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Auctions are modeled as Bayesian games with continuous type and action spaces. Determining equilibria in

auction games is computationally hard in general and no exact solution theory is known. We introduce an

algorithmic framework in which we discretize type and action space and then learn distributional strategies

via online optimization algorithms. One advantage of distributional strategies is that we do not have to

make any assumptions on the shape of the bid function. Besides, the expected utility of agents is linear in

the strategies. It follows that if our optimization algorithms converge to a pure strategy, then they converge

to an approximate equilibrium of the discretized game with high precision. Importantly, we show that the

equilibrium of the discretized game approximates an equilibrium in the continuous game. In a wide variety

of auction games, we provide empirical evidence that the approach approximates the analytical (pure) Bayes

Nash equilibrium closely. This speed and precision is remarkable, because in many finite games learning

dynamics do not converge or are even chaotic. In standard models where agents are symmetric, we find

equilibrium in seconds. While we focus on dual averaging, we show that the overall approach converges inde-

pendent of the regularizer and alternative online convex optimization methods achieve similar results, even

though the discretized game neither satisfies monotonicity nor variational stability globally. The method

allows for interdependent valuations and different types of utility functions and provides a foundation for

broadly applicable equilibrium solvers that can push the boundaries of equilibrium analysis in auction mar-

kets and beyond.
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1. Introduction

Auction games are arguably some of the most important applications of game theory and they can

be analyzed as continuous-type, continuous-action Bayesian games. Bidders’ valuations or types in

such an auction game are drawn from some continuous distribution and they can choose from a
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continuous range of possible actions (or bids). Early on, Nobel Prize laureate Vickrey (1961) showed

how to derive a Bayes-Nash equilibrium (BNE) strategy in a single-object first-price auction in the

independent-private values (IPV) model with symmetric bidders and quasi-linear utility functions.

The first-order conditions together with the assumption of symmetric bidding behavior lead to an

ordinary differential equation, which has a closed-form solution for the BNE bidding strategy.

The BNE provides a principled way to think about strategic interaction in auctions and a pre-

scriptive model how rational bidders should behave. Unfortunately, deviations from the benchmark

model by Vickrey (1961) lead to challenges in the equilibrium analysis (McAfee and McMillan

1987). For example, when the valuations of potential bidders are interdependent, then the sys-

tem of first-order partial differential equations that characterizes a BNE often becomes intractable

(Campo et al. 2003). Computing Nash equilibria (NE) in complete-information finite games is

already known to be PPAD-hard. However, computing of exact Bayesian Nash equilibria (BNE)

can even be PP-hard, a complexity class that is clearly intractable (Cai and Papadimitriou 2014).

Overall, the analytical derivation of BNE strategies has been elusive for all but very simple auction

games. Even existence of BNE has only been shown for a limited set of auction models (Jackson and

Swinkels 2005). As a result, Bayes-Nash equilibrium analysis remained in the realm of academic

research and it is rarely used by bidders in real-world auctions.

There have been a few approaches to develop numerical techniques for specific environments. For

example, Armantier et al. (2008) introduced a BNE-computation method that is based on express-

ing the Bayesian game as the limit of a sequence of complete-information games. Rabinovich et al.

(2013) study best-response dynamics in auctions with finite action spaces, while Bosshard et al.

(2020) contribute an iterated best-response algorithm for combinatorial auctions with an elaborate

empirical verification method. Recently, Bichler et al. (2021) introduced a versatile technique to

compute approximate Bayes-Nash equilibria (BNE) in a variety of auction models using neural

networks and self-play. Their use of neural networks and evolutionary strategies leads to a rela-

tively complex algorithm, which leverages massive parallelization on GPU hardware. In all prior

approaches, numerical techniques are required to certify that the strategies found are indeed an

approximate BNE and there are no guarantees that the process converges or that a BNE emerges

if the algorithm converges. All these techniques are computationally expensive, even for simple

symmetric auction models.

We introduce an algorithmic framework based on a discretization of the type and action space,

in which we can use online convex optimization to learn distributional strategies (Milgrom and

Weber 1985), which are a form of mixed strategies for Bayesian games. In contrast to learning

algorithms for complete-information games, auction games require us to consider the prior type
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distributions. The distributional strategies allow us to derive gradients and implement gradient-

based optimization algorithms without relying on neural networks with self-play as in Bichler et al.

(2021). In Simultaneous Online Dual Averaging (SODA) we focus on dual averaging as learning

algorithm, which is one of the most effective online convex optimization algorithms. However,

empirically we show that alternative algorithms such as mirror ascent or the Frank-Wolfe algorithm

achieve very similar results in a wide variety of auction models and contests. SODA allows for

interdependent types and different utility functions (e.g., risk aversion), which makes it a very

fast and generic algorithm compared to existing approaches. It is straightforward to incorporate

risk aversion or other behavioral motives in the utility function, which leads to complications in

analytical derivations. Importantly, it does not make any assumptions on the parametric form of

the bid function, allowing us to find non-smooth equilibria as well. An advantage of dual averaging

is that the expected utility is linear in the distributional strategies as we show, which allows us

to show that if the algorithm converges to a pure strategy, then it has to be an equilibrium of

the discretized game. This is an advantage over prior numerical methods, which rely on numerical

estimates of the utility loss to certify an approximate equilibrium. Importantly, we can show for

single-object auctions that the distributional ε-BNE found in the discretized auction approximates

a continuous equilibrium, if one exists. Note that there are examples where equilibria exist only in

the discretized game and not in the continuous game (Jackson and Swinkels 2005).

Ex ante conditions that certify when gradient-based optimization algorithms converge to equilib-

rium even in finite, complete-information games turned out to be challenging. A number of recent

results on matrix games showed that gradient-based algorithms either circle, diverge, or are even

chaotic (Sanders et al. 2018). Independent learning dynamics do not generally obtain a Nash equi-

librium (Benaim and Hirsch 1999). Actually, the study of gradient dynamics in games is akin to

studying dynamical systems and characterizing environments where gradient dynamics converge to

a Nash equilibrium (if one exists) can be arbitrarily complex (Andrade et al. 2021). The analysis

of Bayesian games with continuous type and action spaces is difficult: for a convergence analysis

we need to study the properties of an expected utility function that is based on the characteristics

of an unknown equilibrium bid function. While this is not the case in the discretized version of

the game, ex-ante guarantees are still very challenging as we discuss in Section 3.6. For example,

we show that conditions such as monotonicity or variational stability do not hold globally in the

discretized game. Yet, given that the algorithms are fast for standard auction and contest models,

the ex-post verification we get with SODA is very useful.

We provide extensive experimental results where we approximate the analytical pure BNE closely

in a wide variety of auction games and contests. We could actually compute close approximations of

the BNE with only a few bidders in seconds even for complex core-selecting combinatorial auctions.
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If we restrict ourselves to independent private values, we can solve large instances with dozens of

bidders within seconds. This allows for a quick exploration of auction models with different priors

or different utility functions.

The wide range of environments where SODA converges is remarkable. We illustrate results

of SODA for environments where an analytical solution is known, but also provide equilibrium

strategies for models where no Bayes Nash equilibrium was available so far. Experimental results

are reported for single-object auctions with interdependent valuations, combinatorial auctions with

independent and interdependent values, combinatorial split-award auctions, all-pay auctions and

Tullock contests.

Convergence of SODA to equilibrium is guaranteed, if the utility gradients are monotone or they

satisfy relaxed notions such as variational stability (Geiger and Kanzow 2013, Mertikopoulos and

Zhou 2019, Grossmann et al. 2007). With monotone utility gradients, the expected utility function

is concave. Without knowing the parametric form of the bid function it is difficult to understand

a priori whether concavity of the expected utility is satisfied in a specific Bayesian auction game.

Numerical analysis with parametric assumptions on the bid function and the distribution function

suggest that the expected utility function of several well-known auction games is concave or pseudo-

concave for large ranges of the bid space, which explains the surprisingly positive results compared

to several recent studies showing that gradient-based optimization algorithms and the resulting

dynamics often do not converge in finite normal-form games.

Overall, the paper shows that important applications of equilibrium computation problems in

auctions and contests are tractable and we can find approximate equilibria quickly. This provides a

foundation for numerical tools that allow us to push the boundaries of equilibrium analysis. Tools

of this sort will prove useful for market designers to understand specific market rules, but also for

bidders to study strategic interaction in high-stakes auctions.

Section 2 provides a brief overview of related literature. Then, Section 3 introduces the notation

and the algorithm, and discusses convergence and scalability. Section 4 reports results for various

single-object and combinatorial auction models, before Section 6 provides conclusions.

2. Related Literature

Our research primarily relates to the extensive economic literature on equilibrium in auctions and

contests and to the literature on equilibrium learning.

2.1. Equilibrium in Auction Games

Our paper primarily deals with Bayesian auction games where type- and action-spaces are con-

tinuous. A first question is whether BNE always exist in such games. Auctions and contests are

prime applications, central to economic theory. For finite, complete-information games, we know
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that a mixed Nash equilibrium exists (Nash et al. 1950) and that the computation is generally

PPAD-hard (Daskalakis et al. 2009). Glicksberg (1952) extended the existence result to games with

continuous and compact action sets. For Bayesian games with continuous action space, Jackson

and Swinkels (2005) provide assumptions for the existence of equilibria in distributional strategies.

For example, first-price and second-price single-unit auctions, all-pay auctions, double auctions,

and multi-unit discriminatory or uniform price auctions were shown to have an equilibrium in

distributional strategies. It is interesting to note that there are auction models where there is no

Bayesian Nash equilibrium of the continuous game, but there are equilibria in the discretized game

(Jackson et al. 2002). Overall, we neither know of the existence of Bayes-Nash equilibria in general

continuous-type and -action auction games, nor do we know how hard they are to find if they

exist. Cai and Papadimitriou (2014) showed that finding an exact BNE in specific simultaneous

auctions for individual items is at least hard for PP, a complexity class higher than the polynomial

hierarchy and close to PSPACE, and we know little about the complexity of finding BNE in other

multi-item auctions.

2.2. Equilibrium Learning

Our research is best situated in the literature on equilibrium learning. The theory of learning in

games examines what kind of equilibrium arises as a consequence of a process of learning and

adaptation, in which agents are trying to maximize their payoff while learning about the actions

of other agents (Fudenberg and Levine 2009). Fictitious play is a natural method by which agents

iteratively search for a pure Nash equilibrium and play a best response to the empirical frequency of

play of other players (Brown 1951). Several algorithms have been proposed based on best or better

response dynamics. Besides, gradient-based online optimization algorithms have been proposed for

normal-form games (Singh et al. 2000, Zinkevich 2003).

While such online gradient ascent algorithms lead to zero regret for the participating agents,

their strategies do not generally converge. Even in simple matching pennies games, the gradient

dynamics circle (Bowling 2005). Hence, no-regret learning algorithms do not find a BNE in general

games. However, due to their simplicity, learning algorithms have been used to solve games for a

long time. While there is no comprehensive characterization of games that are “learnable,” and one

cannot expect that uncoupled dynamics lead to Nash equilibrium in all games (Hart and Mas-Colell

2003), there are some important results regarding no-regret learners. First, one can distinguish

between internal (or conditional) regret and a weaker version called external (or unconditional)

regret. External regret compares the performance of an algorithm to the best single action in

retrospect, while internal regret allows one to modify the online action sequence by changing every

occurrence of a given action with an alternative one. For learning rules that satisfy the stronger no-

internal regret condition, the empirical frequency of play converges to the game’s set of correlated
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equilibria (Foster and Vohra 1997, Hart and Mas-Colell 2000, Stoltz and Lugosi 2007). The set

of correlated equilibria (CE) is a nonempty convex polytope that contains the convex hull of the

game’s Nash equilibria. The coordination in CE can be implicit via the history of play (Foster and

Vohra 1997, Stoltz and Lugosi 2007). On the other hand, algorithms that are no-external-regret

learners converge by definition to the set of coarse correlated equilibria (CCE). This set, in turn,

contains the set of CE such that we get NE ⊂ CE ⊂ CCE. In contrast to correlated equilibria,

coarse correlated equilibria may contain strictly dominated (pure) strategy profiles with positive

probability (Viossat and Zapechelnyuk 2013), which makes them a relatively weak solution concept.

Recent work shows that gradient dynamics often do not converge (Daskalakis et al. 2010,

Vlatakis-Gkaragkounis et al. 2020). Standard learning algorithms can cycle, diverge, or even be

chaotic in zero-sum games (Mertikopoulos et al. 2018, Bailey and Piliouras 2018, Cheung and

Piliouras 2020). Actually, Sanders et al. (2018) suggest that chaos is, in fact, typical behavior for

more general matrix games. Simple examples where reasonable gradient-based methods cannot con-

verge leave little hope for general gradient-based methods in the broader class of differential games

(Letcher et al. 2019). Notably, the dynamics of general matrix games can be arbitrarily complex

and hard to characterize a priori (Andrade et al. 2021). On the positive side, there is a long litera-

ture on monotonicity conditions that guarantee convergence to a Nash equilibrium (Kinderlehrer

and Stampacchia 2000, Grossmann et al. 2007, Geiger and Kanzow 2013, Mertikopoulos and Zhou

2019). Apart from monotonicity, Even-Dar et al. (2009) introduce the notion of socially concave

games. These are games where a convex combination of all agents’ utilities exists that is concave,

and each agent’s utility is convex in the other agents’ strategies. In contrast to monotonicity and

variational stability, which suffices for convergence of the last iterate, social concavity only implies

convergence of the mean of iterates to a BNE. However, it is also a strong assumption on the utility

functions.

A large part of the literature on equilibrium learning has focused on complete-information games

(Foster and Vohra 1997, Hart and Mas-Colell 2000, Jafari et al. 2001, Stoltz and Lugosi 2007,

Hartline et al. 2015, Syrgkanis et al. 2015, Foster et al. 2016). Uncertainty about other players has

also received attention. For example, there is work on Stackelberg games with uncertainty about

the follower (Balcan et al. 2015), and there is a stream of literature on imperfect-information games

as in Poker (see for example Sandholm (2015), Brown and Sandholm (2019)). The literature is too

large to provide a comprehensive survey here. Bayesian games with continuous type and action

spaces as they are used to model auctions or contests are less well studied. Solving such problems

is challenging because it requires learning a bid function over infinitely many types. Such problems

can be formulated as systems of differential equations. We lack a solution theory for such problems

in general. Given how hard it is to find Bayes-Nash equilibria even in simultaneous multi-object
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auctions in the worst case (Cai and Papadimitriou 2014), it is far from obvious that gradient-based

algorithms can find a BNE in continuous-type and -action Bayesian games. It is not even clear how

gradient dynamics would be implemented in games with continuous type space.

Neural Pseudogradient Ascent (NPGA) by Bichler et al. (2021) was recently published to ad-

dress equilibrium computation in auction games: it is the first numerical method to compute BNE

in a wide variety of auction games, including multi-object auctions with interdependent types.

Therefore, it will serve as our benchmark when we report our experimental results. NPGA uses

neural networks as a bid function to be learned via self-play. The authors employ evolutionary

strategies as a smoothing technique to deal with the discontinuities of the ex-post utility function,

which allows them to compute BNE in a finite-dimensional parameter space of neural networks.

However, the use of neural networks and specific training methods makes it hard to derive theo-

retical guarantees. Moreover, it takes an expensive empirical validation procedure to verify if the

strategies found by the algorithm are approximate BNE.

Our technique is quite different in that we discretize the type and action spaces and implement

gradient dynamics in the discretized version of the game without using neural networks. We apply

various well-known online learning algorithms to the discretized game. Our focus is on the dual

averaging algorithm with entropy regularization, as it is often the method of choice in theoretical

analyses (Mertikopoulos and Zhou 2019), and it enjoys particularly good regret bounds (Shalev-

Shwartz and Singer 2007). While NPGA searches for pure Bayesian Nash equilibria, we compute

distributional strategies in a discretized version of the game. Our technique is much faster for

environments with a few players and items and can solve equilibria in symmetric auction games in

seconds. Compared to NPGA, SODA is much easier to implement. Additionally, as a consequence

of the no-regret property of our algorithm, if SODA converges, the limit point must necessarily

be a Bayes-Nash equilibrium. Importantly, we can bound the approximation error to the original

auction game with continuous type and action space. These theoretical guarantees are a significant

advantage over NPGA because we do not require an expensive experimental verification of the

solution.

3. Model and Algorithm

We will first introduce the necessary notation before we discuss a small illustrative example, and

then describe the algorithm more generally.

3.1. Notation

An incomplete-information or Bayesian game is given by a sextuplet G = (I,V,O,A, f, u). Here

I = {1, . . . , n} denotes the set of agents participating in the game. Agent i’s private observation is

then given as a realization oi ∈ Oi, with O =O1 × · · · × On being the set of possible observation
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profiles. Similarly, V denotes the set of “true” but possibly unobserved valuations. Crucially, we

make this distinction to model interdependencies in settings beyond purely private values or purely

common values. Based on the observation oi, the agent chooses an action, or bid, bi ∈Ai, and the

set of possible action profiles is given by A=A1× · · ·×An. The joint probability density function

f :O×V →R≥0 describes an atomless prior distribution over agents’ types, given by tuples (oi, vi)

of observations and valuations. We make no further restrictions on f , thus allowing for arbitrary

correlations. f is assumed to be common knowledge and we will denote its marginals by fvi , foi ,

etc.; its conditionals by fvi|oi , etc.; and its associated probability measure by F .

For each possible action and valuation profile, the vector u= (u1, . . . , un) of F -integrable, indi-

vidual (ex-post) utility functions ui :A×Vi→R assigns the game outcome to each player. Ex-ante,

before the game, agents neither have observations nor valuations, only knowledge about f . In the

interim stage, agents additionally observe oi providing (possibly partial or noisy) information about

their own valuations vi. Full access to the outcomes u(v, b) is given only after taking actions (ex-

post). In our formulation, we do not assume explicit ex-post access to any values (e.g., vi, v−i, b−i)

beyond the outcome u itself. An index −i denotes a partial profile of all agents but agent i.

Table 1 Types of interdependencies.

Private v’s (v= o) Common v’s (CV)

Independent o’s (PDF of o is

product of marginal PDFs)

Independent private
values model (IPV)

Independent non-private
values or common values

Correlated o’s
Correlated or affiliated
(APV) private values

Correlated non-private
values

Taking an ex-ante view, players are tasked with finding strategies that link observations and

bids. Instead of pure strategies, which are measurable functions βi :Oi→Ai that map observations

to bids, we are interested in distributional strategies that induce a probability measure on the

space of observations and actions (Milgrom and Weber 1985).

Definition 1. In the private values model, a distributional strategy for player i is a probability

measure σ on Oi ×Ai for which the marginal distribution on Oi is foi . Formally, the marginal

condition can be written as σ(O×Ai) = Foi(O) for all measurable sets O⊂Oi. When players adopt

distributional strategies (σ1, ..., σn) the expected utility is given by

ũi(σ1, ..., σn) =

∫
ui(b, oi)σ1(db1|o1)...σn(dbn|on)F (do) (1)

The strategy profile (σ1, ..., σn) is a ε-Bayes-Nash equilibrium (ε-BNE) if no bidder i can increase

its utility by more than ε≥ 0 by unilaterally deviating from its distributional strategy σi, i.e.,

ũi(σ
′
i, σ−i)− ũi(σi, σ−i)≤ ε ∀σ′i and ∀i∈ I, (2)
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where σ−i denotes the partial strategy profile for all bidders but bidder i. If ε = 0, the strategy

profile corresponds to a Bayes-Nash equilibrium (BNE).

The primary Bayesian games we’ll consider are sealed-bid auctions on I indivisible items. In

general combinatorial auctions we thus have a set K of possible bundles of items and the valuation-

and action-spaces are therefore of dimension |K| = 2I . In the private values setting, we always

have oi = vi; in the common values setting, there is some unobserved constant vc = v1 = · · ·= vn

and the oi can be considered noisy measurements of vc. Mixed settings are likewise possible. In

any case, based on bid profile b, an auction mechanism will determine two things: An allocation

x= x(b) = (x1, . . . xn) which constitutes a partition of the m items, where bidder i is allocated the

bundle xi; and a price vector p(b) ∈ Rn, where pi is the monetary amount bidder i has to pay in

order to receive xi. Formally, one may consider the individual allocations to be one-hot-encoded

vectors xi ∈ {0,1}|K|. In the standard risk-neutral model the utilities ui are then described by

quasilinear payoff functions uQLi (b, vi) = (xi(b) · vi− pi(b)), i.e., by how much players value their

allocated bundle minus the price they have to pay.

An extension to this basic setting includes risk-aversion. Here, we model risk-aversion via utilities

uRA = (uQL)
ρ

where ρ∈ (0,1] is the risk attitude; ρ= 1 describes risk-neutrality, smaller values lead

to strictly concave, risk-averse transformations of uQL. Risk aversion is an established way to explain

why in field studies of single-object first-price sealed-bid (FPSB) auctions, bidders bid higher than

their risk-neutral counterparts in analytical BNE (Bichler et al. 2015). However, different types of

utility functions are possible.

3.2. An Illustrative Example

Before we introduce the model and our algorithm in general, let us discuss a simplified setting:

a single-object first-price sealed-bid auction with two symmetric bidders. We focus on the IPV

model, where both bidders i ∈ {1,2} observe their true valuation oi = vi for an item, which is

drawn independently according to some prior marginal distribution Foi from a real interval Oi ⊂R.

Therefore, the common prior is the product of the two marginal distributions. After both bidders

submit their bids (b1, b2) the (ex-post) utility of player 1 (analogously for player 2) is given by

u1(b1, b2, o1) =


o1− b1 if b1 > b2
1
2
(o1− b1) if b1 = b2

0 else

. (3)

The bidders are risk neutral and want to maximize their expected profits/utilities. To analyze such

auction formats, we are interested in equilibrium strategies, where no bidder has the incentive to

deviate from the current strategy. Instead of pure strategies β :Oi→Ai, we focus on distributional

strategies σ, which are probability measures over Oi×Ai. This means rather than first observing
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o and then choosing an action b according to β, distributional strategies assign probabilities to

observation-action pairs.

This idea becomes more tangible when we apply it in a discrete setting. Let us consider the

auction in discretized versions of the observation and action space i.e., Odi = {o1, ..., oK} ⊂Oi and

Adi = {b1, ..., bL} ⊂Ai. The discrete distributional strategy si can be seen as a form of mixed strategy

for Bayesian games over the discretized observation and action space, i.e., si ∈∆(Odi ×A
d
i ). For each

observation ok, the strategy si induces a mixed strategy si(·|ok)∈∆(Ad) over the action space. This

is similar to imperfect-information extensive-form games, where behavioral strategies induce mixed

strategies at each information set (Shoham and Leyton-Brown 2008). In distributional strategies,

these different mixed strategies are now combined by weighting each mixed strategy with the

probability (fdoi)k of the respective observation ok, induced by the prior distribution. That is, we

obtain a matrix si ∈∆(Odi ×A
d
i )⊂RK×L in which each entry (si)kl = (fdoi)k · si(bl|ok) indicates the

probability that ok is observed and bl is played. By construction, this matrix satisfies the marginal

condition as described in Definition 1. Note that the set of such distributional strategies, denoted

by Sdi , is convex. Given a strategy profile (s1, s2) ∈ Sd1×S
d
2, the expected utility ũ1 for player 1 is

the sum of all outcomes weighted by their respective probability induced by the strategies:

ũ1(s1, s2) =

K,L∑
k1,l1=1

K,L∑
k2,l2=1

u1(bl1 , bl2 , ok1)(s1)l1k1(s2)l2k2 (4)

=

K,L∑
k1,l1=1

(s1)k1l1

(
K,L∑

k2,l2=1

u1(bl1 , bl2 , ok1)(s2)k2l2

)
=: 〈s1, c1〉. (5)

This linear structure of the utility function ũi allows for two things. First, the function is obviously

differentiable with ∇s1 ũ1(s1;s2) = c1. And secondly, the best response sbr1 = arg max{ũ1(s, s2) : s1 ∈

Sd}, given the opponents strategy s2, is the solution of the following linear program

max
s∈RK×L

〈s, c1〉 s.t.
L∑
l=1

skl = (fdo1)k ∀k ∈ {1, . . . ,K}

skl ≥ 0 ∀k ∈ {1, . . . ,K}, l ∈ {1, . . . ,L}.
(6)

This allows us to compute the utility loss, i.e., the utility gap ε of a ε-NE.

Overall, we can define a complete-information game Γ = (I,Sdi , ũi) based on the discretized

incomplete-information game. The distributional strategies correspond to a compact, convex action

set, and the expected utility functions ũi to differentiable utility functions. This enables us to

draw on standard equilibrium learning methods from online convex optimization. In this example

we will focus on dual averaging (DA) (Nesterov 2009). DA is based on two steps. Both players

simultaneously use their gradients to update a variable in the dual space and then mirror this

updated dual variable back to the feasible set Sdi to get an updated strategy si. In this setting, this is
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Figure 1 SODA applied to discretized FPSB auction with two symmetric bidders.
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Note. In the first plot we can see a random strategy si ∈ Sdi . The color of each square represents the probability of

the respective observation-action pair. The second plot shows the computed strategy using SODA. We can observe

that the probabilities concentrate as expected near 1
2
o. In the last plot we compare the computed strategy with the

analytical BNE from the continuous setting. This is done by sampling 150 observations o according to the uniform

prior. Bids from the computed strategy are then obtained by identifying the nearest discrete observation ok and

sample a bid from the induced mixed strategy si(·|ok) ∈∆(Adi ) (blue dots). For the analytical BNE we simply plug

in the sampled observations to the equilibrium function βi(o) = 1
2
o (purple squares). This way, we can evaluate the

approximation and compute the metrics as explained in Section 4.1.

equivalent to Follow-the-Regularized-Leader (FTRL) (Shalev-Shwartz 2012). We repeat these steps

until the strategy profile is close enough to an equilibrium i.e., until the utility loss with respect

to the best response in the current strategy profile is sufficiently small. In Figure 1 we can see an

application of this simultaneous online dual averaging (SODA) algorithm to our discretized first-

price sealed-bid auction with two bidders as introduced above. We consider uniformly distributed

observations over O1 =O2 = [0,1] and allow for bids within the same interval, i.e., A1 =A2 = [0,1].

Both spaces are discretized using K =L= 20 equidistant points.

After this illustration, let us now introduce the model and the algorithm formally.

3.3. Discretization

Our algorithms are based on a discrete version of the game and distributional strategies. As il-

lustrated by the example in the previous section, these discrete distributional strategies are con-

structed by restricting ourselves to finite subsets of the observation, valuation, and action sets

and considering finitely atomic measures as a counterpart to the distributional strategies in the

continuous setting. This constitutes a specific discretized game formalization that the algorithms

operate on, which we also refer to as approximation game.

Formally speaking, we construct a discrete version Gd = (I,Vd,Od,Ad, fd, u) of the incomplete-

information game G. This is done by defining a set of discrete observations Od =Od1× ...×Od
n where
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Odi := {oi1, ..., oiK} ⊂ Oi. Similarly we define Adi := {bi1, ..., biL} ⊂ Ai and Vdi := {vi1, ..., viM} ⊂ Vi. We

further approximate the joint probability density function f by a discrete version fd over Vd×Od.

The marginal distribution of fd over Odi can be written as fdoi ∈∆(Odi ) ⊂ RK . For simplicity we

assume that the spaces are discretized with the same number of points for all agents. But this does

not have to be the case.

The discrete version si of a distributional strategy σi for bidder i is now measure over Od
i ×Adi and

can be identified with a matrix si ∈∆(Od
i ×Adi )⊂RK×L. The marginal condition for distributional

strategies translates to
∑

l(si)kl = (fdoi)k for all k= 1, ...,K. Therefore the set of all possible discrete

distributional strategies for bidder i can be identified by matrices of the form:

Sdi :=
{
si ∈RK×L : (si)kl ≥ 0 ∀k, l, and

∑
l

skl = (fdoi)k ∀k
}

(7)

For a given strategy profile (s1, ..., sn) ∈ Sd1 × ...× Sdn we can compute the expected utility. This

corresponds to the discretized version of equation (1).

ũi(s1, ..., sn) =
∑
k,l,m

ui(bl, vmi)
n∏
j=1

(sj)kj lj
(fd)m,k

(fdo1)k1 · · · (fdon)kn
(8)

=
∑
ki,li

(si)kili
∑

m,k−i,l−i

ui(bl, vmi)
∏
j 6=i

(sj)kj lj
(fd)m,k∏
j′(f

d
oj′

)kj′
(9)

For all ki, li we denote the second sum, which only depends on s−i, as (ci)ki,li and write

ũi(s1, ..., sn) =
∑
ki,li

(si)kili(ci)ki,li = 〈si, ci〉 (10)

Note that in these equations, l= (l1, ..., ln) is a multi-index and bl = (b1l1 , ..., b
n
ln

) the action profile

of all bidders (same for v and o respectively). Since the second sum (ci) does not depend on si, the

expected utility function for bidder i is linear in the bidder’s own strategy. Instead of considering

the discretized incomplete-information game Gd, we can use the expected utility ũi and the sets of

discrete distributional strategies Sdi to define a complete-information game.

Definition 2. Given the Bayesian game G= (I,V,O,A, f, u), we construct a discrete version

Gd = (I,Vd,Od,Ad, fd, u) of the game by discretizing the respective spaces and probability distri-

butions. The resulting sets of discrete distributional strategies Sdi and the expected utility ũi define

a complete-information game Γ = (I,Sd, ũ), which we call the approximation game of G.

Observe that the Nash equilibria s∈ Sd of the approximation game Γ, characterized by

ũi(si, s−i)≥ ũi(s′i, s−i) ∀s′ ∈ Sdi , ∀i∈ I, (11)

correspond to Bayes Nash equilibria in the discretized Bayesian game Gd.
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3.4. Algorithm

The approximation game Γ = (I,Sd, ũ) is a well-behaved complete-information game with linear

(in si) utility functions ũi and compact, convex action sets Sdi ⊂ RK×L. This structure allows us

to use algorithms from online convex optimization, where all agents simultaneously compute the

gradient given the current strategy profile and update their strategies according to some chosen

method (Algorithm 1). In particular, we focus on Dual Averaging (DA) (Nesterov 2009) since

Mertikopoulos and Zhou (2019) provide an ex-post certificate for the computed strategies if we

converge (see Corollary 1). While DA is our baseline algorithm, we also analyze alternative gradient-

based algorithms. This will help us understand whether convergence in these games is restricted to a

specific type of algorithm or regularizer. Specifically, we provide results for gradient-based methods

such as Mirror Descent (MD) (Nemirovskij and Yudin 1983) and the Frank-Wolfe Algorithm (Frank

and Wolfe 1956).

Let us briefly summarize the gradient-based methods we are considering. Mirror Descent can

be interpreted as a generalized projected gradient descent, where the projection is with respect

to the Bregman divergence induced by a distance-generating mirror map g (Beck and Teboulle

2003). Commonly used mirror maps are strongly convex functions such as the negative entropy

g1(x) =
∑

i xi logxi with g1(0) = 0 and g(x) = ∞ for all x /∈ Rn≥0, and the Euclidean distance

squared g2(x) = ‖x‖22. While g2 leads to the standard projected gradient algorithm, the update step

generated by g1 is known as the entropic descent algorithm (Beck and Teboulle 2003).

In Dual Averaging one distinguishes between dual and primal iterates. It is considered to be

a lazy version of Mirror Descent since the gradient update is only done in the dual space. To

get the next iterate in the primal space, the updated dual variable is projected onto the feasible

set in the primal space. The projection is done with respect to some regularizer h which again is

induced by a strongly convex function. For our examples the mirror maps ga with a∈ {1,2} induce

regularization functions ha by ha(x) = ga(x) + ISi(x), where ISi(x) = 0 if x∈ Si and +∞ else. For

h1 we get the same update step as in MD, namely the entropic descent algorithm. But for the

Euclidean regularizer, DA leads to a lazy version of the projected gradient descent which is equal

to the (linearized) FTRL with Euclidean regularizer. A pseudo-code can be found in Algorithm 1.

MD and DA are widely used and no-regret learners (Shalev-Shwartz 2012). Juditsky et al. (2022)

provides a detailed analysis of Mirror Descent and Dual Averaging, unifying both approaches and

explaining the differences between mirror maps (MD) and regularizers (DA). They also provide

intuition for the cases where both methods coincide, as we can observe for the negative entropy.

Another method we consider is the Frank-Wolfe (FW) algorithm, also known as conditional gra-

dient. This method uses gradient feedback to solve the linear program induced by the first-order

approximation of the objective function. The next iterate is a convex combination of this optimal
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Algorithm 1: Simultaneous Online Dual Averaging (SODA)

Input: Approximation game Γ = (I,Sd, ũ), initial strategies s1 ∈ Sd

1 for t= 1,2, . . . , T do
2 for each agent i∈ I do

// calculate gradient

3 ci,t←∇si ũi(si,t, s−i,t)

// update strategy (using Dual Averaging)

4 yi,t+1← yi,t + ηt · ci,t
5 si,t+1←∇h∗(yi,t+1)

solution and the previous iterate. Since the feasible set is convex, one avoids the potentially expen-

sive projection which has to be computed in the other methods. Hazan and Kale (2012) introduced

an online version of the Frank-Wolfe, where the solution of the linear program is computed with

respect to the aggregated objective functions of all previous iterates. In contrast to the standard

version, the online version also has the no-regret property. But due to better performance in our

experiments, we stick with the standard Frank-Wolfe algorithm.

An overview of the different update rules we used in our experiments is provided in Table 2.

Interestingly, we find that all algorithms in Table 2 converge to equilibrum quickly and the results

Table 2 Overview of simultaneous online (SO) gradient updates.

Method Update Rule

SODA1

(SOMA1)

Dual Averaging +
entropic regularizer (si,t+1)kl = (fdoi)k

(si,t)kl exp (ηt(ci,t)kl)∑
l′

(si,t)kl′ exp(ηt(ci,t)kl′)
∀k, l

SODA2

Dual Averaging +
Euclid. regularizer

yi,t+1 = yi,t + ηtci,t
si,t+1 = arg max{‖s− yi,t+1‖22 s.t. s∈ Si}

SOMA2

Mirror Ascent +
Euclid. mirror map

si,t+1 = arg max{‖s− (si,t + ηtci,t)‖22 s.t. s∈ Si}

SOFW Frank-Wolfe bri,t+1 = arg max{〈ci,t, s〉 s.t. s∈ Si}
si,t+1 = (1− ηt)si,t + ηtbri,t+1

Note that agents want to maximize their utilities in our examples, which is why we change all update rules to ascent

instead of descent methods. The gradient for each agent is denoted by ci := ∇si
ui(si, s−i). We use a non-increasing

sequence of step sizes {ηt} of the form ηt = η0t−β for some β ∈ (0,1] for DA and MD and the commonly used step size

ηt =
2

1+t
for Frank-Wolfe.

are similar. We also report results for Fictitious Play (FP), as an algorithm that is not gradient-

based. FP is the oldest and best-known equilibrium learning technique (Brown 1951). At each

round, each player best responds to the empirical frequency of play of their opponent. Also FP

converges in the analyzed model, but it is not as efficient as the gradient-based algorithms.
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3.5. Approximation via Discretization

Next, we show that approximate BNEs of the discrete game Gd naturally induce approximate

BNEs of the continous game G, where the quality of the approximation depends on the coarseness

of the discretization. Thus, if our algorithm finds a good solution to the discretized setting, this also

induces a good solution for the continuous setting, where the quality depends on the coarseness of

the discretization. We only consider some specific single-object auctions here. Apart from that, we

do not postulate any strong assumptions, such as symmetry or independence. The precise formal

statement of the following theorem, together with its proof, can be found in Appendix B. The

assumptions for the proof include single-object auctions such as the first-price and second-price

sealed bid auctions as well as first-price and second-price all pay auctions (e.g., war of attrition).

Theorem 1. Let s ∈ Sd be an ε-BNE of the discrete game Gd of a single-object auction. Let

σ ∈ S be the strategy profile, where each σi is the strategy induced by si. Then σ is an ε+O(δα+δτ )-

BNE of the continuous game G.

Here δτ and δα denote the coarseness of the discretization of the valuation and the action space.

The central message of the proposition is that if we find an approximate BNE for the discrete

game, we also find an approximate BNE for the continuous game with an additional error term

decreasing linearly with the coarseness of the discretization.

The idea of the proof is as follows. Given an arbitrary strategy profile s∈ Sd of the discrete game,

we show that s naturally induces a feasible strategy profile σ ∈ S of the continuous game and that

the difference of utilities of these two solutions is small. Conversely, we can construct a feasible

discrete strategy profile s from a given continuous strategy profile σ. Our central argument is that

if we start with a continuous strategy profile σ ∈ S, and consider the induced discrete strategy

profile s ∈ Sd, which in turn induces a continuous strategy σ̃i ∈ Si for each agent i, the loss of

utility is in O(δτ + δα). Now suppose we find an ε-BNE s∗ ∈ Sd of the discrete game and consider

the induced continuous strategy profile σ∗. Let σi be a best response to σ∗−i. Then the discrete

strategy si induced by σi cannot be much better than s∗i , since s∗ is an ε-BNE. But by the result

mentioned above, the utility of the continuous strategy σ̃i neither differs by much from si, nor from

σ∗i . Thus, the gain of utility from switching to σi is in ε+O(δτ + δα).

In all our experiments not only the utility loss converged with finer discretization, but also the

strategies converged. However, this is not necessarily the case. There are auction models where

there is an approximate equilibrium in the discretized auction, but not in the continuous case

(Jackson and Swinkels 2005). However, there are also cases where we know that pure, symmetric

equilibria exist, but there may be no corresponding equilibrium in the discretized case. Rasooly

and Gavidia-Calderon show that for different tie-breaking rules there are only asymmetric pure
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equilibria for some simple first-price sealed bid auction settings and only mixed equilibria for

some all-pay auction settings. Although such situations can happen, we can observe that SODA

approximates the continuous equilibria well due to the richer class of symmetric distributional

strategies that are being learned.

3.6. Ex-Post Certificates

An advantage of SODA over earlier methods for equilibrium computation in auctions (Bosshard

et al. 2020, Bichler et al. 2021) is that SODA does not need an empirical verifier, which is com-

putationally expensive. This insight relies on Mertikopoulos and Zhou (2019), who prove in their

Theorem 4.1 that if a sequence of pure strategy profiles resulting from dual averaging converges to

a strategy profile for all players, then this profile is a Nash equilibrium. A consequence of the dis-

tributional strategies that we learn is that the expected utility ũ(s1, · · · , sn) is linear in the bidder’s

own strategy, satisfying the assumption of the theorem, that the utility functions are (pseudo-)

concave in the bidders’ own strategies. Consequently, if SODA converges to a pure strategy, it also

converges to a Nash equilibrium.

Corollary 1 (to Mertikopoulos and Zhou (2019), Theorem 4.1). Suppose that SODA

is run with a step-size sequence that is square summable but not summable and produces the sequence

(st)t∈T of action profiles. If the sequence of strategy profiles (sti)t∈T converges to s∗i ∈ S
d
i for all

i∈ I, then s∗ is a Nash equilibrium.

Of course, checking empirically whether an infinite sequence of iterates converges by inspecting

finitely many of them is not possible. However, we believe that the rapidly decreasing distance

between consecutive iterates we observe in our experiments strongly indicates that we indeed

approximate exact BNEs with high precision.

4. Experimental Evaluation

We illustrate the versatility of our method by analyzing a number of very different auctions and

contests. We report results on single-object auctions with interdependent valuations, combinatorial

auctions with single-minded bidders and multi-minded bidders, single-object auctions with risk-

averse bidders, and Tullock contests with a randomized contest success function. In some of these

models the analytical BNE is given, which provides an unambigous baseline to compare against.

However, we also explore models where no BNE was known so far, which includes all-pay auctions

with risk-averse bidders and the Tullock contest. With only a few bidders we can compute BNE

within a few minutes or seconds. We compare our results to those in Bichler et al. (2021) on NPGA

to illustrate the performance increase we get for these environments.
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4.1. Parameter and Evaluation Criteria

We start by constructing the approximation game by discretizing each dimension of the respective

spaces with K = L = M = 64 equidistant points, if not stated otherwise. The discrete prior dis-

tribution is computed by evaluating the density function at these discrete points and normalizing

the resulting probability vector. Since ties happen with a positive probability in the discretized

game, we also have to define a tie-breaking rule. Due to better performance in our experiments,

we deviate from the standard random tie-breaking and implement a rule where no agent wins if

the maximal bid is not unique.

Given the constructed approximation game, we apply the learning algorithms as defined in

Section 3.4. The algorithms stop either after a fixed number of iterations (T = 1000) or whenever

the stopping criterion is satisfied, i.e., `i < εtol = 10−4, for each agent i. We use the relative utility

loss `i as the stopping criterion, which denotes the relative improvement of the expected utility ũ an

agent can achieve in the approximation game when fixing the opponents strategies s−i and playing

the best response sbri instead of si. The best response is the solution of a simple LP (see Equation 6).

A low relative utility loss means that we are in some approximate NE in the approximation game. If

bidders are symmetric, we learn a single strategy for all of them. After computing an approximate

discrete distributional equilibrium strategy, we want to evaluate the computed solution within the

initial continuous setting of the auction game. To do this, we sample observations according to the

prior distribution and determine the corresponding bids from our strategies. Note that, unlike to

pure strategy functions βi, we cannot simply plug in the sampled observations oi and get a bid

bi = βi(oi). Instead, we have to identify the closest discrete observation oki and sample a discrete

bid bi ∼ si( · |oki) according to the induced mixed strategy by si. To compare our results with NPGA

from Bichler et al. (2021), we choose the same approach and focus on two metrics. First, given

the opponents’ strategies β−i we estimate the ex-ante utility using the sample-mean of the ex-

post utilities ûi(·, β−i) := 1
no

∑
o ui(·, β−i((o−i))). We then compare the outcome of a player bidding

according to the computed strategy si versus bidding according to the known equilibrium strategy

βi, while all opponents j play the equilibrium strategy βj. This leads to the relative ex-ante utility

loss L(si;β) = 1− ûi(si,β−i)
ûi(βi,β−i)

. Secondly, we report the probability-weighted root mean squared error

of the sampled bids from si and the bids from the equilibrium strategy βi, which approximates

the L2 distance of two functions or in our case between the function and the sampled bids bi, i.e.,

L2(si, βi) =
(

1
no

∑
oi

(si(· |oi)−β(oi))
2
) 1

2 . This metric ensures that we not only achieve a low utility

loss but also approximate the equilibrium strategies. Similar to Bichler et al. (2021) we sample

no = 222 observation (or valuation) profiles for both metrics. We report the mean and standard

deviation of all metrics over ten runs with random initial strategies.

All experiments are run on a computer with an Intel Core i7-8565U CPU @ 1.80 GHz and 16GB

of RAM. The implementation of the algorithm uses Python 3.8.5.
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4.2. Single-Object Auctions

We start with single-item auctions with interdependencies. The most well-known examples of in-

terdependencies are the common value model (with independent observations o) and the affiliated

value model for single-item auctions (Krishna 2009). We explore the second-price auction in an en-

Figure 2 Computed strategies for single-item auctions with interdependencies.
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Note. We draw 150 observations according to the prior distribution and sample the corresponding bids from the

computed discrete distributional strategies (blue dots). The colored lines indicate the analytical equilibrium strategies

in these settings.

vironment where there is one pure common value that is the same among all bidders. Three bidders

i∈ {1,2,3} share a common U(0,1)-distributed value for the item of interest. Conditioned on this

value, the observation oi of bidder i is uniformly—and independently from the other observations—

distributed on the interval from zero to two times the common value. Formally, we can define the

joint prior probability density function f with a four-dimensional uniformly distributed random

variable Ω = [0,1]4. For a draw ω∼U(Ω) we set each player’s type to vi(ω) = ω4 and each observa-

tion to be oi(ω) = 2 ·ωi ·ω4. Notice, all agents have the same value (or type), but they learn their

value only if they win the auction. In this model, the symmetric BNE strategy profile can be stated

in closed form as β∗i (oi) = 2oi
2+oi

. For our algorithms we restrict the spaces to the intervals Oi = [0,2],

V i = [0,1], and Ai = [0,1.5] and discretize them. Since all bidders are symmetric we learn a single

strategy for all of them. We observe (see Table 3) that the standard projected gradient ascent

(SOMA2) converges within seconds, while all other methods run for several minutes. The strategies

computed with SOFW deviate significantly from the equilibrium strategy for low valuations, which

explains the high L2 norm. But since this only happens for low valuations with low bids, there is

little effect on the utility loss L.

In the affiliated values model the individual observations are correlated. In a model with two

bidders (see also Krishna (2009, Example 6.2)), we can set Ω = [0,1]3 and bidder i ∈ {1,2} then
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Table 3 Results for the Common Value Model.

Algorithm step size runtime L L2

SODA1 β = 0.50, η0 = 100 10-13 min 0.007 (0.001) 0.034 (0.000)
SODA2 β = 0.05, η0 = 1 14-16 min 0.003 (0.000) 0.019 (0.000)
SOMA2 β = 0.50, η0 = 50 7-9 s 0.003 (0.000) 0.018 (0.000)
SOFW - 2-14 min 0.000 (0.001) 0.196 (0.002)
FP - 9-14 min 0.000 (0.001) 0.439 (0.014)

NPGA - 15 min 0.000 (0.000) 0.009 (0.002)

The mean (and standard deviation) of the approximated utility loss L and L2 distance,

as well as the step size and runtime is reported.

makes the observation oi(ω) = ωi + ω3 and both have a common value of v(ω) = 1
2
(ω1 + ω2) + ω3.

The symmetric BNE strategy for both agents under a second-price payment rule is to bid truthfully

and for a first-price payment rule to bid according to β∗i (oi) = 2
3
oi. In contrast to the common value

model, we do not need an additional valuation space and only discretize the spaces Oi = [0,2] and

Ai = [0,1.5]. Together with fewer bidders (i.e., two symmetric bidders), this leads to significantly

faster computations of the equilibrium strategies as we can see in Table 4.

Table 4 Results for the Affiliated Values Model.

Algorithm step size runtime L L2

SODA1 β = 0.5, η0 = 100 15-16 s 0.002 (0.000) 0.014 (0.000)
SODA2 β = 0.5, η0 = 1 11-12 s 0.002 (0.000) 0.012 (0.000)
SOMA2 β = 0.5, η0 = 1 11 s 0.002 (0.000) 0.014 (0.000)
SOFW - 11 s 0.004 (0.001) 0.020 (0.002)
FP - 12-13 s 0.005 (0.000) 0.025 (0.001)

NPGA - 15 min 0.002 (0.001) 0.018 (0.009)

The mean (and standard deviation) of the approximated utility loss L and L2

distance, as well as the step size and runtime is reported.

4.3. Combinatorial Auctions in the Local-Local-Global Model

Bayesian Nash equilibria are rarely available for multi-object auctions. Combinatorial auctions

have received significant attention due to their use in spectrum sales and other applications (Bich-

ler and Goeree 2017). The local-local-global (LLG) model has received significant attention in the

analysis of core-selecting combinatorial auctions (Goeree and Lien 2016). The core of an auction

game describes the set of outcomes such that no coalition of bidders (and possibly the auctioneer)

can profitably deviate given the bids. This LLG model is simple enough to allow for the derivation

of analytical results (Ausubel and Baranov 2019). At the same time, core-selecting auction mech-

anisms are challenging and among the most complex auction formats used today, which provides

an interesting benchmark for equilibrium computation.
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The LLG model consists of two objects {1,2}, two local bidders i∈ {1,2} and one global bidder

i= 3, each being interested only in one specific bundle (of the single object i (locals) or both objects

(global)), and we denote the valuation of each bidder’s single bundle by vi ∈R. We consider a private

values (but not independent private values) setting with oi = vi which allows for correlation. It was

shown that with independent private values and risk-neutral bidders, core-selecting payment rules

lead to significant inefficiencies in equilibrium (Goeree and Lien 2016) in combinatorial auctions.

Essentially, the two local bidders attempt to free-ride on each other. Depending on the prior value

distributions, it can happen that both local bidders bid too low in total and they fail to outbid the

global bidder, even if their combined valuations are higher than the global bidder’s. This results

in an inefficient outcome and it has been used as an argument against core-selecting combinatorial

auctions (Bichler and Goeree 2017). Now, it is interesting to understand equilibria with different

assumptions. For example, it is reasonable to believe that bidder valuations in spectrum auctions

are correlated because telecoms face the same downstream market.

Ausubel and Baranov (2019) investigate two models of correlation among local bidders’ private

values and derive analytical BNE. We will focus on the Bernoulli weights model and use it as

a baseline in our experiments in addition to the results of NPGA. Let’s define the joint prior f

to be the five-dimensional uniform distribution of a latent random variable ω ∼U [0,1]5. Then let

v3 = 2ω3 be the valuation of the global bidder and

v1(ω) =wω4 + (1−w)ω1, v2(ω) =wω4 + (1−w)ω2 (12)

be the valuations of the local bidders where the weight w is a random variable depending on ω5

only. The valuations of the local bidders can be thought of as a linear combination of an individual

component ωi and a common component ω4. Now given an exogenous correlation parameter γ ∈

[0,1], Ausubel and Baranov (2019) choose w such that corr(v1, v2) = γ via the Bernoulli weights

model: w(ω) = 1 if ω5 <γ and w(ω) = 0 else. The authors analytically derive the unique symmetric

BNE strategies for multiple bidder-optimal core-selecting payment rules including the nearest-zero

(NZ), nearest-VCG (NVCG), and nearest-bid (NB) rule in the Bernoulli weights model. These

rules all choose the efficient allocation x (according to the submitted bids) but select different price

vectors p from the set of core-stable outcomes. For example, the nearest-VCG rule picks the point

in the core that minimizes the Euclidean distance to the (unique) Vickrey-Clarke-Groves payments.

Similarly, the nearest-zero point takes the origin of the coordinate system as a reference point,

while the nearest-bid rule minimizes the distance to the vector of submitted bids b. We report the

results for these core-selecting payment rules with different Bernoulli weights γ ∈ {0.1,0.5,0.9} in

Table 5-7. Since truthful bidding is a dominant strategy for the global bidder, which is easier to
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Figure 3 Computed strategies for the local bidders in the LLG model.
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Note. We draw 150 observations according to the prior distribution and sample the corresponding bids from the

computed discrete distributional strategies using SODA2 (colored shapes). The colored lines indicate the analytical

equilibrium strategies for these settings. We consider the three core-selecting payment-rules and different correlations

according to the Bernoulli weights model with parameter γ ∈ {0.1,0.5,0.9}.

approximate and leads to more accurate results in all instances, we only report the results for the

local bidders. For γ = 0.5 we compare our results to NPGA.

We construct the approximation game by discretizing the spaces OL = [0,1] and OG = [0,2],

according to the prior distribution, and the action spaces Ai = Oi, i ∈ {L,G}. Since the local

bidders are symmetric we learn a single strategy for both. For each update method, we use a single

step rule for all different settings, i.e., SODA1 (β = 0.05, η0 = 100), SODA2 (β = 0.05, η0 = 50), and

SOMA2 (β = 0.05, η0 = 50).

Overall, we can observe that SODA shows an comparable low utility loss to NPGA. However,

NPGA was again run for 15 minutes while SODA1 converged in less than 0.5 minutes and often even

within a few seconds. Across all experiments all methods except for fictitious play converge, i.e.,

Table 5 Results for the local bidders in the LLG Model with Nearest-Zero Rule.

Algorithm
γ = 0.1 γ = 0.5 γ = 0.9

L L2 L L2 L L2

SODA1 0.002 (0.000) 0.022 (0.001) 0.001 (0.000) 0.022 (0.001) 0.000 (0.000) 0.025 (0.000)
SODA2 0.002 (0.000) 0.021 (0.001) 0.001 (0.000) 0.024 (0.002) 0.000 (0.000) 0.025 (0.001)
SOMA2 0.002 (0.000) 0.018 (0.002) 0.001 (0.000) 0.019 (0.001) 0.000 (0.000) 0.021 (0.000)
SOFW 0.002 (0.000) 0.018 (0.000) 0.001 (0.000) 0.023 (0.000) 0.000 (0.000) 0.034 (0.000)
FP 0.002 (0.000) 0.021 (0.000) 0.001 (0.000) 0.023 (0.000) 0.000 (0.000) 0.028 (0.000)

NPGA - - 0.000 (0.000) 0.011 (0.005) - -

We report the mean (and standard deviation) over ten runs for the utility loss L and L2 distance. SODA1 takes 10-34

seconds, SODA2 1-6 seconds, and FP 31-39 seconds per run. All other methods run for less than 1 second.

achieve a relative utility loss of less than 10−4 in the discretized game within the 1000 iterations.
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Especially Frank-Wolfe and the standard projected gradient ascent (SOMA2) only need a few

iterations until the stopping criterion is satisfied. Nevertheless, all computed strategies perform

well when compared to the analytical BNE in the continuous setting.

Table 6 Results for the local bidders in the LLG Model with Nearest-VCG Rule.

Algorithm
γ = 0.1 γ = 0.5 γ = 0.9

L L2 L L2 L L2

SODA1 0.001 (0.000) 0.017 (0.001) 0.001 (0.000) 0.017 (0.001) 0.001 (0.000) 0.021 (0.001)
SODA2 0.001 (0.000) 0.017 (0.000) 0.001 (0.000) 0.016 (0.000) 0.000 (0.000) 0.016 (0.000)
SOMA2 0.001 (0.000) 0.015 (0.001) 0.000 (0.000) 0.014 (0.001) 0.000 (0.000) 0.016 (0.001)
SOFW 0.001 (0.000) 0.015 (0.000) 0.000 (0.000) 0.015 (0.000) 0.000 (0.000) 0.016 (0.000)
FP 0.001 (0.000) 0.019 (0.000) 0.001 (0.000) 0.018 (0.000) 0.001 (0.000) 0.019 (0.000)

NPGA - - 0.000 (0.000) 0.016 (0.016) - -

We report the mean (and standard deviation) over ten runs for the utility loss L and L2 distance. SODA1 takes for
8-16 seconds and FP up to 47 seconds to compute one strategy, while all other methods run for less than 2 seconds.

Table 7 Results for the local bidders in the LLG Model with Nearest-Bid Rule.

Algorithm
γ = 0.1 γ = 0.5 γ = 0.9

L L2 L L2 L L2

SODA1 0.001 (0.000) 0.014 (0.001) 0.001 (0.000) 0.015 (0.002) 0.001 (0.001) 0.017 (0.001)
SODA2 0.001 (0.000) 0.013 (0.000) 0.000 (0.000) 0.008 (0.000) 0.000 (0.000) 0.009 (0.001)
SOMA2 0.000 (0.000) 0.012 (0.000) 0.000 (0.000) 0.008 (0.001) 0.000 (0.000) 0.009 (0.000)
SOFW 0.000 (0.000) 0.013 (0.001) 0.000 (0.000) 0.009 (0.001) 0.000 (0.000) 0.012 (0.000)
FP 0.001 (0.000) 0.017 (0.000) 0.001 (0.000) 0.015 (0.000) 0.001 (0.000) 0.016 (0.000)

NPGA - - 0.001 (0.000) 0.021 (0.021) - -

We report the mean (and standard deviation) over ten runs for the utility loss L and L2 distance. SODA1 takes 8-23

seconds and FP 31-39 seconds per run, while all other methods run for less than 2 seconds.

A setting where no analytical equilibria are known is the LLG model with a first-price payment

rule. This auction format is important as a number of countries used first-price combinatorial

auctions in high-stakes spectrum auctions (Bichler and Goeree 2017). Using the Frank-Wolfe al-

gorithm, we converge within 30 seconds in the discretized game. The corresponding equilibrium

strategies are visualized in Figure with different levels of correlation 4. In contrast to the other

settings, the global bidder has no simple dominant strategy. The resulting equilibrium strategy is

not as smooth as in other models, but the relative ex-ante utility loss is very small as in other

models (` < 10−4).
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Figure 4 Computed strategies in the LLG model with a first-price payment rule.
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Note. We draw 150 observations according to the prior distribution and sample the corresponding bids from the

computed discrete distributional strategies using SOFW (colored shapes) for different correlation parameters γ.

4.4. Combinatorial Split-Award Auction

Another combinatorial auction environment for which the BNE strategies are known is that of

combinatorial split-award procurement auctions (Kokott et al. 2019). In contrast to the LLG model,

bidders are not single-minded but they are interested in either one share of a contract or the

entire contract. Importantly, there are two pure BNE for the two symmetric bidders in the FPSB

combinatorial procurement market, which makes the analysis interesting. A specific version with

two suppliers and two lots has been analyzed by Anton and Yao (1992). Here, suppliers i∈ {1,2} can

bid on a 100% and a 50% share. With dis-economies of scale, we have the economically inefficient

“winner-takes-all” (WTA) equilibrium where one bidder wins both lots (the 100% share) and a

continuum of efficient “pooling equilibria” where both suppliers coordinate and each bidder wins

one good (a 50% share) at a high pooling price. The equilibrium with the highest bids on one lot

out of all the efficient pooling equilibria is the payoff-dominant strategy for each bidder.

We applied SODA to this setting with uniform and Gaussian (truncated with l= 1.2 and σ= 0.1)

distributed observations. We consider dis-economies of scale and choose marginal costs for the

split source of C = 0.3. The parameters are consistent with experiments from Kokott et al. (2019).

To compare our results to the analytical BNE (Table 8) we consider a truncated version of the

Gaussian prior since the equilibrium analysis requires bounded observations. We can observe that

for both priors, Gaussian (Figure 5) and uniform, SODA always finds the efficient equilibrium. This

is remarkable, because coordination is strategically more challenging than in the WTA equilibrium

in which bidders just compete on the 100% share similar to a single-object auction. In the pooling

equilibrium bidders bid high on the 50% share, but they also need to find a bid on the bundle

of both lots (the 100% share) such that it is not profitable for the opponent to deviate from the

pooling equilibrium.
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Figure 5 Computed strategy for the FPSB Split-Award Auction with a truncated Gaussian prior.
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Note. We draw 150 observations from a truncated Gaussian prior distribution and sample the corresponding bids from

the computed discrete distributional strategies (blue dots). The dashed lines indicate the winner-takes-all (WTA)

equilibrium, while the shaded area denotes all possible pooling equilibria.

Table 8 Results for the FPSB split-award auction with a truncated Gaussian prior.

Algorithm step size time L L2

SODA1 β = 0.05, η0 = 20 3-5 min -0.064 (0.001) 0.050 (0.010)

SODA2 β = 0.05, η0 = 0.05 3-4 min -0.077 (0.001) 0.067 (0.005)
SOMA2 β = 0.50, η0 = 0.05 7-6 min -0.086 (0.001) 0.100 (0.009)
SOFW - 7-11 min 0.031 (0.075) 0.029 (0.008)
FP - 7-12 min 0.194 (0.024) 0.078 (0.006)

The mean (and standard deviation) of the approximated utility loss L and L2 distance

(only for the 50% share), as well as the step size and runtime are reported.

The algorithms take several minutes since we have a two-dimensional action spaceAi = [1.0,2.5]×

[0.3,1.2] where each interval is discretized using L = 64 equidistant points and the observation

space Oi = [1.0,1.4] which is discretized using K = 32 points. We choose a lower discretization for

the observation space because otherwise we would run into memory issues for the computation of

the gradients. In Figure 5 we can observe that in the case of the Gaussian prior, the agents bid

slightly above the analytical BNE for the winning bid. This leads to a higher utility compared to

the utility in BNE and thereby to a negative utility loss. This also explains the rather large L2

distance in Table 8. We get more accurate results for the uniform prior, as we can see in Table 9.

Note that we do not consider the L2 distance for the bid on the 100% share, since the strategy is

spread within the continuum of pooling BNE.

We observe that SODA1 and SODA2 converge within 5 minutes in all instances and achieve

results similar to NPGA, which takes around 15 min to get L = 0.019 and a L2 = 0.025 for the

uniform prior (Bichler et al. 2023). SOMA2 and the Frank-Wolfe algorithm perform worse, espe-
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Table 9 Results for the FPSB split-award auction with a uniform prior.

Algorithm step size runtime L L2

SODA1 β = 0.05, η0 = 20 2 min 0.009 (0.000) 0.024 (0.028)

SODA2 β = 0.05, η0 = 0.05 2-3 min 0.009 (0.000) 0.015 (0.000)
SOMA2 β = 0.50, η0 = 0.01 7-9 min 0.029 (0.002) 0.097 (0.016)
SOFW - 7-8 min 0.191 (0.032) 0.075 (0.010)
FP - 7-8 min 0.177 (0.031) 0.039 (0.008)

The mean (and standard deviation) of the approximated utility loss L and L2 dis-
tance (only for the 50% share), as well as the step size and runtime are reported.

cially for the uniform prior, and Fictitous Play doesn’t achieve a sufficient accuracy in any setting.

Nevertheless, all methods approximate the payoff-dominant equilibrium.

4.5. Single-Object Auctions with Risk-Averse Bidders

In addition to single-object auctions with the standard quasi-linear utility functions, we can also

consider extensions such as risk-aversion. As described in Section 3.1, risk aversion can be modeled

using a risk attitude ρ∈ (0,1] by transforming the standard quasi-linear utility uQLi into (strictly)

concave payoff functions of the form uRAi = (uQLi )ρ. This model is also known as constant relative

risk aversion (CRRA).

Figure 6 Computed strategies and revenue for the first-price and all-pay auction with risk-averse bidders.
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Note. The first two plot shows the equilibrium strategies for the first-price and all-pay auction under risk-aversion

compared to the risk-neutral equilibrium strategy (black line). The computed strategies are illustrated by drawing

150 observations according to the prior distribution and sampling the corresponding bids. In the last plot we visualize

the approximated expected revenue under different risk parameters.

We consider settings with two symmetric bidders who observe their uniformly distributed and

private valuations independently. For the first-price sealed-bid auction it is well known that risk-

averse bidders (ρ ∈ (0,1)) bid higher than risk-neutral bidders (ρ = 1), which leads to a higher

revenue for the seller (Maskin and Riley 1984). For all-pay auctions on the other hand, results are
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much more limited. Fibich et al. (2006) analyze the first-order conditions and show that in the

independent private value setting, risk-averse bidders bid lower for low valuations and higher for

high valuations compared to the risk-neutral equilibrium strategy. But they are not able to derive

explicit equilibrium strategies or to make statements about how risk-aversion affects the expected

revenue. Here, our methods can add to the existing literature. While we observe the effects in the

equilibrium strategies predicted by Fibich et al. (2006), we can also observe that risk aversion,

similar to first-price auctions, increases the expected revenue in the all-pay auction (Figure 6).

Table 10 Results for risk-avers bidders in the FPSB auction with different risk parameter ρ.

Algorithm
ρ= 0.5 ρ= 0.7 ρ= 0.9

L L2 L L2 L L2

SODA1 0.001 (0.000) 0.007 (0.000) 0.001 (0.000) 0.007 (0.000) 0.001 (0.000) 0.008 (0.000)
SODA2 0.001 (0.000) 0.007 (0.000) 0.001 (0.000) 0.007 (0.000) 0.001 (0.000) 0.008 (0.001)
SOMA2 0.001 (0.000) 0.007 (0.000) 0.001 (0.000) 0.007 (0.000) 0.001 (0.000) 0.008 (0.000)
SOFW 0.001 (0.000) 0.008 (0.000) 0.001 (0.000) 0.008 (0.000) 0.001 (0.000) 0.009 (0.000)
FP 0.002 (0.000) 0.013 (0.000) 0.002 (0.000) 0.013 (0.000) 0.003 (0.000) 0.013 (0.001)

We report the mean (and standard deviation) over ten runs for the utility loss L and L2 distance. The runtime for all

methods is less than 1 second per run.

For the numerical experiments we consider first-price and all-pay auctions with two symmetric

bidders. They independently observe their uniformly distributed valuations from Oi = [0,1]. We

restrict the action space to Ai = [0,0.8]. The strategies in Figure 6 are computed using SODA1

with parameters β = 0.05, η0 = 25 for the all-pay and β = 0.05, η0 = 20 for the first-price auctions.

The revenue is the mean over 222 simulated auctions using the computed strategies over ten runs.

For risk-averse bidders in the first-price auction we can use the analytical solution to evaluate

the computed strategies. The results are reported in Table 10. The parameters for the learning

algorithms, i.e., SODA2 with β = 0.05, η0 = 0.1 and SOMA2 with β = 0.5, η0 = 0.5, are constant

over the different risk parameters. Note that for our learning algorithm we have to extend the

definition of CRRA to negative numbers. This is done by uRAi = sign(uQLi ) · |uQLi |ρ.

4.6. Tullock Contests

Finally, we consider Tullock contests. In contests, agents invest efforts toward winning one or

more prizes, and these efforts are costly and irreversible. One distinguishes between perfectly

discriminating contests, such as all-pay auctions, where the bidder with the highest effort wins the

prize with certainty, and imperfectly discriminating contests, where the probability of winning is a

monotonically increasing function of one’s own effort (bid). Contests occur in various contexts such

as rent-seeking, warfare conflicts, R&D competition, and the labor market (Vojnović 2016). The

Tullock lottery (Tullock 1980) is the best known example of such a contest, where the probability
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of winning the prize is proportional to agents effort. We will focus on the slightly more general

r-Tullock contest with parameter r > 0, where the (ex-post) utility of player i is given by

ui(bi, b−i, oi) =

{
oi

bri∑n
j=1 b

r
j
− bi if

∑n

j=1 bj > 0

oi
1
n

else
. (13)

If r = 1, the contest corresponds to the aforementioned Tullock lottery. Due to the discontinuity

at zero, the model is hard to analyze in the incomplete-information setting. Existence of pure

BNE in the IPV model (oi = vi independent for all i) is only known for the concave case, i.e.,

with r ≤ 1, while we only get existence in behavioral strategies for r > 1 (Haimanko 2021). But

even in the symmetric, concave case, no analytical equilibrium strategy is known. For r ∈ {0.5,1}

numerical approximations were obtained by discretizing the integral in the first order condition

and iteratively following the best response until convergence is reached (Fey 2008, Ryvkin 2010). In

contrast, our method does not rely on the first-order condition and can be easily adapted to more

general contests. Especially in settings with asymmetric bidders, where the first order condition

becomes a system of non-linear ODEs, our approach becomes even more valuable.

Figure 7 Computed strategies for the generalized Tullock Contest with two symmetric and asymmetric bidders
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Note. We draw 150 observations according to the prior distribution and sample the corresponding bids from the

computed discrete distributional strategies using SODA1 (colored shapes). The first plot shows the equilibrium

strategies in the symmetric setting, while the other two plots depict the weak and strong bidder in the asymmetric

case.

In Figure 7 we show the computed equilibrium strategies for 2 player r-Tullock contests with

r ∈ {0.5,1.0,1.5}. Note that this also includes a non-concave setting (r = 1.5) where existence of

pure BNE has not been shown yet. We consider a symmetric version where the valuations of both

contestants are uniformly distributed on [0,1] and an asymmetric setting, where we have a weak

bidder with oweak ∼U([0,1]) and a strong bidder with ostrong ∼U([1,2]). We restrict the actions to

Ai = [0,0.5] and discretize all spaces with K = L= 64 equidistant points. For dual averaging and
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mirror descent we used the following parameter: SODA1: η = 100, β = 0.05, SODA2: η = 10, β =

0.05, SOMA2: η= 100, β = 0.5. It takes all methods less than 0.1s in the symmetric and less than 2s

in the asymmetric settings to converge, i.e., achieve a relative utility loss ` < 10−4 in the discretized

game.

5. Discussion

SODA converges in a wide range of environments as illustrated in the previous section. In this

section, we discuss what is known about convergence and scalability of the approach.

5.1. Convergence

Although we can certify equilibrium ex post, an intriguing question remains: why do gradient dy-

namics converge to an equilibrium in such a wide variety of auctions and contests, even though

gradient dynamics don’t converge in many finite games (Sanders et al. 2018)? This is a noto-

riously challenging question. Andrade et al. (2021) write that there is little hope for a general

understanding of the behaviors arising from optimization-driven dynamics even in normal-form

games. Whether learning algorithms converge or not depends on the properties of the game being

played. Apparently, a wide variety of auctions and contests have properties that allow for SODA

to converge to equilibrium.

There is a long literature on variational inequalities and how they are used to model equilibrium

problems (Kinderlehrer and Stampacchia 2000, Grossmann et al. 2007, Geiger and Kanzow 2013).

We know that projection algorithms converge if a complete-information game with continuous

action spaces satisfies monotonicity or the weaker variational stability condition, but that they do

not converge if there are only mixed equilibria (Mertikopoulos and Zhou 2019, Flokas et al. 2020).

Variational stability coincides with the existence of (one or more) sharp equilibria in complete-

information games (Mertikopoulos and Zhou 2019). Unfortunately, it is not easy to assess ex ante

whether a specific game has a sharp or even only a pure Nash equilibrium.

The early theorems of Nash et al. (1950) and Debreu (1952) reveal that games possess a pure

strategy Nash equilibrium if (1) the strategy spaces are nonempty, convex, and compact, and (2)

players have continuous and quasi-concave payoff functions. These assumptions are necessary for

the fixed-point theorems that the authors draw on. However, in many economic models, the payoffs

are discontinuous. Bidders in an auction experience a discontinuous jump in their utility when

their bid on some unit increases to the point where it is no longer a losing bid. This led to a

literature on equilibrium existence in discontinuous games (see the survey by Reny (2020)). Athey

(2001) introduced the single-crossing property: whenever each opponent uses a non-decreasing

strategy in the sense that higher types choose higher actions, a player’s best response strategy is

also non-decreasing. When the property holds, a pure-strategy Nash equilibrium exists in every
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finite-action game. Further, for games with discontinuous payoffs and a continuum of actions, there

exists a sequence of pure-strategy Nash equilibria to finite-action games that converges to a PSNE

of the continuum-action game. The condition was shown to hold for first-price, multi-unit, and

all-pay auctions, as well as pricing games with incomplete-information about costs. Reny (2011)

generalizes these results and also covers more general multi-unit auctions with risk-averse bidders.

However, these ex-ante characteristics are not easy to verify and 70 years after Nash’s original work

understanding whether a game has a pure or even a strict equilibrium is still a challenge.

One could try to analyze the monotonicity of the continuous ex-ante game. But for this it is

important to understand the individual utility functions and their gradients. However, the agents’

utility functions are based on an unknown bid function. Without strong assumptions on the func-

tional form of the bid function, it is hard to characterize the payoff gradient explicitly. Appendix C

summarizes a number of plots, where we do make parametric assumptions on the prior distribution

and the bid function. The plots suggest that under a variety of assumptions the resulting expected

utility function is quasi-concave or at least unimodal. However, the parametric assumptions are

hard to justify. SODA is based on the discretized approximation game, not the continuous ex-ante

game. Unfortunately, we can show that the approximation game satisfies neither monotonicity

nor variational stability globally. Yet, we find convergence in a wide variety of games. A longer

discussion and definitions are provided in Appendix D.

5.2. Scalability

Although convergence is difficult to analyze, we want to provide some drivers for the computational

complexity of SODA. The main factors are the number of players, the number of items or bundles

(which drives the number of strategies), and the level of discretization. If the number of strategies

is exponential in the number of items (as in a combinatorial auction with general valuations), then

gradient-based optimization as in SODA explores all exponentially-many strategies. As a result,

an algorithm learning even only approximate ε-BNE cannot be polynomial in the number of items.

Cai and Papadimitriou (2014) showed with a similar argument that computing approximate ε-BNE

in combinatorial auctions is NP-hard.

In most auction-theoretical models, the number of items or strategies per agent is small. Exam-

ples include single-minded bidders in combinatorial auctions or split-award auctions with two or

three items only. Apart from this, a standard assumption in auction theory is that of symmetric

priors and symmetric equilibrium strategies, which leads to the fact that we only need to explore

the strategies of a single and not of multiple players. For example, if we further assume that the

bidders are independent, the computational effort can be further reduced. In such a first-price

sealed-bid auction, the expected utility can be written as

ũi(s1, ..., sn) =
∑
k,l

(si)kl(ok− bl)P(bl is highest bid;s−i). (14)
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Compared to the very general formulation (10), where we sum over all combination of bids which

grows exponentially in the number of bidders n, we compute the first order statistic. This way the

complexity does not increase with the number of bidders, which allows us to analyze much larger

settings (see Appendix A). So, while we know that the complexity of finding ε-BNE in general is

NP-hard, computation is not necessarily a limiting factor in most of the models analyzed in auction

theory, where we focus on small markets with a few players only.

6. Conclusions

Computing Bayesian Nash equilibria for continuous-type and -action auction games was consid-

ered intractable. Sixty years after Vickrey’s seminal work on single-object auctions, we still only

know equilibrium strategies for very restricted environments such as single-object auctions. These

equilibrium problems can be modeled as systems of differential equations and for many model

assumptions we don’t have a complete mathematical solution theory.

SODA is a new numerical technique that relies on distributional strategies and a discretization of

the type and action spaces that takes the prior distributions into account. The method is very fast

for auction models with symmetric bidders. In first-price environments with independent private

values, SODA computes approximate equilibrium also for large numbers of bidders in seconds,

which makes SODA a convenient numerical tool for analysts. We analyzed very different types of

auctions and contests and SODA converged in all of them. Ex-post verification upon convergence is

very useful, because the algorithms are very fast for standard models and analysts are not required

to perform costly numerical validation. While these formal convergence results have only been

shown for SODA, we demonstrated empirically that other first-order methods are as effective in

finding equilibrium strategies.
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Nemirovskij, Arkadij Semenovič, David Borisovich Yudin. 1983. Problem complexity and method efficiency

in optimization .

Nesterov, Yurii. 2009. Primal-dual subgradient methods for convex problems. Mathematical Programming

120(1) 221–259.

Rabinovich, Zinovi, Victor Naroditskiy, Enrico H. Gerding, Nicholas R. Jennings. 2013. Computing pure

Bayesian-Nash equilibria in games with finite actions and continuous types. Artificial Intelligence 195

106–139. doi:10.1016/j.artint.2012.09.007.

Rasooly, Itzhak, Carlos Gavidia-Calderon. 2021. The importance of being discrete: on the inaccuracy of

continuous approximations in auction theory. arXiv:2006.03016 [econ] ArXiv: 2006.03016.

Reny, Philip J. 2011. On the existence of monotone pure-strategy equilibria in bayesian games. Econometrica

79(2) 499–553.

Reny, Philip J. 2020. Nash equilibrium in discontinuous games. Annual Review of Economics 12 439–470.

Rosen, J Ben. 1965. Existence and uniqueness of equilibrium points for concave n-person games. Economet-

rica: Journal of the Econometric Society 520–534.

Ryvkin, Dmitry. 2010. Contests with private costs: Beyond two players. European Journal of Political

Economy 26(4) 558–567.

Sanders, James BT, J Doyne Farmer, Tobias Galla. 2018. The prevalence of chaotic dynamics in games with

many players. Scientific Reports 8(1) 1–13.

Sandholm, Tuomas. 2015. Abstraction for solving large incomplete-information games. Twenty-Ninth AAAI

Conference on Artificial Intelligence.

Shalev-Shwartz, Shai. 2012. Online learning and online convex optimization. Foundations and Trends® in

Machine Learning 4(2) 107–194. doi:10.1561/2200000018.

Shalev-Shwartz, Shai, Yoram Singer. 2007. Online learning: Theory, algorithms, and applications .

Shoham, Yoav, Kevin Leyton-Brown. 2008. Multiagent systems: Algorithmic, game-theoretic, and logical

foundations. Cambridge University Press, Cambridge. doi:10.1017/CBO9780511811654.

http://arxiv.org/abs/2006.03016


35

Singh, Satinder, Michael Kearns, Yishay Mansour. 2000. Nash convergence of gradient dynamics in iterated

general-sum games. Proceedings of the 16th Conference on Uncertainty in Artificial Intelligence URL

http://arxiv.org/abs/1301.3892.
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Appendix A: Running Time with Different Discretizations and Symmetry
Assumptions

In what follows, we report the impact of different levels of discretization and number of bidders on the

running time, and we explore the performance gains from symmetric models.

First, we investigate the effect of finer discretizations in the approximation game on the accuracy of

the approximation. We apply SODA1 (η0 = 10, β = 0.05) to a FPSB auction with two symmetric bidders

and independent, uniformly distributed priors. The computations are repeated using different numbers of

discrete points. More precisely, we discretize the action and observation spaces with K =L∈ {16,32,64,128}

equidistant points. We run SODA and stop the algorithm after 1 000 iterations. Afterwards we compare the

computed strategies with the analytical BNEs in the continuous setting (i.e., approximate L and L2) as

described in section 4.1. The results are reported in Table 11.

Table 11 Results for the FPSB with two bidders and different discretizations.

K,L 16 32 64 128 256

Utility Loss L 0.030 (0.001) 0.008 (0.000) 0.002 (0.000) 0.001 (0.000) 0.001 (0.000)
L2 Distance 0.036 (0.001) 0.018 (0.000) 0.010 (0.001) 0.008 (0.000 0.006 (0.000)

The mean (and standard deviation) of the approximated utility loss L and L2 distance over ten runs is
reported.

As expected, increasing the number of discretization points leads to better approximations. But obviously

this has a huge effect on the runtime of our algorithm. The computation of the gradient requires computing

the weighted sum over K · Ln elements (all possible combinations of valuation and action profiles) in the

general formulation as described in Section 3.3 for one-dimensional spaces. The number of possible outcomes

increases exponentially in the number of bidders n (or the dimension of the spaces). Therefore, our method

is limited to models with a small number of bidders or items.

Figure 8 Runtime for a FPSB using the general and symmetric formulation.
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Note. We report the mean runtime for 1000 iterations over 10 runs for a single-item FPSB with uniform prior.

But there are settings, where our method can be used even for a very large number of bidders. As described

in Section 5.2, one often considers independent symmetric agents in single-item first-price auctions. This
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allows us to use an alternative way of calculating the gradient, where the computational effort does not

depend on the number of bidders. In Figure 8 we can see that increasing the number of bidders from two

to just three already increases the runtime for higher discretizations from a few seconds to minutes in the

general formulation. Using the symmetric formulation on the other hand allows us to consider any number

of bidders.

Appendix B: Proof of Theorem 1

Given the auction game G= (I,V,A, f, u), we make following assumptions.

Assumption 1. The type spaces V i and action spaces Ai are compact intervals of R.

Assumption 2. The associated probability measure of the common prior F is absolutely continuous with

respect to its marginals Fi, with Lf -Lipschitz continuous Radon-Nikodym derivative f :

F (V ) =

∫
V

f(v)dF1(v1) . . . dFn(vn), V ⊂V measurable.

We assume V i to be the support of Fi. Since V is compact, there is also M > 0 such that F (V1× · · ·×Vn)≤

MF1(V1) · · · · ·Fn(Vn).

Assumption 3. With each agent i there are associated two payment (or transfer) functions tli : A→ R

and twi :A→R, determining the agent’s payment when they lose (tli) or win (twi ) the good. All tli and twi are

Lt-Lipschitz continuous. Moreover, for fixed bids b−i of the other agents, they are nondecreasing in bi.

Assumption 4. Each agent has a nondecreasing von Neumann-Morgenstern utility function Ui : R→R.

Thus, the agent’s utility for winning the good is Ui(vi − twi (b)), and for losing it is Ui(−tli(b)). The Ui are

LU -Lipschitz-continuous.

Assumption 5. The allocation function xi :A→ [0,1] denotes the probability of agent i winning the good,

given the bids of all agents. Only maximal bids are winning, i.e., xi(b)> 0⇒ bi ≥ bj ∀j. We assume that xi

is nondecreasing in bi for fixed b−i, and
∑n

i=1 xi(b)≤ 1 for all b∈A.

The ex-post utility of agent i can thus be written as

ui(b, vi) = xi(b)Ui(vi− twi (b)) + (1−xi(b))Ui(−tli(b)).

It is easy to see that the Lipschitz-continuity of Ui results in the Lipschitz-continuity of ui, e.g., for vi, v
′
i ∈ V i

|ui(b, vi)−ui(b, v′i)|= |xi(b)(Ui(vi− twi (b))−xi(b)Ui(v′i− twi (b)))|

≤ |Ui(vi− twi (b))−Ui(v′i− twi (b))| ≤LU |vi− v′i|.

Assumption 6. For each agent i, there is a function pi :Ai→ R, determining the marginal payment at

ties: formally, if b ∈ A is a bid vector such that bi is a maximal bid and there is a j 6= i with bi = bj, then

twi (b)− tli(b) = pi(bi). Hence, at ties marginal payments depend only on agent i’s bid bi. Note that the pi are

Lt-Lipschitz continuous.
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These assumptions include single-object auction formats such as the first-price and the second-price sealed

bid auctions, and first-price as well as second-price all-pay auctions (war of attrition) Jackson and Swinkels

(2005).

To formally describe our discretized game Gd(I,Vd,Ad, F d, u), we use the following definitions.

Definition 3. The discrete type space of agent i is a finite subset Vdi ⊆V i. There is a function τi : V i→Vdi ,

mapping each vi ∈ V i to its discrete representant τi(vi) and mapping each vdi ∈ V
d
i to itself. Denote by

δτ = maxi supvi∈Vi |vi− τi(vi)|.

If we discretize the valuation space, for instance, using N equally sized sub-intervals and τi maps vi ∈ V i
to the midpoint of the respective interval. Then we get δτ = 1

2N
| V i |.

Definition 4. The discrete action space of agent i is a finite subset Adi ⊆Ai. A
d
i contains the minimal

and maximal element of Ai. Denote by α+
i : Ai →Adi the function mapping each bi ∈ Ai to the minimal

element in Adi not smaller than bi. Similarly, denote by α−i :Ai→Adi the function mapping bi ∈ Ai to the

maximal element in Adi not greater than bi. Denote by δα = maxs∈{+,−}maxi supbi∈Ai |bi−α
s
i (bi)|.

Definition 5. The valuations in Vd = Vd1×· · ·×V
d
n are distributed according to probability measure F d

on Vd, given by

F d({vd1}× · · · × {vdn}) = F (τ−11 (vd1)× · · ·× τ−1n (vdn)) for all vdi ∈ V
d
i .

Consequently, F d has marginals F d
i ({vdi }) = Fi(τ

−1
i (vdi )) and density fd(vd1, . . . , v

d
n) = F d({vd1} × · · · ×

{vdn})/ΠiF
d
i ({vdi }) with respect to the marginals F d

i . Note that F d can also be interpreted as a probability

measure on V via F d(V ) = F d(V ∩Vd) for V ⊆V measurable.

We denote distributional strategies in Gd for agent i by si, and distributional strategies in G by σi. Given

a discrete strategy si for agent i, possibly computed by our algorithm, it is straightforward to construct a

corresponding distributional strategy σi which is feasible for the game G: Given an arbitrary type vi ∈ V i,

compute its discrete representant τi(vi). Then choose strategy bdi ∈A
d
i ⊆Ai with the same probability as bdi

is chosen in the discrete game when agent i has type τi(vi). Formally, we set

σi(Vi×{bdi }) =
∑
vd
i
∈Vd

i

Fi(Vi ∩ τ−1i (vdi ))
si({vdi }×{bdi })
F d
i ({vdi })

for Vi ⊆ V i measurable. We call this σi the strategy induced by si. Since si has Vdi -marginal F d
i , si({vdi }×

Adi ) = F d
i ({vdi }), and σi(Vi×Ai) =

∑
vd
i
∈Vd

i
Fi(Vi ∩ τ−1i (vdi )) = Fi(Vi), so σi is indeed feasible for the game Γ.

Lemma 1. Let s = (s1, . . . , sn) be a strategy profile of the discretized game Gd and σ = (σ1, . . . , σn) the

strategy profile of the continuous game G, where the σi are induced by si. Then the difference in the expected

utilities is |ũi(σ)− ũi(s)| ≤LUδτ .

Proof: Consider fixed bdi ∈A
d
i and vdi ∈ V

d
i for all agents i. Set Vi = τ−1i (vdi ) and define V = V1× · · · × Vn

and A= {bd1}× · · · × {bdn}. Using the definitions of σi and fd we get∫
V×A

f(v)dσ1(v1, b1) . . . dσn(vn, bn)

= Πi

si({vdi }×{bdi })
ΠiF d

i ({vdi })

∫
V×A

f(v)dF1(v1) . . . dFn(vn)
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= Πisi({vdi }×{bdi })
F (V )

ΠiF d
i ({vdi })

= Πisi({vdi }×{bdi })fd(vdi )

=

∫
V×A

fd(v)ds1(v1, b1) . . . dsn(vn, bn).

It follows that ∫
V×A

ui(b, vi)f
d(v)ds(v, b) =

∫
V×A

ui(b, v
d
i )f(v)dσ(v, b),

where bd = (bd1, . . . , b
d
n). Now∣∣∣∣∫

V×A
ui(b, vi)f(v)dσ(v, b)−

∫
V×A

ui(b, v
d
i )f(v)dσ(v, b)

∣∣∣∣
≤LUδτ

∫
V×A

f(v)dσ(v, b).

In the last step we used that ui is Lipschitz continuous and non-decreasing in vi, i.e., ui(b, vi)− ui(b, vdi )≤
LUδτ . Hence, summing over all such sets V and A, we get

|ũi(σ)− ũi(s)| ≤LUδτ .

�

In the next step, we want to compare the utility of a continuous strategy σ compared to the strategy

σ̃i induced by the discrete strategy si, which was in return induced by σi. To do so, we have to define the

discrete strategy si which is induced by σi.

Define a function ψ : V i×Ai→Vdi ×A
d
i by

ψ(vi, bi) =

{
(τi(vi), α

+
i (bi)) if vi− pi(bi)≥ 0

(τi(vi), α
−
i (bi)) else.

Thus, we define the discrete strategy si by si({vdi }×{bdi }) = σi(ψ
−1(vdi , b

d
i )).

Lemma 2. Let σ be a strategy profile in the continuous game G and i an arbitrary agent. Then there is a

strategy σ̃i that is induced by a strategy si of the discrete game Gd such that ũi(σ̃i, σ−i)≥ ũi(σ)−LU(4Ltδα+

δτ ).

Proof: The proof is similar to the proof of Lemma 7 in Jackson and Swinkels (2005). We denote σ̃i the

continuous strategy induced by si. Let Vi = τ−1i (vdi ) and Ai = {bdi }.
First, we are going to show that for (vi, bi) ∈ ψ−1(vdi , b

d
i ) and for arbitrary (v−i, b−i) ∈ V−i×A−i, we have

that |ui(b, vi)−ui(bdi , b−i, vdi )| is small:

By the Lipschitz continuity of the payment functions, we have |tsi (bi, b−i)− tsi (bdi , b−i)| ≤ Ltδα for s ∈ {w, l},
so

|Ui(vi− twi (bi, b−i))−Ui(vdi − twi (bdi , b−i))| ≤LU(δτ +Ltδα)

|Ui(−tli(bi, b−i))−Ui(−tli(bdi , b−i))| ≤LULtδα.

We distinguish two cases: either the allocation for agent i changes when the bid changes from bi to bdi , or it

does not change. If it does not change, i.e., xi(bi, b−i) = xi(b
d
i , b−i), then

ui(b
d
i , b−i, vi) = xi(b

d
i , b−i)Ui(vi− twi (bdi , b−i)) + (1−xi(bdi , b−i))Ui(−tli(bdi , b−i))

≤ xi(bi, b−i)Ui(vi− twi (bi, b−i)) + (1−xi(bi, b−i))Ui(−tli(bi, b−i))

+xi(bi, b−i)LU(δτ +Ltδα) + (1−xi(bi, b−i))LULtδα

≤ ui(b, vi) +LU(δτ +Ltδα).
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Now consider the case where allocations differ, i.e., xi(bi, b−i) 6= xi(b
d
i , b−i). Let us consider the case bdi > bi,

i.e., bdi = α+
i (bi) - the case bdi < bi can be treated similarly. Then there exists some bid b̃i ∈ [bi, b

d
i ] such that

there is a tie between bidder i and some other bidder. Consequently, we have twi (b̃i, b−i)− tli(b̃i, b−i) = pi(b̃i),

so

|(twi (bi, b−i)− tli(bi, b−i))− pi(bi)|

= |twi (bi, b−i)− twi (b̃i, b−i)− tli(bi, b−i)− tli(b̃i, b−i)− pi(bi)− pi(b̃i)|

≤ 3Lt|bi− b̃i|.

Since vi− pi(bi)≥ 0, this implies

vi− twi (bi, b−i)≥−tli(bi, b−i) + 3Lt|bi− b̃i|,

and therefore

Ui(vi− twi (bi, b−i))≥Ui(−tli(bi, b−i) + 3Lt|bi− b̃i|)

≥Ui(−tli(bi, b−i))− 3LULt|bi− b̃i|

and thus, using that xi(b
d
i , b−i)≥ xi(b),

ui(b, vi) = xi(b)Ui(vi− twi (bi, b−i)) + (1−xi(b))Ui(−tli(bi, b−i))

= xi(b
d
i , b−i)Ui(vi− twi (bi, b−i)) + (1−xi(bdi , b−i))Ui(−tli(bi, b−i))

+ (xi(b)−xi(bdi , b−i))(Ui(vi− twi (bi, b−i))−Ui(−tli(bi, b−i)))

≤ xi(bdi , b−i)Ui(vi− twi (bi, b−i)) + (1−xi(bdi , b−i))Ui(−tli(bi, b−i)) + 3LULtδα

≤ xi(bdi , b−i)Ui(vi− twi (bdi , b−i)) + (1−xi(bdi , b−i))(Ui(−tli(bdi , b−i)) + 4LULtδα)

= ui(b
d
i , b−i, vi) + 4LULtδα

≤ ui(bdi , b−i, vdi ) + 4LULtδα +LUδτ .

By using an analogous argument, we arrive at the same bound for the case bdi = α−i (bi).

Let us now evaluate the expected utilities with respect to σi and σ̃i. For (vdi , b
d
i )∈ V

d
i ×A

d
i and fixed v−i, b−i,

we have that ∫
ψ−1(vd

i
,bd
i
)

ui(b, vi)f(v)dσi ≤
∫
ψ−1(vd

i
,bd
i
)

(ui(b
d
i , b−i, v

d
i ) + 4LULtδα +LUδτ )f(v)dσi

=

∫
ψ−1(vd

i
,bd
i
)

(ui(b
d
i , b−i, v

d
i ) + 4LULtδα +LUδτ )f(v)dσ̃i.

By summing the integral over all sets ψ−1(vdi , b
d
i ) and integrating with respect to σ−i, we see that ũi(σ)≤

ũi(σ̃i, σ−i) +LU(4Ltδα + δτ ). �

Theorem 1 Let s ∈ Sd be an ε-BNE of the discrete game Gd of a single-object auction that satisfies the

assumptions 1-6. Let σ ∈ S be the strategy profile, where each σi is the strategy induced by si. Then σ is an

ε+O(δα + δτ )-BNE of the continuous game G.
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Proof: Let σ∗i be a best response to σ−i. Then σ∗i induces a strategy s̃i in the discrete game, which in

turn induces a continuous strategy σ̃i. By Lemma 2 we get the following bound of the expected utility of the

best response with respect to σ̃i.

ũi(σ
∗
i , σ−i)≤ ũi(σ̃i, σ−i) +LU(4Ltδα + δτ )

Since (σ̃i, σ−i) is a strategy profile induced by the discrete profile (s̃i, s−i), we can use Lemma 1 and further
obtain

≤ ũi(s̃i, s−i) +LU(4Ltδα + δτ ) +LUδτ .

Since (si, s−i) is an ε-equilibrium the previous term is bounded by

≤ ũi(si, s−i) + ε+LU(4Ltδα + δτ ) +LUδτ

and applying again Lemma 1 to get a bound with respect to the induced profile σ, we obtain

≤ ũi(σi, σ−i) + ε+LU(4Ltδα + δτ ) + 2LUδτ .

Thus we get our claim that

ũi(σ
∗
i , σ−i)≤ ũi(σi, σ−i) + ε+O(δα + δτ ).

�

Appendix C: Expected utility functions based on different parametric assumptions.

In this appendix we provide plots of the expected utility function for different parametric assumptions of

the bid function and different distributional assumptions. Figures 9 to 12 illustrate ex-interim utilities for

specific value draws (oi = 0.7) of a bidder. Plots for lower or higher valuations have similar properties.
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Figure 9 Expected utility with a linear bid function in a first-price sealed-bid auction.
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Figure 10 Expected utility with a convex bid function in a first-price sealed-bid auction.
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Figure 11 Expected utility with a concave bid function in a first-price sealed-bid auction.
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Figure 12 Expected utility with a sigmoid bid function in a first-price sealed-bid auction.

Appendix D: Monotonicity and Variational Stability in the Approximation Game

In this section we want to give evidence that variational stability and thereby monotonicity are not satisfied

globally in our settings as discussed in Section 3.6. For this we consider a simple example of a FPSB with

two symmetric bidders.

Consider our approximation game Γ = (I,Sd, ũ) as defined in Definition 2. Since the sets of discrete

distributional strategies Sdi are compact, convex subsets of RK×L and the utility functions ũi are linear and

therefore concave in si, we have a continuous, concave game as defined in (Mertikopoulos and Zhou 2019).

Rosen (1965) refers to such games as n-person concave games. In this setting, Nash equilibria s∗ ∈ Sd are

precisely the solutions of the corresponding variational inequality V I(F,Sd)

〈F (s∗), s− s∗〉 ≤ 0, ∀s∈ Sd, (VI)
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with F = (Fi)i∈I and Fi(s) :=∇iũi(si, s−i). In the following, we want to give a short overview of the relevant

definitions.

The game is said to satisfy the payoff monotonicity condition (MC), if

〈F (s)−F (s′), s− s′〉=
∑
i

〈∇iũi(si, s−i)−∇iũi(s′i, s′−i), si− s′i〉 ≤ 0, ∀s, s′ ∈ Sd (MC)

with equality if and only if s= s′. Rosen (1965) uses this property, which he calls diagonally strict concavity,

and shows that if the game satisfies (MC), it admits a unique Nash equilibrium. In the literature on variational

inequalities, this is also known as strict monotonicity (Facchinei and Pang 2003). Furthermore, we say that

a strategy profile s∗ ∈ Sd is variationally stable (VS), if there exists a neighborhood S ⊆Sd such that

〈F (s), s− s∗〉=
∑
i

〈∇iũi(si, s−i), si− s∗i 〉 ≤ 0, ∀s∈ S (VS)

with equality if and only if s= s∗. In terms of variational inequalities, global variational stable points are

in the set of weak solutions of the corresponding variational inequality V I(F,Sd). Mertikopoulos and Zhou

(2019) extend results of monotone games and show that the weaker concept of (VS) suffices to get convergence

for the no-regret algorithm dual averaging.

We will now show that, even in the simplest setting, variational stability is not satisfied, and therefore

convergence does not follow from these results. Let us consider a first-price sealed bid with two symmetric

bidders and i.i.d. observations (valuations) o ∼ U([0,1]. The observation and action space are discretized

equally with K = L points, i.e., Odi =Adi = {0, 1
K−1 , . . . ,

K−2
K−1 ,1}. Similar to our numerical experiments, we

assume a tie-breaking rule where bidders win only if their bid is strictly greater than the opponents’ bids. In

that case, the discretized game has two symmetric, pure equilibria which basically correspond to β1(o) = p o
2
q

and β2(o) = x o
2
y (Rasooly and Gavidia-Calderon 2021).

First, we observe that there are two equilibria, which immediately proves that the game cannot satisfy

(MC). Second, none of the BNE is globally variationally stable. If both bidders stick to the collusive strategy

sci (i.e., bid approximately 1
4
oi) each agent ends up with a higher utility, than in a situation where the agent

deviates to a BNE s∗i . This means

ũi(s
∗
i , s

c
−i)< ũi(s

c
i , s

c
−i)

By symmetry, this stays true if we sum over i. Since the utility ũi is linear in si the gradient does not depend
on si and we can write∑

i

〈∇iũi(s∗i , sc−i), s∗i 〉=
∑
i

〈∇iũi(sci , sc−i), s∗i 〉<
∑
i

〈∇iũi(sci , sc−i), sci 〉.

Rearranging terms, we get an inequality which contradicts (VS)∑
i

〈∇iũi(s∗i , sc−i), sci − s∗i 〉> 0.

Therefore, the equilibrium s∗ cannot be globally variationally stable. Note that this line of argument does

not rely on the non-uniqueness of the equilibrium, or the specific tie-breaking rule. We only use individual

linearity of the bidder’s utility function, which is a consequence of the discretization, and the fact that we

can construct collusive strategies, where deviating to the BNE reduces the expected utility.



44

Figure 13 Counterexample for variational stability.
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Note. In the first two plots, we see the two discrete distributional BNE for the 2-player FPSB, which correspond to

β1 and β2 indicated by the black squares. While the equilibrium strategies are obviously best responses to themselves,

the yellow squares indicate alternative best responses, which makes the BNE non-strict. On the third plot we illustrate

a BNE (black) and a collusive strategy (purple). For these strategies we observe that ũi(s
c
i , s

c
−i) > ui(s

∗
i , s

c
−i), i.e.,

unilaterally deviating from the collusive strategy profile to the BNE descreases the utility the bidder. This makes the

collusive strategy profile a point, where VS w.r.t. the BNE is not satisfied.

Specifically, in this example, we can further show that both equilibria are not even locally variationally

stable. In Figure 13 we illustrate that the equilibrium strategies are not strict since the best responses are

not unique. By linearity of the utility functions, the inequality (VS) is equal to zero for a BNE s∗ and any

convex combination s= λs∗+(1−λ)sbr of s∗ and its best response sbr 6= s∗. This means that either the BNE

is not locally variationally stable (for every neighborhood we can choose λ small enough), or the BNE and

its best response are elements of some larger variationally stable set. But in the latter case, we know that

this set has to be a convex set of equilibria (Mertikopoulos and Zhou 2019, Prop. 2.7). And since we can

verify numerically that for instance, a convex combination of BNE2 and its best response BNE1 is not an

equilibrium, this cannot be the case.

In conclusion, we have a setting which is not monotonic and not even locally variationally stable, but in

which our methods still approximates the BNE.
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