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Discovery program (DISC) is a policy used by the New York City Department of Education (NYC DOE) to

increase the number of admissions of students from low socio-economic background to specialized high

schools. This policy has been instrumental in increasing the number of disadvantaged students attending

these schools, by reserving a percentage of seats to disadvantaged students that complete a three-week

summer program (with a very high success rate [31]). However, assuming that students care more about

the school they are assigned to rather than the type of seat they occupy (school-over-seat hypothesis), our
empirical analysis using NYC DOE data from 12 recent academic years (2005-06 to 2016-17) shows that DISC

creates about 950 in-group blocking pairs each year amongst disadvantaged students, impacting about 650

disadvantaged students every year. Moreover, we find that this program does not respect improvements

as it benefits lower-performing disadvantaged students more than top-performing disadvantaged students

by matching some of the former to more preferred schools, thus unintentionally creating an incentive to

under-perform. These experimental results are confirmed by our theoretical analysis.

In order to alleviate the concerns caused by DISC, we explore two alternative policies: the minority reserve

(MR) and the joint-seat allocation (JSA) mechanisms. As our main theoretical contribution, we introduce

a feature of markets, that we term high competitiveness (HC). Assuming the school-over-seat-hypothesis

and the HC condition, we show that JSA dominates MR for all disadvantaged students. We give sufficient

conditions under which high competitiveness is verified, such as the combination of high demand for seats

and slightly poorer performances of disadvantaged students with respect to that of advantaged students.

Data from NYC DOE satisfies the high competitiveness condition, and for this dataset our empirical results

corroborate our theoretical predictions, showing the superiority of JSA. Given that JSA can be implemented

by a simple modification of the classical deferred acceptance algorithm with responsive preference lists,we

believe that, when the school-over-seat hypothesis holds, the discovery program can be changed for the

better by implementing the JSA mechanism, leading in particular to aligned incentives for the top-performing

disadvantaged students. We therefore suggest that policy makers solicit more information from students about

the school-over-seat hypothesis and then explicitly incorporate their preferences in the mechanism.

∗
Part of this work was done while the author was at Georgia Institute of Technology
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1 Introduction

There is a pervasive problem in the way students are evaluated and given access to higher

education [7, 12, 14]. Promising students are often unable to join top schools because the path to

getting admitted to these schools requires extensive training at various levels, starting as early as

when students are 3 years old [54]. Hence, underrepresented minorities, especially those with lower

household income and lower family education, are systematically screened-out of the education

pipeline: in many cities, schools remain highly segregated [53, 55]. Disparate opportunities in ac-

cessing high-quality education is one of the main causes of income imbalance and social immobility

in the United States [44]. Policies such as quota-based mechanisms and training programs offer

practical remedies for increasing representation of under-represented minorities and disadvantaged

groups in public schools in the U.S. [20, 29], as well as in countries such as India [57] and Brazil [8].

In this work, we study theoretically and empirically the characteristics of the Discovery Program,

which is used by the New York City Department of Education (NYC DOE) in an effort to increase

the number of disadvantaged students at specialized high schools (SHS) [43]. SHSs span the five

boroughs of NYC, and are among the most competitive ones in the city. Contrary to other public

schools, these schools consider only students’ score on the Specialized High School Admissions

Test (SHSAT) for admission. Around 5000 students are admitted every year to SHSs. The discovery

program reserves some seats for disadvantaged students that are assigned after the regular admission

process: it first runs the standard deferred acceptance algorithm [27] on general (i.e., non-reserved)

seats with all student applicants, and it then runs the same algorithm on reserved seats for the

unmatched disadvantaged students only. Disadvantaged students admitted via the reserved seats

are required to participate in a 3-week enrichment program during the summer
1
.

The discovery program has been instrumental in creating opportunities for disadvantaged

students, increasing the number of admitted students to these extremely competitive public high

schools in NYC. In 2020, for example, Mayor Bill de Blasio called for an expansion of the discovery

program, with 20% seats at SHSs reserved for the program. This expansion resulted in 1, 350 more

disadvantaged students being admitted to these specialized schools [43, 59].

In this work, we dive deep into the student-school matching produced by the discovery program

and starting from this case study, deduce general properties of markets with similar features. Our

empirical analysis shows that under a reasonable assumption on students’ preferences over schools

which we term school-over-seat2, the matchings from academic years 2005-06 to 2016-17 created

about 950 in-group blocking pairs each year amongst disadvantaged students, impacting about 650

disadvantaged students every year (see Figure 1a). A blocking pair is a pair of student 𝑠1 and school

𝑐1 that prefer each other to their matches, thus violating the priority of student 𝑠1 at school 𝑐1 and

creating dissatisfaction among students and schools. We also find that this program does not respect

improvements, hence it benefits lower-performing disadvantaged students more than top-performing
disadvantaged students, thus unintentionally creating an incentive to under-perform. See Figure 1b

for our empirical analysis, where top-performing students (with ranks 0 ∼ 500) attend less preferred

schools under the discovery program, unlike low-performing students (with ranks 500 ∼ 2200) who

get matched to better ranked schools (more preferred schools have lower numeric ranks). These

1
The goal of this program is to better prepare disadvantaged students who are slightly below the cutoff points for attending

specialized high schools. At the end of the program, each school decides whether to accept individual students based on, for

example, their improvement. However, in practice, summer schools participation almost always guarantees admission. E.g.,

in 2018, all students participating in the summer program at Stuyvesant were then admitted to the high school [31].

2
This hypothesis assumes that students’ preference over schools are not affected by whether they are required to participate

in the three-week summer enrichment program. See Section 1.1.4 for further discussions.
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(a) Number of blocking pairs among disadvantaged
students under discovery program across the last 12
academic years, which impacted around 650
students each year.

(b) Change in rank of assigned schools from the
baseline mechanism (BASE) to discovery program
(DISC) (we plot DISC - BASE) for disadvantaged
students, ordered by their SHSAT scores.

Fig. 1. Note that for Figure 1b, a negative change in rank means getting to a more preferred school under the
discovery program. Top-performing disadvantaged students (ranked 0 ∼ 500) are matched to worse schools
under DISC, whereas the lower-performing disadvantaged students are matched to better schools.

drawbacks
3
are not just an artifact of the data from NYC DOE, but are theoretical problems with

the current implementation of the discovery program and the nature of the market.

Therefore, our goal in this paper is to explore alternative mechanisms with reserved seats, so

that we can propose practical modifications to how the discovery program is implemented, while

alleviating the above-mentioned drawbacks. We want to propose a solution that is theoretically

sound, benefits disadvantaged students the most, and applies more generally to markets similar to

the NYC SHS market under consideration, where demand vastly exceeds the offer.

We consider in particular the minority reserve (MR) and joint seat allocation (JSA) mechanisms
4

These two mechanisms are also quota-based, with schools reserving a certain proportion of their

seats for disadvantaged students. However, in contrast to the discovery program, MR and JSA allocate
reserved and general seats at the same time. Under minority reserve, disadvantaged students are

admitted first via reserved seats and then via general seats (when there are no more reserved seats);

whereas under joint seat allocation, disadvantaged students would take first general seats if they

are able to compete and otherwise revert to reserved seats. We compare these three policies with

respect to the baseline stable matching mechanism, BASE, which does not distinguish between

disadvantaged and advantaged students [27]. We next discuss our key contributions.

1.1 Main results
We first summarize known and new properties of different mechanisms with reserved seats

under the school-over-seat hypothesis, i.e., students’ preferences over schools are not influenced by

whether they are admitted via general seats or reserved seats (in the case of NYC SHSs, reserved

seats additionally require a 3-week summer program). We then show that while in general no

mechanism dominates the other (not even DISC), we prove as our main theoretical contribution that

JSA dominates MR for disadvantaged students under a novel, fairly broad condition, that we term

high competitiveness of markets. Finally, we empirically validate the high competitiveness condition

and our theoretical results using data from NYC DOE, and make a policy recommendation for the

discovery program.

1.1.1 Properties of Mechanisms.

3
These drawbacks are also discussed in online forums: see, e.g., a post on the r/SHSAT subreddit: https://www.reddit.

com/r/SHSAT/comments/ntkoq5/discovery_program/; and a discussion on a popular site referenced on many reddit posts:

https://www.gregstutoringnyc.com/shsat-Discovery/.

4
They differ in terms of the processing order between reserved and general seats, which is known to affect the resulting

matching. MR and JSA are referred to as horizontal and vertical reservation respectively in some of the literature.

https://www.reddit.com/r/SHSAT/comments/ntkoq5/discovery_program/
https://www.reddit.com/r/SHSAT/comments/ntkoq5/discovery_program/
https://www.gregstutoringnyc.com/shsat-Discovery/
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BASE DISC MR JSA

weakly group strategy-proof ✓ [DF] ✗ (Ex 3.2) ✓ [HYY] ✓ ([KS,AT])

no in-group blocking pairs ✓ [GS] ✗ (Ex 3.2) ✓ (Prop 3.4) ✓ (Prop 3.8)

at least one disadvantaged student not worse off NA ✗ (Ex 3.1) ✓ [HYY] ✓ (Thm 3.6)

no disadvantaged student worse off if smart reserve NA ✗ (Ex 3.2) ✓ [HYY] ✓ (Thm 3.7)

respect for improvements ✓[KS] ✗ (Ex 3.2) ✓ [KS,AT] ✓ [KS,AT]

Table 1. Summary of properties of mechanisms with reserved seats under the school-over-seat assumption.
NA means not applicable. Previously known results and their corresponding citations are given in square
brackets, with: [DF] Dubins and Freedman [18]; [HYY] Hafalir et al. [29]; [GS] Gale and Shapley [27]; [KS]
[40]; and [AT] Aygün and Turhan [11]; other results are accompanied by the labels of examples, propositions,
or theorems used to answer the questions.

Question 1. Which mechanisms with reserved seats considered in the paper satisfy reasonable notions
of fairness such as absence of in-group blocking pairs and strategy-proofness? What is the impact of
these mechanisms on the disadvantaged group of students?
We explore useful properties for mechanisms with reserved seats and briefly explain these

properties here (see Sections 2 and 3 for formal definitions):

(i) strategy-proofness: this property means that the best strategy of students is to honestly report

their preferences over the schools;

(ii) absence of in-group blocking pairs: this is a fairness condition which ensures there is no priority
violation for students;

(iii) the third property asks for the mechanism not to worsen (with respect to the baseline

mechanism BASE) the assignment of at least one disadvantaged student
5
;

(iv) the fourth property asks all disadvantaged students not to be worse-off in a restricted scenario

called smart-reserve6, meaning the number of seats reserved for disadvantaged students is no

less than the number of disadvantaged students admitted by the baseline mechanism;

(v) respect for improvements: this property is essential for meritocratic systems and it ensures that

students have no incentive to underperform in the exam (i.e., lower their priority standings).

We summarize our results, as well as known results from the literature, in Table 1. As one can

immediately see from the table, the current implementation of the discovery program does not

satisfy any of the attractive features we investigate, yet the other two mechanisms, MR and JSA,
satisfy all these properties. This is even true when all the schools rank students in the same order,
as in the NYC SHS admission market where students are ranked based on their SHSAT scores.

We additionally demonstrate these findings empirically by computational experiments using the

admission data on NYC SHSs (the details can be found in Section 5). These results suggest that the

discovery program could benefit by replacing the current implementation with either minority

reserve or joint seat allocation. This result calls for a direct comparison of those mechanisms.

1.1.2 Dominance across Mechanisms with Reserved Seats

Question 2. Considering a fixed reservation quota. Does one of the mechanisms with reserved seats
(DISC, JSA or MR) (weakly) dominate another one for disadvantaged students, i.e., do all disadvantaged
students weakly prefer the schools they are matched to under one mechanism compared to the other?

We say that a mechanism A (weakly) dominates another mechanism B for disadvantaged students

if A places all disadvantaged students in schools they like at least as much as the schools they are

5
Intuitively, one might expect property (iii) to be so weak that it is trivially satisfied. However, the discovery program does

not satisfy it in general.

6
This requirement was first proposed and studied by Hafalir et al. [29], and they showed that such a condition is achievable

either in an ad-hoc fashion or by using historical data on school admissions.
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BASE MR DISC JSA

BASE (✗) (✗) (✗ Ex B.2) (✗) (✗) (✗ Ex B.2) (✗) (✗) (✗ Ex B.2)

MR (✗ [HYY]) (✓ [HYY]) (✓) (✗) (✗) (✗ Ex B.3) (✗) (✗) (✗ Ex 4.1)

DISC (✗) (✗) (✗ Ex 3.2) (✗) (✗) (✗ Ex B.3) (✗) (✗) (✗ Ex B.3)

JSA (✗ B.1) (✓ Thm 3.7) (✓) (✗) (✗) (✗ Ex 4.1) (✗) (✗) (✗ Ex B.3)

Table 2. The table answer the following question under the school-over-seat assumption: does the “row”
mechanism dominates the “column” mechanism for disadvantaged students? We answer the question for
three restricted domains: (1) schools share a common ranking of the students, (2) the reservation quotas is a
smart reserve, and (3) both. The answers are given in the exact order. All answers are accompanied by the
citations with [HYY] Hafalir et al. [29] or the labels of the examples or theorems used to answer the
questions, except for cases when the answer for one domain can be inferred from that of another domain.

placed in by B. Our results from Table 1 seem to suggest that the discovery program mechanism

could be dominated by either minority reserve or joint seat allocation. However, this is not the
case, as shown by the results we summarize in Table 2. All three mechanisms are incomparable,

even under some pretty restrictive hypothesis: (1) schools rank students in the same order; and/or

(2) reservation quotas being a smart reserve. The first hypothesis is common in markets where

students’ ranking is based on an entrance exam, such as the one for NYC SHSs, Chinese universities,

and Indian IITs. The only exception to the incomparability results is that the baseline mechanism

BASE, under the second hypothesis, is dominated by minority reserve and joint seat allocation
7
.

Question 3. Between MR and JSA, is one better for the NYC SHS market under consideration? Can
we deduce general properties that imply domination between these two mechanisms?

To be able to identify crucial interventions for the discovery program, we study the behavior of

the JSA and MR mechanisms in markets that satisfy a condition which we call high competitiveness.
This is a novel ex-post condition which guarantees that JSAweakly dominates MR for disadvantaged
students. This condition is verified by our data from NYC DOE, where in fact JSA outperforms MR
for disadvantaged students. We also show reasonable conditions on the primitives of the market

that imply high competitiveness. See Theorems 4.2, 4.3, and 4.4 for the formal statement. Roughly

speaking, the high competitiveness condition is satisfied when the demand for seats (i.e., number

of students) is much larger than the supply, and when disadvantaged students are performing

systematically worse than advantaged students. For the latter, we compare the distribution of

SHSAT scores for both the advantaged and disadvantaged groups of students, and notice that there

is a distributional shift between the scores of these two groups of students (see Figure 2b).

1.1.3 Case Study based on Data from New York City’s Department of Education.We validate our

theoretical results with extensive computational experiments using data we obtained from NYC

DOE for the 2005-2006 to 2016-2017 academic years, where we label students as advantaged or

disadvantaged based on the criteria given by the discovery program. First, we show that, in practice

as well, the discovery program suffers from many of the theoretical drawbacks we presented in

Table 1 – in particular, the discovery program creates in-group blocking pairs (Figure 1a) and does

not respect improvements (Figure 1b). In terms of strategy-proofness, we are unable to observe

systematic strategic behaviors from disadvantaged students. However, this is not surprising, as it is

hard to detect if a preference list has been manipulated and it has moreover been well observed

in the literature that strategic behaviors are unlikely to occur in large markets due to lack of

information (see, e.g., [35, 39, 52]). See section 5.1 for details.

When comparing the mechanisms with the same reservation quotas, we observe that the discov-

ery program results in the highest number of disadvantaged students admitted, whereas minority

7
This exception is simply another way of expressing the same results related to the third property in Table 1.
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reserve has the lowest amount (see Figure 2a). One may be tempted to deduce that the discovery

program is the best for the disadvantaged group of students as a whole. However, the number

of admits can easily be increased at the policy-maker’s will by increasing the number of the re-

served seats, while the negative impact of unfair seat allocation cannot be dealt with by a simple

perturbation of the parameters.

In addition, given the observation that disadvantaged students are in general performing worse

than advantaged students (see Figure 2b), it would undoubtedly lead to underrepresentation of

disadvantaged students at these SHSs under the baseline mechanism (see Figure 2a). Together with

the fact that there is a limited number of seats when compared to the number of students applying

to SHSs, we expect the market to be highly competitive and thus all disadvantaged students would

weakly prefer their assignment under JSA than under MR. We indeed observe these characteristics

for the NYC SHS admission market across all academic years we have data for (see Figure 3b). This

leads to the policy recommendation we present in this work.

1.1.4 Policy Recommendation. Overall, our work paves the way to make the discovery program

fairer for disadvantaged students. In particular, we provide an answer to how the existing practice

of the discovery program can be changed minimally to improve the outcome for the disadvantaged

group of students, so that the program aligns with the incentives to perform better.

Our Proposal: We propose that the program takes into account the preferences of students in

terms of the schools versus seats. Is attending a particular school more important than the type of

seat they are assigned to or vice versa? We believe that most students should be willing to take

a one-time 3-week summer program to attend a school they prefer, rather than not taking the

program and attending, for 4 years, a school they prefer less. We find that this school-over-seat

hypothesis is supported by the fact that preferences appear to be strongly polarized for certain

schools due to, e.g., geographical considerations (details are reported in the Appendix, Section H).

Although this seems reasonable, unfortunately such preferences
8
are currently not collected in the

data provided by the NYC DOE.

Under the school-over-seat assumption, we find that the many drawbacks of the current im-

plementation of the discovery program can be corrected by following the joint seat allocation
mechanism. For the NYC Specialized High School market – and, more generally, for highly com-

petitive markets – joint seat allocation gives a matching that is weakly better for disadvantaged

students, when compared to matching output by the other replacement mechanism studied in this

paper, both in theory and in practice.

Although powerful, the modification we propose requires minimal modification: there is essen-

tially no change in terms of what students and schools should report to the DOE (preference lists

for both and admission capacity for schools), and there is no change in terms of the algorithm (the

deferred acceptance algorithm [27], which is currently in implementation). Given this information,

to implement the JSAmechanism, one only needs to compute an equivalent instance [11, 40] where

students’ preference lists are expanded to be over reserved and general seats at schools, so that

the matching we desire to obtain can be easily recovered from the matching obtained under the

classical stable matching model on this equivalent instance.

Details of the equivalent instance can be found in Appendix C. Before we delve deeper into our

model and results, we would like to highlight a trade-off that any constrained resource allocation

8
In case where the school-over-seat assumption does not hold for a significant amount of students, a direct mechanism

which explicitly asks students to rank contracts at schools (i.e., school and seat type) would be more suitable. Sönmez and

Switzer [56] developed a mechanism that is fair, strategy-proof, and respects improvements, and the mechanism can be

easily implemented for the NYC SHS market: order the students based on their SHSAT scores with ties broken randomly,

then one at a time assign to students their most preferred contract that are still available.
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problem faces. Diverting resources to the disadvantaged groups can result in taking some resources

that are currently assigned to the advantaged groups. In this work as well, we find from our

empirical analysis, that advantaged students always weakly prefer their assignment under MR
compared to JSA. For all the academic years we analyze, we find that about 3% of the advantaged

students are worse off under JSA than under MR (i.e., about 97% of them are matched to the same

school under the two mechanisms); and among the 3%, most of them experience a drop in the rank

of assigned schools that is at most two. See Figure 3b for details of one academic year. We consider

this impact to be minimal compared to the ill-treatment faced by the disadvantaged students.

1.2 Related literature
The problem of assigning students to schools (without reserving seats for disadvantaged students)

was first studied by Gale and Shapley in their seminal work [27]. Abdulkadiroğlu and Sönmez [4]

then analyzed the algorithm in the context of school choice and recommended school districts to

replace their current mechanisms with either this algorithm or another algorithm, called the top
trading cycle algorithm. Since then, these mechanisms have been widely adopted by many cities in

the United States, such as New York City and Boston.

The first attempt of incorporating seat reservation with the stable mechanism occurred in this

pioneering work [4], where they extended their analysis to a simple affirmative action policy, using

majority quotas. However, Kojima [38] then analyzed the effects of these proposed affirmative action

policies, as well as priority-based policies, and showed that in some cases, the mechanisms might

hurt disadvantaged students, the very group these policies are trying to help. Hafalir et al. [29]

further analyze the effect empirically through simulated data and suggested that this phenomenon

might be quite common, and does not just happen in theory due to special edge cases. In addition,

to overcome the efficiency loss, they propose the minority reserve mechanism.

Since then, there has been many work studying and proposing solutions for the efficiency loss due

to seat reservation, such as Afacan and Salman [5], Doğan [17], Echenique and Yenmez [21], Ehlers

et al. [22], Fragiadakis and Troyan [26], Jiao and Shen [33], Nguyen and Vohra [42].

Mostly related to our work are those that study the effects of the precedence order under which

different types of seats are allocated (a special case is when there are only two types: reserved and

general). Kominers and Sönmez [40] is the first to study the importance of this precedence order in

an abstract and general framework. Dur et al. [19] then extended upon this work in the context of

school choice and show its role in explaining why the walk zone reserve in Boston does not have

the intended impact. Motivated by a school choice application in Chicago, Dur et al. [20] compare

mechanisms where multiple tiers of students are present, and each tier have some seats where they

have priority over other tiers. Such mechanisms include, in particular, JSA and MR. They show that

the precedence order can provide an “additional lever to explicitly target disadvantaged applicants".

In particular, their main results imply conditions under which the number of disadvantaged students
admitted by JSA is at least that by MR. In comparison, we give conditions on the quality of the

matching for each disadvantaged student. As discussed in Section 1.1.3, we believe that comparing

mechanisms in terms of the quality of the matching for individual disadvantaged students gives a

perspective complementary to the one that looks at the number of admitted disadvantaged students.

Moreover, the hypotheses of [20] on preferences of agents appear to be more restrictive than ours;

for instance, they require all schools to have the same ranking of the students.

Other works that study precedence order in school choice include Sönmez and Yenmez [57]

for India’s affirmative action system with both vertical and horizontal reservation policies and

Aygun and Bó [8] for Brazil’s affirmative action system. Moreover, Delacrétaz [16] proposed a

simultaneous reserve system that treats all types of seats identically. Pathak et al. [46] studied

precedence order from a policy perspective, showing how misunderstanding of the precedence
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order or the reserve system affects decisions from applications of reserve systems. There are also

works that studied other real-world applications besides school choice, such as H1B-visa allocation

[45], vaccine allocation [47], and cadet-branch matching in U.S. military [56].

Another popular form of affirmative action are priority-based mechanisms (see, e.g., [29, 33, 38]),

which creates a higher priority for disadvantaged students by, e.g., boosting their scores. Though

this mechanism satisfies important properties such as strategy-proofness and absence of in-group

blocking pairs, its practical use is being largely debated. For example, in 2019, the college board

proposed adding an adversity score to SAT scores to account for socio-economic differences,

however, this was met with severe pushback [32]. In another lawsuit at the University of Michigan

challenging a priority-based mechanism that assigned 20 points extra to disadvantaged students,

the system was declared unconstitutional by the Supreme Court [28]. [24] investigates the effects

of policies where scores for minority students are boosted before the admission process by extra

training, additional resources, etc. Since the goal of this work is to focus on operational suggestions

to the discovery program, we do not explore priority-based mechanisms.

1.3 Outline
The rest of the paper is organized as follows. In Section 2, we introduce the basic model and related

concepts for stable matchings and stable matching mechanisms. In Section 3, we formally introduce

the mechanisms with reserved seats considered in this paper and investigate their properties and

answer Question 1. We then compare these mechanisms in Section 4 and provide the answer to

Question 2 and Question 3. Lastly, in Section 5, we dive into the data on NYC SHS admission,

demonstrate our theoretical findings empirically and provide additional observations.

2 Model and Notations

2.1 Matchings and mechanisms
Let 𝑆 and 𝐶 denote a finite set of students and schools, respectively. Let 𝐺 = (𝑆 ∪ 𝐶, 𝐸) be a

bipartite graph, where two sides of nodes are students and schools, and the edge set 𝐸 represents

the schools which students find acceptable (i.e., would like to attend). Every student 𝑠 ∈ 𝑆 has

a strict preference relation >𝑠 (which we call the preference list of student 𝑠) over the schools

they find acceptable and the option of being unassigned (denoted by ∅). Formally, for two options

𝑐1, 𝑐2 ∈ 𝐶 ∪ {∅}, 𝑐1 >𝑠 𝑐2 means that student 𝑠 strictly prefers 𝑐1 to 𝑐2. For every student-school

pair (𝑠, 𝑐), we let 𝑐 >𝑠 ∅ if (𝑠, 𝑐) ∈ 𝐸, and ∅ >𝑠 𝑐 otherwise. There are two types of students,

advantaged (or majority) and disadvantaged (or minority), denote by 𝑆𝑀 and 𝑆𝑚 respectively. That

is, 𝑆 = 𝑆𝑀 ¤∪𝑆𝑚 where ¤∪ is the disjoint union operator. On the other hand, every school 𝑐 has a

quota 𝑞𝑐 ∈ N ∪ {0}, which represents the maximum number of students it can admit, and a strict

priority order >𝑐 over the students: for any two students 𝑠1, 𝑠2 ∈ 𝑆 , 𝑠1 >𝑐 𝑠2 means that student 𝑠1
has a higher priority (e.g., higher test score) than student 𝑠2 at school 𝑐 .

Let >𝑆≡ {>𝑠 : 𝑠 ∈ 𝑆}, >𝐶≡ {>𝑐 : 𝑐 ∈ 𝐶}, and q ≡ {𝑞𝑐 : 𝑐 ∈ 𝐶} denote the collection of students’

preference lists, their priority orders at schools, and schools’ quotas, respectively. Moreover, we

write >≡ {>𝑆 , >𝐶 }. An instance (or market) is thus denoted by (𝐺, >𝑆 , >𝐶 , q) or (𝐺, >, q).
A matching 𝜇 (of an instance) is a collection of student-school pairs such that every student is

incident to at most one edge in 𝜇 and every school 𝑐 is incident to at most 𝑞𝑐 edges in 𝜇. For student

𝑠 ∈ 𝑆 and school 𝑐 ∈ 𝐶 , we denote by 𝜇 (𝑠) the school student 𝑠 is matched (or assigned) to, and by

𝜇 (𝑐) the set of students school 𝑐 is matched (or assigned) to, under matching 𝜇.

For every school 𝑐 ∈ 𝐶 , let 𝑞𝑅𝑐 ∈ {0, 1, · · · , 𝑞𝑐 } denote the number of seats reserved to disadvan-

taged students at school 𝑐 , and let 𝑞𝐺𝑐 B 𝑞𝑐 − 𝑞𝑅𝑐 denote the number of general seats at school 𝑐 .

We call q𝑅 B {𝑞𝑅𝑐 : 𝑐 ∈ 𝐶} the reservation quotas. A (matching) mechanism with reserved seats is
a function that maps every instance, together with reservation quotas, to a matching. Given an
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instance 𝐼 = (𝐺, >, q), a mechanism 𝜙 , and reservation quotas q𝑅 , let 𝜙 (𝐼 , q𝑅) denote the matching

obtained under the mechanism 𝜙 with reservation quotas q𝑅 . Sometimes, when the reservation

quotas are clear from context, we simply denote the matching as 𝜙 (𝐼 ).
We say priority orders >̃𝐶 is an improvement of >𝐶 for student pair 𝑠 ∈ 𝑆 if >̃𝐶 is obtained

from >𝐶 by increasing the priorities of student 𝑠 in some schools in 𝐶 , while leaving the relative

priority orders of other students unchanged. A mechanism is said to respect improvements if for
any instance 𝐼 = (𝐺, >𝑆 , >𝐶 , q), student 𝑠 ∈ 𝑆 , and an improvement >̃𝐶 of >𝐶 for student 𝑠 , we have

that 𝜙 (𝐼̃ , q𝑅) (𝑠) ≥𝑠 𝜙 (𝐼 , q𝑅) (𝑠), where 𝐼̃ is obtained from 𝐼 by replacing >𝐶 with >̃𝐶 .

Let 𝜇1, 𝜇2 be two matchings. We say 𝜇1 (weakly) dominates 𝜇2 for disadvantaged students if
𝜇1 (𝑠) ≥𝑠 𝜇2 (𝑠) for all disadvantaged students 𝑠 ∈ 𝑆𝑚 . If moreover 𝜇1 ≠ 𝜇2 (i.e., there is at least

one disadvantaged student 𝑠 ∈ 𝑆𝑚 such that 𝜇1 (𝑠) >𝑠 𝜇2 (𝑠)), then we say 𝜇1 Pareto dominates 𝜇2
for disadvantaged students. A student-school pair (𝑠, 𝑐) ∈ 𝐸 is a blocking pair of matching 𝜇 for
disadvantaged students if 𝑠 ∈ 𝑆𝑚 , 𝑐 >𝑠 𝜇 (𝑠), and there exists a disadvantaged student 𝑠′ ∈ 𝜇 (𝑐) ∩ 𝑆𝑚

such that 𝑠 >𝑐 𝑠
′
; and it is a blocking pair of matching 𝜇 for advantaged students if 𝑠 ∈ 𝑆𝑀 , 𝑐 >𝑠 𝜇 (𝑠),

and there exists an advantaged student 𝑠′ ∈ 𝜇 (𝑐) ∩ 𝑆𝑀 such that 𝑠 >𝑐 𝑠
′
. A blocking pair is called

an in-group blocking pair if it is a blocking pair for either disadvantaged or advantaged students.

Fix reservation quotas q𝑅 . A mechanism 𝜙 is strategy-proof if for any instance 𝐼 and for any

student 𝑠 ∈ 𝑆 , there is no preference list >̃𝑠 such that 𝜙 (𝐼̃ , q𝑅) (𝑠) >𝑠 𝜙 (𝐼 , q𝑅) (𝑠), where 𝐼̃ is obtained
from 𝐼 by replacing >𝑠 with >̃𝑠 . In other words, a mechanism is strategy-proof if no student has the

incentive to misreport their preference list. As a stronger concept, a mechanism is weakly group
strategy-proof if for any instance 𝐼 and for any group of students 𝑆1 ⊆ 𝑆 , there are no preference lists

{>̃𝑠 : 𝑠 ∈ 𝑆1} such that for every student 𝑠 ∈ 𝑆1, 𝜙 (𝐼̃ , q𝑅) (𝑠) >𝑠 𝜙 (𝐼 , q𝑅) (𝑠), where 𝐼̃ is obtained from
𝐼 by replacing >𝑠 with >̃𝑠 for every 𝑠 ∈ 𝑆1. That is, a mechanism is weakly group strategy-proof if

no group of students can jointly misreport their preference lists so that everyone in the group is

strictly better off. Note that if a mechanism is weakly group strategy-proof, it is strategy-proof.

Consider two mechanisms 𝜙1 and 𝜙2. If 𝜙1 (𝐼 , q𝑅) (weakly) dominates 𝜙2 (𝐼 , q𝑅) for disadvantaged
students for all instances 𝐼 , we say that mechanism 𝜙1 (weakly) dominates mechanism 𝜙2 for

disadvantaged students. If neither 𝜙1 nor 𝜙2 dominates the other mechanism, we say they are not
comparable or incomparable.

2.2 Choice functions
To unify the treatment of the different mechanisms seen in the paper, we next introduce the

concept of choice functions. Under each mechanism, every school 𝑐 ∈ 𝐶 is endowed with a choice
function C𝑐 : 2𝑆 → 2

𝑆
: for every subset of students 𝑆1 ⊆ 𝑆 , C𝑐 (𝑆1) represents the students whom

school 𝑐 would like to admit among those in 𝑆1. In particular, for every 𝑆1 ⊆ 𝑆 , we have C𝑐 (𝑆1) ⊆ 𝑆1
and |C𝑐 (𝑆1) | ≤ 𝑞𝑐 . Choice function C𝑐 is a function of the priority order >𝑐 and quotas 𝑞𝑅𝑐 and 𝑞𝐺𝑐 ,

and its exact definition depends on the specific mechanism (see Section 4). Students’ preferences

are still described by a strict order over a subset of schools.

For all mechanisms studied in this paper, every school 𝑐’s choice function C𝑐 satisfies the

following classical (see, e.g., [6]) properties: substitutability, consistency, and 𝑞𝑐 -acceptance9. Thus,
for the rest of the paper, unless otherwise specified, these properties are always assumed. For some

mechanisms, C𝑐 is additionally 𝑞𝑐 -responsive. Intuitively, Substitutability states that whenever a

student is selected from a pool of candidates, they will also be selected from a smaller subset of the

candidates; consistency is also called “irrelevance of rejected contracts”, which means that removing

rejected candidates from the input does not change the output; 𝑞𝑐 -acceptance means that the choice

function fills the 𝑞𝑐 positions as much as possible; and 𝑞𝑐-responsiveness means that there is an

9𝑞𝑐 -acceptance is also referred to as quota-filling by some authors. However, we prefer to use 𝑞𝑐 -acceptance since it

highlights the quota.
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underlying priority order over the students and the choice function simply selects 𝑞𝑐 students with

the highest priorities whenever available. Formal definitions are included in Appendix A.

For any nonnegative integer 𝑞, a priority order over the students >, and a subset of students

𝑆1 ⊆ 𝑆 , let max(𝑆1, >, 𝑞) denote the min(𝑞, |𝑆1 |) highest ranked students (i.e., students with the

highest priorities) of 𝑆1 according to the priority order >. We further note that 𝑞-responsiveness

implies substitutability, consistency, and 𝑞-acceptance. Indeed, 𝑞-responsive choice functions are

the “simplest” choice functions and are mostly studied in the matching literature, including the

seminal work by Gale and Shapley [27] and in practical school choice [1, 3].

2.3 Stable matchings
Consider an arbitrary collection of schools’ choice functions C B {C𝑐 : 𝑐 ∈ 𝐶}. Note that

the 𝑞𝑐-acceptant property implies that for every school 𝑐 , we must have C𝑐 (𝜇 (𝑐)) = 𝜇 (𝑐) by any

matching 𝜇 by the definition of matchings. A matching 𝜇 is stable (in instance 𝐼 under choice

functions C) if there is no student-school pair (𝑠, 𝑐) ∈ 𝐸 such that 𝑐 >𝑠 𝜇 (𝑠) and 𝑠 ∈ C𝑐 (𝜇 (𝑐) ∪ {𝑠}).
When such a student-school pair exists, we call it a blocking pair of 𝜇, or we say that the edge (or

pair) blocks 𝜇. Note that the definition of matchings only depends on the instance, not on the choice

functions; whereas the definition of stability depends on both.

When the choice function is 𝑞𝑐-responsive (i.e., induced by a priority order and a quota), the

definition of stability with respect to choice functions is equivalent to the standard definition in

the classical model without choice functions. In particular, the condition 𝑠 ∈ C𝑐 (𝜇 (𝑐) ∪ {𝑠}) can
then be stated as: either school 𝑐’s seats are not fully assigned (i.e., |𝜇 (𝑐) | < 𝑞𝑐 ) or 𝑠 has a higher

priority over some students that are assigned to 𝑐 (i.e., ∃𝑠′ ∈ 𝜇 (𝑐) such that 𝑠 >𝑐 𝑠
′
).

Among all stable matchings of a given instance and choice functions, there is one that dominates
every stable matching, where matching 𝜇1 is said to dominate matching 𝜇2 if 𝜇1 (𝑠) ≥𝑠 𝜇2 (𝑠) for
all students 𝑠 ∈ 𝑆 . This stable matching is called the student-optimal stable matching, and it can

be obtained by the student-proposing deferred acceptance algorithm [27, 51], which we describe

next. The algorithm runs in rounds. At each round 𝑘 , every student applies to their most preferred

school that has not rejected them; and every school 𝑐 , with 𝑆
(𝑘 )
𝑐 denoting the set of students who

applied to it in the current round, temporarily accepts students in C𝑐 (𝑆 (𝑘 )
𝑐 ) and rejects the rest. The

algorithm terminates at the first iteration 𝑘 when there is no rejection and outputs the matching

𝜇 with 𝜇 (𝑐) = 𝑆
(𝑘 )
𝑐 for every school 𝑐 . For any instance 𝐼 and choice functions C, we denote by

SDA(𝐼 , C) the matching output by the student-proposing deferred acceptance algorithm.

3 Mechanisms

For the rest of the section, we fix an instance 𝐼 = (𝐺, >, q) and reservation quotas q𝑅 . The
choice functions of schools depend on the mechanisms, and we introduce them in details in each

subsection. We also discuss the features of the mechanisms in their corresponding subsections. The

unified treatment presented here allow us to compare the different mechanisms, with the goal of

understanding which is the one that best fit our improvement goals for the discovery program. We

defer all proofs in this subsection to Appendix D.

3.1 Baseline mechanism
The simplest mechanism is the one where schools do not distinguish students of different types.

In this case, the choice function of school 𝑐 under this baseline mechanism is 𝑞𝑐 -responsive, simply

induced from its priority order: for all subset of students 𝑆1 ⊆ 𝑆 ,

CBASE
𝑐 (𝑆1) B max(𝑆1, >𝑐 , 𝑞𝑐 ).
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We denote by 𝜇BASE B SDA(𝐼 , CBASE) the matching under the baseline mechanism. Although this

matching can be obtained from the original and simpler deferred acceptance algorithm proposed

by Gale and Shapley [27], we present the mechanism from a choice function point of view so that

it is consistent with later sections.

3.2 Discovery program
This mechanism is adapted from the policy used by NYC DOE for increasing the number of

disadvantaged students at the city’s eight specialized schools, which are considered to be the best

public schools. The discovery program mechanism distributes reserved seats to disadvantaged

student at the end of seat-assignment procedure. One of the reasons for allocating reserved seats to

lower ranked disadvantages students is that disadvantaged students who are admitted via reserved

seats are required to participate in a 3-weeks summer enrichment program as a preparation for the

specialized high schools.

However, for the sake of comparison (with other mechanisms), we assume that students’ pref-

erence for schools are not affected by whether they are required to participate in the summer

program – that is, students are indifferent between general and reserved seats at each school. We

assume this school-over-seat hypothesis for the rest of the paper, and we discuss its validity in the

Appendix, Section H. See also Section 1.1.4 for a further discussion.

When there is a shortage of disadvantaged students, reserved seats could go unassigned under the

discovery program mechanism. Although this is usually not of concern in real-world applications,

since there are usually more students than available seats, we nevertheless present the discovery

program mechanism in a more general case where vacant reserved seats are de-reserved [11].

The algorithm for the discovery program mechanism has three stages. Schools’ choice functions

at all stages are the simple 𝑞-responsive choice function CBASE
. The mechanism starts by running

the deferred acceptance algorithm on instance (𝐺, >, q𝐺 ) to obtain matching 𝜇DISC
1

for the general

seats; it then runs the deferred acceptance algorithm on the instance restricted to the disadvantaged

students that are not yet assigned (𝐺 [𝐶 ∪ {𝑠 ∈ 𝑆𝑚 : 𝜇DISC
1

(𝑠) = ∅}], >, q𝑅) to obtain matching 𝜇DISC
2

for reserved seats; and it lastly runs the deferred acceptance algorithm on the instance restricted

to the advantaged students that are not yet assigned (𝐺 [𝐶 ∪ {𝑠 ∈ 𝑆𝑀 : 𝜇DISC
1

(𝑠) = ∅}, >, q𝐸) with
𝑞𝐸𝑐 = 𝑞𝑅𝑐 − |𝜇DISC

2
(𝑐) | ∀𝑐 ∈ 𝐶 to obtain matching 𝜇DISC

3
for vacant reserved seats. The final matching

combines the matchings obtained at these three stages: 𝜇DISC B 𝜇DISC
1

¤∪𝜇DISC
2

¤∪𝜇DISC
3

.

Although the mechanism intends to help disadvantaged students, it could actually hurt them.

As we show in Example 3.1, under the discovery program mechanism, it is possible that all dis-

advantaged students are worse off. Moreover, the discovery program mechanism could create

blocking pairs for disadvantaged students, incentivize disadvantaged students to misrepresent

their preference lists or to under-perform, and might hurt disadvantaged students even when the

reservation quotas are a smart reserve (see Example 3.2).

Example 3.1. Consider the instance with students 𝑆𝑀 = {𝑠𝑀
1
, 𝑠𝑀

2
}, 𝑆𝑚 = {𝑠𝑚

1
} and schools

𝐶 = {𝑐1, 𝑐2}. The quotas of schools are 𝑞𝑐1 = 2 and 𝑞𝑐2 = 1, and both schools have priority order

𝑠𝑀
1

> 𝑠𝑀
2

> 𝑠𝑚
1
. Both advantaged students prefer 𝑐1 to 𝑐2, whereas the disadvantaged student prefers

𝑐2 to 𝑐1. It is easy to see that under the baseline mechanism,

𝜇BASE = {(𝑠𝑀
1
, 𝑐1), (𝑠𝑀2 , 𝑐1), (𝑠𝑚1 , 𝑐2)}.

Now consider the discovery program mechanism with reservation quotas 𝑞𝑅𝑐1 = 1 and 𝑞𝑅𝑐2 = 0. Then,

𝜇DISC = {(𝑠𝑀
1
, 𝑐1), (𝑠𝑀2 , 𝑐2), (𝑠𝑚1 , 𝑐1)}.

Under the discovery program mechanism, the disadvantaged student 𝑠𝑚
1
is not only assigned to a

school less preferred less, but is also now required to participate in the summer program. △
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Example 3.2. Consider the instance with students 𝑆𝑀 = {𝑠𝑀
1
, 𝑠𝑀

2
, 𝑠𝑀

3
}, 𝑆𝑚 = {𝑠𝑚

1
, 𝑠𝑚

2
, 𝑠𝑚

3
} and

schools 𝐶 = {𝑐1, 𝑐2}. The quotas of schools are 𝑞𝑐1 = 3 and 𝑞𝑐2 = 2, and both schools have priority

order 𝑠𝑀
1

> 𝑠𝑀
2

> 𝑠𝑚
1
> 𝑠𝑀

3
> 𝑠𝑚

2
> 𝑠𝑚

3
. All students prefer 𝑐1 to 𝑐2. We have

𝜇BASE (𝑐1) = {𝑠𝑀
1
, 𝑠𝑀

2
, 𝑠𝑚

1
}, 𝜇BASE (𝑐2) = {𝑠𝑀

3
, 𝑠𝑚

2
}.

Now assume that the reservation quotas are 𝑞𝑅𝑐1 = 𝑞𝑅𝑐2 = 1, which in particular is a smart reserve.

Under the discovery program mechanism with these reservation quotas, we have

𝜇DISC (𝑐1) = {𝑠𝑀
1
, 𝑠𝑀

2
, 𝑠𝑚

2
}, 𝜇DISC (𝑐2) = {𝑠𝑚

1
, 𝑠𝑚

3
}.

Disadvantaged student 𝑠𝑚
1
is worse off under 𝜇DISC than under 𝜇BASE. In addition, 𝜇DISC admits a

blocking pair (𝑠𝑚
1
, 𝑐1) as 𝑠𝑚1 prefers 𝑐1 to 𝑐2 and 𝑠

𝑚
1
has a higher priority than 𝑠𝑚

2
at 𝑐1.

One can see from this example that the discovery program neither is strategy-proof, nor it

respects improvements: If 𝑠𝑚
1
were to report the preference list as 𝑐1 > ∅ or if 𝑠𝑚

1
were to under-

perform and reduce their priority standing by one spot (i.e., switch their priority standing with 𝑠𝑀
3
),

the matching under the discovery program mechanism would have been the same as 𝜇BASE. △

3.3 Minority reserve
Under minority reserve, the choice function of every school 𝑐 ∈ 𝐶 , denoted by CMR

𝑐 , is defined as

follows [29]: for every subset of students 𝑆1 ⊆ 𝑆 ,

CMR
𝑐 (𝑆1) = max(𝑆1 ∩ 𝑆𝑚, >𝑐 , 𝑞

𝑅
𝑐 )︸                     ︷︷                     ︸

C𝑆𝑅
1
; reserved seats

¤∪ max

(
𝑆1 \ 𝑆𝑅1 , >𝑐 , 𝑞𝑐 − |𝑆𝑅

1
|)
)

︸                               ︷︷                               ︸
remaining seats

.

That is, every school first accepts disadvantaged students from its pool of candidates up to its

reservation quota, and then fills up the remaining seats from the remaining candidates. Note that

if there is a shortage of disadvantage students (i.e., |𝑆1 ∩𝐶𝑚 | < 𝑞𝑅𝑐 ), then the remaining reserved

seats become open to advantaged students.

Proposition 3.3. Choice function CMR
𝑐 is substitutable, consistent, and 𝑞𝑐 -acceptant.

Since substitutability and consistency guarantee the existence of stable matchings [9, 30, 51],

stable matchings exist under choice functions CMR
and we denote by 𝜇MR B SDA(𝐼 , CMR) the matching

under minority reserve with reservation quotas q𝑅 . Minority reserve has been shown to satisfy

several desirable properties, as we summarized in Table 1.

The following claim follows directly from the fact that 𝜇MR is stable under choice functions CMR

and the definition of CMR
.

Proposition 3.4. 𝜇MR does not admit in-group blocking pairs.

3.4 Joint seat allocation
The mechanism of joint seat allocation we discuss here is inspired by the mechanism used for

admission to Indian Institutes of Technology [34, 57]. It allocates the general and reserved seats at

the same time, while only allowing disadvantaged students to take the reserved seats when they

cannot get admitted via the general seats. Under this mechanism, the choice function of every

school 𝑐 ∈ 𝐶 , denoted by CJSA
𝑐 , is defined as follows. For every subset of students 𝑆1 ⊆ 𝑆 ,

CJSA
𝑐 (𝑆1) = max(𝑆1, >𝑐 , 𝑞

𝐺
𝑐 )︸             ︷︷             ︸

C𝑆𝐺
1
; general seats

¤∪ max

(
𝑆1 ∩ 𝑆𝑚 \ 𝑆𝐺

1
, >𝑐 , 𝑞

𝑅
𝑐

)
︸                             ︷︷                             ︸

C𝑆𝑅
1
; reserved seats

¤∪ max(𝑆1 \ (𝑆𝐺1 ∪ 𝑆𝑅
1
), >𝑐 , 𝑞𝑐 − |𝑆𝐺

1
∪ 𝑆𝑅

1
|)︸                                              ︷︷                                              ︸

remainning seats

.

A prominent distinction between joint seat allocation and minority reserve is that in the former,

“highly ranked” disadvantaged students are admitted via general seats and do not take up the quotas
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for reserved seats. Intuitively, this opens up more opportunities for disadvantaged students and one

would expect all disadvantaged students to be weakly better off under joint seat allocation than

under minority reserve. This is true for instances where the competition for seats is high, but is not

true for general instances. See Section 4 and Theorem 4.2 for more discussions on the comparison

between these two mechanisms.

Proposition 3.5. Choice function CJSA
𝑐 is substitutable, consistent, and 𝑞𝑐 -acceptant.

Proposition 3.5 implies that stable matchings exist under joint seat allocation, and we denote the

student-optimal stable matching by 𝜇JSA B SDA(𝐼 , CJSA).
On a similarity notes, both minority reserve and joint seat allocation can be viewed as stable

matchings under slot specific priorities [40] with vacant seats de-reserved [11], and thus many

desirable properties of minority reserve, including weakly strategy-proofness and respect for

improvement, also hold for joint seat allocation. We next show additional properties of JSA. See
Table 1 for a complete reference.

Theorem 3.6. For any reservation quota q𝑅 , there exists a disadvantaged student 𝑠 ∈ 𝑆𝑚 such that
𝜇JSA (𝑠) ≥𝑠 𝜇

BASE (𝑠).

Theorem 3.7. If the reservation quotas are a smart reserve, then 𝜇JSA dominates 𝜇BASE for disad-
vantaged students.

When the reservation quota is not a smart reserve, it is possible that 𝜇BASE Pareto dominates 𝜇JSA

for disadvantaged students, which can be readily seen from the same example for minority reserve

presented in Hafalir et al. [29]. See also Example B.1 in Appendix B.1.

As Proposition 3.4, the following claim follows directly from the fact that 𝜇JSA is stable under

choice functions CJSA
and the definition of CJSA

.

Proposition 3.8. 𝜇JSA does not admit in-group blocking pairs.

4 Comparison of Mechanisms

In this section, we investigate how different mechanisms introduced in the previous section

compare with each other. All proofs are deferred to the appendix.

4.1 Is there a winning mechanism for disadvantaged students?
To begin with, we would like to answer the following question regarding any two mechanisms:

does one mechanism dominate the other mechanism for disadvantaged students? We consider

three domains which impose restrictions on the instance or the reservation quotas. They are: (1)

the reservation quotas are a smart reserve, (2) schools share a common priority order over the

students (i.e., universal priority order), and (3) both smart reserve and universal priority order. We

summarized the results in Table 2. Note that for a pair of mechanisms, a positive answer for (1) or

(2) implies a positive answer for (3) and a negative answer for (3) implies negative answers for both

(1) and (2). These allow us to simplify the presentations given in Table 2.

From Table 2, we can see that no two mechanisms are comparable in the general domain (i.e.,

all instances included). In addition, even in the restricted domains, most of the mechanisms are

not comparable, with the exception that minority reserve and joint seat allocation dominate the

baseline mechanism when the reservation quotas are a smart reserve.

These results are shown as follows. We first observe that the baseline mechanism does not

dominate the other mechanisms, through a rather trivial example included in Appendix B.2 (see

Example B.2). We then compare the DISC with MR and JSA in Example B.3 in Appendix B.2 and

compare MR and JSA in Example 4.1 below.
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We include Example 4.1 in the main body as it shows a rather counterintuitive fact. Since JSA
allows top-performing disadvantaged students to take general seats, hence freeing reserved seats

for other disadvantaged students, one would expect 𝜇JSA to dominate 𝜇MR for disadvantaged students

lexicographically – that is, we would expect that, when schools share the same ranking of students,

the highest ranked disadvantaged student whose school assignment differs between JSA and MR
prefers 𝜇JSA to 𝜇MR. However, this is not true because of the role played by advantaged students:

when disadvantaged students take up general seats under JSA, an advantaged student could become

rejected by the school that accepts them under MR, and this particular rejection then creates a “chain

of rejections” that eventually hurts some disadvantaged student.

Example 4.1. Consider the instance with students 𝑆𝑀 = {𝑠𝑀
1
, 𝑠𝑀

2
, 𝑠𝑀

3
}, 𝑆𝑚 = {𝑠𝑚

1
, 𝑠𝑚

2
, 𝑠𝑚

3
, 𝑠𝑚

4
} and

schools 𝐶 = {𝑐1, 𝑐2, 𝑐3, 𝑐4}. The quotas and reservation quotas of schools, and the preference lists of

students are given below.

𝑐 𝑐1 𝑐2 𝑐3 𝑐4
𝑞𝑐 1 1 1 2

𝑞𝑅𝑐 0 1 0 1

𝑠𝑀
1

𝑠𝑀
2

𝑠𝑀
3

𝑠𝑚
1

𝑠𝑚
2

𝑠𝑚
3

𝑠𝑚
4

𝑐2 𝑐1 𝑐4 𝑐2 𝑐4 𝑐3 𝑐4
𝑐3 𝑐3 𝑐1

All schools have priority order 𝑠𝑀
1

> 𝑠𝑚
1

> 𝑠𝑀
2

> 𝑠𝑚
2

> 𝑠𝑀
3

> 𝑠𝑚
3

> 𝑠𝑚
4
. To see that the reservation

quotas is a smart reserve, the matching under the baseline mechanism is

𝜇BASE = {𝑠𝑚
1
, 𝑐1}, {𝑠𝑀1 , 𝑐2}, {𝑠𝑀2 , 𝑐3}, {𝑠𝑚2 , 𝑐4}, {𝑠𝑀3 , 𝑐4}.

The matchings under minority reserve and joint seat allocation are:

𝜇MR = {𝑠𝑀
2
, 𝑐1}, {𝑠𝑚1 , 𝑐2}, {𝑠𝑚3 , 𝑐3}, {𝑠𝑚2 , 𝑐4}, {𝑠𝑀3 , 𝑐4};

𝜇JSA = {𝑠𝑀
2
, 𝑐1}, {𝑠𝑚1 , 𝑐2}, {𝑠𝑀3 , 𝑐3}, {𝑠𝑚2 , 𝑐4}, {𝑠𝑚4 , 𝑐4}.

Disadvantaged student 𝑠𝑚
1
and 𝑠𝑚

2
are indifferent between 𝜇MR and 𝜇JSA, 𝑠𝑚

3
strictly prefers 𝜇MR to

𝜇JSA, but 𝑠𝑚
4
strictly prefers 𝜇JSA to 𝜇MR. △

4.2 Joint seat allocation vs minority reserve: the high competitiveness hypothesis
To further compare minority reserve and joint seat allocation, we consider a special condition

on the market, that we term high competitiveness of the market:

|𝜇MR (𝑐) ∩ 𝑆𝑚 | ≤ 𝑞𝑅𝑐 for every school 𝑐 ∈ 𝐶. (high competitiveness)

Note that this is an ex-post condition that is based on the outcome 𝜇MR of a specific mechanism,

namely minority reserve. The condition asks that minority students not occupy general seats in

matching 𝜇MR. We show empirically that the NYC SHS market is highly competitive using admission

data in Section 5. Under the high competitiveness hypothesis, joint seat allocation dominates

minority reserve for disadvantaged students. We formalize the statement in Theorem 4.2.

Theorem 4.2. For highly competitive markets, 𝜇JSA dominates 𝜇MR for disadvantaged students.

High competitiveness can be connected to primitives of the market. Intuitively, it is satisfied

when disadvantaged students are systematically performing worse than advantaged students and

when there is a shortage of seats at all schools. In other words, this two condition is satisfied if

after the initial allocation of reserve seats to top ranked disadvantaged students, the remaining

disadvantaged students are not able to compete with the advantaged students for general seats
10
.

This condition is not uncommon in markets with limited resources.

10
High competitiveness is also satisfied in the trivial case when there are so many reserved seats, that all disadvantaged

students get one, but this is rarely seen in the real world – and does not happen in our data from NYC SHSs.
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Below we state a rigorous statement connecting primitives of the market and high competitive-

ness. We call a market homogeneously random if it satisfies the following conditions:

a) Students’ preference lists are independent random permutations of the set of schools
11
;

b) Schools share the same ranking of students;

c) Schools have the same quotas 𝑞 and reservation quotas 𝑞𝑅 .

Theorem 4.3. Consider a family of homogeneously random markets with an increasing number of
students and schools. Assume that 𝑞 − 1 > 𝑞𝑅 > 𝑛 log𝑛, where 𝑛 is the number of schools. If, for some
𝜖 ∈ (0, 1), the 𝑟𝑀 := (𝑛 log𝑛 + (𝑞 − 𝑞𝑅)𝑛 log log𝑛)-th ranked advantaged student exists and is ranked
above the 𝑟𝑚 := (1− 𝜖)𝑞𝑅𝑛-ranked disadvantaged student, where rankings of students are within their
respective groups, then the market is highly competitive with probability 1 − 𝑜 (1).

Let us discuss more in detail the hypothesis from Theorem 4.3. The condition 𝑞𝑅 > 𝑛 log𝑛 applies

when there are few schools compared to the number of seats, while the condition on the relative

rankings of students applies when disadvantaged students perform systematically worse than

advantaged students. Although our result is asymptotic and relies on homogeneity assumptions on

the number of seats and preferences of students, it is nonetheless useful to see that for the NYC SHS

market, the 𝑟𝑀 -th ranked advantaged student ranks well above the 𝑟𝑚-th ranked disadvantaged

student. See Appendix E for detailed calculations.

The hypothesis from Theorem 4.3 can be investigated within other models from the literature. As

an example, we consider a homogeneously random market with (𝜇𝑀 , 𝜇𝑚, 𝜎𝑀 , 𝜎𝑚)−normal potentials.
This is a market that satisfies a), b), c) from the definition of homogeneously random markets, and

moreover schools rank students in decreasing values of their potentials12. We assume in particular

that potentials of students are drawn i.i.d. from a normal distribution with variance 𝜎𝑀 and mean

𝜇𝑀 (resp. variance 𝜎𝑚 and mean 𝜇𝑚) for advantaged students (resp. disadvantaged students). Other

distributional assumption are of course possible and lead to similar results. The next theorem states

that if the means are far enough then the market is highly competitive with high probability.

Theorem 4.4. Consider a family of homogeneously randommarkets with (𝜇𝑀 , 𝜇𝑚, 𝜎𝑀 , 𝜎𝑚)−normal
potentials and an increasing number of students and schools. Assume that, for all markets in the family,
𝑞 − 1 > 𝑞𝑅 > 𝑛 log𝑛, where 𝑛 is the number of schools. Let 𝜖 > 0 be constant and let

𝑝𝑀 :=
𝑛 log𝑛 + (𝑞 − 𝑞𝑅 − 1)𝑛 log log𝑛

|𝑆𝑀 |
and 𝑝𝑚 :=

(1 + 𝜖)𝑞𝑅𝑛
|𝑆𝑚 |

be strictly between 0 and 1 and bounded away from both. If

𝜇𝑀 − 𝜇𝑚 > 0.008(𝜎𝑀 + 𝜎𝑚) +
1

1.702

(
𝜎𝑀 ln( 1

𝑝𝑀
− 1) − 𝜎𝑚 ( 1

𝑝𝑚
− 1)

)
. (1)

hold, then with probability 1 − 𝑜 (1) the market is highly competitive.

As with Theorem 4.3, although the result is asymptotic, we find it informative to confirm that

data of SHSAT scores from NYC DOE (see Figure 2b) easily verify (1). See Appendix E again for

detailed calculations.

11
This assumption is aligned with previous work [37, 48, 49]. It can be relaxed to a more general albeit more technical

condition: preference lists of students are independent, and for every student, any two schools have the same probability of

being ranked the first in their preference list.

12
The assumption that students’ potentials are sampled from a distribution follows a recent trend in the literature, see

e.g., [24] in the school choice setting and [36] in the hiring setting.
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5 Data on NYC Specialized High Schools

In this section, we analyze and compare the mechanisms on real-world datasets
13
. There is a

total of 12 anonymized datasets, each for one of the 12 consecutive academic years from 2005-06 to

2016-17. Entries of each dataset include (1) students’ IDs, (2) their scores for the Specialized High

School Admissions Test, (3) their (possibly, non-complete) preference lists of these eight specialized

schools, (4) their middle schools, (5) which school they are admitted to (which could be empty),

and other information that are not relevant for our analysis. See Table 3 for a list of specialized

high schools.

B Bronx High School of Science

T Brooklyn Technical High School

R Staten Island Technical High School

L Brooklyn Latin

Q Queens High School for the Sciences at York

M High School of Mathematics, Science and Engineering at City College

S Stuyvesant High School

A High School of American Studies at Lehman College

Table 3. School code and school name of NYC specialized high schools.

Immediately from the dataset, we can extract the number of students applying for these spe-

cialized high schools and the capacities of each schools (i.e., the number of students admitted). On

average, about 27, 000 students take the SHSAT exam every year, and among them, about 8, 000

(which is about 30%) are disadvantaged students (defined below). In terms of admission, about 5, 100

students receive an offer, out of whom about 820 (which is about 16%) are disadvantaged students.

To label each student as advantaged or disadvantaged, we follow the definition currently used

by NYC DOE for the discovery program:

To be eligible for the Discovery program, a Specialized High Schools applicant must be
one or more of the following:

(1) a student from a low-income household, a student in temporary housing, or an English
Language Learner who moved to NYC within the past four years; and

(2) Have scored within a certain range below the cutoff score on the SHSAT; and
(3) Attend a high-poverty school. A school is defined as high-poverty if it has an Economic

Need Index (ENI) of at least 60%.
The second condition is related to eligibility, and not specifically to whether a student is disadvan-

taged, so we do not incorporate that when labeling the students. For the first set of conditions, we

use an accompanying dataset which contains students’ demographic information. However, since

the information given in the dataset are not exactly the same as those specified in the definition, we

slightly modify the first condition: “be one or more of the following: (1) eligible for free or reduced

price lunch or has been identified by the Human Resources Administration (HRA) as receiving

certain types of public assistance; or (2) an English Language Learner”. For the last condition, we

obtain the ENIs of NYC middle schools from a school quality report of academic year 2017-2018,

which can be downloaded from the NYC Open Data website
14
.

To obtain schools’ universal priority order >𝐶 over the students, we assign to every student

a unique lottery number, denoted as ℓ𝑠 , for tie-breaking. For any two students 𝑠1, 𝑠2 ∈ 𝑆 , 𝑠1 has a

higher priority than 𝑠2 (i.e., 𝑠1 >𝐶 𝑠2) only when 𝑠1 has a higher score than 𝑠2 or when they have

13
The dataset is under a non-disclosure agreement with NYC DOE.

14
https://data.cityofnewyork.us/Education/2017-2018-School-Quality-Reports-Elem-Middle-K-8/g6v2-wcvk

https://data.cityofnewyork.us/Education/2017-2018-School-Quality-Reports-Elem-Middle-K-8/g6v2-wcvk
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the same score but ℓ𝑠1 < ℓ𝑠2 . This idea of using lottery numbers for tie breaking has been used in

practice (see, e.g., Abdulkadiroğlu et al. [2]).

Combining all components, the final dataset for analysis contains the following information for

each student: unique identification number, test score, preference list, indicator for whether they

are disadvantaged students, and the lottery number.

First in Section 5.1, we analyze the outcome of the discovery program mechanism under the

current guideline, and we provide some additional observations besides the theoretical results in

Section 3.2. We then compare, in Section 5.2, the outcomes from all three mechanisms. For most of

the experiments, we only include results of the latest academic year, since they are qualitatively

similar for all academic years. Full results of all academic years can be found in Appendix G. We

also investigate and discuss the school-over-seat hypothesis by analyzing the patterns of students’

preference lists, which can be found in Appendix H.

5.1 Results: the discovery program
We start by analyzing the performance of the discovery program mechanism, where the reserva-

tion quota of every school 𝑐 is set to be 𝑞𝑅𝑐 B ⌈𝑞𝑐 × 20%⌉, since 20% is the number recommended in

a proposal by NYCDOE [43].

We show empirically that the discovery program admits in-group blocking pairs and does not

respect improvements. As we discussed earlier in Table 1, the discovery program is the only

mechanism that admits in-group blocking pairs. We show that on average there are about 950

blocking pairs for disadvantaged students every academic year involving about 650 disadvantaged

students (see Figure 1a). Moreover, the discovery program is the only mechanism under which

disadvantaged students can be worse-off when compare to BASE, when considering the changes in

rank to matched schools. In particular, this hurts the top-performing disadvantaged students much

more, and helps the low-performing disadvantaged students (see Figure 1b).

Although, in theory, students could truncate their preference lists to attend better schools, it is

unclear if this type of behavior appears systematically in the dataset. Across the 12 academic years

of data, the lengths of disadvantaged students’ preference lists remains quite constant, with the

average being about five schools. Similar lengths of preference lists are observed when restricting

to top-performing disadvantaged students only. In addition, we fitted a linear regression model

to identify the relationship between the lengths of students’ preference lists and their priority

standings, but the results were inconclusive. We include the detailed analysis results in Appendix F.

This is not particularly surprising as remarked by Kesten [35]: “failure to satisfy dominant-strategy

incentive compatibility does not necessarily imply easy manipulability in practice."

5.2 Results: comparison of three mechanisms
For experiments in this section, we choose the reservation quotas so that they are consistent with

the proportion of disadvantaged students in the market: 𝑞𝑅𝑐 = ⌈𝑞𝑐 × |𝑆𝑚 |
|𝑆𝑀 |+|𝑠𝑚 | ⌉, ∀𝑐 ∈ 𝐶 . We choose

these reservation quotas simply because they are a reasonable choice and are a smart reserve, and

we would like to point out that one could slightly increase or decrease these numbers without

affecting the findings in this section qualitatively.

Proportion of disadvantaged students admitted. In Figure 2a, we show that all mechanisms

with reserved seats can increase the proportion of disadvantaged students admitted to these schools.

More specifically, under joint seat allocation and the discovery program mechanism, the numbers

of disadvantaged students admitted exceeds the reservation quotas. This is because disadvantaged

students with high scores can take up general seats under these two mechanisms. On the other

hand, for minority reserve, the numbers of disadvantaged students admitted match exactly the
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(a) Proportions of disadvantaged students admitted, with
bars from left to right corresponding to schools: B, T, R, L,
Q, M, S, A. The dotted line represents the proportion of
disadvantaged students among all applicants.

(b) The distribution of the SHSAT scores of advantaged
students (labeled “adv”) and disadvantaged students
(labeled “dis”).

Fig. 2. Mechanisms with reserved seats increase the number of disadvantaged students admitted.

reservation quota
15
. This is because after disadvantaged students take up the reserved seats, the

remaining disadvantaged students cannot compete against advantaged students for the general

seats and are thus not admitted. The phenomenon is exactly the high competitiveness condition

we discussed in Section 4.2 and is particularly true for our dataset since the number of students

are much higher than the number of available seats, and disadvantaged students are in general

performing worse than advantaged students, as one can see in Figure 2b.

The figure seems to suggest that, for a fixed quota, the discovery program mechanism is better

for disadvantaged students, as the number of disadvantaged students admitted to any school is the

largest. However, this is not true when we examine the matching more closely down to individual

students. Moreover, since one can increase the number of disadvantaged students admitted by

simply increasing the reservation quotas, policymakers should not solely focus on the absolute

number of disadvantaged students admitted when comparing mechanisms.

Effects to individual students. As opposed to Figure 2a which shows the effects of mechanisms

with reserved seats on disadvantaged students as a whole group, we show in Figure 3a these effects

on individual levels. In particular, we examine the change in rank of the schools assigned to students

under these mechanisms as compared to under the baseline mechanism. For instance, if a student

is matched to their third choice (i.e., rank of assigned school is 3) under the baseline mechanism,

but is matched to their first choice (i.e., rank of assigned school is 1) under minority reserve, then

their change in rank of assigned school is −2 under minority reserve.

The main takeaway of Figure 3a is that when the reservation quotas are a smart reserve, the

discovery program mechanism is the only one under which disadvantaged students can be worse

off, as it is the only mechanism with markers on the positive axis. This is consistent with our

discussion in Section 3 (see Table 1). We further investigate who are the disadvantaged students

that are worse off under the discovery program, and we show the results in Figure 1b. Interestingly,

the disadvantaged students who are performing relatively well are the ones who are being admitted

to schools they prefer less (dots on the upper left side of Figure 1b). These are essentially the

disadvantaged students who are assigned to general seats during the first stage of the discovery

program mechanism. Because there are fewer seats during the first stage of the discovery program

mechanism (as compared to the baseline mechanism), the competition is fiercer and thus, these

disadvantaged students got assigned to worse schools. Not only does this phenomenon imply that

the discovery program mechanism is unfair to these well-performing disadvantaged students, but it

15
A similar observation was made by Dur et al. [19] for the Boston school district, where the percentage of walk-zone

students hover just around 50% when 50% seats are reserved for them.
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(a) Change from BASE to a mechanism with reserved seats,
for disadvantaged students

(b) Change from MR to JSA, for both advantaged and
disadvantaged students.

Fig. 3. Percentage of (dis)advantaged students (w.r.t. the total number of (dis)advantaged students) whose
change in rank of assigned schools is a certain value. The number in each legend label is for when 𝑥 = 0.

also hints at a situation where students have the incentive to under-perform in the admission exams.

This certainly is in sharp contrast to the purpose of education and should not be a consequence of

any applicable mechanism.

Joint seat allocation dominates minority reserve. In Figure 3a, we see that for each negative

change in rank of assigned schools, the markers of joint seat allocation are in general higher than

those of minority reserve. It seems to suggest that matching 𝜇JSA dominates matching 𝜇MR for

disadvantaged students. To understand if this is true, we directly compare these two matchings

and confirm the hypothesis (see Figure 3b). In fact, we observe the same dominance relation for

all academic years. This prompts us to investigate the reason behind it, especially given that

this dominance relation is not true in general as we discussed in Section 4. This dominance is a

consequence of the data satisfying the high competitiveness hypothesis defined in Section 4.2 (see

Figure 2a): the number of disadvantaged students admitted under minority reserve should not

exceed the reservation quotas.

6 Conclusion and Discussion

In this paper, we study three mechanisms with reserved seats, and compare their outcomes

for disadvantaged students under the school-over-seat hypothesis. We show that although the

discovery program is instrumental in providing opportunities for disadvantaged students, the

current implementation suffers from some drawbacks both theoretically and empirically. Although

both joint seat allocation and minority reserve could alleviate these drawbacks, the former is better

for disadvantaged students for the NYC specialized high school market. As our main theoretical

contribution, we identify a fairly broad condition of markets, that we call high competitiveness,
under which JSA dominates MR for all disadvantaged students. In particular, we show that this

condition holds in the NYC SHS market using 12 years of data.

One caveat of our results is that they are based on the school-over-seat hypothesis, for which

current data do not offer a definitive validation. Our experiments on the polarization of the pref-

erence data (see Appendix H) and the fact that the length of the summer program (3 weeks) is

minimal when compared to the length of a high-school cycle (4 years) seem to suggest that this

hypothesis is reasonable. However, other factors may come into play, such as the social stigma

attached to being admitted via reserved seats
16
. We think it is important for the DOE to further

investigate this hypothesis, for instance, through questionnaires to the perspective students.

16
We are not aware of this stigma being present in NYC SHSs, but it is definitely present in other markets employing some

form of seat reservation [10].
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A Missing Definition for Choice Functions

Definition A.1 (substitutability). Choice function C𝑐 is substitutable if for any set of students 𝑆1,

𝑠 ∈ C𝑐 (𝑆1) implies that for all 𝑆2 ⊆ 𝑆1, 𝑠 ∈ C𝑐 (𝑆2 ∪ {𝑠}).

Definition A.2 (consistency). Choice function C𝑐 is consistent if for any sets of students 𝑆1 and 𝑆2,

C𝑐 (𝑆1) ⊆ 𝑆2 ⊆ 𝑆1 implies C𝑐 (𝑆1) = C𝑐 (𝑆2).

Definition A.3 (𝑞𝑐 -acceptance). Choice function C𝑐 is 𝑞𝑐 -acceptant if for any set of students 𝑆1,

|C𝑐 (𝑆1) | = min(𝑞𝑐 , |𝑆1 |).

Definition A.4 (𝑞𝑐 -responsive). Choice function C𝑐 is 𝑞𝑐 -responsive if there exists a priority order

> over the students such that for any set of students 𝑆1, C𝑐 (𝑆1) = max(𝑆1, >, 𝑞𝑐 ). In such case, we

say C𝑐 is induced by priority order > (and quota 𝑞𝑐 ).

B Missing Examples

B.1 From Section 3.4
Example B.1. Consider the instance with students 𝑆𝑀 = {𝑠𝑀

1
}, 𝑆𝑚 = {𝑠𝑚

1
, 𝑠𝑚

2
} and schools

𝐶 = {𝑐1, 𝑐2, 𝑐3}, each with a quota of 1. All schools have priority order 𝑠𝑀
1

> 𝑠𝑚
1

> 𝑠𝑚
2
. Students’

preference lists are given below:

𝑠𝑀
1

𝑠𝑚
1

𝑠𝑚
2

𝑐1 𝑐3 𝑐1
𝑐3 𝑐1 𝑐2

Without seat reservation, the resulting matching is

𝜇BASE = {(𝑠𝑀
1
, 𝑐1), (𝑠𝑚2 , 𝑐2), (𝑠𝑚1 , 𝑐3)}.

Consider the reservation quotas 𝑞𝑅𝑐1 = 1 and 𝑞𝑅𝑐2 = 𝑞𝑅𝑐3 = 0. Then,

𝜇MR = 𝜇JSA = {(𝑠𝑚
1
, 𝑐1), (𝑠𝑚2 , 𝑐2), (𝑠𝑀1 , 𝑐3)}.

Disadvantaged student 𝑠𝑚
2
is indifferent between the two matchings, but disadvantaged student 𝑠𝑚

1

strictly prefers 𝜇BASE to 𝜇JSA. That is, 𝜇BASE Pareto dominates 𝜇JSA for disadvantaged students. △

B.2 From Section 4.1
Example B.2. Consider the instance with students 𝑆𝑀 = {𝑠𝑀

1
}, 𝑆𝑚 = {𝑠𝑚

1
, 𝑠𝑚

2
} and schools

𝐶 = {𝑐1, 𝑐2}. Both schools have a quota of 1, and a reservation quota of 1. All students prefer school

𝑐1 to 𝑐2. Both schools have priority order 𝑠𝑀
1

> 𝑠𝑚
1
> 𝑠𝑚

2
. Then,

𝜇BASE = {𝑠𝑀
1
, 𝑐1}, {𝑠𝑚1 , 𝑐2}, and 𝜇MR = 𝜇DISC = 𝜇JSA = {𝑠𝑚

1
, 𝑐1}, {𝑠𝑚2 𝑐2}.

That is, the matching under any of the mechanisms with reserved seats Pareto dominates the

matching obtained from the baseline mechanism for disadvantaged students. △

Example B.3. Consider the instance with students 𝑆𝑀 = {𝑠𝑀
1
, 𝑠𝑀

2
}, 𝑆𝑚 = {𝑠𝑚

1
, 𝑠𝑚

2
} and schools

𝐶 = {𝑐1, 𝑐2}. Both schools have a quota of 2 and a reservation quota of 1. All students prefer school

𝑐1 to 𝑐2, and all schools have priority order 𝑠𝑀
1

> 𝑠𝑚
1
> 𝑠𝑀

2
> 𝑠𝑚

2
. Then,

𝜇BASE = 𝜇MR = 𝜇JSA = {𝑠𝑀
1
, 𝑐1}, {𝑠𝑚1 , 𝑐1}, {𝑠𝑀2 , 𝑐2}, {𝑠𝑚2 , 𝑐2},

and

𝜇DISC = {𝑠𝑀
1
, 𝑐1}, {𝑠𝑚2 , 𝑐1}, {𝑠𝑚1 , 𝑐2}, {𝑠𝑀2 , 𝑐2}.

Note that the reservation quotas is a smart reserve. Disadvantaged student 𝑠𝑚
2
strictly prefers 𝜇DISC

to the other matching, while 𝑠𝑚
1
strictly prefers the other matching to 𝜇DISC. △
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C Equivalent Interpretation

In this subsection, we take a different approach and instead of comparing the outputs. We

compare how mechanisms interpret the inputs, and particularly how students’ original preferences

over schools are translated to their preferences over reserved and general seats at all schools.

C.1 Techniques
The mechanisms with reserved seats introduced in this paper seem to entail different algorithms

applied to the same preferences lists of students and schools. However, it turns out that an equivalent,

yet mathematically more convenient way is to view their assignment outputs as obtained from

the same algorithm applied, however, to different input instances (see Section C). There are two

approaches by which we can obtain such a reformulation.

This first approach is to employ choice functions, which are a general and powerful way to model

the preference lists of agents in matching markets. In particular, all choice functions needed to

model the mechanisms in this paper satisfy the substitutability, consistency, and 𝑞𝑐 -acceptance
properties (see Section 2.2). Under such properties, stable matchings are known to exist and satisfy

strong structural and algorithmic properties (see, e.g., Alkan [6], Faenza and Zhang [25], Roth

[51]). This reformulation
17
allows us to analyze the assignments under different mechanisms as

the outputs of one or more rounds of Roth’s generalization [51] of the classical deferred acceptance

algorithm by Gale and Shapley [27]. As a result, to show properties of the assignment obtained

from mechanisms with reserved seats, we can directly use properties of its choice functions, of

stable matchings, as well as the properties of the generalized deferred acceptance algorithm.

The second approach is to expand students’ original preferences over schools to preferences

over reserved and general seats at schools. Under this reformulation, assignments under different

mechanisms with reserved seats can be obtained simply by applying the classical deferred accep-

tance algorithm over the equivalent instances. This allows us to deduce interesting properties of

the mechanisms (e.g., strategy-proofness), by leveraging on classical results on stable matchings.

C.2 Auxiliary instances
We present alternative representations of the inputs under three mechanisms. That is, for each of

the three matchings – 𝜇MR, 𝜇DISC, and 𝜇JSA – we show how to construct an auxiliary instance such

that the matching corresponds to the student-optimal stable matching of the auxiliary instance

without reserved seats.

The reason for developing these auxiliary instances is three-fold. First, it allows us to prove many

of the properties (e.g., weakly group strategy-proofness) of the joint seat allocation mechanism,

since we can now apply results developed for the classical stable matching model. Second, it

completely removes the cost of implementing a new mechanism for the DOE. That is, the DOE

does not need to develop a new algorithm incorporating choice functions, and can use the same

algorithm as in their current system. Lastly, these auxiliary instances elucidate a simple difference

of the three mechanisms: they differ in how students’ preferences over general and reserved seats

at all schools are extracted from their original preferences over schools.

We start by describing the common components of these auxiliary instances, which are the set of

schools, their quotas, and their priority orders over the students. Every school 𝑐 ∈ 𝐶 is divided into

two schools 𝑐′ and 𝑐′′, where 𝑐′ represents the part with general seats and has quota 𝑞aux
𝑐′ B 𝑞𝑐 −𝑞𝑅𝑐 ,

and 𝑐′′ is the part with reserved seats and has quota 𝑞aux
𝑐′′ B 𝑞𝑅𝑐 . Let𝐶

aux = {𝑐′ : 𝑐 ∈ 𝐶}∪{𝑐′′ : 𝑐 ∈ 𝐶}
be the new set of schools after the division, and for every 𝑐 ∈ 𝐶aux

, let𝜔 (𝑐) denote its corresponding

17
We note in passing, that, this reformulation allows a central planner to access many stable matchings, using recent results

by Faenza and Zhang [25], which provide alternatives to the matchings output by the mechanisms considered in this paper.
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school in the original instance. Then, graph 𝐺aux
has vertices and edges:

𝑉 (𝐺aux) = 𝐶aux ∪ 𝑆, and 𝐸 (𝐺aux) = {(𝑠, 𝑐) : 𝑠 ∈ 𝑆, 𝑐 ∈ 𝐶aux, (𝑠, 𝜔 (𝑐)) ∈ 𝐸}.
The priority order over the students by school 𝑐′ is the same as that of school 𝑐 (i.e., >aux

𝑐′ =>𝑐 ); and

that by school 𝑐′′ is defined as follows: for two students 𝑠1, 𝑠2 ∈ 𝑆 ,

𝑠1 >
aux
𝑐′′ 𝑠2 ⇔


𝑠1 ∈ 𝑆𝑚 and 𝑠2 ∈ 𝑆𝑀 ; or

𝑠1, 𝑠2 ∈ 𝑆𝑚 and 𝑠1 >𝑐 𝑠2; or

𝑠1, 𝑠2 ∈ 𝑆𝑀 and 𝑠1 >𝑐 𝑠2.

The choice function Caux
𝑐 of every school 𝑐 ∈ 𝐶aux

is 𝑞aux𝑐 -responsive and is simply induced from

priority order >aux
𝑐 . We state the choice functions here to be consistent with our approach in

previous sections. However, they are not necessary to obtain the student-optimal stable matching

as the classical deferred acceptance algorithm suffice.

The only component remaining is the preference lists of students, which depends on the mecha-

nism with reserved seats, and we describe those next.

Minority reserve. The original preference list 𝑐1 >𝑠 𝑐2 >𝑠 · · · >𝑠 𝑐𝑘 of student 𝑠 is modified as:

𝑐′′
1
>MR-a
𝑠 𝑐′

1
>MR-a
𝑠 𝑐′′

2
>MR-a
𝑠 𝑐′

2
>MR-a
𝑠 · · · >MR-a

𝑠 𝑐′′
𝑘
>MR-a
𝑠 𝑐′

𝑘
.

Although the relative ranking of the schools remains the same, students prefer reserved seats to

general seats. Let 𝐼 MR-a B (𝐺aux, >MR-a
𝑆

, >aux
𝐶

, qaux) denote the auxiliary instance, and let 𝜇MR-a B

SDA(𝐼 MR-a, Caux) denote the student-optimal stable matching of the auxiliary instance.

Proposition C.1 ([29]). For every student 𝑠 ∈ 𝑆 , 𝜇MR (𝑠) = 𝜔 (𝜇MR-a (𝑠)).

Discovery program. The original preference list 𝑐1 >𝑠 𝑐2 >𝑠 · · · >𝑠 𝑐𝑘 of student 𝑠 becomes:

𝑐′
1
>DISC-a
𝑠 𝑐′

2
>DISC-a
𝑠 · · · >DISC-a

𝑠 𝑐′
𝑘
>DISC-a
𝑠 𝑐′′

1
>DISC-a
𝑠 · · · >DISC-a

𝑠 𝑐′′
𝑘
.

Students prefer general seats over reserved seats; and within each type of seats, the ranking of

the schools is the same as that of the original instance. Similarly, we denote the auxiliary instance

by 𝐼 DISC-a B (𝐺aux, >DISC-a
𝑆

, >aux
𝐶

, qaux), and let 𝜇DISC-a B SDA(𝐼 DISC-a, Caux) denote the student-

optimal stable matching of the auxiliary instance.

Proposition C.2. For every student 𝑠 ∈ 𝑆 , 𝜇DISC (𝑠) = 𝜔 (𝜇DISC-a (𝑠)).

Proof of Proposition C.2. To prove the proposition, instead of carrying out the deferred ac-

ceptance algorithm as we introduced in Section 2 based on [51] for choice function models, we

consider an equivalent execution of the algorithm when choice functions C are responsive. This

algorithmwas introduced by McVitie andWilson [41] and it similarly runs in rounds. The algorithm

starts with all students unmatched. In every round, one student 𝑠 who is not (temporarily) matched

applies to his or her most preferred school 𝑐 that has not yet rejected him or her. Let 𝑆𝑐 denote the

set of students 𝑐 has temporarily accepted at the end of the previous round. School 𝑐 temporarily

accepts C𝑐 (𝑆𝑐 ∪{𝑠}) and rejects the rest. Note that during the algorithm, at every round, the student

𝑠 can be arbitrarily selected. Hence, we now consider a particular execution of the algorithm on the

auxiliary instance (i.e., the order in which students are selected). The execution has three stages,

and they match exactly to the three stages of the discovery program mechanism. In the first stage,

the algorithm can only select students who would apply to schools of type 𝑐′. Since after this stage,
students will only apply to schools of type 𝑐′′, the students who are temporarily matched in the

first stage would not be rejected in later stages. That is, the temporary assignment at the end of

the first stage becomes permanent, and it is matching 𝜇DISC
1

. For the second stage, the algorithm

can only select disadvantaged students. Since schools of type 𝑐′′ prefers disadvantaged students to
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advantaged students, the temporary assignment at the end of the second stage is also permanent

and it corresponds to 𝜇DISC
2

. In the last stage, the algorithm continues without restriction until it

terminates. Since there are only advantaged students applying to schools of type 𝑐′′ at this final
stage, the matching finalized at this stage is 𝜇DISC

3
. □

Joint seat allocation. The original preference list 𝑐1 >𝑠 𝑐2 >𝑠 · · · >𝑠 𝑐𝑘 of student 𝑠 becomes:

𝑐′
1
>JSA-a
𝑠 𝑐′′

1
>JSA-a
𝑠 𝑐′

2
>JSA-a
𝑠 𝑐′′

2
>JSA-a
𝑠 · · · >JSA-a

𝑠 𝑐′
𝑘
>JSA-a
𝑠 𝑐′′

𝑘
.

Similar to minority reserve, the relative ranking of the schools remains the same as that of the

original instance; but different from minority reserve, students prefer general seats to reserved seats.

Again, we let 𝐼 JSA-a B (𝐺aux, >JSA-a
𝑆

, >aux
𝐶

, qaux) denote the auxiliary instance, and let 𝜇JSA-a B

SDA(𝐼 JSA-a, Caux) denote the student-optimal stable matching of the auxiliary instance.

Proposition C.3. For every student 𝑠 ∈ 𝑆 , 𝜇JSA (𝑠) = 𝜔 (𝜇JSA-a (𝑠)).

Proof of Proposition C.3. We first show that matchings in the original instance 𝐼1 B (𝐺, >, q)
and matchings in the auxiliary instance 𝐼2 B (𝐺aux, >JSA-a

𝑆
, >aux

𝐶
, q) can be transformed from each

other. One direction is straightforward. Given a matching 𝜇2 in instance 𝐼2, its corresponding

matching 𝜇1 in instance 𝐼1 has 𝜇1 (𝑠) = 𝜔 (𝜇2 (𝑠)) for all students 𝑠 ∈ 𝑆 . For the other direction,

let 𝜇1 be a matching in instance 𝐼1, we can construct its corresponding matching 𝜇2 in instance

𝐼2 as follows. For every school 𝑐 , 𝜇2 (𝑐′) = max(𝜇1 (𝑐), >𝑐 , 𝑞
𝐺
𝑐 ) and 𝜇2 (𝑐′′) = 𝜇1 (𝑐) \ 𝜇2 (𝑐′). Let 𝜓

denote the above mapping from matchings in 𝐼2 to matchings in 𝐼1, and let𝜓 −1
denote the above

mapping for the reverse direction. By construction, a matching 𝜇 of 𝐼1 is stable in 𝐼1 if and only if

𝜓 −1 (𝜇) is stable in 𝐼2. Therefore, the student-optimal stable matching in 𝐼1 can be obtained from

the student-optimal stable matching in 𝐼2 via mapping𝜓 −1
, and the claim follows. □

D Missing Proofs

D.1 From Section 3.3
Proof of Proposition 3.3. The substitutability property was shown in [29], but we include the

proof here for completeness. Let 𝑆1 ⊆ 𝑆 be a subset of students, 𝑠 ∈ CMR
𝑐 (𝑆1) be a student selected

by the choice function, and 𝑆2 be a subset of students such that 𝑠 ∈ 𝑆2 ⊆ 𝑆1. We want to show that

𝑠 ∈ CMR
𝑐 (𝑆2). Consider the following two cases. The first case is when 𝑠 ∈ 𝑆𝑅

1
. Here, it is immediate

that 𝑠 ∈ 𝑆𝑅
2
B max(𝑆2 ∩ 𝑆𝑚, >𝑐 , 𝑞

𝑅
𝑐 ) since 𝑆2 ∩ 𝑆𝑚 ⊆ 𝑆1 ∩ 𝑆𝑚 and thus, 𝑠 ∈ CMR

𝑐 (𝑆2). The other case
is when 𝑠 ∈ CMR

𝑐 (𝑆1) \ 𝑆𝑅1 . Our argument for the first case implies that 𝑆𝑅
1
∩ 𝑆2 ⊆ 𝑆𝑅

2
and thus, we

have 𝑆2 \ 𝑆𝑅2 ⊆ 𝑆2 \ 𝑆𝑅1 ⊆ 𝑆1 \ 𝑆𝑅1 . Hence, we also have 𝑠 ∈ CMR
𝑐 (𝑆2).

Next, for consistency, let 𝑆2 be a subset of students with CMR
𝑐 (𝑆1) ⊆ 𝑆2 ⊆ 𝑆1, and we want to

show that CMR
𝑐 (𝑆1) = CMR

𝑐 (𝑆2). By the definition of the choice function, it is clear that 𝑆𝑅
1
= 𝑆𝑅

2
since

𝑆𝑅
1
⊆ 𝑆2. With the same reasoning, we additionally havemax(𝑆1\𝑆𝑅1 , >𝑐 , 𝑞𝑐−|𝑆𝑅1 |)) = max(𝑆2\𝑆𝑅1 , >𝑐

, 𝑞𝑐 − |𝑆𝑅
1
|)) = max(𝑆2 \ 𝑆𝑅2 , >𝑐 , 𝑞𝑐 − |𝑆𝑅

2
|)). Therefore, the claim follows.

Lastly, for 𝑞𝑐 -acceptance, we first have that |CMR
𝑐 (𝑆1) | ≤ |𝑆𝑅

1
| +𝑞𝑐 − |𝑆𝑅

1
| = 𝑞𝑐 , where the inequality

follows directly from the definition. It remains to show that when |𝑆1 | < 𝑞𝑐 , we have CMR
𝑐 (𝑆1) = 𝑆1.

This is immediate from the definition of the choice function. □

Proof of Propsoition 3.4. Assume by contradiction that (𝑠, 𝑐) is an in-group blocking pair of

𝜇MR. Let 𝑠′ be the student in the same group as 𝑠 such that 𝑠′ ∈ 𝜇MR (𝑐) and 𝑠 >𝑐 𝑠
′
. Then, by definition

of CMR
𝑐 , we have 𝑠 ∈ CMR

𝑐 (𝜇MR (𝑐) ∪ {𝑠}), which means (𝑠, 𝑐) is a blocking pair of 𝜇MR. However, this
contradicts stability of 𝜇MR. □
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D.2 From Section 3.4
Proof of Proposition 3.5. The proof steps are similar to that of Proposition 3.3 for minority

reserve. Let 𝑆1 ⊆ 𝑆 be a subset of students. First, for substitutability, let 𝑠 ∈ CJSA
𝑐 (𝑆1) and let

𝑆2 be a subset of students such that 𝑠 ∈ 𝑆2 ⊆ 𝑆1. We want to show that 𝑠 ∈ CJSA
𝑐 (𝑆2) and we

consider the following three cases. The first case is when 𝑠 ∈ 𝑆𝐺
1
. In this case, it is immediate that

𝑠 ∈ 𝑆𝐺
2
B max(𝑆2, >𝑐 , 𝑞

𝐺
𝑐 ) since 𝑆2 ⊆ 𝑆1. This first case in particular implies that 𝑆𝐺

1
∩ 𝑆2 ⊆ 𝑆𝐺

2

and thus, 𝑆2 \ 𝑆𝐺2 ⊆ 𝑆2 \ 𝑆𝐺1 ⊆ 𝑆1 \ 𝑆𝐺1 . Hence, in the second case where 𝑠 ∈ 𝑆𝑅
1
, we similarly have

𝑠 ∈ 𝑆𝑅
2
B max(𝑆2 ∩ 𝑆𝑚 \ 𝑆𝐺

2
, >𝑐 , 𝑞

𝑅
𝑐 ). Note that this argument for the second case also implies that

𝑆2\(𝑆𝐺2 ∪𝑆𝑅2 ) ⊆ 𝑆1\(𝑆𝐺1 ∪𝑆𝑅1 ). Hence, for the last case where 𝑠 ∈ max(𝑆1\(𝑆𝐺1 ∪𝑆𝑅1 ), >𝑐 , 𝑞𝑐−|𝑆𝐺1 ∪𝑆𝑅1 |),
we also have 𝑠 ∈ max(𝑆2 \ (𝑆𝐺

2
∪ 𝑆𝑅

2
), >𝑐 , 𝑞𝑐 − |𝑆𝐺

2
∪ 𝑆𝑅

2
|). Therefore, in all these three cases, we

have 𝑠 ∈ CJSA
𝑐 (𝑆2) and thus CJSA

𝑐 is substitutable.

Next, for consistency, let 𝑆2 be a subset of students with CJSA
𝑐 (𝑆1) ⊆ 𝑆2 ⊆ 𝑆1, and we want to

show that CJSA
𝑐 (𝑆1) = CJSA

𝑐 (𝑆2). By the definition of the choice function, it is clear that 𝑆𝐺
1
= 𝑆𝐺

2

since 𝑆𝐺
1
⊆ 𝑆2. Moreover, we have 𝑆𝑅

1
= 𝑆𝑅

2
since 𝑆𝑅

1
⊆ 𝑆2 ∩ 𝑆𝑚 \ 𝑆𝐺

2
. With the same reasoning, we

additionally have that max(𝑆1\ (𝑆𝐺1 ∪𝑆𝑅
1
), >𝑐 , 𝑞𝑐− |𝑆𝐺

1
∪𝑆𝑅

1
|) = max(𝑆2\ (𝑆𝐺2 ∪𝑆𝑅

2
), >𝑐 , 𝑞𝑐− |𝑆𝐺

2
∪𝑆𝑅

2
|).

Therefore, the choice function is consistent.

Lastly, for 𝑞𝑐 -acceptant, we first have that |CJSA
𝑐 (𝑆1) | ≤ |𝑆𝐺

1
| + |𝑆𝑅

1
| + 𝑞𝑐 − |𝑆𝐺

1
| − |𝑆𝑅

1
| = 𝑞𝑐 , where

the inequality follows directly from the definition. It remains to show that when |𝑆1 | < 𝑞𝑐 , we have

CJSA
𝑐 (𝑆1) = 𝑆1. This is immediate from the definition of the choice function. □

Proof of Theorem 3.6. Assume by contradiction that there is reservation quotas q𝑅 such that

𝜇BASE (𝑠) >𝑠 𝜇
JSA (𝑠) for every disadvantaged student 𝑠 ∈ 𝑆𝑚 . Then, consider an alternative instance

where every disadvantaged student 𝑠 misreports his or her preference list where 𝜇BASE (𝑠) is the
only acceptable school. Let 𝐺 and >̃𝑆 be the resulting graph and preference lists of the students.

In the following, we consider the alternative instance 𝐼̃ = (𝐺, >̃𝑆 , >𝐶 , q) and we claim that 𝜇BASE

is stable in instance 𝐼̃ under choice functions CJSA
. Assume by contradiction that 𝜇BASE admits

a blocking pair (𝑠, 𝑐). Since all disadvantaged students are matched to their first choice, it must

be that 𝑠 ∈ 𝑆𝑀 . Then, 𝑠 ∈ CJSA
𝑐 (𝜇BASE (𝑐) ∪ {𝑠}) implies that there is a student 𝑠′ ∈ 𝜇BASE (𝑐) such

that 𝑠 >𝑐 𝑠
′
. However, this means 𝑠 ∈ CBASE (𝜇BASE (𝑐) ∪ {𝑠}), which contradicts stability of 𝜇BASE

in the original instance 𝐼 under choice functions CBASE
. Hence, 𝜇BASE is stable in instance 𝐼̃ with

choice functions CJSA
. Since SDA(𝐼̃ , CJSA) is the student-optimal stable matching, it dominates 𝜇BASE

and thus, every disadvantaged student is strictly better off under SDA(𝐼̃ , CJSA) as compared to

𝜇JSA. However, this contradicts the fact that the joint seat allocation mechanism is weakly group

strategy-proof [11, 40]. □

Proof of Theorem 3.7. Assume by contradiction that there exists disadvantaged students 𝑠

with 𝜇BASE (𝑠) >𝑠 𝜇
JSA (𝑠). Let 𝑠1 be the first disadvantaged student that is rejected by 𝑐1 B 𝜇BASE (𝑠1)

during the deferred acceptance algorithm on instance 𝐼 with choice functions CJSA
. Assume this

rejection happens at round 𝑘 . Let 𝑆JSA
𝑘

denote the set of students who apply to school 𝑐1 during

round 𝑘 . In addition, let 𝑆BASE denote the set of students who have ever applied to 𝑐1 throughout

the deferred acceptance on instance 𝐼 with choice functions CBASE
. It has been shown in [51] that

CBASE
𝑐1

(𝑆BASE) = 𝜇BASE (𝑐1). Thus, 𝑠1 ∈ max(𝑆BASE∩𝑆𝑚, >𝑐1 , 𝑞
𝑅
𝑐1
) by definition of choice function CBASE

𝑐1

and the assumption that the reservation quotas are a smart reserve (i.e., 𝑞𝑅𝑐1 ≥ |𝜇BASE (𝑐1) |). Moreover,

by our choice of 𝑠1, we have 𝑆
JSA
𝑘

∩𝑆𝑚 ⊆ 𝑆BASE ∩𝑆𝑚 . Therefore, 𝑠1 ∈ max(𝑆JSA
𝑘

∩𝑆𝑚, >𝑐1 , 𝑞
𝑅
𝑐1
), which

then implies 𝑠1 ∈ CJSA
𝑐1

(𝑆JSA
𝑘

) by definition of choice function CJSA
𝑐1

. However, this contradicts our

assumption that 𝑠1 is rejected by 𝑐1 at round 𝑘 , concluding the proof. □
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Proof of Proposition 3.8. Assume by contradiction that (𝑠, 𝑐) is an in-group blocking pair. Let

𝑠′ be the student in the same group as 𝑠 such that 𝑠′ ∈ 𝜇JSA (𝑐) and 𝑠 >𝑐 𝑠
′
. Then, by definition of

CJSA
𝑐 , we have 𝑠 ∈ CJSA

𝑐 (𝜇JSA (𝑐) ∪ {𝑠}), which means (𝑠, 𝑐) is a blocking pair of 𝜇JSA. However, this

contradicts stability of 𝜇JSA. □

D.3 From Section 4.2
Proof of Theorem 4.2. Assume by contradiction there exists disadvantaged students 𝑠 such

that 𝜇MR (𝑠) >𝑠 𝜇
JSA (𝑠). Consider the execution of the deferred acceptance algorithm with choice

functions CJSA
, and let 𝑠1 be the first disadvantaged student who is rejected by 𝜇

MR (𝑠1) B 𝑐1. Assume

this rejection happens at round 𝑘 of the deferred acceptance algorithm. Let 𝑆JSA
𝑘

denote the set

of students who apply to school 𝑐1 during round 𝑘 . In addition, let 𝑆MR denote the set of students

who have ever applied to school 𝑐1 during the execution of the deferred acceptance algorithm

with choice functions CMR
. It has been shown in [51] that CMR

𝑐1
(𝑆MR) = 𝜇MR (𝑐1), which then implies

that 𝑠1 ∈ max(𝑆MR ∩ 𝑆𝑚, >𝑐1 , 𝑞
𝑅
𝑐1
) by definition of choice function CMR

𝑐1
and our assumption that

|𝜇MR (𝑐1) | ≤ 𝑞𝑅𝑐1 . Moreover, our choice of student 𝑠1 implies that 𝑆JSA
𝑘

∩ 𝑆𝑚 ⊆ 𝑆MR ∩ 𝑆𝑚 and thus, we

also have 𝑠1 ∈ max(𝑆JSA
𝑘

∩ 𝑆𝑚, >𝑐1 , 𝑞
𝑅
𝑐1
). Therefore, 𝑠1 ∈ CJSA

𝑐1
(𝑆JSA

𝑘
) by definition of choice function

CJSA
𝑐1

. However, this contradicts our assumption that 𝑠1 is rejected by 𝑐1 at round 𝑘 , concluding the

proof. □

Proof of Theorem 4.3. Recall that, under MR, a student applies to her favorite school’s reserved
seats, and, if rejected, to the same school’s non-reserved seat (see Section 4). We want to estimate the

ranking, among disadvantaged students, of the bottleneck student – that is, the first disadvantaged

student that is not admitted through a reserved seat at her most preferred school (hence, the student

may either be admitted to her most preferred school via a general seat, or be admitted to another

school, or not be admitted to any school).

We reformulate this problem in the classical balls in bins setting: given 𝑛 bins and a series of balls,

each inserted in exactly one bin chosen uniformly at random, which is the first ball 𝑘 that is inserted

in a bin with already 𝑞𝑅 balls? Classical bounds (see, e.g., [50]) imply that, in the 𝑞𝑅 > 𝑛 log𝑛

regimen, 𝑘 ≥ (1 − 𝜖)𝑞𝑅𝑛 with probability 1 − 𝑜 (1) for any 𝜖 ∈ (0, 1) – in particular, for the 𝜖 from

the hypothesis of the theorem. Interpreting schools as bins, disadvantaged students as balls, and

assigning students to their most preferred schools as inserting balls to bins, we obtain that, with

probability 1 − 𝑜 (1), the bottleneck student is ranked at least (1 − 𝜖)𝑞𝑅𝑛 among disadvantaged

students.

The market is highly competitive if and only if any disadvantaged student ranked at par or

worse than the bottleneck student does not get a general seat in any school. For this to happen, the

bottleneck student must be ranked worse than an advantaged student that we call lucky applicant.
This is the worst-ranked advantaged student that would get a non-reserved seat in the market

obtained from the original market with the number of seats being 𝑞 − 𝑞𝑅 , no reservation quota,

and no disadvantaged student (call such a market restricted). So we want to compute the ranking,

among advantaged students, of the lucky applicant. We can use again the balls and bins analogy

from above. Denote by 𝑏 (𝑞 − 𝑞𝑅, 𝑛) the random variable denoting the smallest 𝑝 such that, when

ball 𝑝 is extracted, all bins already have at least (𝑞 −𝑞𝑅) balls inserted. From [23], we know that for

any real 𝑥 , we have

lim

𝑛→∞
P(𝑏 (𝑞 − 𝑞𝑅, 𝑛) − 1 < 𝑛 log𝑛 + 𝑛(𝑞 − 𝑞𝑅 − 1) log log𝑛 + 𝑛𝑥) = 𝑒

− 𝑒−𝑥
(𝑞−𝑞𝑅−1) ! .
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Taking 𝑥 = log log log𝑛, we have

lim

𝑛→∞
P(𝑏 (𝑞 − 𝑞𝑅, 𝑛) − 1 < 𝑛 log𝑛 + 𝑛(𝑞 − 𝑞𝑅 − 1) log log𝑛 + 𝑛 log log log𝑛) = lim

𝑛→∞
𝑒
− 𝑒− log log log𝑛

(𝑞−𝑞𝑅−1) !

≥ lim

𝑛→∞
𝑒−𝑒

− log log log𝑛

= 1.

Hence, with probability 1 − 𝑜 (1), each school is ranked first at least (𝑞 − 𝑞𝑅 − 1) times when we

look at the preference lists of the best 𝑛 log𝑛 + (𝑞 − 𝑞𝑅)𝑛 log log𝑛 advantaged students. Thus, with

high probability, all the advantaged students that are admitted to a seat in the restricted market –

in particular, the lucky applicant – are contained in the (𝑛 log𝑛 + (𝑞 − 𝑞𝑅)𝑛 log log𝑛)-best ranked
advantaged students. It suffices therefore that the worst of them is ranked above the bottleneck

student – as it is required by the hypothesis – to conclude that the market is highly competitive. □

Proof of Theorem 4.4. Because of the hypothesis, the 𝑘-th order statistic of a distribution

converges in probability to the 𝑘-th quantile function of the CDF (see, e.g., [15, Chapter 7]). We use

the approximation for the quantile function of a standard normal distribution from [13]:

𝜙−1 (𝛼) ≈ 1

−1.702 ln( 1
𝛼
− 1).

which has an absolute error of at most 1.4 · 10−2, see [58]. The approximation of 𝜙−1 (𝛼) can be

plugged in the formula of the quantile function of a normal with mean 𝜇 and variance 𝜎 :

𝜙−1
𝜇,𝜎 (𝛼) = 𝜇 + 𝜎𝜙−1 (𝛼) ≈ 𝜇 + 𝜎

1

−1.702 ln( 1
𝛼
− 1),

which has therefore an absolute error of at most 0.8𝜎 · 10−2. In order to apply Theorem 4.3, we

need that

𝜙−1
𝜇𝑀 ,𝜎 (𝑝𝑀 ) > 𝜙−1

𝜇𝑚,𝜎 (𝑝𝑚).
Rearranging and plugging in the approximation above, we obtain (1). □

E Applications of Theorem 4.3 and Theorem 4.4

E.1 Application of Theorem 4.3 to data from NYC SHS
The average reservation quota and the average number of seats at each school is respectively

𝑞𝑅 = 208 and 𝑞 = 635. In addition, for the ranking, we have 𝑛 + 𝑛(𝑞 − 𝑞𝑅) = 3424, and 𝑞𝑅𝑛 = 1664.

Note that we omit from the comparison the terms logarithmic and sublogarithmic in 𝑛 because

𝑛 = 8 and thus these terms would only help the hypothesis of Theorem 4.3 to be satisfied. We

see that the 1664-th ranked disadvantaged student performs at par with the 6848-th advantaged

student, hence well within the comparative rank condition of Theorem 4.3.

E.2 Application of Theorem 4.4 to SHSAT scores
From data on the SHSAT scores of students (under NDA with the department of Education of

NYC), we know that |𝑆𝑚 | = 9132, |𝑆𝑀 | = 18723, 𝜇𝑚 = 362.40, 𝜇𝑀 = 408.76, 𝜎𝑀 = 92.53, 𝜎𝑚 = 83.13,

𝑝𝑀 = .18, 𝑝𝑚 = .18. Hence, the left-hand side of (1) (difference between the means) is 46.36, which

is much larger than the right-hand side, which is 9.47.

F Lack of Evidence for Strategic Behaviors

In Table 4, we present the average length of preference lists submitted to the DOE by all dis-

advantaged students and by the top 500 disadvantaged students across all 12 academic years.

Numbers here do not elicit clear evidence for strategic behaviors, as there is neither a pattern of
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top-performing disadvantaged students truncating their preference lists more than other disadvan-

taged students, nor is a there a trend that over time more top-performing disadvantaged students

start to truncate their preference lists.

academic year all top 500

2005-06 5.04 5.10

2006-07 5.35 5.63

2007-08 4.93 4.77

2008-09 5.10 5.00

2009-10 5.17 5.01

2010-11 5.28 5.05

2011-12 5.25 5.16

2012-13 5.22 4.81

2013-14 5.49 5.11

2014-15 5.56 5.58

2015-16 5.63 5.34

2016-17 5.34 5.60

Table 4. Average length of preference lists submitted to the DOE by “all” disadvantaged students, and by
“top 500” disadvantaged students only.

In Table 5, we summarized the Pearson correlation coefficients and the corresponding p-values

between the lengths of students’ preference lists and their priority standings, across all 12 academic

years. There is no clear evidence that top-performing students are more likely to truncate their

preference lists. In fact, for 4 out of the 12 academic years, we observe that top-performing students

have significantly longer preference lists, which is contrary to the strategy behaviors.

academic year correlation coefficient p-value

2005-06 -0.0433 0.0002 †
2006-07 -0.0306 0.0157 †
2007-08 -0.0087 0.4905

2008-09 -0.0269 0.0283 †
2009-10 -0.0042 0.7037

2010-11 0.0214 0.0467 ‡
2011-12 0.0221 0.059

2012-13 0.0086 0.4548

2013-14 0.0281 0.0047 ‡
2014-15 -0.0071 0.4855

2015-16 0.006 0.5661

2016-17 -0.0539 0.0 †
Table 5. The correlation between the lengths of students’ preference lists and their priority standing where
higher score implies a smaller number in priority standing. For significant results, we noted the p-values with
either ‡ or †, where ‡ is for cases where the top-performing students have significantly shorter preference
lists, and † is for cases where the top-performing students have significantly longer preference lists.
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G Additional Figures for all Academic Years

Fig. 4. All academic years of Figure 2a. For the 2008-09 academic year, there were only seven SHSs.
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Fig. 5. All academic years of Figure 2b.

Fig. 6. All academic years of Figure 3a.
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Fig. 7. All academic years of Figure 1b.

Fig. 8. All academic years of Figure 3b.
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H Discussion on the school-over-seat hypothesis

In this section, we delve into some empirical observations of students’ preference lists and we do

so for two reasons. The first one is to investigate the school-over-seat hypothesis. Since students are

not asked to report their preferences over different types of seats, we can only make some inferences

based on the pattern of the preferences submitted by students. For the second reason, recall that in

Section C, we show how different mechanisms expand differently students’ original preferences

over schools to their preferences over reserved and general seats. Hence, our observations aim

to shed some light on the validity of these expansions. For the following discussion, we forgo

the assumption that participation in the summer enrichment program does not affect students’

preference for schools.

Fig. 9. Each cell in this table represents the extent to which students prefer the row school to the column
school. Specifically, the number is calculated as the percentage of students in each district who prefer the
row school to the column school minus the percentage of students who prefer the column school to the row
school. The cells are color-formatted with numbers in [−1, 1] mapped to a spectrum from red to green.

The second table in Figure 9 indicates that geographic proximity could lead to a strong preference

for some schools. We observe that students in district 31 strongly prefer Staten Island Tech (S)

to any other schools. This is because district 31 is the only school district on Staten Island, and

Staten Island Tech is the only specialized high school on Staten Island. Hence, for students residing

in Staten Island, since transportation to other boroughs are extremely limited and lengthy, it is

reasonable to assume the school-over-seat hypothesis when comparing Staten Island Tech to any

other specialized high school. We show in Figures 10 Figure 11 the same type of tables for other

school districts, where we observe similar patterns: students in district 10 strongly prefers Bronx

Science (B) and students in district 29 strongly prefers Queens High School for the Sciences at

York (Q). The difference in preferences towards Stuyvesant and Brooklyn Tech seems to be more

nuanced. The complete map of school districts in New York City can and the map of specialized

high schools can be found in Appendix I and J.

Lastly, we would like to point out some concerns that are not directly observable from our

data. Aygun and Turhan [10] noted that for admissions to Indian Institutes of Technology (IIT),

there is often social stigma associated with reserved seats and thus, many students prefer to not be

admitted via reserved seats. We also note that NYC DOE defines disadvantaged students based on

their social economic status instead of a caste system as in the case of IIT admission. Hence, the

severity of the social stigma associated with reserved seats might differ between these two markets.

In sum, we believe more study is needed to understand students’ preference structure over

reserved and general seats for the NYC SHS market. Moreover, as a future direction, it would be

interesting to design and study mechanisms which incorporate students’ preferences over general

and reserved seats at all schools, possibly in orders that are not consistent with those interpreted

by the mechanisms.
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Fig. 10. These tables are the same as those in Figure 9, but for districts 1 – 16.

Fig. 11. These tables are the same as those in Figure 9, but for districts 17 – 32.
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I Map of NYC School Districts

Fig. 12. Map of school districts in New York City, compiled by NYC DOE and available online at
https://video.eschoolsolutions.com/udocs/DistrictMap.pdf

J Map of NYC Specialized High Schools

Fig. 13. Map of specialized high schools in New York City. In Bronx, the two schools numbered by 3 and 8
are overlapping on the map. The map is generated by Google My Maps.

https://video.eschoolsolutions.com/udocs/DistrictMap.pdf
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