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Online learning of revenue-optimal auctions is a fundamental problem in mechanism design without priors.
Nevertheless, all the existing positive results assume that the auctioneer optimizes over a parameterized
class of auctions, such as pricings and auctions with reserves. This is perhaps not surprising given that
natural correlations that occur in online sequences pose a challenge to characterizing a succinct class of
revenue-optimal auctions. This has left behind a signi�cant gap in our understanding of online-learnability of
general classes of non-parametric auctions.

We provide the �rst positive results for online learnability of a non-parametric auction class, for smooth
adversaries and the class of smooth auctions. In a nutshell, an online adversary is smooth (in the style of
Smoothed analysis [Spielman and Teng, 2004] in online learning [Haghtalab et al., 2021]) if the bid distribution
has bounded density at every time step, and an auction is smooth if the level sets of its revenue function have
small boundaries. We prove the following fundamental guarantees:

(1) Revenue maximization in the class of smooth auctions is online-learnable, against smooth adversaries.
(2) It is impossible to construct a no-regret algorithm even for the class of smooth auctions against

worst-case adversaries.
(3) It is impossible to construct a no-regret algorithm for the class of all incentive-compatible auctions

even against smooth adversaries.
This gives a strong characterization of when and which class of non-parametric auctions are online-learnable.

To illustrate the generality of the class of smooth auctions we show that it contains the class of all monotone-
revenue auctions, as well as, the class of all competition-monotone auctions. This brings up an interesting 
observation: while independence across bids leads to the optimal auctions being monotone, signi�cantly 
weaker assumptions, compared to monotonicity of revenue, are su�cient for learnability.

CCS Concepts: • Theory of computation ! Algorithmic mechanism design; Online learning theory;
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1 INTRODUCTION
Revenue maximization in auctions is a fundamental and well-studied �eld with numerous applica-
tions including internet advertising, real estate sales, and spectrum auctions. Foundational works
in this space have contributed revenue-optimal auctions for independent private valuations and
even surplus-extracting auctions for some correlated valuations, when the designer knows the
distribution of the private values [Crémer and McLean, 1988, Myerson, 1981]. One of the main
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challenges for transitioning the insights a�orded by these characterizations to practice is the
di�culty (if not impossibility) of knowing the prior distribution and whether private valuations
are even generated from �xed distributions. To address these challenges, online auction design has
been embraced as a prior-free approach to mechanism design by removing the assumption that
private valuations are generated from a distribution, much less, one that is known to the designer.
In the standard model of online auctions, the designer receives a sequence of bidder valuation

pro�les and, at every round, adaptively designs an auction to immediately and irrevocably allocate
the items to the bidders. Prior works have studied no-regret algorithms for achieving average
revenue that competes with that of the best auction from a target class, e.g., the best auction
in the class of anonymous prices, second price auctions with individualized reserves, and level
auctions (e.g., [Balcan and Blum, 2006, Balcan et al., 2018, Blum and Hartline, 2005, Bubeck et al.,
2017, Cesa-Bianchi et al., 2014, Daskalakis and Syrgkanis, 2022, Dudík et al., 2020, Roughgarden
and Wang, 2019]). Notably absent from this literature are online auctions that can compete with
the best auction from an unrestricted or non-parametric class of (possibly DSIC and IR) auctions. In
comparison, there is a range of techniques for o�ine learning of auctions that competes with the
truly optimal Myerson auction [Cole and Roughgarden, 2014, Devanur et al., 2016, Guo et al., 2019,
Morgenstern and Roughgarden, 2015].
This is perhaps not surprising given that natural correlations that occur in online sequences

pose a challenge to characterizing a succinct class of revenue-optimal auctions. These correlations
that range in their severity can take place across di�erent bidders and across time. For example,
an adaptive adversary can correlate a bidder’s value with her or other bidder’s valuations in the
past; a stochastic sequence may generate bidder valuations from a joint distribution with arbitrary
correlations; and even independently distributed bidder valuations, once realized into an empirical
set, lose their independence.1 Indeed, correlated values are barriers to learning revenue-optimal
auctions even for a �xed distribution of valuations, where the only positive results require strong
assumptions about the nature of the correlations as well as �niteness of support for the value
distribution, large minimum probability for each valuation pro�le [Yang and Bei, 2021], or a small
class of candidate distributions [Fu et al., 2014]. It is against the backdrop of these challenges and
impossibilities rooted in correlations across time and bidders that we initiate the study of online
learning for nonparametric classes of auctions. Correlations across bidders has been explored in the
work of Psomas et al. [2019] but only in the context of understanding the approximation guarantees
of simple vs optimal auctions.
Beyond auction design, adversarial correlations across time have been an obstacle to online

learnability even for parametric classes, such as classi�cation or regression loss for classes with
�nite Vapnik-Chervonenkis or Pseudo dimension. In such cases, worst-case correlations can lead
to linear regret, while, a sequence of independent instances can be learned with small sub-linear
regret [Ben-David et al., 2009, Blumer et al., 1989, Littlestone, 1988]. A recent line of work [Gupta
and Roughgarden, 2016, Haghtalab et al., 2020, 2021, Rakhlin et al., 2011] proposed smoothed
analysis as a way forward for bridging that gap by interpolating between a fully adaptive and
stochastic adversary. In their model, at every round the adversary is forced to choose an instance
(e.g., a valuation pro�le in our case) from a possibly di�erent distribution with non-negligible
anti-concentration property, such as one whose density is upper bounded by 1/f times that of
the uniform measure. By preserving some randomness across instances, Haghtalab et al. [2021]
reduce regret minimization with a smoothed adaptive adversary to the problem of achieving low
1The last example highlights a subtle but important distinction between online and o�ine auctions, as captured by the
notion of regret. In online auctions, performance is benchmarked against the best revenue on the actual realized sequence (as
captured by regret), while in o�ine auctions performance is against the best expected revenue achievable on the distribution
of valuations—quantity that is more closely captured by the notion of pseudo-regret.
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regret against a sequence with i.i.d. generated instances from the uniform measure. In this paper,
we too consider smoothed adversaries towards establishing online learnability guarantees for
non-parametric auction classes.

Online auction design is further complicated by correlations across bidder valuations. In presence
of such correlations, no succinct class of auctions are known to characterize revenue-optimal
auctions. Furthermore, auction classes that are known to include revenue-optimal auctions in some
cases, such as the Crémer McLean condition, demonstrate in�nite Pseudo-dimension as well as
irregular and complex decision boundaries that render them unlearnable even if the valuation
pro�les were drawn from a �xed distribution. This shows that to obtain online learnability, we
must go beyond our assumption on the smoothness of valuations (and the aforementioned adaptive-
to-independent reduction framework). To overcome this challenge, we introduce and work with
an abstract class of non-parametric auctions whose only requirement is a form of smoothness of
boundaries of the level sets of its revenue function. Such auctions, which we name smooth, include
natural classes of nonparametric auctions, such as monotone-revenue auctions and competition
monontone auction (in which allocation of any bidder is monotonically decreasing in the valuations
of the other bidders).

1.1 Our Contributions
In this paper, we provide the �rst online learnability guarantees for non-parametric classes of
auctions. Our main result establishes that the class of smooth auctions is online learnable, i.e., we
achieve vanishing average regret, in the presence of smooth adversaries.
In more detail, we consider bidder valuations that are supported on [0, 1]. We say that an

adversary is f-smooth if at every round she generates a valuation pro�le EC from distribution `C

whose density is 1/f times the density of the Lebesgue measure over [0, 1]= . We consider both
adaptive and oblivious adversaries. An oblivious adversary chooses the sequence `1, . . . , `) non-
adaptively at the beginning of the game, while an adaptive adversary can correlate the choice of
`C with the realized valuation pro�les E1, . . . , EC�1. We also consider the class of smooth auctions.
These are auctions whose level sets of the revenue function have small boundaries, i.e., as captured
by the Lebesgue measure of the boundary sets. We use � to refer to the smoothness of the auction
class. Our main result is that smoothness of the adversary and smoothness of the auctions is su�cient
to make a class online-learnable. Moreover, neither of these conditions is su�cient by itself.

Upper bounds. We state our regret bounds informally below. To simplify their presentation in
this section, we assume that f , �, and = are constants and focus on the dependence of regret on ) .

T������ 4.1 (I�������). In the presence of oblivious smooth adversaries, the class of all single-item,
(possibly non-deterministic) smooth auctions is online learnable with average regret of $ ()

�1
4(=+1) ).

T������ 5.1 (I�������). In the presence of adaptive smooth adversaries, the class of all single-item,
deterministic, DSIC, IR, and smooth auctions is online learnable with average regret of $ ()

�1
8(=+1) ).

As �rst motivated by Spielman and Teng [2004] the smoothness condition on the adversary is
a tangible form of anti-concentration promise that re�ects random perturbations that occur in
practice. On the other hand, smoothness in the auction class may appear as an abstract construct.
To elucidate this concept and demonstrate the strength of Theorems 4.1 and 5.1 we will show that
several natural classes of auctions are smooth.

C����� 3.10 ��� 3.11. The following two class of monotone auctions are smooth. 1) Revenue
monotone auctions, whose revenue function is monotone in the valuation pro�le, and 2) Competition
monotone auctions, where each bidder’s allocation is monotonically decreasing in other bidders’ bids.
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Interestingly, the Myerson auction is revenue monotone and competition monotone. Moreover,
competition monotonicity, which directly considers the allocation function, holds for most para-
metric auction classes that have been considered in the past, such as non-anonymous reserves and
level auctions. More generally, Theorems 4.1 and 5.1 imply that signi�cantly weaker conditions,
such as relaxing independence of private valuations and instead embracing just the monotonicity
or smoothness properties of auctions, would make the class online learnable.

Lower bounds. Having established online learnability when both the auction class and the adver-
sary are smooth, we next show that neither smoothness condition is su�cient by itself. In both
cases, our lower bound holds for = = 2 bidders and the weaker oblivious adversary model

T������ 6.1 (I�������; S����� ��������, N��������� A����������). For = = 2 and any
online algorithm, there is an oblivious (but not smooth) adversary, such that the regret with respect to
the class of deterministic, DSIC, IR, and competition monotone auctions is ⌦() ).

C�������� 6.3 (I�������; N��������� ��������, S����� A����������). For = = 2 bidders
and any online algorithm, there is an oblivious $ (1)-smooth adversary, such that the regret with
respect to the class of all DSIC and IR auctions is ⌦() ).

Our latter lower bound is indeed a corollary of a stronger lower bound on the impossibility of
o�ine learning revenue optimal auctions even when the prior is smooth, as stated in Theorem 6.2.

1.2 Technical overview
In this section, we give an overview of our technical tools.

Learning Theoretic Tools. We introduce two learning theoretic results about the possibility and
the rate of uniform convergence and the size of n-covers when measures and sets are both smooth.
We expect that these results will be useful for learning non-parametric functions over smooth
distributions more generally.
First, we show that as measured by smooth sets, the empirical distribution of instances drawn

from smooth distributions converges to the density of the distribution from which they were drawn
(i.e., their mixture). More formally, we introduce a notion of distance ⇡� (`,a), which we call smooth
variation distance2, that equals the maximum gap in the probability assigned by a and ` to any
�-smooth set. Our Theorem 4.1 shows that for smooth distributions, the smooth variation distance
between the empirical and the true distribution goes to 0, with su�cient number of observations.

Let us note that removing theword smooth from both the distribution and the set will simply result
in a false statement! Because for a distributionwith in�nite support we can typically �nd an irregular
set (such as the union of the realized instances) on which the empirical and true distributions
largely disagree. Here smoothness helps in two ways. Smoothness of the sets invalidates the use
of irregular sets in the smooth variation distance and smoothness of the measures allows us to
approximate the event by the more structured nearby events by ensuring that not too much density
can be focused in their gap. Together, they enable us to work with measures over lattice boxes
where uniform convergence guarantees are known to hold.

Our second learning theoretic tool, Theorem 4.4, gives an n-cover with respect to the smooth
variation distance, for the set of all smooth distributions. Here again, lattice boxes are handy tools
for discretizing a smooth measure, resulting in covers of reasonably small size.

2As opposed to the total variation distance
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Oblivious Adversaries in Auctions. The above tools help us directly with learning against an
oblivious adversary. In particular, uniform convergence of measure over smooth sets allows us to
directly show that two di�erent notions of optimality almost coincide: the expected optimal revenue
achievable on the realized sequence and the optimal expected revenue for the mixture distribution.
Therefore, bounding the pseudo-regret can be as e�ective as bounding the regret. To bound the
pseudo-regret, we can run any no-regret algorithm over a �nite set of auctions that includes the
optimal auction for the true mixture distribution. We �nd this cover by �rst obtaining a cover for all
smooth distributions using Theorem 4.4 and, for each distribution, taking a (near-)optimal auction.

Adaptive Adversaries in Auctions. Our overall approach for adaptive adversaries di�ers from the
case of oblivious adversaries. Nevetheless, approximation of lattice boxes and uniform convergence
of measure over smooth sets play a crucial role in this case too. As a �rst step in dealing with
adaptive adversaries, we use a recent approach of Haghtalab et al. [2021] that uses coupled random
variables to reduce interactions with an adaptive smooth adversary over ) rounds to interactions
with an i.i.d sequence over a slightly longer time frame. This shows that we can directly apply
a no-regret algorithm (like Hedge [Freund and Schapire, 1997]) to a �nite set, if this set met a
stronger form of cover guarantee: The revenue of any smooth auction (not just one that is optimal
for some measure) must be well-approximated on the cover. This requires a more elaborate and
technical treatment of auctions that crucially leverages the payment rule of the deterministic DSIC
and IR auctions.

2 PRELIMINARIES
Notation.We use �= to denote the set of probability distributions over [=]. We view �= as a subset
of R= . Let G 2 R= we use G�8 to denote a vector in R=�1 that has all the coordinates of G but the 8th.
For any two vectors G,~ 2 R= we use G � ~ to denote that for all 8 2 [=] it holds that G8 � ~8 .

In this section we present the online auctions framework that we use to present our results.

2.1 Auctions
Bidders. In this paper we consider an online environment where one new item is for sale to =
bidders every time step C 2 [) ] where ) is the time horizon. At each time step C the bidder 8 has
private valuation EC8 2 [0, 1] for the C-th item. We denote with EC = (EC1, . . . , E

C
=) the valuation pro�le

at step C . At each time step we assume that the valuation pro�le is sampled from a distribution
`C with support on a subset of [0, 1]= . The measure `C may include correlations among bidder
valuations. Also, as we will see, depending on the model the measure `C might or might not depend
on the valuation pro�les EC 0 for C 0 < C . We use D) to denote the probability distribution with
support [0, 1]=·) of all the valuation pro�les +) = (E1, . . . , E) ). At step C 2 [) ] each bidder submits
a bid 1C8 2 [0, 1]. We denote with 1C = (1C1, . . . ,1

C
=) the bid pro�le at step C .

Mechanisms. A mechanism" in this setting consists of two rules: the allocation rule x : [0, 1]= !

�= that takes the bids 1C and outputs the probability G8 (1C ) that each bidder 8 will receive the item,
and the payment rule p(1C ) that takes the bids 1C and outputs the payment of bidder 8 . Bidder 8’s
utility at round C is then DC8 (1

C
) = EC8 · G

C
8 (1

C
) � pC8 (1

C
), where"C = (xC , pC ) is the mechanism used

at round C . The auctioneer is restricted to satisfying the Dominant Strategy Incentive Compatibility
(DSIC) and the Individual Rationality (IR) constraints for all rounds C 2 [) ]:

DC8 (E8 ,1�8 ) � D8 (18 ,1�8 ) for all E8 ,18 2 [0, 1] and all 1�8 2 [0, 1]=�1 (DSIC)

DC8 (E8 ,1�8 ) � 0 for all E8 2 [0, 1] and all 1�8 2 [0, 1]=�1. (IR)
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We consider the setting in which the valuations and the prior distributions are unknown to the
auctioneer. Observe that we also assume myopic bidders, i.e., bidders do not strategize across
rounds. Therefore, since the mechanisms that we choose are DSIC and IR and the agents myopic,
we will assume for the rest of the paper that the bids are equal to the values.
Revenue objective. We de�ne R��(", E) to be the revenue that the mechanism " = (x, p)
extracts when the valuations of the bidders are E , i.e., R��(", E) =

Õ=
8=1 ?8 (E). The goal of the

auctioneer is to �nd a sequence for mechanisms ("C
)C 2) that maximizes the expected total revenueÕ)

C=1 EEC⇠`C
⇥
R��("C , EC )

⇤
. Of course, without the knowledge of `C is impossible to solve this

optimization problem precisely so we will evaluate the performance of a sequence ("C
)
)
C=1 using

the standard notion of regret and online learnability.

2.2 No-Regret and Online Learnability
We start with the notions of regret and online learnability.

D��������� 2.1 (R�����). Given a measure D) over R=·) , a possibly random sequence of mecha-
nisms ("C )C 2 [) ] , and a classM of mechanisms, we de�ne the regret at time ) as

A��R�����)
�
D) , ("C )C 2 [) ],M

�
:= E

"
sup
"2M

1
)

’
C

R��(", EC ) �
1
)

’
C

R��("C , E
C
)

#
,

where the expectation is over+)
⇠ D) and over the randomness in the choice and nature of ("C )C 2 [) ] .

An online algorithm is a map A�� that takes as input the observed valuation pro�les E1, . . . , EC�1
and outputs a mechanism"C = A��(+ C�1

). The online algorithm A�� is usually randomized and
therefore mechanism"C is a random variable that depends on the random variables E1, . . . , EC�1.
We use A��R����� (D) ,A��,M) to denote the regret A��R�����)

�
D) , ("C )C 2 [) ],M

�
where

"C = A��(+ C�1
).

To de�ne the di�erent versions of online learnability that we consider in this paper we need to
specify a class of probability measures from which the adversary is allowed to choose. We �rst
de�ne the notion of smooth measures.

D��������� 2.2 (S����� M�������). We say that a Borel measure ` over [0, 1]= is f-smooth for
f 2 (0, 1] if for any measurable set ⇢ ✓ [0, 1]= , ` (⇢)  f�1

· _= (⇢). Here, _= denotes the Lebesgue
measure over R= . We denote by Pf the set of all such Borel measures over [0, 1]= .

Let P be a family of distributions that generate sequences (EC )C 2N, where for each C 2 N,
EC 2 [0, 1]= . For every D 2 P we use D) to denote the probability distribution of the �rst ) terms
of the sequence that is generated by D. In particular, D) has support [0, 1]=·) . We de�ne two
important families of distributions: P$ and P

�. The class P$ contains all the distributions D
that correspond to �xing distributions `1, . . . , `) and generating EC independently from `C . The
class P� contains all the distributions D for which the distribution of EC depends on the values of
the sequence (E1, . . . , EC�1). Similarly we de�ne P$

f to be the set of probability distributions over
sequences where the probability distribution of every term is an independent distribution that
belongs to Pf , and we de�ne P�

f to be the set of probability distributions over sequences where
the probability distribution of every term given the values of the previous terms belongs to Pf .3

3When `C s are unrestricted, the minmax regret against both is the same [Cesa-Bianchi and Lugosi, 1999]. When `C s are
smooth such strong results do not hold, but the recent works of Haghtalab et al. [2020, 2021] show that for parametric
classes the minmax regret bounds are almost the same.
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D��������� 2.3 (N��R�����). Given a family P of measures D over sequences (EC )C 2N, where
E8 2 [0, 1]= and a class M of mechanisms, we say that the online algorithm A�� is a no-regret
algorithm for the classM and the class of distributions P if for every D 2 P it holds that

lim
)!1

A��R�����) (D) ,A��,M) = 0.

If P = P
$ (resp. P$

f ) then A�� is a no-regret algorithm for the classM against oblivious (resp. smooth
oblivious) adversaries. If P = P

� (resp. P�
f ) then A�� is a no-regret algorithm for the classM against

adaptive (resp. smooth adaptive) adversaries.

An equivalent notion to no-regret is the online learnability that allows us to understand how
fast the average regret converges to 0.

D��������� 2.4 (O����� L�����������). Let M be a class of mechanisms, and let A�� be an
online algorithm. We say that A�� learns online the class M with respect to the family P of measures
over random sequences if there exists a function )P,M : (0, 1) ! N such that for every ) � )P,M(n)
and every D 2 P it holds that A��R�����) (D) ,A��,M)  n . We say that the class M is online
learnable with respect to a family of measures P if there exists an online learning algorithm A�� that
online learnsM over P. Similarly to the de�nition of no-regret: if P = P

$ (resp. P$
f ) then the class

M is online learnable against oblivious (resp. smooth oblivious) adversaries, and if P = P
� (resp. P�

f )
thenM is online learnable against adaptive (resp. adaptive smooth) adversaries.

The function )P,M represents the number of rounds that A�� needs to observe in order to
achieve regret less than n . For this reason we call )P,M(n), the online sample complexity of � for
the classM over the family of measures P. It is easy to see that no-regret and online learnability are
equivalent notions. Traditionally the online learning results show an upper bound on A��R�����)
that is inverse polynomial in) and hence establish the no-regret property ofA��. Using these upper
bounds we also understand the rate at which the regret goes to 0. In this paper, it is notationally
simpler and more intuitive to present our results in terms of the online sample complexity )P,M of
our online algorithms A�� and from this to establish the no-regret property of A��.

3 SMOOTH SETS AND SMOOTH AUCTIONS
In this section we de�ne and prove some basic properties of smooth sets and smooth auctions. The
notion of smooth measures is presented in De�nition 2.2 and is standard in smoothed analysis (see
e.g. [Manthey, 2020]) and has recently bridged learnability gaps in other online applications [Hagh-
talab et al., 2021]. Beyond smooth probability measures, we introduce the notions of smooth sets
and smooth auctions which play a fundamental role in understanding the online learnability of
an unrestricted class of auctions. After introducing these notions we show that some general and
natural families of auctions satisfy the smoothness condition. Together with the lower bounds that
we present in Section 6 this implies that online learning over the class of smooth auctions is a very
challenging and very important problem for which none of the known techniques can be applied.

3.1 Smooth Sets
For the de�nition of smooth sets we �rst need to discretize the hypercube [0, 1]= into small cubelets
with length 1/: for some : 2 N.

D��������� 3.1 (L������). For any D, E 2 R= with D  E we de�ne the axis aligned box ⌫D,E = {G 2

R= | 8 8 2 [=] D8  G8  E8 }. In words, ⌫D,E denotes the axis aligned box with minimal coordinates D
and maximal coordinates E . Let also 1 = (1, . . . , 1) 2 R= denote the vector of all ones.
We write L

=
: :=

�
⌫D,E | D = 1

: (2 � 1) , E = 1
: 2 for some 2 2 [:]=

 
to denote the unit lattice of

[0, 1]= with := boxes.
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(a) (b) (c) (d)

Fig. 1. (a) We illustrate the la�ice L2
6 . With orange we indicate as an example the box ⌫

(
4
6 ,

1
6 ),(

5
6 ,

2
6 )

and with

purple we indicate a subset ⇢ of [0, 1]= . (b) We present the inner approximation ⇢"6 of the set ⇢ from figure

(a) according to Definition 3.2. (c) We present the outer approximation ⇢#6 of ⇢ according to Definition 3.2. (d)

We present the set ⇢#6 \ ⇢
"

6 which is used in the definition of the boundary measure �6 (⇢).

Next, we approximate any subset ⇢ ✓ [0, 1] with subsets of the unit lattice L=
: . There are two

ways of doing this: the inner approximation which does not include the boxes ⌫D,E 2 L
=
: that the

boundary of ⇢ crosses, and the outer approximation that includes the boxes of the boundary as well.

D��������� 3.2 (S�� A�������������). For any subset ⇢ ✓ [0, 1]= , we de�ne the inner and outer
approximation of ⇢ by lattice boxes L=

: as

⇢"

: :=
ÿ

⌫2L=
: |⌫✓⇢

⌫ and ⇢#

: :=
ÿ

⌫2L=
: |⌫\⇢<;

⌫.

Based on these we also de�ne �: (⇢) := : · _= (⇢#

: \ ⇢
"

: ) to be the measure of the set boundary of ⇢ as
captured by its lattice approximations4.

We illustrate these notions in Fig. 1.

Given the de�nitions of inner and outer approximations we are ready to de�ne smooth sets.
Intuitively, we call a set ⇢ ✓ [0, 1]= smooth if it has a small boundary. In term of the lattice L=

: ,
this means that the number of boxes that the boundary of ⇢ touches should not grow as fast as :=
when : goes to 1, but instead should grow as :=�1, which essentially means that the boundary of
⇢ is a lower dimensional surface. We make this intuition precise in the following de�nition.

D��������� 3.3 (S����� S��). We say that ⇢ is �-smooth for some 0 < � < 1 if sup:2N �: (⇢)  �.
In other words, a set ⇢ is �-smooth if the boundary of ⇢ can be approximated by at most � · :=�1 boxes
of the lattice L=

: by taking the gap between the corresponding inner and outer approximations. We
denote by C(�,=) the set of all subsets ⇢ ✓ [0, 1]= that are �-smooth.5

An important subclass of smooth sets is the class of monotone sets that we de�ne below. The fact
that all monotone sets are smooth can also be used to illustrate the challenge of solving learning
problems over the class of smooth sets. This is due to the fact that the VC-dimension of monotone
sets is already in�nite even for number of dimensions = = 2, as we show in Claim 3.6.
4The multiplication by : here is needed so that �: (⇢ ) converges to a constant as : grows to1. To see why this is needed,
observe that the number of cubelets in ⇢#

: \ ⇢"

: is expected to be of order :=�1 because these correspond to the cubelets on
the boundary of ⇢. The Lebesgue measure of a cubelet on the other hand is 1/:= . Hence, _= (⇢#

: \ ⇢"

: ) should be of order
1/: and this is why we multiply by a constant to get the constant that represent the surface area of ⇢.
5We note that the parameterization of smooth sets and smooth measures go in opposite directions. That is, an adversary for
f < 1 becomes more smooth as f increases and a set for � > 1 becomes more smooth as � decreases.
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D��������� 3.4. Let ⇢ ✓ [0, 1]= , we say that ⇢ is monotone if for every G 2 ⇢ and every ~ 2 [0, 1]=
such that ~ � G , it holds that ~ 2 ⇢.

L���� 3.5. Let ⇢ ✓ [0, 1]= be a monotone set, then ⇢ is =-smooth.

We present the proof of Lemma 3.5 in Appendix A.1.

C���� 3.6. The class of all monotone sets that are subsets of [0, 1]2 has in�nite VC-dimension. This
implies that the set C(�,=) has in�nite VC-dimension even for = = 2.

For the proof of Claim 3.6 we refer to the Appendix A.2.

Smooth sets are a key concept in our analysis since they possess strong learning theoretic
properties when combined with smooth probability measures as we will show in Section 4. For
example, although smooth sets have in�nite VC-dimension, we show that they satisfy uniform
convergence bounds when the distribution of data is also smooth (see Section 4.1). Such general
uniform convergence bounds for unrestricted distributions hold only for classes with �nite VC-
dimension. For this reason, we believe that these learning theoretic properties of smooth sets under
smooth distributions are of independent interest.
Using the de�nition of smooth sets we can de�ne the following notion of distance between

probability measures that captures very well some learning properties of smooth distributions as
we will see in Section 4. This distance measure resembles the total variation distance but instead
of taking the supremum over all events we take the supremum over all events that correspond to
smooth sets.

D��������� 3.7 (S����� V�������� D�������). For any two probability measures ` and a over
[0, 1]= , we de�ne the �-smooth variation distance ⇡� (`,a) := sup⇢2C(�,=) |` (⇢) � a (⇢) |. This distance
yields a metric for the space of measures over [0, 1]= .

3.2 Smooth Auctions
The de�nition of smooth sets suggests a natural de�nition of smooth real-valued functions 5 :
[0, 1]= ! R. In particular, we can de�ne 5 to be smooth when all the level sets of 5 of the form
{G | 5 (G) � 2} are smooth. Applying this idea to auctions we get the following de�nition of smooth
auctions.

D��������� 3.8 (S����� A������). We say that an auction" is �-smooth if the level sets of its
revenue function {E 2 [0, 1]= | R��(", E) � 2} are �-smooth for all 2 2 [0, 1]. We denote by M� the
set of all smooth auctions.6 We also de�ne M⇡

� to be the set of all �-smooth auctions that are also
deterministic, i.e., their allocation function x takes values in {0, 1}.

The main purpose of this section is to illustrate the generality of smooth auctions and why
optimizing revenue over the set M� is an important and very challenging problem.
Next, we give two general properties of an auction that makes it a smooth auction.

D��������� 3.9 (M������� A�������). We consider the following types of monotone auctions:
• Revenue Monotone Auctions. We say that an auction " is revenue monotone if for every
I,F 2 [0, 1]= such that I � F , it holds that R��(", I) � R��(",F). In other words, " is
monotone if and only if the level sets of the revenue function are all monotone.

6In this paper, we de�ne smooth sets/auctions as having small Lebesgue boundaries and correspondingly de�ned smooth
measures relative to the Lebesgue measure. With a few technicalities, our techniques should indeed carry over to any
similar notion of smoothness relative to an arbitrary base measure, so long as that base measure is the same in the de�nition
of smooth sets and smooth measures.
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• CompetitionMonotoneAuctions.An auction" with allocation function x : [0, 1]= ! {0, 1}=
is said to be competition monotone if for all 8 2 [=] and any I�8 ,F�8 2 [0, 1]=�1 such that
I�8 � F�8 , it holds that G8 (E8 , I�8 )  G8 (E8 ,F�8 ) for all E8 2 [0, 1].

C���� 3.10. All revenue monotone auctions are =-smooth.

P����. Let" be a revenue monotone auction, 2 2 [0, 1] be arbitrary, and ⇢ be the correspond-
ing level set of the revenue function ⇢ = {E 2 [0, 1]= | R��(", E) � 2}. By the monotonicity of
R��(", E), it follows that ⇢ is a monotone set. Now we can use Lemma 3.5 to conclude that ⇢ is
=-smooth and hence" is also =-smooth from the de�nition of smoothness in auctions. ⌅

C���� 3.11. All deterministic, DSIC, and competition monotone auctions are =2-smooth.

We present the proof of Claim 3.11 in Appendix A.4. Moreover, we show in Appendix A.3, that
the class of randomized 2-tiered pricings of Bergemann et al. [2020] is revenue monotone (and
therefore =-smooth) in the signal space. This class includes the revenue-optimal auction for the
common valuations model of Milgrom and Weber [1982].
To illustrate the challenge of learning over the class of �-smooth auctions, we show that the

complexity of this class is unbounded for natural measures of complexity. In particular, the set of
revenue functions of smooth auctions neither has �nite pseudo-dimension nor has a useful bound
on its scale-sensitive VC dimension. In fact, this is true even for competition monotone auctions
that are a subclass of smooth auctions, as we showed above.

C���� 3.12. Let R⇠" be the set of revenue functions of competition monotone auctions, i.e.,

R⇠" = {5 : [0, 1]= ! [0, 1] | 5 (G) = R��(", G), where" is competition monotone and DSIC} .

The class R⇠" has in�nite pseudo-dimensions and in�nite scale-sensitive VC-dimension for any scale
X < 0.5.

The proof of Claim 3.12 is presented in Appendix A.5. We note that �niteness of the pseudo
dimension and small scale-sensitive VC dimension are used for obtainingminmax o�ine learnability
and smooth online learning gaurantees for parametric and non-parametric losses [Anthony et al.,
1999, Block et al., 2022, Haghtalab et al., 2022, 2021]. Therefore, Claim 3.12 shows that we need
new technical innovations to learn these classes.

4 OBLIVIOUS ADVERSARIES
In this section we present our online learning of auctions results for oblivious adversaries. We
start with the statement of our main theorem. Then we highlight the barriers of applying existing
approaches to get our results and we summarize the main proof ideas which lead to some interesting
new learning theoretic results. The full proof of our main theorem is presented in Section 4.1.

T������ 4.1. For any � 2 R+ and f 2 (0, 1], the class of all �-smooth auctions M� is online
learnable with respect to the family of oblivious f-smooth measures P$

f with rate

)
P$
f ,M�

(n) = max

 
$̃

 
1

n=+2
·

✓
�

f

◆2=+2!
,$

✓
1

n4=+4

◆!
.

Further, letting �, f , and = be constants, there exists an algorithm A�� such that

sup
D2P$

f

A��R�����) (D) ,A��,M�)  $
⇣
)

�1
4(=+1)

⌘
.
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Theorem 4.1 is a surprising result in many ways. First, it is very interesting that the combination
of the smoothness of the distributions and the smoothness of auctions su�ces to ensure online
learnability. As we prove in Section 6, just one of the smoothness properties is not enough (even for
= = 2, and �, f constants) so the combination of them is necessary. The other reason that Theorem
4.1 is surprising is because the class of revenue functions of auctions that belong to M� does not
have small complexity with respect to any of the known complexity measures of learning theory.
This means that it is not even clear how to learnM� even in the o�ine setting. In fact, as we show
in Section 6, without the smoothness of the prior distributions, learning over M� is impossible
even in the o�ine setting.
This last observation aboutM� leads to the conclusion that to prove Theorem 4.1 we need to

provide novel learning theoretic tools that can be applied in settings beyond the classical learning
theory that tackle function classes with bounded complexity. We present these learning theoretic
results in Sections 4.1 and 4.2. The need for these new learning theoretic tools explains also the
absence of online learning results for unrestricted classes of auctions in the existing literature.

Main proof ideas.We next describe the two main steps in proving Theorem 4.1.
To prove Theorem 4.1 we want to �nd an online algorithm that achieves low average regret, i.e.,

tries to minimize the following quantity

E

266664
max
"2M�

1
)

’
C 2 [) ]

R��(", EC ) �
1
)

’
C 2 [) ]

R��("C , E
C
)

377775
, (1)

where the expectation is over the distributions of EC that are chosen from the class of oblivious
and smooth adversaries P$

f . Naturally, to achieve sublinear expected regret we want to apply the
hedge algorithm of Freund and Schapire [1997] which achieves a regret that is sublinear in ) and
logarithmic in the class size. The class M� though is not �nite and hence we cannot apply hedge
directly.
A natural next idea is to try to �nd a cover of M� . Observe though that the maximization over

M� appears inside the expectation, i.e., the maximization of revenue happens on the samples. Hence,
the simplest way for the cover based approach to be e�ective is to �nd an e�ective cover against
any probability distribution. Unfortunately, the existing techniques for constructing such covers
against smooth adversaries rely on some complexity upper bound, e.g., bounded pseudo-dimension,
of the class of revenue functions ofM� which is still not true in our case as we showed in Claim
3.12. This leads us to our �rst main idea: �nd a way to change the order of max with E in (1).

Uniform Concentration of Smooth Events. To change the order of maximum with expectation, we
show the following concentration result: if) is large enough then 1

)

Õ
C 2 [) ] R��(", EC ) concentrates

around its expectation uniformly over all auctions" 2 M� (see Theorem 4.2). Now once we apply
this uniform concentration we can also apply linearity of expectation and get that, with a small
additive error, the average regret satis�es the following:

(1)  max
"2M�

EE⇠D [R��(", E)] � E

266664
1
)

’
C 2 [) ]

R��("C , E
C
)

377775
+ > (1), (2)

where D is the mixture distribution of the distributions of every step.

Cover of smooth distributions. Equation 2 implies that we are now only interested in the expected
revenue achieved by the auction " . This means that we can construct a cover only of the auc-
tions that are optimal for some distribution D. Hence, it su�ces to �nd a cover A of smoothed
distributions and make sure that the following holds: for every smooth distribution D, there exists

550



EC ’23, July 9–12, 2023, London, United Kingdom Naveen Durvasula, Nika Haghtalab, and Manolis Zampetakis

a distribution D
0
2 A such that EG⇠D [5 (G)] u EG⇠D0 [5 (G)] (see Theorem 4.4). If this is true,

then we can de�ne M̄ to be the set of revenue optimal auctions for the distributions inside A

and replace M� with the �nite set M̄ in (2). Combining this with linearity of expectation and the
fact that the expected maximum is always larger than the maximum of expectation we get that
following expression for the expected regret:

E

266664
max
"2M̄

1
)

’
C 2 [) ]

R��(", EC ) �
1
)

’
C 2 [) ]

R��("C , E
C
)

377775
. (3)

In this last expression M̄ is �nite and hence we can now apply hedge to prove Theorem 4.1.
The rest of this section is organized as follows: in Section 4.1 we present our uniform concentra-

tion result for smooth events over smooth distributions, in Section 4.2 we present a way to construct
a cover of smooth distribution, and �nally in Section 4.3 we present a full proof of Theorem 4.1.

4.1 Uniform Concentration of Smooth Events over Smooth Measures
We restate the de�nition of smooth variation distance ⇡� (`,a) which is an essential notion to state
our uniform concentration result. ⇡� (`,a) is de�ned as follows:

⇡� (`,a) := sup
⇢2C(�,=)

|` (⇢) � a (⇢) | . (4)

As we can see this distance metric resembles the de�nition of total variation distance, except
the supremum is not over all events but only over smooth events. Now the goal of our uniform
concentration result is to show that for any smooth measure, the empirical distribution of) samples
is close to the true distribution in terms of the smooth variation distance when ) is large enough.

T������ 4.2. Take EC to be a sequence of independent random variables each with corresponding
law `C , where `C is a f-smooth probability measure over [0, 1]= . Let ˆ̀) := 1

)

Õ)
C=1 XEC denote the

sequence of empirical measures, where XEC denotes the Dirac measure at EC . Finally, let `) := 1
)

Õ)
C=1 `

C

denote the mixture measure. Then, for any � 2 R+, ⇡� (`) , ˆ̀) )
0.B .
! 0. Furthermore, there exist absolute

constants 21 and 22 such that

P
⇥
⇡� (`) , ˆ̀) ) > n

⇤
 exp

⇣ �
21 · � · f�1

· n�1
�=

· log
�
� · f�1

· n�1
�
� 22 ·) · n2

⌘
.

The above theorem in one dimension resembles the celebrated DKW inequality [Dvoretzky et al.,
1956]. In DKW in the de�nition (4), instead of the set C(�,=) has the set of all intervals and shows
the corresponding uniform concentration bound. In higher dimensions many celebrated papers
(e.g., Alon et al. [1997], Vapnik and Chervonenkis [1968]) show the same result but again instead of
the set C(�,=) as we use in de�nition (4), they work with any set in a class of sets with bounded
VC dimension. Vapnik and Chervonenkis [1968] in fact show that having bounded VC dimension
is a necessary and su�cient condition for such a uniform concentration result to hold without
any additional assumptions on the distribution. Our Theorem 4.2 shows that if we assume that the
distribution of data is smooth we can show strong uniform concentration results even for classes
of events that have in�nite VC dimension.

P���� �� T������ 4.2. In this proof, we make use of a key result from VC theory regarding
empirical convergence for sets given by unions of boxes.
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F��� 4.3 (U������ C���������� ���� B������ VC7). Let B(A ,3) be the family of sets ⇢ ✓ R3

such that ⇢ is a union of A axis-aligned boxed. Then, for any probability measures `1, . . . , `) over
R3 it holds that sup⇢2B(A ,3 )

�� ˆ̀) (⇢) � `) (⇢)
�� 0.B .! 0, where ˆ̀) and `) are the mixture and empirical

measures as described in Theorem 4.2. More precisely, for an absolute constant 2 ,

P

"
sup

⇢2B(A ,3 )

�� ˆ̀) (⇢) � `) (⇢)
�� > n

#
 exp

�
3 · A · log(3A ) � 2 ·) · n2

�
.

We begin by taking ⇢ to be an arbitrary �-smooth set. For any : 2 N, let ⇢"

: ✓ ⇢ ✓ ⇢#

: be the
inner and outer approximations of ⇢ by lattice boxes in L

=
: as given in De�nition 3.3. Notice that

⇢#

: , ⇢
"

: , and their set di�erence all belong to the family B(:=,=). At a high level, we bound the
di�erence between `) (⇢) and ˆ̀) (⇢) in two parts: �rst, as the gap between the empirical and true
distribution on the interior of the set ⇢ (which is a union of boxes and therefore abides by uniform
convergence laws) and their gap outside of this interior set (which by smoothness has low measure
to start with). We can therefore write

��`) (⇢) � ˆ̀) (⇢)
��  ���`) (⇢ \ ⇢"

: ) � ˆ̀) (⇢ \ ⇢"

: )

��� + ���`) (⇢"

: ) � ˆ̀) (⇢"

: )

���
 max

⇣
`) (⇢ \ ⇢"

: ), ˆ̀) (⇢ \ ⇢"

: )

⌘
+

���`) (⇢"

: ) � ˆ̀) (⇢"

: )

���
 max

⇣
`) (⇢

#

: \ ⇢
"

: ), ˆ̀) (⇢
#

: \ ⇢
"

: )

⌘
+

���`) (⇢"

: ) � ˆ̀) (⇢"

: )

���
 `) (⇢

#

: \ ⇢
"

: ) +

���`) (⇢#

: \ ⇢
"

: ) � ˆ̀) (⇢#

: \ ⇢
"

: )

��� + ���`) (⇢"

: ) � ˆ̀) (⇢"

: )

���
 `) (⇢

#

: \ ⇢
"

: ) + 2 sup
� 2B(:=,=)

��`) � � ˆ̀) �
��

 f�1
· _= (⇢#

: \ ⇢
"

: ) + 2 sup
� 2B(:=,=)

��`) (� ) � ˆ̀) (� )
��

= f�1
· :�1

· �: (⇢) + 2 sup
� 2B(:=,=)

��`) (� ) � ˆ̀) (� )
��

 f�1
· :�1

· � + 2 sup
� 2B(:=,=)

��`) (� ) � ˆ̀) (� )
�� ,

where the �rst inequality follows from triangle inequality, the third inequality from the fact that
⇢ ✓ ⇢#

: as shown in Fig. 1, the fourth inequality from triangle inequality, the �fth inequality follows
from the fact that the sets ⇢#

: \ ⇢
"

: and ⇢"

: are both unions of at most := axis aligned boxes, the sixth
inequality follows from the smoothness of the measure `) and the last two inequalities from the
fact that ⇢ is �-smooth.
Hence, it holds that ⇡� (`) , ˆ̀) )

0.B .
! 0, as we may make the �rst term arbitrarily small by taking

: ! 1, and we may make the second term arbitrarily small almost surely by taking ) ! 1 as per
Fact 4.3. Furthermore if we apply Fact 4.3 with A = := , we have that for any : > � · f�1

· n�1,

P
⇥
⇡� (`) , ˆ̀) ) > n

⇤
 exp

�
=2 · := · log(:=) � 2 ·) · (n � � · f�1

· :�1
)
2�

Choosing : = 2 · � · f�1
· n�1, we obtain the desired result. ⌅

7This bound is typically applied to i.i.d random variable, but it is folklore that it holds for independent (not necessarily
identically distributed) random variable as well. Refer to Haghtalab [2018, Lemma 7.3.3] for the proof of this fact.
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4.2 A Cover of Smooth Measures
In this section we show how to construct a cover of all smooth distributions with respect to the
smooth variation distance ⇡� . As usual, this covering result suggests the existence of a distribution
learning algorithm for smooth distributions in terms of the smooth variation distance ⇡� .

T������ 4.4. For all �, n 2 R+, there exists a �nite set of measures A� (f, n) such that for all
f-smooth probability measures `, mina2A� (f,n ) ⇡� (`,a) < n . Furthermore,

log |A� (f, n) | < = ·$
�
� · f�1

· n�1
�=

· log
�
� · f�1

· n�2
�
.

The proof of Theorem 4.4 is deferred to Appendix B.1. We are now ready to prove Theorem 4.1.

4.3 Proof of Theorem 4.1
Our previous results relate to the learnability of smooth distributions under the ⇡� metric. To link
these results to statements about auctions, we make use of the following Lemma.

L���� 4.5. Let" 2 M� be a �-smooth auction. For any two Borel probability measures ` and a
over [0, 1]= , ��EE⇠` [R��(", E)] � EE⇠a [R��(", E)]

��  ⇡� (`,a).

P����. Note that for any # 2 N, we may approximate any R��(", E) up to an error of 1
#

using a linear combination of indicator functions of the form R��(",E)�2 for 2 2 [0, 1]. That is,���R��(", E) � 1
#

Õ#
8=1 R��(",E)� 8

#

���  1
# . It follows by the triangle inequality that

��EE⇠` [R��(", E)] � EE⇠a [R��(", E)]
��  1

#

�����
#’
8=1
EE⇠`

h
R��(",E)� 8

#

i
�

#’
8=1
EE⇠a

h
R��(",E)� 8

#

i ����� +
2
#


1
#

#’
8=1

����`
⇢
R��(", E) �

8

#

�
� a

⇢
R��(", E) �

8

#

����� + 2
#

 ⇡� (`,a) +
2
#
,

where the last transition is tken by noting that the summand is the di�erence between measures
assigned to smooth sets. Taking # ! 1, we obtain the desired result. ⌅

We now use Theorem 4.2 to show the average regret in our setting is close to the pseudoregret.
The proof of the next corollary (Corollary 4.6) is in Appendix B.2.

C�������� 4.6. For any ) � $
� �
f

�2=+2 it holds that
EEC⇠`C

266664
sup

"2M�

1
)

’
C 2 [) ]

R��(", EC )

377775
 sup

"2M�

EE⇠`) [R��(", E)] +$
⇣
) �

1
4(=+1)

⌘
.

Next, we apply Theorem 4.4 to show that the pseudoregret over the nonparametric class of
auction mechanisms M� is close to the corresponding pseudoregret over a �nite net of auction
mechanisms of suitable size.

C�������� 4.7. For all n > 0, there exists a �nite set of auction mechanismsM� (f, n) such that

sup
"2M�

EE⇠`) [R��(", E)]  max
"2M� (f,n )

1
)

’
C 2 [) ]

EEC⇠`C
⇥
R��(", EC )

⇤
+ n,

where |logM� (f, n) |  = ·$
�
� · f�1

· n�1
�=

· log
�
� · f�1

· n�2
�
.
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P����. Let A� (f, n/2) be as given in Theorem 4.4. We de�ne

"� (f, n) :=
�
"⇤

a | a 2 A� (f, n),
 

(5)

where"⇤
a 2 M� is any �-smooth auction such that sup"2M�

EE⇠a [R��(", E)]�EE⇠a
⇥
R��("⇤

a , E)
⇤


n
2 . That is,"� (f, n) is a collection of (near-)optimal auctions for the net distributions. By Theorem
4.4, it follows that the size of "� (f, n) is as desired.Further, by Theorem 4.4, there exists some
distribution a⇤ 2 A� (f, n/2) such that ⇡� (`) ,a)  n/4. We can then apply Lemma 4.5 to �nd that

sup
"2M�

EE⇠`) [R��(", E)]  sup
"2M�

EE⇠a⇤ [R��(", E)] + sup
"2M�

��EE⇠a⇤ [R��(", E)] � EE⇠`) [R��(", E)]
��

 sup
"2M�

EE⇠a⇤ [R��(", E)] + ⇡� (`) ,a
⇤
)  EE⇠a⇤

⇥
R��("⇤

a⇤ , E)
⇤
+
n

4
+
n

2

 EE⇠`)
⇥
R��("⇤

a⇤ , E)
⇤
+
3n
4

+ ⇡� (`) ,a
⇤
)  max

"2M� (f,n )
EE⇠`) [R��(", E)] + n

= max
"2M� (f,n )

1
)

’
C

EEC⇠`C
⇥
R��(", EC )

⇤
+ n .

⌅

Finally, we apply the Hedge algorithm to choose mechanisms"C from the �nite netM� (f, n).

F��� 4.8 (H���� [F����� ��� S�������, 1997]). The hedge algorithm can select a mechanism
"C 2 M� (f, n) at each time iteration C such that
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Putting everything together, we �nd that for any n > 0, ) � $
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(Cor. 4.6)
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+ n (by Fact 4.8)
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We now set n = )
�1

4(=+1) to obtain the desired result.

5 ADAPTIVE ADVERSARIES
Adaptive adversaries introduce many additional challenges and the technique that we presented in
Section 4 does not apply. In this section we show how to overcome these challenges and still prove
online learnability when we focus on deterministic auctions. Our main result is the following.
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T������ 5.1. For any � 2 R+ and f 2 (0, 1], the class of all �-smooth, deterministic, DSIC, and IR
auctionsM⇡

� is online learnable with respect to the family of adaptive f-smooth sequences P�
f with

)
P�
f ,M⇡

�
(n) = max

 ✓
=

f
· log

1
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◆$ (=)

,$

✓
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◆
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.

Further, letting �, f , and = be constant, there exists an algorithm A�� such that

sup
D2P�

f

A��R�����(D) ,A��,M⇡
� )  $

⇣
) �

1
8(=+1)

⌘
.

Main proof ideas. The main step from Section 4 that fails against adaptive adversaries is that we
cannot directly apply our uniform concentration bound of Theorem 4.2 because the distributions
across rounds are not independent. For this reason we follow a di�erent approach that leads us to an
expression where we can apply Theorem 4.2. Our goal is again to apply Hedge to get a sub-constant
bound in the expected regret

E

266664
max

"2M⇡
�

1
)

’
C 2 [) ]

R��(", EC ) �
1
)

’
C 2 [) ]

R��("C , E
C
)

377775
. (6)

Now instead of �rst changing the order of the expectation and the maximum and then providing
a cover that approximates the optimal smooth auctions, we try to �nd a good cover from the
beginning. Let M be any class of auctions, then it is not hard to see that the �rst term of (6) is
upper bounded by

E
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"2M
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�
������
377775
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Hence it su�ces to �nd a �nite setM such that the following quantity, which is larger than the
second term of (7), is small. Then we can apply the hedge algorithm over the set of auctions M
and prove our online learnability result. The second term in Equation 7 is upper bounded by:

E
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The latter upper bound is given by approximating the revenue functions by sums of indicator
functions in a similar manner to Lemma 4.5. This bound makes it easier to control the smoothness
of the di�erence of indicator functions. The �rst step towards showing that (8) is small in the
adaptive adversary case is to use the following powerful coupling lemma of Haghtalab et al. [2021].

L���� 5.2 ([H�������� �� ��., 2021]). Let E1, . . . , E) ⇠ D) be an adaptive f-smooth sequence.
Then, for each I > 0 there exists a coupling ⇧ such that

�
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1
I , . . . , E

) , G)1 , . . . , G
)
I

�
⇠ ⇧ and

(1) E1, . . . , E) are jointly distributed as D)

(2) GC9 are i.i.d uniform variables on [0, 1]=

(3) With probability at least 1 �) (1 � f)I ,
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E1, . . . , E)

 
✓

n
GC9 | C 2 [) ], 9 2 [I]

o
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The third property of the coupling in Lemma 5.2 allows us to upper bound any set-monotone
function in presence of an adaptive smooth adversary by switching in the larger set of i.i.d. random
variables. In particular, using Lemma 5.2 in (8) we can change the expectation over the adaptive
adversaries to the expectation over independent uniform distributions, by increasing the number
of rounds from ) to ) 0 u ) log() )/f , and the expression (8) will only increase. Hence, it su�ces
to �nd a set M such that the expression of (8) is small when the expectation is over independent
uniform distributions. Nowwe can use a trick to make sure that the summands in (8) are smooth and
apply our uniform concentration Theorem 4.2 to get that it su�ces to upper bound the following

sup
"2M⇡

�

min
" 0 2M

EE⇠*

����

R��(", EC ) �

8

#

�
�


R��(" 0, EC ) �

8

#

� ����
�
. (9)

This suggests that M has to be constructed so that it covers all the possible revenue functions of
deterministic, smooth, DSIC, and IR mechanisms over the uniform distribution. This is a much
stronger requirement compared to the cover that we constructed in the oblivious case. We �nd such
a cover for which (9) is small for the subclassM⇡

� ✓ M� of deterministic auctions mechanisms.
We give a brief description of its construction.

Whereas the cover given in Corollary 4.7 did not make use of any speci�c auction properties
(we constructed it by �nding a collection of approximately-optimal auctions given an initial net of
distributions), the cover we use in this argument is constructed directly over the space of allocation
functions. Further, we utilize the DSIC property to show that (9) is small.
Similar to our other arguments, we begin by considering lattices of the form L

=
: . We consider

the �nite set of all DSIC auctions that have constant allocation function on any cubelet ⌫ 2 L
=
: . As

these allocation functions themselves are constructed from a lattice, they are e�ectively perfectly 0-
smooth. This, coupled with the �-smoothness of the auction, allows us to ensure that the summands
in (8) are smooth. Next, for any auction " 2 M

⇡
� , we consider the corresponding mechanism

"⇤
2 M that allocates the item to bidder 8 if the bid pro�le E lies in the inner approximation of

the set of bid pro�les of the original set of bids for which" allocated the item to bidder 8 . By the
�-smoothness of the auction, the boundary of this set is close to that of its inner approximation. As
the price function of a DSIC auction depends only on the location of the allocation boundary, we
may conclude that the revenue (and its level sets) of"⇤ are indeed close to" as desired. Finding
such a cover completes our proof of Theorem 5.1.

The above is only a high level description of the proof and the actual proof is more involved in
many ways. We refer to Appendix C for a full description of the proof of Theorem 5.1.

6 LOWER BOUNDS
In this section we show two lower bounds that justify our assumptions about the smoothness of
both the distribution and the set of auctions. In particular, we show that if one of the smoothness
assumptions is violated then for every online algorithm there exists an oblivious adversary for
which the algorithm will have linear regret. Both of our lower bounds holds even in the case where
we have = = 2 number of bidders and illustrate the di�culty of online learning optimal auctions
even with a constant number of agents.

Our lower bound constructions share a common idea which is that if we have correlation among
bidders then we can use the bid of the �rst bidder to infer the bid of the second bidder without
violating incentive compatibility. This way the optimal auction can almost extract the social welfare
as revenue. Any algorithm that compares with this optimal auction needs to infer almost exactly
the correlation among the bidders which as we will show is not possible.
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In Section 6.1 we show that for any algorithm A��, there exists an instance with non-smooth
distributions for which A�� has linear regret even compared to the optimal smooth auction in
hindsight. In fact, we show thatA��will have linear regret even compared to the optimal competitive
monotone and deterministic auction in hindsight. In Section 6.2 we show that for any algorithm
A��, there exists an instance with smooth distributions for which A�� has linear regret compared
to the optimal auction in hindsight from the set of all auctions. We defer the full proofs of the
results in this section to Appendices D.1 and D.2.

6.1 Smooth Auctions Non-smooth Distributions
In our lower bound we have two bidders, the �rst bidder has value either 1/2 or 1 for the item
whereas the second bidder has value that is always less than 1/4 for the item. This means that the
revenue optimal auction will de�nitely allocate the item to the �rst bidder because we can extract
revenue at least 1/2 from them whereas from the second bidder we can extract revenue at most 1/4.
So the �rst bidder always gets the item and the question is at what price. In our construction the bid
of the second bidder is completely determined from the bid of the �rst bidder. Hence looking at the
bid of the second bidder we know whether the �rst bidder has value 1/2 or 1 for the item and we
can charge the �rst bidder his whole value as a price without violating incentive compatibility or
individual rationality. To make sure that this is doable with a deterministic competitive monotone
auction, we use a simple threshold rule to associates the �rst bid with the second bid. Now to make
sure that any algorithm has linear regret we pick the second bid to be always closer to the threshold
in a way that all the previous information is not helpful to decide the optimal reserve price for the
next time step. This resembles the impossibility result of online learning of threshold functions
when the distribution of data is non-smooth.

T������ 6.1. For any online learning algorithmA�� and every) there is a distributionD) = D1)⇥

· · ·⇥D)) whereDC) is a product distribution over [0, 1]2, such thatA��R�����
�
D) , ("C )C 2 [) ],M

�
�

) /4, where ("C )C 2 [) ] is the sequence of auctions generated by A�� and M is the set of all auctions
that are deterministic, competitive monotone, DSIC, and IR.

6.2 Non-smooth Auctions Smooth Distributions
The starting point of our lower bound in this section is the same as in Section 6.1. We have two
bidders, the �rst bidder always has higher valuation than the second bidder and from the second
bidder we can infer the bid of the �rst bidder. Of course, since we want the distributions to be
smooth we cannot use point masses and hence the second bid can only approximately imply
the distribution of the �rst bid. The idea to construct such a smooth distribution is to de�ne a
continuous function ~ = 5 (G) between the �rst bid ~ and the second bid G . Now for every G we
de�ne ~ to be distributed uniformly in an interval [5 (G) � @, 5 (G) + @]. Now the optimal reserved
price given G when ~ is distributed this way is some value A (G) 2 [5 (G) �@, 5 (G) +@] which means
that our only chance of achieving good revenue is to be able to estimate 5 (G) with an error up to
@. But since 5 can be any continuous function, we can show that it is impossible to �nd a good
estimation of 5 with any �nite number of samples and hence it is impossible to �nd good reserve
prices. This implies in fact a lower bound even for the o�ine learning problem as we see in the
following theorem.

T������ 6.2. For every ) > 0 and for any learning algorithm A�� that receives ) i.i.d. samples
from an unknown distribution and outputs a mechanism, there exists a distribution D over [0, 1]2
with maximum density 8 such that

EE⇠D
⇥
R��("¢, E)

⇤
� E [EE⇠D [R��(A��(I1, . . . , I) ), E)]] �

1
192

,
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where the outside expectation of the second term is over the ) samples I1, . . . , I) that are drawn from
D which are input to the learning algorithm A�� and"¢ is the revenue optimal auction for D.

Theorem 6.2 implies that even the o�ine problem of estimating the optimal auction from any
�nite number of samples is impossible if we only assume that the underline distribution is smooth.
It is a straightforward corollary that this lower bound transfers to the online learning setting and
we get the following corollary.

C�������� 6.3. For any online learning algorithm A�� and every ) there is a distribution D that
is an 8-smooth distribution over [0, 1]2, such that A��R�����

�
D

⌦) , ("C )C 2 [) ],M
�
�

)
192 , where

("C )C 2 [) ] is the sequence of auctions generated by A�� andM is the set of DSIC and IR auctions.

7 CONCLUSIONS
In this paper, we give the �rst positive results on the online learnability of large and non-parametric
classes of auctions. To achieve this, we introduce notions of smooth sets and smooth auctions
and we show novel learning theoretic results for learning smooth sets and smooth distributions.
Our positive result is that learning revenue-optimal smooth auctions over smooth distributions is
possible in the non-adaptive and the adaptive cases. We complete our positive results with lower
bounds showing that even if one of the smoothness properties is missing, namely the auction class
is not smooth or if the bid distribution is not smooth, then online learning of revenue-optimal
auctions is impossible.
Our work initiates the study of smooth auctions in the online learning setting and brings forth

several interesting open directions:
• Understand the set of distributions for which the revenue-optimal auction is smooth (or even
monotone or competition monotone). Ignoring optimality, we have already highlighted classes
of commonly used auctions that are smooth, revenue monotone, or competition monotone.
We have also showed Myerson’s optimal auction is smooth. An interesting direction for
future work is to examine when these classes of auctions include the optimal auction beyond
the independent value distribution.

• Explore the dependence of the rates on the parameters �, f , =. The main message of our work is
the possibility of online learnability of smooth auctions and we have not dedicated signi�cant
e�ort to optimizing our online learnability rates. Our current bounds are of the form (�/f)=

and it would be interesting to see whether a rate that is polynomial in = is possible, i.e., =�/f .
• Explore computationally e�cient methods. This paper is focused on the statistical aspects
of the problem since this has been the bottleneck in the existing literature, but exploring
computationally e�cient methods is a very interesting direction as well.

• Approximation power of non-parametric auctions. More generally, our work motivates the
study of smooth, monotone, and competition monotone auctions further in both o�ine
correlated and online models. Promising directions for future work include understanding
the revenue gap between the optimal correlated auction and that of the optimal smooth,
monotone, or competition monotone auctions.
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