≥ 0.

Proof of Lemma 2. First consider any item i. Random variables { yk
uki

Ek : k= 1, . . . ,K} are inde-

pendent and Exponentially distributed with means { 1
uki

: k = 1, . . . ,K}. Therefore, mink
yk
uki

Ek is
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Exponentially distributed with mean 1
u1i+···+uKi

= 1. Consequently, Pr[mink
yk
uki

Ek ≥ t] = e−t, and

by the union bound, Pr[
⋃q

i=1(mink
yk
uki

Ek ≥ t)]≤ qe−t, completing the proof. �

We are now ready to prove our main result for Algorithm 1. Although technical, the argument

uses a simple intuitive trick. Lemma 2 has upper-bounded the probability of any item still waiting

at a time t. If an FC k opens at a time when no item is still waiting, then it is guaranteed to not

get used (since items can only see it open at a delayed time). Unfortunately, the opening time of

an FC k is correlated with the event of having an item still waiting. To fix this, we imagine FC k

as “repeatedly opening” following a Poisson process of rate yk, with it being “used” every time it

opens as long as there is an item still waiting. Since Poisson processes are memoryless, this now

de-correlates the events of FC k opening from the event of still having an item waiting. Lemma 2

can then apply, and the analysis finishes by taking an integral. The formal proof is presented below.

Theorem 1. Algorithm 1 is a (1+ ln(q))-competitive rounding scheme with runtime O(qK).

Proof of Theorem 1. The runtime is O(qK) because taking the argmin over k = 1, . . . ,K for

all i= 1, . . . , q is the bottleneck operation in Algorithm 1. Meanwhile, Lemma 1 has already shown

that the marginals condition is satisfied. It remains to show that Pr[
⋃

i=1,...,q(Zi = k)]≤αyk for all

k, with α=1+ ln(q).

Fix any FC k. For all items i with uki > 0, event Zi = k can occur only if k lies in the argmin in

Algorithm 1, i.e. if mink′
yk′

uk′i
Ek′ ≥

yk
uki

Ek. We now rewrite this event as follows. Define S1
k , S

2
k, . . . to

be the arrival times of a Poisson process of rate yk. More specifically, we will let S1
k =Ek, and Sj+1

k

be the sum of Sj
k with an independent Exponential random variable of mean 1/yk, for all j ≥ 1.

We can derive

(Zi = k)⊆

(

min
k′

yk′

uk′i

Ek′ ≥
yk
uki

Ek

)

=

(

min
k′ 6=k

yk′

uk′i

Ek′ ≥
yk
uki

S1
k

)

=
∞
⋃

j=1

(

min

{

min
k′ 6=k

yk′

uk′i

Ek′ ,min
j′<j

yk
uki

Sj′

k

}

≥
yk
uki

Sj
k

)

(1)
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where the final equality (1) holds because the events with j > 1 never occur (in particular,

minj′<j
yk
uki

Sj′

k ≥
yk
uki

Sj
k is impossible since Sj′

k <Sj
k). The purpose of this vacuous decomposition is

to later relax the event (by decreasing the RHS) and then apply the memorylessness property of

Poisson processes.

We now take a union bound of events (1) over i, and analyze the probability of this union by

conditioning on the event that Sj
k = t for any j ≥ 1, over all times t≥ 0. Formally:

Pr

[

⋃

i:uki>0

∞
⋃

j=1

(

min

{

min
k′ 6=k

yk′

uk′i

Ek′ ,min
j′<j

yk
uki

Sj′

k

}

≥
yk
uki

Sj
k

)

]

=

∫ ∞

0

Pr

[

⋃

i:uki>0

(

min

{

min
k′ 6=k

yk′

uk′i

Ek′ ,min
j′<j

yk
uki

Sj′

k

}

≥
yk
uki

t

)

∣

∣

∣

∣

∣

∃j : Sj
k = t

]

ykdt

≤

∫ ∞

0

Pr

[

⋃

i:uki>0

(

min

{

min
k′ 6=k

yk′

uk′i

Ek′ ,min
j′<j

yk
uki

Sj′

k

}

≥ t

)

∣

∣

∣

∣

∣

∃j : Sj
k = t

]

ykdt

=

∫ ∞

0

Pr

[

⋃

i:uki>0

min
k′=1,...,K

yk′

uk′i

Ek′ ≥ t

]

ykdt

≤ yk

∫ ∞

0

min{qe−t,1}dt

where the first equality holds because the PDF of the event (∃j : Sj
k = t) takes value yk for all t,

the first inequality holds because yk
uki
≥ 1, the second equality applies the memorylessness property

of Poisson processes, and the final inequality applies Lemma 2 (along with the trivial upper bound

of 1). Note that this analysis holds for any FC k= 1, . . . ,K. Therefore, the proof is now completed

by taking an elementary integral:

∫ ∞

0

min{qe−t,1}dt= ln(q)+

∫ ∞

ln(q)

qe−tdt

= ln(q)+ qe− ln(q)

= 1+ ln(q).

�

Remark 1. Our Algorithm 1 and Theorem 1 close the gap that was left open by the correlated

rounding scheme of Jasin and Sinha (2015), whose guarantee grew linearly (instead of logarithmi-

cally) in the number of items q. Their scheme partitions the [0,1] interval and makes the positive
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correlation in the FC’s assigned very explicit. By contrast, our rounding schemes are based on a

“trick” of dilating memoryless random variables, and the positive correlation is implicit. Our trick

is designed to facilitate a short analysis, which closes the gap in the correlated rounding problem.

2.2. d-competitive Rounding Scheme

Our modified rounding scheme is specified in Algorithm 2. Relating back to the intuitive description

from Subsection 1.2, m(i) is the first FC that item i would see “forced” open, which it would get

assigned to if it was still unassigned at that point. Xki is a random variable denoting the time

at which item i sees FC k open, which equals yk
uki

Ek like before if k 6=m(i). On the other hand,

Xm(i),i is upper-bounded by 1/um(i),i, as that is when item i would see FC m(i) forced open. The

final wrinkle is that if FC m(i) were to “naturally” open before it is forced open, then it needs to

be hidden from i’s view (until it is forced open) with some probability, which is indicated by the

random variable Hi. Finally, every item is assigned to the first FC that it sees open, after taking

into consideration hiding and forced opening.

It can be checked that the probability with which Hi = 1 defined in Algorithm 2 does indeed lie

in [0,1] for all possible values of um(i),i ∈ (0,1]. The hiding probability is in fact increasing in um(i),i,

which is intuitive because a larger value of um(i),i implies an earlier forced opening, suggesting that

FC m(i) should be hidden more often to prevent it from over-fulfilling item i. We now prove that

this hiding probability has been calibrated so that the marginals condition is satisfied exactly.

Lemma 3. Under Algorithm 2, Pr[Zi = k] = uki for all i=1, . . . , q and k= 1, . . . ,K.

Proof of Lemma 3. Fix any item i. We show that Pr[Zi = k] = uki for all k 6=m(i), which would

automatically imply Pr[Zi =m(i)] = 1−
∑

k 6=m(i)Pr[Zi = k] = 1−
∑

k 6=m(i) uki = um(i),i. We need to

consider two cases: Hi = 1 and Hi = 0. Hereafter omit index i.

First, if H = 1, then the item does not observe FC m before time 1/um. Therefore, Z = k if and

only if Xk is the smallest among random variables {Xk′ : k
′ 6=m} and also Xk < 1/um. Recall that

Xk′ is Exponentially distributed with mean 1/uk′ for all k′ 6=m, and the Xk′ ’s are independent

across k′. Therefore, the probability that mink′ 6=mXk′ < 1/um is equal to the probability that a
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Algorithm 2 d-competitive Rounding Scheme

for k=1, . . . ,K do

Ek← independent draw from Exponential distribution with mean 1/yk

end for

for i=1, . . . , q do

m(i)← argmaxk uki

for k=1, . . . ,K, k 6=m(i) do

Xki←
yk
uki

Ek

end for

Hi← independent draw from Bernoulli distribution with mean
1−um(i),i

1−um(i),i+um(i),ie
1/um(i),i−e

⊲ Hi = 1 means FC m(i) is hidden from item i until the FC is forced open at time 1/ym(i)

Xm(i),i←
ym(i)

um(i),i
min{

Em(i)

1−Hi
, 1
ym(i)
} ⊲ Hi = 1 means

Em(i)

1−Hi
=∞, and hence Xm(i),i =

1
um(i),i

Zi← argmink=1,...,K Xki

end for

Poisson process with rate
∑

k′ 6=m uk′ = 1−um generates an arrival before time 1/um, which occurs

w.p. 1− e−(1−um)/um . Conditional on this, the probability that mink′ 6=mXk′ =Xk is exactly uk
1−um

,

by the Poisson merging theorem. Therefore,

Pr[Z = k|H = 1] = (1− e−(1−um)/um)
uk

1−um

. (2)

Otherwise, if H = 0, then the item observes all FC’s before time 1/um. In this case, Z = k if and

only if Xk is the smallest among all random variables {Xk′ : k
′ = 1, . . . ,K} and also Xk < 1/um.

By a similar argument as above, the probability that mink′=1,...,K Xk′ < 1/um is 1 − e1/um , and

conditional on this, the probability that mink′=1,...,K Xk′ =Xk is uk. Therefore,

Pr[Z = k|H =0] = (1− e1/um)uk. (3)

Let η denote 1−um

1−um+ume1/um−e
, the probability that H =1. Combining (2) and (3), we derive

Pr[Zi = k] = η(1− e−(1−um)/um)
uk

1−um

+(1− η)(1− e−1/um)uk
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= uk

(

1− e−1/um + η

(

1− e−(1−um)/um

1−um

− (1− e−1/um)

))

= uk

(

1− e−1/um + η ·
−e−(1−um)/um +um + e−1/um −ume

−1/um

1−um

)

= uk

(

1− e−1/um + e−1/umη ·
1−um +ume

1/um − e

1−um

)

= uk

which completes the proof. �

We now prove our main result for Algorithm 2. We establish the stronger guarantee of α =

1
mini maxk uki

, which is easily seen to be at most d since maxk uki ≥ 1/d for all i. The proof sketch is

that due to the forced openings, all items are guaranteed to be assigned by time α. Therefore, an

FC k can only get used is it opens before time α (since items can only see it open with a delay),

which occurs with probability no greater than αyk.

Theorem 2. Algorithm 2 is an 1
minimaxk uki

-competitive rounding scheme with runtime O(qK).

Proof of Theorem 2. The runtime is O(qK), because inside the loop for i = 1, . . . , q in Algo-

rithm 2, there are three bottleneck operations that each take time O(K): the defining of m(i),

the inner loop for k, and the defining of Zi. Meanwhile, Lemma 3 has already shown that the

marginals condition is satisfied. It remains to show that Pr[
⋃

i=1,...,q(Zi = k)]≤ αyk for all k, with

α= 1
mini maxk′ uk′i

.

Fix an FC k. If yk ≥minimaxk′ uk′i, then αyk ≥ 1 and there is nothing to prove. Therefore, assume

yk <minimaxk′ uk′i, and we must show that Pr[
⋃

i=1,...,q(Zi = k)]≤ αyk. Since yk <maxk′ uk′i for

all i, we know that k 6=m(i) for all i. Thus, we have Xki =
yk
uki

Ek for all i, and can write

(Zi = k)⊆ (
yk
uki

Ek ≤ min
k′=1,...,K

Xk′i)

⊆ (
yk
uki

Ek ≤Xm(i),i)

⊆ (
yk
uki

Ek ≤ 1/um(i),i)

= (
yk
uki

Ek ≤
1

maxk′ uk′i

)
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⊆ (
yk
uki

Ek ≤α)

⊆ (Ek ≤ α)

with the final relationship between events holding because yk
uki
≥ 1. Note that the final event is

independent of i. Therefore,

Pr

[

⋃

i=1,...,q

(Zi = k)

]

≤Pr[Ek ≤α] = 1− e−αyk

which is at most αyk, completing the proof. �

3. Connections with Set Cover

In this section we establish our rounding schemes to be order-optimal in terms of the dependence

on q or d, by reducing our problem to that of rounding a fractional solution for Set Cover. We first

define the Set Cover problem and some basic concepts using our language of items and FC’s. We

refer to Vazirani (2001) for further background.

Problem 1 (Weighted Set Cover). There are items i= 1, . . . , q to be covered by FC’s k =

1, . . . ,K. Each FC k requires a fixed cost of ck to open, and if opened, can cover all items in a set

Uk ⊆{1, . . . , q}. The objective is to find a collection of FC’s to open, that covers all the items, and

minimizes the sum of fixed costs paid for opening FC’s. The sparsity of the instance is defined as

d :=maxi |{k : i ∈Uk}|, the maximum number of different FC’s that an item i can be covered by.

Definition 2 (Set Cover Linear/Integer Programs). The following Integer Program is

called the Set Cover IP. In it, binary variable yk represents FC k being opened. It is an equivalent

formulation of the Weighted Set Cover problem.

min
K
∑

k=1

ckyk

s.t.
∑

k:i∈Uk

yk ≥ 1 ∀i= 1, . . . , q (4)

yk ∈ {0,1} ∀k= 1, . . . ,K (5)

Meanwhile, the Set Cover LP is defined as the relaxation of the Set Cover IP with constraint (5)

changed to yk ∈ [0,1], for all K = 1, . . . ,K.
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We now define the problem of rounding a fractional solution for Set Cover, in a way that is

analogous to an α-competitive rounding scheme, except we will call it an α-competitive “covering”

scheme instead.

Definition 3 (α-competitive Covering Scheme). For α ≥ 1, an α-competitive covering

scheme is a method for constructing random variables Y1, . . . , YK ∈ {0,1} satisfying

∑

k:i∈Uk

Yk ≥ 1 ∀i= 1, . . . , q, w.p. 1 (6)

E[Yk]≤α · yk ∀k= 1, . . . ,K (7)

given any feasible solution (yk)
K
k=1 to the Set Cover LP.

We now show that coming up with α-competitive rounding schemes is a harder problem than

coming up with α-competitive covering schemes.

Lemma 4. An α-competitive rounding scheme can be efficiently applied as an α-competitive

covering scheme. Moreover, any dependence of α on the parameters q or d translate over directly.

Proof of Lemma 4. Take any instance of Set Cover and a feasible solution (yk)
K
k=1 to its LP.

For each item i, arbitrarily set uki ∈ [0, yk] for each FC k that can cover it, so that
∑

k:i∈Uk
uki = 1.

We note that this is always possible since yk ≥ 0 and
∑

k:i∈Uk
yk ≥ 1 by (4). Meanwhile, set uki =0

if i /∈Uk.

The marginal distributions (uk1)
K
k=1, . . . , (ukn)

K
k=1 now define an instance for an α-competitive

rounding scheme, with the same number of items q and a sparsity d that is no greater than before.

We apply the α-competitive rounding scheme that is assumed to exist on this instance, and define

random variables Yk = 1(
⋃

i(Zi = k)) for all k = 1, . . . ,K. By the definition of a rounding scheme,

for each item i, we know that Zi = k is true for some index k ∈ {1, . . . ,K}, with k ∈ Uk since

otherwise uki = 0. Therefore, Yk = 1 for this index k and condition (6) for the covering scheme is

satisfied. Meanwhile, applying the definition of an α-competitive rounding scheme, we have

E[Yk] = Pr

[

⋃

i

(Zi = k)

]

≤ α ·max
i

uki ≤ yk.
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We conclude that condition (7) for the covering is satisfied. We also note that if α depends on the

sparsity parameter d, then the same guarantee continues to hold under the old sparsity parameter

for Set Cover which is no less than d, completing the proof. �

3.1. Negative Results for α-competitive Rounding Schemes

Equipped with Lemma 4, we can now translate hardness results for the α-competitive covering

scheme problem into hardness results for the α-competitive rounding scheme problem.

Corollary 1 (of Lemma 4). An α-competitive covering scheme must have α = Ω(log(q))

(Vazirani 2001, Ex. 13.4). Therefore, an α-competitive rounding scheme must also have α =

Ω(log(q)). Consequently, the (1 + ln(q))-competitive rounding scheme established in Theorem 1

achieves the order-optimal dependence on q.

Proposition 1. An α-competitive covering scheme must have α≥ d, where d denotes the spar-

sity of the instance.

Proof of Proposition 1. Consider a Set Cover instance with d fixed, K large, and one item

for each subset of {1, . . . ,K} of size d. Each such item can only be covered by the d FC’s in its

corresponding subset, with the total number of items being q=
(

K
d

)

. The sparsity of this instance

is d by definition.

Setting yk = 1/d for all k = 1, . . . ,K forms a feasible solution to the Set Cover LP, since |{k :

i ∈ Uk}| = d for all items i, and hence LP constraints (4) are satisfied. On the other hand, any

α-competitive covering scheme must set
∑K

k=1 Yk >K − d w.p. 1, since otherwise there would be

an uncovered item, violating (6). Using the linearity of expectation, we derive

K − d≤
K
∑

k=1

E[Yk]≤
K
∑

k=1

α · yk =Kα
1

d
,

with the second inequality coming from (7). Therefore, α ≥ d(1 − d
K
), with d

K
approaching for

arbitrarily large K, completing the proof. �

Corollary 2 (of Lemma 4 and Proposition 1). An α-competitive rounding scheme must

have α ≥ d. Consequently, the d-competitive rounding scheme established in Theorem 2 achieves

the optimal (not just order-optimal) dependence on d.
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4. Instance-Optimal Rounding Schemes

The (1+ln(q))-competitive and d-competitive rounding schemes discussed in Sections 2 and 3 were

only order-optimal in the worst case. For a particular instance given by q marginals over {1, . . . ,K},

one could also consider the problem of computing the maximum guarantee α and rounding scheme

that satisfies the marginal frequency constraints.

We formulate this problem using an LP with the following variables. For all subsets S of the

FC’s {1, . . . ,K}, let z(S) denote the probability that exactly the set of FC’s in S get used. For

all S ⊆ {1, . . . ,K}, FC’s k ∈ S, and items i, let uki(S) denote the probability that the set of FC’s

in S get used and that item i is fulfilled from FC k ∈ S. The problem of minimizing α in an

α-competitive rounding scheme for this particular instance can then be formulated as

min α (8)

s.t.
∑

k∈S

uki(S) = z(S) ∀S, i= 1, . . . , q (9)

∑

S

uki(S) = uki k= 1, . . . ,K, i= 1, . . . , q (10)

∑

S∋k

z(S)≤ α · yk ∀k= 1, . . . ,K (11)

∑

S

z(S) = 1 (12)

z(S)≥ 0 ∀S (13)

uki(S)≥ 0 ∀S,k ∈ S, i= 1, . . . , q (14)

where constraints (9) enforce that every item i must be fulfilled from exactly one FC on each

subset S, constraints (10) and (11) enforce the marginal and α-competitive properties of a round-

ing scheme, constraints (12)–(13) enforce that exactly one subset S is selected, and last but not

least, (14) ensures that there is only a variable uki(S) if k ∈ S.

Our LP has size O(nK2K), which is exponential in K but tractable if K is a fixed constant.

Jasin and Sinha (2015) derive an exponential-sized LP for the same purpose, except instead there

is a variable for every possible mapping from {1, . . . , q} to {1, . . . ,K}, for which there are Kq



20

possibilities. Our LP’s are more practical in situations where K is small but q is large, which is

the case in the application of e.g. Zhao et al. (2020).

5. α-competitive Rounding Scheme applied to Dynamic Fulfillment

In this section we recap the general dynamic fulfillment problem from Jasin and Sinha (2015), and

formalize the implication of our α-competitive rounding schemes for the overall problem.

Problem definition. There is a horizon consisting of time steps t=1, . . . , T , during which items

i= 1, . . . , n are fulfilled from FC’s k= 1, . . . ,K. Each item i starts with bki units of inventory at each

FC k, with the end of the horizon representing the time at which inventories are replenished again.

Orders come from one of regions j = 1, . . . , J , and are described by a subset1 of items a⊆ {1, . . . , n}

that was just purchased. During each time step, up to one order arrives, which is from region j

and is for subset a with probability λa
j , with

∑

a,j λ
a
j ≤ 1. As is standard in revenue management,

we assume a granular division of time such that at most one order can arrive during each time

step. Also, as justified in Jasin and Sinha (2015), we assume that orders cannot contain more than

one of any item, and assume a small universe of possible subsets a. We let cunitkij denote the variable

cost of fulfilling one unit of item i from FC k to location j, and let cfixedkj denote the fixed cost of

sending a package (containing one or more items) from FC k to location j.

The goal is to dynamically decide the FC’s to use to fulfill the items in each order that arrives

over the time horizon, to minimize total expected cost. Note that if an FC k is used to fulfill a subset

a′ ⊆ a of an order from a location j, then the cost required to send that package is cfixedkj +
∑

i∈a′ c
unit
kij .

All items in each arriving order must be fulfilled from some FC, where we assume the existence of

a null FC 0 with infinite inventory so that this is always feasible, with cunit0ij denoting the “shortage”

cost of failing to fulfill one unit of item i to region j.

1 This section introduces the broader problem with n items in the universe and orders a which are subsets of {1, . . . , n}.

The earlier Sections 2 to 4 are applied by focusing on a single order a, letting q := |a|, and renumbering the items in

a to be 1, . . . , q, ignoring all other items. Generally in e-commerce fulfillment, n can be much larger than q.
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LP benchmark. Solving for the optimal dynamic fulfillment policy using dynamic program-

ming is intractable, since the state space is exponential in the number of items. Thus, the following

“deterministic” LP benchmark2 is often used to derive heuristic policies and bound their subopti-

mality relative to the optimal dynamic programming policy.

DLP :=min
∑

a,k,j

Tλa
j

(

∑

i∈a

cunitkij u
a
kij + cfixedkj ya

kj

)

s.t.
∑

j

∑

a∋i

Tλa
ju

a
kij ≤ bki ∀k, i

∑

k

ua
kij = 1 ∀a, j, i∈ a

ya
kj ≥ ua

kij ≥ 0 ∀a, k, j, i∈ a

In the linear program defining DLP, for any subset a of items ordered from any region j, variable

ua
kij represents the proportion of times item i ∈ a should be fulfilled from FC k, with constraint

∑

k u
a
kij = 1 for each such item i in the order. Meanwhile, variable ya

kj represents the probability

that a FC k would have to be used at all, which is constrained to be at least ua
kij for any single item

i∈ a. Note that in an optimal solution we can always assume ya
kj =maxi∈a u

a
kij for all a, k, j. These

variables ua
kij and ya

kj correspond to our variables uki and yk from earlier, where we had dropped

scripts a, j to focus on a single multi-item order from a single region.

Moreover, the first constraint enforces that the expected number of times any FC k fulfills any

item i (to any region j, as part of any subset a containing i) does not exceed its starting inventory

bki. Finally, the objective value definingDLP represents the total expected cost of the LP benchmark

over the time horizon, accounting for unit costs, fixed costs, as well as shortage costs (recalling

that there is a null FC k= 0). This interpretation of DLP intuitively leads to the following lemma.

Lemma 5 (Jasin and Sinha (2015)). For any instance of the problem, the expected cost paid

by any dynamic fulfillment policy must be at least the value of DLP for that instance.

2 This is identical to the linear program defining J̃DLP (Jasin and Sinha 2015, p. 1340), except we have let ua
kij and

ya
kj represent their variables Ua

kij and Y a
kj divided by Tλa

j , respectively.
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Randomized fulfillment algorithm and reduction result. In light of the interpretation of

the linear program defining DLP above, Jasin and Sinha (2015) also use it to derive the following

randomized fulfillment heuristic. First, we solve the LP, hereafter using ua
kij , y

a
kj to refer to a fixed

optimal solution. At each time step t= 1, . . . , T , if an order for subset a comes from region j, the

heuristic policy randomly chooses an FC k to fulfill each item i∈ a according to probabilities ua
kij ,

independently across time steps, without adapting at all to the remaining inventory. If the chosen

FC for an item has stocked out, then that item is simply not fulfilled (i.e. the null FC is used).

This randomized fulfillment heuristic that does not rely on real-time inventory information has

been shown to perform well asymptotically, although its theoretical guarantee depends on how

exactly FC’s are chosen to fulfill items during each time step, namely, the α-competitive rounding

scheme that is used. Jasin and Sinha (2015) show that the unit and shortage costs paid by the

randomized fulfillment heuristic is asymptotically optimal relative to the DLP, but the bottleneck

is the fixed costs, where every time an order for subset a comes from region j (regardless of

asymptotics) the cost paid could be α times as much as the DLP. Here α depends on a and j,

and using the correlated rounding schemes from Theorems 1 and 2 in this paper in conjunction

with the results from Jasin and Sinha (2015) we can always guarantee an α-competitive rounding

scheme where

α=min
{

1+ ln(|a|), (min
i∈a

max
k

ua
kij)

−1,B(|a|)
}

(15)

and B(·) is the function from Jasin and Sinha (2015).

Jasin and Sinha (2015) show that the asymptotic cost paid by the randomized fulfillment heuris-

tic relative to DLP, assuming it chooses the correlated rounding scheme corresponding to the

smallest argument in (15) whenever any subset a is ordered from any region j, is a weighted aver-

age of expression (15) over a and j. To formally state this result, we need to finally define what

“asymptotic” means. Here, one considers a scaling regime where for any fixed instance and any

θ≥ 0, the “scaled instance” is defined to the the one where the horizon length T has been replaced

by θT while each starting inventory bki has also been replaced by θbki. Let DLP(θ) denote the
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optimal objective value DLP on the instance scaled by θ, and let ALG(θ) denote the expected cost

paid by the randomized fulfillment heuristic on the same scaled instance. The following is then

implied by the proof of Theorems 1 and 2 from Jasin and Sinha (2015) (see Jasin and Sinha (2015,

p. ec5)), combined with our discussion above.

Theorem 3 (Jasin and Sinha (2015)). In the multi-item e-commerce fulfillment problem,

lim
θ→∞

ALG(θ)

DLP(θ)
≤

∑

a,k,j λ
a
j c

fixed
kj ya

kj min
{

1+ ln(|a|), (mini∈amaxk′ u
a
k′ij)

−1,B(|a|)
}

∑

a,k,j λ
a
j c

fixed
kj ya

kj

. (16)

Since any fulfillment policy must pay cost at least DLP(θ) by Lemma 5, this shows that the

randomized fulfillment heuristic cannot be worse than the optimal dynamic program by a factor

greater than the RHS of (16). The RHS of (16) is a weighted average of the minimum of the

guarantees from three different rounding schemes, and was referred to as β in the Introduction. In

order to achieve this, the randomized fulfillment heuristic must choose for every incoming order a

the rounding scheme with the best guarantee among that of Jasin and Sinha (2015), and our two

new ones. Simpler bounds can also be derived by relaxing the RHS of (16); e.g.

lim
θ→∞

ALG(θ)

DLP(θ)
≤

∑

a,k,j λ
a
j c

fixed
kj ya

kj

(

1+ ln(|a|)
)

∑

a,k,j λ
a
j c

fixed
kj ya

kj

≤

∑

a,k,j λ
a
j c

fixed
kj ya

kj maxa′

{

1+ ln(|a′|)
}

∑

a,k,j λ
a
j c

fixed
kj ya

kj

=1+ ln(max
a′
|a′|).

(17)

Jasin and Sinha (2015, Thm. 2) prove the same guarantee as Theorem 3 except with the min{·}

replaced by just B(|a|), while Zhao et al. (2020) prove the same result where the upper bound

on the RHS is 1 (i.e. prove asymptotic optimality) if there are only two FC’s in the network. We

emphasize that all of these asymptotic guarantees which have eliminated the unit and shortage

costs only hold if the LP inventory constraints are satisfied in expectation at every time step,

justifying why all of these papers study correlated rounding schemes.

Finally, we argue that the corollary of Theorem 3 depicted in (17), arising from the (1+ ln(|a|))-

competitive rounding scheme in our paper, is in fact tight. In Section 3 we had already shown that

1 + ln(|a|) is the best-possible guarantee for the correlated rounding problem, but here we show

computational hardness for dynamic fulfillment, again through a reduction to Set Cover.
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Proposition 2. For any positive integer q, it is NP-hard to solve dynamic fulfillment using

total cost less than (1−o(1)) ln(q) times the optimal cost (given by a computationally-unconstrained

dynamic program), even if all orders have size q and even on the scaled instance as θ→∞.

Proof of Proposition 2. Given any instance of (unweighted) Set Cover, as defined in Problem 1,

we show how it can be represented by an instance of the dynamic fulfillment problem, as defined in

this section. Recall that q,K were the number of items, sets respectively in the Set Cover problem.

Consider a dynamic fulfillment problem with base time horizon T = 1, one region, a deterministic

order type a of size q, and K FC’s. All unit shipping costs are 0 and fixed shipping costs are 1.

Starting inventory bki equals 1 if i∈Uk, and 0 otherwise. Let θ, the positive integer by which both

the time horizon and starting inventories are scaled, be arbitrary.

Due to the inventory configuration, an item i can only be feasibly assigned to an FC k if i∈Uk,

i.e. if item i was covered by set k. The assignment of an item i to any feasible FC k that is already

being used (i.e. whose fixed shipping cost is being paid) is irrelevant, since all such FC’s would

start with θ units of item i and the inventory constraint is not binding. Therefore, the decision

at every period in the dynamic fulfillment problem is identical and equivalent to the minimization

problem of the given Set Cover instance, where the goal is to choose a minimum set of FC’s to use

such that each of the q items in the order can be assigned. The objective functions also coincide.

Therefore, if it were possible to solve dynamic fulfillment using total cost less than (1−o(1)) ln(q)

times the optimum, then it would be possible to solve Set Cover using total cost less than (1−

o(1)) ln(q) times the optimum. By Dinur and Steurer (2014), the latter statement would imply that

P=NP. Since the scaling parameter θ was arbitrary, the proof is now complete. �

Remark 2. Very recently, Amil et al. (2022) propose an eye-opening approach to the dynamic

fulfillment problem that still uses the randomized fulfillment heuristic but solves a bigger LP that is

tighter than DLP. This bigger LP explicitly models the different “methods” by which the items in an

order can be split across FC’s and fulfilled, obfuscating the need for a correlated rounding scheme.

The authors show that the value of ALG(θ) relative to their LP approaches 1 as θ→∞, achieving
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asymptotic optimality and seemingly contradicting Proposition 2. However, generally there could

be exponentially many ways to split a q-item order across K FC’s, so without restrictions on the

methods, their LP cannot be solved in polynomial time (unless P=NP). Therefore, in unrestricted

settings with large orders, solving the smaller LP and using our correlated rounding procedure is

still highly relevant.

6. Numerical Study

We test our α-competitive rounding schemes on the general multi-item dynamic fulfillment problem

formalized in Section 5. We construct instances aimed to model the operations of a large e-tailer in

the continental United States, following the setup of Jasin and Sinha (2015) as closely as possible.

Our code is in Julia, uses the JuMP (Dunning et al. 2017) package, and is made publicly available

at https://github.com/Willmasaur/multi_item_e_commerce_fulfillment.

Regions, fulfillment centers, costs. We allow orders to arrive from regions correspond-

ing to the 99 largest metropolitan areas in the U.S., excluding Honolulu, HI. The arrival rate

from each region is scaled by its 2022 population according to the US Cities Database on

https://simplemaps.com/data. Meanwhile, we take the 10 largest Amazon.com Inc. fulfillment

centers that were operational3 as of 2015 and assume all items are shipped from one of these cen-

tralized FC’s. Following Jasin and Sinha (2015), the fixed cost of packaging a box at any FC k for

any region j is cfixedkj = 8.759, while the cost of shipping a single item i from any FC k to any region

j is cunitkij = 0.423 + 0.000541distkj, where distkj is the air distance between FC k and region j in

miles. Not fulfilling an item i costs double the maximum distance; see Jasin and Sinha (2015) for

details.

We note that our city populations and FC locations may differ from Jasin and Sinha (2015), as

the exact sources they cited are no longer publicly available. We also procedurally diverge from

Jasin and Sinha (2015) by always selecting the largest cities and fulfillment centers, whereas they

select randomly when fewer than 99 cities or fewer than 10 FC’s are needed. We believe this to

3 Compiled from the information at https://www.mwpvl.com/html/amazon_com.html; available with our code.

https://github.com/Willmasaur/multi_item_e_commerce_fulfillment
https://simplemaps.com/data
https://www.mwpvl.com/html/amazon_com.html
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generate a more interesting smaller network, because the 10 largest cities are spread out across the

corners while the 5 FC’s are located in the middle, resulting in difficult fulfillment decisions where

a city can be “nearby” to multiple FC’s (see the data files provided with our code for details).

Order types, demand rates, starting inventories. Order types a each denote a subset of

size up to nmax, from a universe of n items. For each size in 1, . . . , nmax, there are nper fixed order

types, each of which is a subset of the n items drawn uniformly at random with the correct size.

There is also an order type with size 0, which represent the lack of a customer arrival at a time

step. Note that the total number of order types is 1+nmaxnper, which we denote using Q.

The demand probabilities are first split randomly between the order sizes 0,1, . . . , nmax, and then

for each size, split randomly between the types with that size. This yields a Q-dimensional prob-

ability vector, i.e. a vector whose entries are non-negative and sum to 1. Then, a QJ -dimensional

probability vector is constructed by further splitting each order type among the metropolitan areas

according to their populations. This vector (λa
j )a,j is then used as input for the dynamic fulfillment

problem.

Finally, to determine starting inventories, each FC k first randomly decides whether to carry

each item i, independently with probability pcarry. Then, for each region j, the closest FC k that

carries each item i is identified as closesti,j . For an item i, its “demand” at an FC k is

demk,i =
∑

a∋i

∑

j

1(closesti,j = k) ·λa
j ,

where we sum over all queries a containing a copy of item i, and consider only the regions j for

which FC k is identified as the closest when summing over arrival probabilities λa
j . Given these

values, starting inventories are then placed so that bki = Tdemk,i + zsafety
√

Tdemk,i(1− demk,i) for

all k and i, where we note that the total demand for item i closest to FC k over T time steps

is Binomially distributed, with mean Tdemk,i and variance Tdemk,i(1− demk,i). The formula for

bki is the ideal inventory level to start with according to a Newsvendor model, with safety stock

multiplier zsafety set to 0.5 for all items.
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We note that our procedures for randomly generating order types, demand rates, and carrying

decisions follow Jasin and Sinha (2015, EC.3) exactly, in which these methods are justified. The

details of these methods can also be found in our code.

Algorithms. Like Jasin and Sinha (2015), we test the Myopic fulfillment policy as a baseline,

which fulfills each item from the closest FC that carries it, not accounting for split orders and

minimizing the number of boxes shipped. We then consider four different algorithms following the

randomized fulfillment heuristic described in Section 5:

• Indep: Independent Rounding, as described in Jasin and Sinha (2015);

• JS: Correlated Rounding scheme of Jasin and Sinha (2015) based on line partitions;

• Dilate: (1+ ln(|a|))-competitive scheme based on dilated opening times (Subsection 2.1);

• ForceOpen: d-competitive scheme based on dilated times and forced openings (Subsection 2.2).

Jasin and Sinha (2015) compare Indep and JS to the Myopic fulfillment policy; we additionally

compare our new correlated rounding schemes Dilate and ForceOpen.

6.1. Experimental Setups

We consider two experimental setups. First, in Subsection 6.2, we let the number of regions,

FC’s, items, and time steps be J =10,K = 5, n= 20, T = 105 respectively. The queries and starting

inventories are generated with nmax varying in {2,5,10}, nper fixed to 5, and pcarry fixed to 0.75.

We note that when nmax = 5 this is exactly the “base case” simulated in Jasin and Sinha (2015).

We vary nmax to see how different rounding schemes handle different order sizes.

We consider a bigger network in Subsection 6.3, where the number of regions, FC’s, and

items are J = 99,K = 10, n = 100 respectively. These represent the largest values considered in

Jasin and Sinha (2015), and we also increase T to 106 to better capture asymptotic performance.

The queries are generated with nmax and nper increased to 10. Meanwhile, we vary pcarry in

{0.25,0.5,0.75} to investigate how in a big sparse network with a small value pcarry, the problem

can still be easy and in particular ForceOpen can perform well because d is small.

For each experimental setup, we randomly generate 30 instances, and then randomly generate

30 arrival sequences for each instance. We use the same arrival sequences for every algorithm to
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minimize the discrepancy caused by variance in arrival sequences. We fix zsafety to be 0.5 throughout

our experiments. All of these aspects match what is done in Jasin and Sinha (2015).

6.2. Performance on Smaller Network with varying Order Size

We consider the first experimental setup with the smaller network, generating 30 random instances

for each value of nmax in {2,5,10}. For each instance, we consider the benchmark DLP described

in Section 5 which is a lower bound on the cost of any fulfillment algorithm. We draw 30 arrival

sequences to test the performance of the 5 specific algorithms discussed earlier, and compute the

average cost of each algorithm over these 30 arrival sequences. We consider how much greater this

average cost is than the value of DLP for that instance, expressed as a percentage. The average

of these “loss” percentages over the 30 instances are then reported in Table 1, for each algorithm.

We also report the average runtime4 of each algorithm, which we note is the total runtime used to

evaluate the 30 arrival sequences for an instance, averaged over instances. Finally, we report for

each algorithm the average number of FC’s used per order (not counting the “null” FC 0).

Observations from results in Table 1. Our algorithms perform favorably in comparison

to Myopic, Indep, and JS. Indeed, they pay marginally more cost than JS when nmax = 2, and

overtake JS as soon as nmax = 5, i.e. orders have sizes between 1 and 5. This is surprising in that

the theoretical guarantee of JS is better for the values of n in this range. Similar improvements

are observed in terms of the average number of FC’s used per order. Also, we note that the losses

of 8.3% and 8.6% for Dilate are relative to an (unreasonable) LP benchmark which does not face

any stochastic fluctuation; the loss relative to an actual fulfillment policy that can be implemented

(e.g., the optimal dynamic programming policy, given the exponential time required to compute

it) would be much smaller. For this reason, we consider the numbers in Table 1 more useful for

comparing algorithms than for evaluating absolute performance.

A further, perhaps more salient feature of our algorithms is their simplicity and interpretability.

As evidenced in our code, the rounding scheme in Dilate (Algorithm 1) takes 10 lines to write,

4 See our code for the exact timing functions used. The time (in seconds) was measured on a Dell Latitude 5510

laptop with an Intel(R) Core(TM) i7-10810U CPU @ 1.10GHz processor and 32GB of RAM.
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Table 1 Performance and runtime metrics for the 5 different algorithms under the 3 different values of nmax.

The best (smallest) performances are bolded for each row.

Myopic Indep JS Dilate ForceOpen

nmax = 2 Avg. Loss 4.3% 3.1% 2.3% 2.4% 2.4%

nmax = 5 Avg. Loss 12.9% 14.9% 9.3% 8.3% 8.9%

nmax =10 Avg. Loss 17.7% 16.5% 11.7% 8.6% 9.4%

nmax = 2 Runtime per Instance 0.33s 0.38s 1.17s 0.39s 0.43s

nmax = 5 Runtime per Instance 0.52s 0.59s 3.37s 0.62s 0.72s

nmax =10 Runtime per Instance 0.84s 1.03s 9.12s 1.09s 1.32s

nmax = 2 Avg. FC’s per Order 0.68 0.67 0.66 0.66 0.66

nmax = 5 Avg. FC’s per Order 1.29 1.22 1.16 1.15 1.16

nmax =10 Avg. FC’s per Order 1.73 1.6 1.51 1.44 1.46

whereas the rounding scheme in JS took us 100 lines. Also, the average runtime per instance for

Dilate is better than JS by a factor of 5–10. This seemingly innocuous difference on the smaller

network becomes more pronounced on the bigger network, as we see next.

6.3. Performance on Bigger Network with varying Fulfillment Flexibility

We consider the second experimental setup described in Subsection 6.1. We report average losses

and runtimes for each of the 5 algorithms, in the same way as defined in Subsection 6.2. We generate

30 random instances for each value of pcarry in {0.25,0.5,0.75} and report the averages in Table 2.

We note that pcarry is a measure of fulfillment flexibility, in that a higher value of pcarry leads

to more FC’s being able to fulfill each item and hence more flexibility in the network. Generally

this results in a harder fulfillment problem, with a larger value of d, which we recall denotes the

maximum number FC’s carrying any item. A lower value of pcarry, on the other hand, results in a

smaller d and a better guarantee for ForceOpen.

Observations from results in Table 2. In this bigger network which also has larger order

sizes, all algorithms perform worse. Myopic performs particularly poorly with large order sizes,
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Table 2 Performance and runtime metrics for the 5 different algorithms under the 3 different values of pcarry.

The best (smallest) performances are bolded for each row.

Myopic Indep JS Dilate ForceOpen

pcarry = 0.25 Avg. Loss 34.8% 10.2% 7.6% 5.6% 5.3%

pcarry = 0.50 Avg. Loss 26.7% 23.4% 17.7% 12.6% 13.1%

pcarry = 0.75 Avg. Loss 22.3% 34.2% 23.2% 16.1% 17.7%

pcarry =0.25 Runtime per Instance 11.23s 15.43s 162.31s 14.24s 16.88s

pcarry =0.50 Runtime per Instance 11.89s 18.25s 162s 17.01s 19.25s

pcarry =0.75 Runtime per Instance 13.01s 19.33s 169.27s 18.59s 22.09s

pcarry = 0.25 Avg. FC’s per Order 3.22 1.31 1.27 1.22 1.24

pcarry = 0.50 Avg. FC’s per Order 2.4 1.98 1.87 1.76 1.78

pcarry = 0.75 Avg. FC’s per Order 1.71 1.79 1.62 1.50 1.53

because it will likely always split the order (since not all FC’s stock all items). We can see a greater

separation between the performance of our algorithms, Dilate and ForceOpen, vs. the performance

of the other algorithms. And while we had always observed ForceOpen to both be more complex and

perform slightly worse than Dilate, we now see that when pcarry = 0.25, it in fact performs better.

This is related to its theoretical guarantee—the value of d tends to be smaller when pcarry = 0.25,

because each item in expectation is carried in only 2.5 FC’s.

There is also now a factor-10 speedup in the runtime of our algorithms compared to JS, which

means that the time to finish per instance is on the order of tens of seconds instead of minutes.

Takeaways from numerical study. Under the randomized fulfillment heuristic of

Jasin and Sinha (2015), one should generally default to Dilate to perform correlated rounding,

because it is simple to implement, fast to run, and performs either the best or close to the best

across the different setups. For orders with 2 items, JS may perform slightly better. In large sparse

networks where each item is carried at very few FC’s, ForceOpen may perform slightly better.
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7. Conclusion

We provide the first improvements to the celebrated correlated rounding procedure of

Jasin and Sinha (2015) for the problem of multi-item e-commerce order fulfillment. We derive

rounding schemes with guarantees of 1+ ln(q) and d respectively, where q is the number of items

in the order and d is the maximum number of fulfillment centers containing any item. The first

of these guarantees improves the guarantee of ≈ q/4 from Jasin and Sinha (2015) by an order of

magnitude, in terms of the dependence on q. We also show both of our guarantees to be tight, by

deriving new relationships with the Set Cover problem. Testing under a realistic setup originated

by Jasin and Sinha (2015), we find the improvement provided by our new rounding schemes to in

fact be greater than what their theoretical guarantees suggest.
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