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We revisit the recent breakthrough result of Gkatzelis et al. on (single-winner) metric voting, which showed
that the optimal distortion of 3 can be achieved by a mechanism called PluralityMatching. The rule picks
an arbitrary candidate for whom a certain candidate-specific bipartite graph contains a perfect matching.
Subsequently, a much simpler rule called PluralityVeto was shown to achieve distortion 3 as well; this rule
only constructs such a matching implicitly, but it, too, makes some arbitrary decisions affecting the outcome.
Our point of departure is the question whether there is an intuitive interpretation of this matching, with
the goal of identifying the underlying source of arbitrariness in these rules. We first observe directly from
Hall’s condition that a matching for candidate 𝑐 certifies that there is no coalition of voters that can jointly
counterbalance the number of first-place votes 𝑐 received, along with the first-place votes of all candidates
ranked lower than 𝑐 by any voter in this coalition. This condition closely mirrors the classical definition of
the (proportional) veto core in social choice theory, except that coalitions can veto a candidate 𝑐 whenever
their size exceeds the plurality score of 𝑐 , rather than the average number of voters per candidate. Based on
this connection, we define a general notion of the veto core with arbitrary weights for voters and candidates
which respectively represent the veto power and the public support they have.

This connection opens up a number of immediate consequences. Previous methods for electing a candidate
from the veto core can be interpreted simply as matching algorithms. Different election methods realize
different matchings, in turn witnessing different sets of candidates as winners. Viewed through this lens,
we first resolve nontrivial tie breaking issues contributing to the inherent arbitrariness of the above rules.
Our approach to ties reveals a novel characterization of the (general) veto core, showing it to be identical to
the set of candidates who can emerge as winners under a natural class of matching algorithms reminiscent of
SerialDictatorship. Then, we extend this class of voting rules into continuous time, and obtain a highly
practical voting rule with optimal distortion 3, which is also intuitive and easy to explain: Each candidate starts
off with public support equal to his plurality score. From time 0 to 1, every voter continuously brings down,
at rate 1, the support of her bottom choice among not-yet-eliminated candidates. A candidate is eliminated if
he is opposed by a voter after his support reaches 0. On top of being anonymous and neutral, the absence of
arbitrary non-deterministic choices in this rule allows for the study of other axiomatic properties that are
desirable in practice. We show that the canonical voting rule we propose for electing from the (plurality) veto
core also satisfies resolvability, monotonicity, majority, majority loser, mutual majority and reversal symmetry,
in addition to still guaranteeing metric distortion 3.

CCS Concepts: • Applied computing→ Economics; Voting / election technologies.

Additional Key Words and Phrases: Computational Social Choice, Voting Theory, Metric Distortion

1 INTRODUCTION

Voting is a fundamental process by which a group of agents with different preferences can decide on
one alternative; applications range widely, from groups of friends choosing a restaurant or meeting
time, to departments and other bodies deciding on a course of action or budget, to towns, states or
countries electing politicians. When each voter can support or oppose only one candidate, the most
informative votes are those for their top or bottom choices. As a result, Plurality and Veto —
respectively, picking the candidate with the largest and smallest number of such votes — are the
most natural voting rules for single-vote elections. Better results can be obtained when the voters’
full rankings are taken into account, and indeed, a large body of theoretical and practical work has
focused on ranked-choice voting rules, which have these complete rankings available. Of course,
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there are many natural ways to aggregate this information into the choice of a winner. The choice
of voting rule, ultimately, depends on the specific context and goals of the election. When picking
a restaurant or meeting time within a group of friends, the preferences of minorities, such as those
with dietary restrictions or limited availability, may be more important; thus, using Veto might be
a better idea than Plurality. Conversely, for high-stakes settings, such as presidential elections,
picking a winner opposed by a majority could lead to conflicts; thus, the benefits of Plurality
may outweigh those of Veto.

In light of the plethora of available (ranked-choice) voting rules, it becomes important to evaluate
and compare the pros and cons of different rules for different settings. One approach to do so,
dating back to at least the 18th century [de Borda 1784; de Condorcet 1785], is via axioms which
the rule may or may not satisfy; see Brandt et al. [2016] for a detailed overview. Among those, two
absolutely essential axioms are Anonymity and Neutrality which, respectively, require that all
voters and candidates be treated the same a priori. As shown by Moulin [1983] (though similar
ideas are present in earlier work, e.g., Smith [1973]), no voting rule can be both anonymous and
neutral without having tied outcomes. In order to deal with the presence of ties necessitated by
Anonymity and Neutrality, another essential axiom is Resolvability [Tideman 1987] which
requires that ties can always be broken in favor of any winning candidate 𝑤 by adding a single
voter who ranks𝑤 at the top.

An alternative approach to defining desirable axiomatic properties, proposed much more recently,
and to date primarily pursued by the computer science community, is to interpret voting as
an implicit optimization problem of finding a “best” candidate. Here, a natural modeling assumption
is that the voters and candidates are jointly embedded in an abstract metric space [Anshelevich
2016; Anshelevich et al. 2018, 2015, 2021a,b], and the distance between a voter and a candidate
captures how much the voter dislikes the candidate, or how much their opinions/positions on key
issues differ. This generalizes the notion of single-peaked preferences [Black 1948; Downs 1957;
Moulin 1980b], which in its original definition only considered the line instead of a general metric
space. A natural definition of a “best” candidate is then one who minimizes the total distance to all
voters, and a good voting rule should approximately minimize this total distance with its choices
of candidates. However, there is a key obstacle: the voting rule does not have access to the actual
distances1. Instead, the rankings provide ordinal information about the distances, in that each voter
ranks candidates from closest to furthest.2 This lack of information about the cardinal distances can
of course result in suboptimal choices for any rule, and the worst-case multiplicative gap between
the sum of distances from the chosen candidate to all voters, vs. the optimum one chosen with
knowledge of the metric space, has been termed distortion of the voting rule. (See Section 2.1 for
the formal definition.)
Anshelevich et al. [2015] established a lower bound of 3 on the distortion of any deterministic

voting rule. After a sequence of improvements and partial progress [Kempe 2020a; Munagala and
Wang 2019], this lower bound was matched by the voting rule PluralityMatching in a recent
breakthrough result [Gkatzelis et al. 2020] which showed that the voting rule has distortion 3.
PluralityMatching is a complex rule not likely to be understood by anyone without mathematical
background. This shortcoming was remedied in Kizilkaya and Kempe [2022], where it was shown
that a very simple rule called PluralityVeto enjoys the same optimal distortion 3 guarantee as
PluralityMatching. PluralityVetoworks as follows. Each of the𝑚 candidates starts with a score

1Indeed, it would be very unlikely that voters could even articulate the nature of the “opinion space,” let alone esti-
mate/communicate precise distances in it.
2It has been observed repeatedly that humans are much better at comparing options than articulating the desirability of an
option in isolation.
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equal to his3 number of first-place votes. Then, each of the 𝑛 voters is processed in an arbitrary
order. When it is the turn of a voter, she considers all candidates who currently have positive scores,
and subtracts 1 from the candidate she likes least among them. Note that candidates start with
a total score of 𝑛, and because each voter subtracts 1, all candidates finish with a score of 0. The last
candidate whose score reaches 0 is chosen as the winner.

The simplicity of PluralityVeto, along with its natural intuition of counterbalancing top votes
against bottom votes, suggests that it might be suitable for implementation in practice. However,
PluralityVeto suffers from a fatal flaw which precludes its acceptance in practice: it violates
the Anonymity axiom. This can be seen most immediately in the following basic example.

Example 1. There are two candidates {𝑎, 𝑏} and two voters {1, 2} with preferences 𝑎 ≻1 𝑏 and
𝑏 ≻2 𝑎. If voter 1 vetos first, 𝑎 wins — otherwise, 𝑏 wins. Stated differently: if the veto order is (1, 2),
then switching the voters’ preferences changes the outcome, violating Anonymity.4

Naturally, this example poses a problem for every deterministic voting rule. The election from
Example 1 should clearly be declared a tie, and resolved separately by some tie breaker, such as
a coin flip. The following question then becomes central: if a mechanism akin to PluralityVeto is
to return a tied subset of candidates, all of whom would guarantee metric distortion5 3, how, and
on what grounds, should such a subset be chosen?

To begin answering this question, and develop practical mechanisms of (metric) distortion 3,
we begin by revisiting the PluralityMatching mechanism of Gkatzelis et al. [2020]. Plurality-
Matching is based on the notion of domination graphs: the domination graph 𝐺𝑐 for candidate
𝑐 is a bipartite graph between voters and voters in which an edge from 𝑣 to 𝑣 ′ exists if and only
if 𝑣 weakly prefers 𝑐 over the top choice of 𝑣 ′. (See Section 2.2 for the formal definition.) It had
been shown by Munagala and Wang [2019] and Kempe [2020a] that any candidate 𝑐 for whom𝐺𝑐

contains a perfect matching has distortion 3; the breakthrough of Gkatzelis et al. [2020] was to show
(non-constructively) that such a candidate 𝑐 always exists. Their voting rule PluralityMatching
finds such a candidate by brute force. This description is non-deterministic about which candidate(s)
will be returned in case there are multiple such 𝑐 . Picking a candidate deterministically would
violate the Neutrality axiom. On the other hand, the following example shows that returning all
such candidates violates Resolvability.

Example 2. There are three candidates {𝑎, 𝑏, 𝑐}, and two voters {1, 2} with rankings 𝑎 ≻1 𝑏 ≻1 𝑐

and 𝑐 ≻2 𝑏 ≻2 𝑎. All candidates have the perfect matching {(1, 2), (2, 1)} in their domination
graph, and thus would be winners under PluralityMatching returning all candidates with perfect
matchings. Even if a voter is added who ranks 𝑏 at the top (and without loss of generality 𝑎 second),
both 𝐺𝑏 and 𝐺𝑎 contain perfect matchings, so the election cannot be resolved in favor of 𝑏.

The execution of PluralityVeto can be viewed as not just determining a winning candidate 𝑐 ,
but constructing a perfect matching in 𝐺𝑐 along the way — thus, explicitly witnessing distortion 3.
Our endeavor to improve on PluralityVeto, and understand PluralityMatching more deeply,
begins with an examination of the role of these matchings. Besides witnessing distortion 3, is there
any constructive interpretation that one could explain to a voter not trained in graph theory, but
interested in acquiring intuition for the voting rule? The following observation follows directly
3For consistency, we will always refer to voters with female and candidates with male pronouns.
4The Anonymity property could be restored by choosing a ranking-dependent veto order, e.g., having voters veto in
lexicographic order of their ballots. However, such a solution would come at the cost of violating the equally important
Neutrality axiom.
5Akin to the distortion of a mechanism, the distortion of a candidate is the ratio between his sum of distances to all voters,
and the sum of distances of an optimal candidate.
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from Hall’s Condition: The graph 𝐺𝑐 contains a perfect matching if and only if there is no subset
𝑆 of voters whose size is larger than the total number of first-place votes of not only 𝑐 , but also
all candidates whom at least one member of 𝑆 ranks lower than 𝑐 . In other words, no coalition of
voters has enough combined veto power to counterbalance the first-place votes of 𝑐 and candidates
ranked lower by the coalition.
This condition is highly reminiscent of the classic definition of the veto core [Moulin 1981a];

the latter simply has uniform scores of 𝑛/𝑚 for candidates which need to be counterbalanced,
as opposed to the numbers of first-place votes. (See Section 3.1 for the formal definition.) Thus,
we define a generalized notion of the veto core, in which voters and candidates can have arbitrary
weights, so long as the sums of the weights are the same. It then follows immediately from Hall’s
condition that the veto core consists of the candidates 𝑐 for whom a natural weighted generalization
of the bipartite graph 𝐺𝑐 (defined now between voters and candidates) has a (fractional) perfect
matching (see Section 3.2).
Past algorithms for electing a candidate from the veto core [Moulin 1982] can then simply be

understood as constructing a witnessing (perfect) matching for some candidate (though various
subtle tie-breaking choices in earlier definitions introduce some strange artifacts). The witnessing
matchings possess rich structure, and focusing on them turns out to be very fruitful in many
respects. First, notice that the same perfect matching M may exist in the domination graphs 𝐺𝑐 of
several distinct candidates 𝑐 ; let𝑊 (M) be the set of such candidates. By focusing on the construction
of the witnessing matching M as the primary task of an algorithm,𝑊 (M) emerges as a natural set
of tied winners to return. Interestingly,𝑊 (M) is convex in all possible embedding spaces for all M,
providing a desirable “consistency” condition for the returned set of tied winners (see Section 4.1).

Both past work on the veto core and (the analysis of) PluralityVeto can be viewed as a greedy
construction of witnessing matchings. We show that these algorithms are special cases of a general
class of natural algorithms which greedily construct a witnessing matching for arbitrary weighted
veto cores. The fact that PluralityVeto only selects a single winner is an artifact of an overly strict
elimination rule. By making some important modifications — specifically, eliminating a candidate
not when his score reaches 0 but only if he is subsequently opposed by some voter — we obtain
the desirable property that whenever a witnessing matching is produced, the entire set𝑊 (M)
is returned as tied winners (see Section 4.2). This also resolves another undesirable property of
PluralityVeto: that a candidate 𝑐 who is ranked second by every voter could never win, even
when𝐺𝑐 contains a perfect matching. In addition, we show that for arbitrary weights on candidates
and voters, the corresponding veto core exactly equals the set of candidates who can be returned as
winners by the modified algorithm; the proof of this result utilizes an argument highly reminiscent
of the TopTradingCycles algorithm (see Section 4.3).

Our Main Contribution. Returning to our original goal, we present an anonymous, neutral and
resolvable voting rule that achieves optimal metric distortion by implicitly constructing a witnessing
matchingM and returning𝑊 (M). Here, we adapt an algorithm of Ianovski and Kondratev [2021]
for the veto core, which can be construed as vetoing candidates continuously over time. As in
PluralityVeto, each candidate starts with a score equal to his number of first-place votes; however,
our voting rule starts off with the set of all candidates as eligible winners (even those with score 0).
Then, all voters are processed simultaneously in continuous time from time 0 to 1. Every voter,
starting from her bottom choice, instantly eliminates those with score 0 and moves on to her next
bottom choice. When she arrives at a candidate with positive score, she decrements his score
continuously at rate 1. The set of winners consists of all candidates who are not eliminated until
time 1 (see Section 5.1).
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In addition to guaranteeing optimal distortion (for all tied winners), and satisfying the essential
axioms of Anonymity,Neutrality andResolvability, our practical rule satisfies many other basic
axioms: Monotonicity, Majority, Majority Loser, Mutual Majority, and Reversal Symmetry
(see Section 5.2 for definitions), and it is also easy to explain, even without reference to distortion.
Thus, we believe that the rule is indeed practical.

Our work unites not only two bodies of work on voting but also two differentiating factors in
voting settings: the protection of the majority versus minorities. The motivation for the notion of
veto core is the protection of minorities (and it is optimal in that sense under some formalizations
of this principle [Kondratev and Nesterov 2020]), whereas optimizing metric distortion clearly aims
for the protection of the majority, by (approximately) minimizing the (utilitarian) social cost. Thus,
the generalized veto core gives rise to a spectrum of voting rules via initial weights interpolating
between the plurality scores and uniform weights, and consequently, between the protection of
majority and minorities. For further discussion and other possible future directions, see Section 6.

Related Work. Selection methods in which parties alternately cross off alternatives in each round
are common in practice and have been a subject of research in various settings, such as arbitration
schemes [Anbarci 2006; Barberà and Coelho 2022; Bloom and Cavanagh 1986] and negotiation
schemes [Anbarci 1993; Barberà and Coelho 2017; Erlich et al. 2018]. In the context of voting,
a sequential veto-based mechanism was perhaps first studied formally by Mueller [1978], but only
for alternatives consisting of one proposal from each voter, in addition to the status quo. In the
analysis of Mueller [1978], voters take turns in an arbitrary order and strike off the alternative they
like the least. Exactly one outcome is selected by this rule, and clearly no voter will see their worst
outcome elected. However, this rule requires the number of alternatives to be one greater than the
number of voters. Much of the follow-up work has focused on strategic behavior by voters under
this type of rule. For example,Moulin [1980a, 1981b]; Peleg [1978] show that variants of iterated
elimination rules can elect the same winner under strategic behavior as with truthful behavior, for
various equilibrium notions.

Moulin [1981a] extended the concept of voting by veto from individuals to coalitions to study
the core of the resulting cooperative game, and thus, the proportional veto core was introduced.
Subsequently, Moulin [1982] proposed a rule electing from the proportional veto core, and studied
the strategic behavior by voters under this rule. Recently, Ianovski and Kondratev [2021] (see also
the expanded version Ianovski and Kondratev [2023]) showed how to compute the proportional
veto core in polynomial time and introduced an anonymous and neutral rule electing from the
proportional veto core. To some degree, the veto core is also related to the notion of proportional
fairness, which measures whether the influence of cohesive groups of agents on the voting outcome
is proportional to the group size [Ebadian et al. 2022].
The utilitarian analysis of voting rules through the lens of approximation algorithms was first

suggested by Boutilier et al. [2015]; Caragiannis and Procaccia [2011]; Procaccia [2010]; Procaccia
and Rosenschein [2006]. Anshelevich et al. [2015]; Boutilier and Rosenschein [2016] were the first
to clearly articulate the tension between the objective of maximizing utility (or minimizing cost)
and the available information, which is only ordinal; they also termed the resulting gap distortion. In
the earlier work, the focus was on (positive) utilities, and no additional assumptions (such as metric
costs) were placed on the utilities [Boutilier et al. 2015; Caragiannis and Procaccia 2011; Procaccia
2010; Procaccia and Rosenschein 2006]. Without any structures on the costs, the lowest possible
distortion is𝑂 (𝑚2) [Caragiannis et al. 2017]. Connections between both types of distortion analysis
have also been made: Very recently, Gkatzelis et al. [2023] showed that a variant of PluralityVeto
achieves the asymptotically optimal distortion of Θ(1) and Θ(𝑚2), respectively, under the metric
and utilitarian notions of distortion.
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There has been extensive work on giving lower and upper bounds on the metric distortion of
specific rules in the social choice literature [Anshelevich et al. 2018, 2015; Goel et al. 2017; Kempe
2020a; Munagala andWang 2019; Skowron and Elkind 2017]. The notion of metric distortion has also
been studied for settings other then single-winner elections, such as committee election [Caragiannis
et al. 2022], facility location [Anshelevich and Zhu 2021], distrubuted voting [Anshelevich et al.
2022; Voudouris 2023] and distributed facility location [Filos-Ratsikas et al. 2023; Filos-Ratsikas
and Voudouris 2021]. We refer the reader to the surveys of Anshelevich et al. [2021a,b] for further
discussion of related work on metric distortion.

In this work, we focus exclusively on deterministic voting rules. The distortion — both utilitarian
and metric — of randomzied voting rules has also been studied extensively. Anshelevich and Postl
[2016] showed that Random Dictatorship — the rule electing the top choice of a uniformly
random voter — achieves expected distortion 3 − 2

𝑛
. This bound is strictly better than the lower

bound of 3 for deterministic rules. The bound was improved slightly by Kempe [2020b] to 3− 2
𝑚
, by

mixing between Random Dictatorship and another simple rule. In the setting of our Example 1,
it is easy to show that no randomized rule can achieve expected distortion less than 2. Perhaps
somewhat surprisingly, this lower bound was improved to 2.1126 by Charikar and Ramakrishnan
[2022]. The gap between the upper and lower bounds constitutes one of the most intriguing open
questions about the distortion of voting rules. While there is no concrete direction, it is conceivable
that an in-depth study of the generalized veto core may lead to useful insights towards closing or
reducing the gap.

2 PRELIMINARIES

Throughout, vectors and matrices are denoted by bold lowercase and uppercase letters, respectively.
We denote the 𝑖th element of a vector x by 𝑥 (𝑖), and we extend this notation to sets via addition, i.e.,
𝑥 (𝑇 ) = ∑

𝑖∈𝑇 𝑥 (𝑖). We denote the 𝑖th row vector of a matrix M by M(𝑖) and we denote the element
in the 𝑖th row and 𝑗 th column by 𝑀 (𝑖, 𝑗). Given a set 𝑆 , let Δ(𝑆) denote the probability simplex
over 𝑆 , i.e., the set of non-negative weight vectors over 𝑆 that add up to 1. Given a weight vector
x defined over a set 𝑆 , we use [x ≠ 0] to denote the elements of 𝑆 with non-zero weights, i.e.,
[x ≠ 0] = {𝑖 ∈ 𝑆 | 𝑥 (𝑖) ≠ 0}. Given integers 𝑖 and 𝑗 , we use [𝑖, 𝑗] to denote the set of integers
between 𝑖 and 𝑗 (inclusively).

Let 𝑉 be the set of 𝑛 voters, and let 𝐶 be the set of 𝑚 candidates. For each voter 𝑣 , let ≻𝑣 be
a ranking (i.e., total order) over𝐶 . The vector of all rankings #—≻ = (≻𝑣)𝑣∈𝑉 is referred to as a ranked-
choice profile, and E = (𝑉 ,𝐶, #—≻) is referred to as an election. A voting rule 𝑓 is an algorithm that
returns a candidate (or non-empty set of candidates) 𝑓 (E) ∈ 𝐶 (or 𝑓 (E) ⊆ 𝐶) given an election E.
The latter case — a voting rule returning a set of candidates — will be important in this paper
because we explicitly consider voting rules returning multiple tied winners.
We say that voter 𝑣 ranks candidate 𝑎 higher than candidate 𝑏 if 𝑎 ≻𝑣 𝑏. If 𝑎 = 𝑏 or 𝑎 ≻𝑣 𝑏,

we write 𝑎 ≽𝑣 𝑏 and say that 𝑣 ranks 𝑎 weakly higher than 𝑏. We also extend this notation to
coalitions, i.e., non-empty subsets of voters. We write 𝑎 ≻𝑇 𝑏 to denote that every voter in coalition
𝑇 ranks candidate 𝑎 higher than candidate 𝑏. Extending this notation further, we also write 𝐴 ≻𝑇 𝑏

to denote that 𝑎 ≻𝑇 𝑏 for all 𝑎 ∈ 𝐴.
We refer to the candidate ranked highest by voter 𝑣 as the top choice of 𝑣 , denoted by top(𝑣).

The number of voters who have candidate 𝑐 as their top choice is referred to as the plurality score

of 𝑐 , denoted by plu(𝑐). The candidate ranked lowest by voter 𝑣 is referred to as the bottom choice

of 𝑣 , denoted by bot(𝑐). The number of voters who have candidate 𝑐 as their bottom choice is
referred to as the veto score of 𝑐 , denoted by veto(𝑐). We also use top𝐴 (𝑣) and bot𝐴 (𝑣), respectively,
to denote the top and bottom choices of voter 𝑣 among the subset 𝐴 of candidates.
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2.1 Metric Distortion

A metric over a set 𝑆 is a function 𝑑 : 𝑆 × 𝑆 → R≥0 which satisfies the following conditions for all
𝑎, 𝑏, 𝑐 ∈ 𝑆 : (1) Positive Definiteness: 𝑑 (𝑎, 𝑏) = 0 if and only6 if 𝑎 = 𝑏; (2) Symmetry: 𝑑 (𝑎, 𝑏) = 𝑑 (𝑏, 𝑎);
(3) Triangle inequality: 𝑑 (𝑎, 𝑏) + 𝑑 (𝑏, 𝑐) ≥ 𝑑 (𝑎, 𝑐).

Given an election E = (𝑉 ,𝐶, #—≻), we say that a metric 𝑑 over7 𝑉 ∪𝐶 is consistent with the ranking
≻𝑣 of voter 𝑣 if 𝑑 (𝑣, 𝑎) ≤ 𝑑 (𝑣, 𝑏) for all 𝑎, 𝑏 ∈ 𝐶 such that 𝑎 ≻𝑣 𝑏. We say that 𝑑 is consistent with
a ranked-choice profile #—≻ if it is consistent with the ranking ≻𝑣 for all 𝑣 ∈ 𝑉 . We use D( #—≻) to
denote the domain of metrics consistent with #—≻ .
The (utilitarian) social cost of a candidate 𝑐 under a metric 𝑑 is defined as the total distance of

voters to 𝑐 , i.e., cost(𝑐, 𝑑) = ∑
𝑣∈𝑉 𝑑 (𝑣, 𝑐). A candidate 𝑐∗

𝑑
is optimal with respect to the metric 𝑑 if

𝑐∗
𝑑
∈ argmin𝑐∈𝐶 cost(𝑐, 𝑑).
The distortion of a candidate 𝑐 in an election E, denoted by distE (𝑐), is the largest possible ratio

between the cost of 𝑐 and that of an optimal candidate 𝑐∗
𝑑
with respect to a metric 𝑑 ∈ D( #—≻).

That is,

distE (𝑐) = sup
𝑑∈D( #—≻ )

cost(𝑐, 𝑑)
cost(𝑐∗

𝑑
, 𝑑) .

The distortion of a voting rule 𝑓 , denoted by dist(𝑓 ), is the worst-case distortion of any winner
of 𝑓 among all elections. That is,

dist(𝑓 ) = max
E

max
𝑐∈ 𝑓 (E)

distE (𝑐).

2.2 Domination Graphs

Domination graphs offer a sufficient condition for a candidate to have distortion at most 3, which
is known to be the lowest possible distortion that a voting rule can have [Anshelevich et al. 2015].

Definition 1 (Domination Graphs [Gkatzelis et al. 2020]). Given an election E = (𝑉 ,𝐶, #—≻), the dom-

ination graph of candidate 𝑎 is the bipartite graph 𝐺𝑎 = (𝑉 ,𝐶, 𝐸𝑎) with the neighborhood function
N𝑎 (𝑣) = {𝑐 ∈ 𝐶 | 𝑎 ≽𝑣 𝑐}, i.e., (𝑣, 𝑐) ∈ 𝐸𝑎 if and only if 𝑣 weakly prefers 𝑎 over 𝑐 .

Given vectors p ∈ Δ(𝑉 ) and q ∈ Δ(𝐶), we refer to a matrixM ∈ Δ(𝑉 ×𝐶) as a (p, q)-matching

if 𝑝 (𝑣) = ∑
𝑐∈𝐶 𝑀 (𝑣, 𝑐) for all 𝑣 ∈ 𝑉 and 𝑞(𝑐) = ∑

𝑣∈𝑉 𝑀 (𝑣, 𝑐) for all 𝑐 ∈ 𝐶 . We say that candidate 𝑎
admits the (p, q)-matchingM if and only if (𝑣, 𝑐) ∈ 𝐸𝑎 whenever𝑀 (𝑣, 𝑐) ≠ 0; this is equivalent to
requiring that (𝑣, top[M(𝑣)≠0] (𝑣)) ∈ 𝐸𝑎 for all 𝑣 ∈ 𝑉 . We say that candidate 𝑎 is (p, q)-dominant if
there exists a (p, q)-matching that 𝑎 admits. For any p ∈ Δ(𝑉 ) and q ∈ Δ(𝐶), there always exists
a (p, q)-dominant candidate, which was first shown non-constructively by Gkatzelis et al. [2020]
and then constructively by Kizilkaya and Kempe [2022].

As shown by Gkatzelis et al. [2020], Hall’s condition easily generalizes to (p, q)-matchings.
To state the condition, we extend the neighborhood function to coalitions 𝑇 ⊆ 𝑉 , by defining that
N𝑎 (𝑇 ) =

⋃
𝑣∈𝑇 N𝑎 (𝑣) = {𝑐 ∈ 𝐶 | there exists a 𝑣 ∈ 𝑇 such that 𝑎 ≽𝑣 𝑐}.

Lemma 1 ([Gkatzelis et al. 2020], Lemma 1). For any weight vectors p ∈ Δ(𝑉 ) and q ∈ Δ(𝐶),
candidate 𝑎 is (p, q)-dominant if and only if 𝑝 (𝑇 ) ≤ 𝑞(N𝑎 (𝑇 )) for all 𝑇 ⊆ 𝑉 .

6Our proofs do not require the “only if” condition, so technically, all our results hold for pseudo-metrics, not just metrics.
7We only care about the distances between voters and candidates, so 𝑑 can be defined as a function 𝑑 : 𝑉 × 𝐶 → R≥0
instead of on 𝑉 ∪𝐶 . The triangle inequality can then be written as 0 ≤ 𝑑 (𝑣, 𝑐 ) ≤ 𝑑 (𝑣, 𝑐′ ) + 𝑑 (𝑣′, 𝑐′ ) + 𝑑 (𝑣′, 𝑐 ) for all
𝑣, 𝑣′ ∈ 𝑉 and for all 𝑐, 𝑐′ ∈ 𝐶 .
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Let 𝑝uni (𝑣) = 1/𝑛, for all 𝑣 ∈ 𝑉 , be the uniform weight vector. Let 𝑞plu (𝑐) = plu(𝑐)/𝑚, for all
𝑐 ∈ 𝐶 , be the normalized plurality scores. We refer to (puni, qplu)-dominant candidates as plurality
dominant candidates. The following proposition by Gkatzelis et al. [2020] (independently shown by
Kempe [2020a]; Munagala and Wang [2019]) captures the main way in which domination graphs
are used in the metric distortion framework.

Lemma 2 ([Gkatzelis et al. 2020], Theorem 1). In every election, the distortion of every plurality

dominant candidate is at most 3.

3 THE VETO CORE AND ITS EQUIVALENCE TO DOMINANT CANDIDATES

In this section, we review the classical notion of proportional veto core due to Moulin [1981a], then
introduce a generalization called the (p, q)-veto core and show that it is equivalent to the set of
(p, q)-dominant candidates.

3.1 The Proportional Veto Core and its Generalization

The proportional veto principle requires that, for a winning candidate 𝑎 of an election E = (𝑉 ,𝐶, #—≻),
the following must hold: if 𝑇 ⊆ 𝑉 is a coalition of voters comprising an 𝛼 fraction of voters (i.e.,
|𝑇 |/𝑛 = 𝛼), then the union of candidates ranked weakly lower than 𝑎 by voters in𝑇 should comprise
at least an 𝛼 fraction of candidates (i.e., |N𝑎 (𝑇 ) |/𝑚 ≥ 𝛼). Intuitively, this provides protection against
overly bad candidates, for every possible groups of voters, proportional to their size. Moulin [1981a]
defined the proportional veto core as the set of candidates not blocked in this way:

Definition 2 (Proportional Veto Core [Moulin 1981a]). Given an election E = (𝑉 ,𝐶, #—≻), we say
that the coalition 𝑇 blocks the candidate 𝑐 if there exists a subset of candidates 𝐵 with 𝐵 ≻𝑇 𝑐 and⌈

𝑚 · |𝑇 |
𝑛

⌉
− 1 ≥ 𝑚 − |𝐵 |.

The set of all candidates that are not blocked is called the proportional veto core.

Moulin [1981a] shows that, for every election, the proportional veto core is non-empty and
does not contain any candidate who is ranked lowest by more than 𝑛

𝑚
voters.

We now generalize the definition to arbitrary weights for voters and candidates.

Definition 3 ((p, q)-Veto Core). Given an election E = (𝑉 ,𝐶, #—≻) along with weights vectors
p ∈ Δ(𝑉 ) and q ∈ Δ(𝐶), we say that coalition 𝑇 (p, q)-blocks candidate 𝑐 if there exists a subset of
candidates 𝐵 with 𝐵 ≻𝑇 𝑐 and 𝑝 (𝑇 ) > 1 − 𝑞(𝐵). We refer to 𝐵 as a witness that 𝑇 blocks 𝑐 . The set
of all candidates that are not (p, q)-blocked is called the (p, q)-veto core.

We first show that the (p, q)-veto core indeed generalizes the proportional veto core.

Proposition 1. For every election E = (𝑉 ,𝐶, #—≻), the (puni, quni)-veto core equals the proportional
veto core (where 𝑝uni (𝑣) = 1/𝑛 for all 𝑣 ∈ 𝑉 and 𝑞uni (𝑐) = 1/𝑚 for all 𝑐 ∈ 𝐶).

Proof. First, observe that
⌈
𝑥
𝑦

⌉
− 1 ≥ 𝑧 if and only if 𝑥

𝑦
> 𝑧 for all natural numbers 𝑥,𝑦, 𝑧 ∈ N.

Candidate 𝑐 is is blocked (in the traditional sense) if and only if there exists a coalition𝑇 and a subset
of candidates 𝐵 such that 𝐵 ≻𝑇 𝑐 and

⌈
𝑚 · |𝑇 |

𝑛

⌉
− 1 ≥ 𝑚 − |𝐵 |. Because all quantities are integers,

this holds if and only if𝑚 · |𝑇 |
𝑛

> 𝑚 − |𝐵 |, which in turn holds if and only if 𝑐 is (puni, quni)-blocked
by 𝑇 with witness 𝐵. □
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3.2 Relation to Dominant Candidates

We now show that the (p, q)-veto core equals the set of (p, q)-dominant candidates.

Theorem 1. For every election E = (𝑉 ,𝐶, #—≻) and for any weight vectors p ∈ Δ(𝑉 ) and q ∈ Δ(𝐶),
the (p, q)-veto core equals the set of (p, q)-dominant candidates.

Proof. For any election E = (𝑉 ,𝐶, #—≻) and any weight vectors p ∈ Δ(𝑉 ) and q ∈ Δ(𝐶), we show
that candidate 𝑎 is not (p, q)-dominant if and only if 𝑎 is not in the (p, q)-veto core of E.
First, assume that 𝑎 is not (p, q)-dominant. Then, by Hall’s condition (Lemma 1), there exists

a coalition 𝑇 of voters such that 𝑝 (𝑇 ) > 𝑞(N𝑎 (𝑇 )) = 1 − 𝑞(𝐶 \ N𝑎 (𝑇 )). Since 𝐶 \ N𝑎 (𝑇 ) = {𝑐 ∈ 𝐶 |
𝑐 ≻𝑇 𝑎} by definition, 𝐶 \ N𝑎 (𝑇 ) ≻𝑇 𝑎. Hence, coalition 𝑇 (p, q)-blocks 𝑎 with witness 𝐶 \ N𝑎 (𝑇 ).
Thus, we have shown that 𝑎 is not in the (p, q)-veto core.

For the converse direction, assume that candidate 𝑎 is not in the (p, q)-veto core, i.e., there
exists a coalition 𝑇 that (p, q)-blocks 𝑎. Let 𝐵 be a witness for 𝑇 (p, q)-blocking 𝑎, i.e., 𝐵 ≻𝑇 𝑎

and 𝑝 (𝑇 ) > 1 − 𝑞(𝐵). Because 𝐵 ⊆ {𝑐 ∈ 𝐶 | 𝑐 ≻𝑇 𝑎} = 𝐶 \ N𝑎 (𝑇 ), we can bound its weight by
𝑞(𝐵) ≤ 𝑞(𝐶 \ N𝑎 (𝑇 )). This implies that Hall’s condition (Lemma 1) is violated for the coalition 𝑇
as follows: 𝑝 (𝑇 ) > 1 − 𝑞(𝐵) ≥ 1 − 𝑞((𝐶 \ N𝑎 (𝑇 ))) = 𝑞(N𝑎 (𝑇 )). Thus, we have shown that 𝑎 is not
(p, q)-dominant. □

Corollary 1. A candidate 𝑐 is in the (p, q)-veto core if and only if 𝑐 admits a (p, q)-matching.

4 A CLASS OF VOTING RULES WITH TIES CHARACTERIZING THE VETO CORE

In this section, we show that the (p, q)-veto core is exactly characterized by the set of candidates
who can be elected by a natural iterative elimination process generalizing PluralityVeto. Defining
this generalized algorithm correctly requires us to remedy flaws in PluralityVeto related to tie
breaking. These flaws are most clearly observed in two examples: (1) In Example 1, only a single
winner — depending on the veto order — is chosen, even though the election should clearly be
declared a tie. (2) In Example 2, PluralityVeto never elects candidate 𝑏 since plu(𝑏) = 0, even
though 𝑏 is a winner of PluralityMatching (i.e., a plurality dominant candidate); thus, candidates
are not treated equally under the sufficient condition of achieving distortion 3 (given in Lemma 2).
We propose a generalized version of PluralityVeto with a less aggressive elimination criterion,
which will remedy all of these flaws simultaneously.

Before doing so, we approach the issue of tied winners from a different angle. Corollary 1 indicates
that membership of a candidate 𝑎 in the (p, q)-veto core can be certified by a (p, q)-matchingM
that 𝑎 admits. If we viewM as a “justification” for electing 𝑎, then this justification equally suggests
electing any other candidate 𝑐 admittingM. This view motivates the following definition.

Definition 4 (Ties). Given a (p, q)-matching M, the set𝑊 (M) = {𝑐 ∈ 𝐶 | 𝑐 admitsM} is called
the set of winners tied at M.

4.1 Ties are Convex

The combinatorial definition of ties based on matchings turns out to imply a natural geometric
condition on the candidates’ embedding. We show that for every embedding of the candidates
(consistent with the given rankings) into a metric space allowing the definition of convexity,𝑊 (M)
is convex for all (p, q)-matchingsM. This is desirable for the goal of electing a central candidate:
if we think of the metric space as capturing political positions, then convexity says that if more
extreme candidates in all directions can be elected, a candidate who is moderate in the sense of
interpolating their positions should also be elected. Convexity in all metric spaces consistent with
the given rankings is implied by the following property:
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Definition 5 (Prefix-Intersection). Given an election E = (𝑉 ,𝐶, #—≻), a subset of candidates 𝐴 is
prefix-intersecting if there exist indices 𝑘𝑣 ∈ [0,𝑚] for all voters 𝑣 such that 𝐴 is the intersection of
the sets of top 𝑘𝑣 candidates for each voter 𝑣 ∈ 𝑉 .

We first show that prefix-intersecting sets of candidates are convex for any metric embedding
consistent with the given rankings.

Proposition 2. Given an election E = (𝑉 ,𝐶, #—≻), if 𝐴 is a prefix-intersecting set of candidates, then

for every metric space consistent with
#—≻ for which convexity is defined, 𝐴 is convex, in the sense that

the interior of the convex hull of 𝐴 contains no point from 𝐶 \𝐴.
Proof. For each voter 𝑣 , the set of the top 𝑘𝑣 candidates forms a ball in any metric space — except

that some of the candidates on the boundary of the ball may be included while others are excluded
(due to indifferences in the distance-based ranking which are resolved arbitrarily in the reported
rankings). The interior of each ball is a convex set, and thus, so is the intersection of the interiors
of the balls. □

We now show that the set of winners tied at any (p, q)-matching is prefix-intersecting.

Proposition 3. For every (p, q)-matchingM, the set𝑊 (M) of winners tied atM is prefix-intersecting.

Proof. By definition (see Section 2.2 for this characterization), the set of winners tied at M
is 𝑊 (M) = {𝑐 ∈ 𝐶 | 𝑐 ≽𝑣 top[M(𝑣)≠0] (𝑣) for all 𝑣 ∈ 𝑉 }. For every voter 𝑣 , note that the set
𝑇𝑣 = {𝑐 ∈ 𝐶 | 𝑐 ≽ top[M(𝑣)≠0] (𝑣)} is the set of top 𝑘𝑣 choices for some 𝑘𝑣 ∈ [1,𝑚]. Therefore,
𝑊 (M) = ⋂

𝑣∈𝑉 𝑇𝑣 is prefix-intersecting by definition. □

4.2 SerialVeto

We now present an adaptation of PluralityVeto (for the general case with arbitrary weights) with
more careful elimination. We present this class of rules only for integral weight vectors (instead of
weights normalized to 1); when p, q are rational, they can of course be made integral by multiplying
all weights. For irrational weights, the rules can be adapted, albeit at an increase in notational
complexity. The corresponding results are also subsumed by our continuous-time approach in
Section 5.1. Given a set 𝑆 and a positive integer 𝑁 , let Δ𝑁 (𝑆) denote the domain of integral weight
vectors over 𝑆 that add up 𝑁 .

Algorithm 1 SerialVeto

Input: An election E = (𝑉 ,𝐶, #—≻),
an integral weight vector q ∈ Δ𝑁 (𝐶),
a veto order (𝑣1, . . . , 𝑣𝑁 ) under p ∈ Δ𝑁 (𝑉 ).

Output: A non-empty subset of candidates𝑊 in the (p, q)-veto core of E
who are the winners tied at a (p, q)-matchingM, i.e.,𝑊 =𝑊 (M).

1: initialize𝑊 = 𝐶

2: initialize weight(𝑐) = 𝑞(𝑐) for all 𝑐 ∈ 𝐶

3: for 𝑖 = 1, . . . , 𝑁 do
4: while weight(bot𝑊 (𝑣𝑖 )) = 0 do
5: remove bot𝑊 (𝑣𝑖 ) from𝑊

6: decrement weight(bot𝑊 (𝑣𝑖 )) by 1

7: return𝑊



Generalized Veto Core and a Practical Voting Rule with Optimal Metric Distortion 11

Definition 6 (Veto Order). Given an election E = (𝑉 ,𝐶, #—≻) along with a weight vector p ∈ Δ𝑁 (𝑉 ),
a veto order under p is a repeated sequence of voters (𝑣1, . . . , 𝑣𝑁 ) in which each voter 𝑣 ∈ 𝑉 occurs
exactly 𝑝 (𝑣) times.

SerialVeto with veto order (𝑣1, . . . , 𝑣𝑁 ), given in Algorithm 1, starts off with the set of all
candidates as eligible winners. Then, the rule processes voters in the order (𝑣1, . . . , 𝑣𝑁 ). In each
iteration, the voter being processed starts from her bottom choice among not-yet-eliminated
candidates and eliminates those whose weight is already 0. When she arrives at a candidate 𝑐 with
positive weight, she decrements his weight by 1, but does not eliminate 𝑐 , even if his weight is now 0.
The set of winners consists of all candidates that are not eliminated until the end.

Theorem 2. SerialVeto (Algorithm 1) returns a non-empty subset of candidates𝑊 consisting of

the winners tied at a (p, q)-matching.

Proof. The proof is similar to that of Theorem 1 and Theorem 2 in Kizilkaya and Kempe [2022].
We first show that Algorithm 1 returns a non-empty subset of candidates. The weights of candidates
initially add up to 𝑁 . In each of the 𝑁 iterations of the for loop (lines 3–6), a positive weight is
decremented by 1. Hence, there is a candidate𝑤 whose weight reaches 0 only at the end of the 𝑁 th

iteration. Since a candidate can be removed from𝑊 only after his weight reaches 0,𝑤 ∈𝑊 when
the algorithm terminates. Thus, Algorithm 1 returns a non-empty subset of candidates.
Next, we show that𝑊 is the set of winners tied at some (p, q)-matching when the algorithm

terminates. Let 𝑐𝑖 denote the candidate whose weight is decremented in the 𝑖th iteration of the for
loop (lines 3–6). Let M ∈ Δ𝑁 (𝑉 ×𝐶) be defined by 𝑀 (𝑣, 𝑐) = |{𝑖 ∈ [1, 𝑁 ] | 𝑣 = 𝑣𝑖 and 𝑐 = 𝑐𝑖 }| for
all 𝑣 ∈ 𝑉 and 𝑐 ∈ 𝐶 . Note that M is a (p, q)-matching since each voter 𝑣 occurs 𝑝 (𝑣) times in the
veto order and the weight of each candidate 𝑐 (initialized with 𝑞(𝑐)) reaches 0 at the end. We will
show that Algorithm 1 returns the winners tied at M.
For all 𝑖 ∈ [1, 𝑁 ], let 𝐶𝑖 denote the candidates that voter 𝑣𝑖 ranks weakly higher than 𝑐𝑖 , i.e.,

𝐶𝑖 = {𝑐 ∈ 𝐶 | 𝑐 ≽𝑣𝑖 𝑐𝑖 }. All candidates are initially in𝑊 , and for all 𝑖 ∈ [1, 𝑁 ], in the 𝑖th iteration of
the for loop (lines 3–6), candidates that 𝑣𝑖 ranks lower than 𝑐𝑖 (i.e., candidates that are not in 𝐶𝑖 )
are removed by the while loop (lines 4–5). By induction on the iterations,𝑊 =

⋂𝑁
𝑖=1𝐶𝑖 at the end.

By definition, the set of winners tied at M is𝑊 (M) = {𝑐 ∈ 𝐶 | 𝑐 ≽𝑣 top[M(𝑣)≠0] (𝑣) for all 𝑣 ∈ 𝑉 } =
{𝑐 ∈ 𝐶 | 𝑐 ≽𝑣𝑖 𝑐𝑖 for all 𝑖 ∈ [1, 𝑁 ]} = ⋂𝑁

𝑖=1𝐶𝑖 , which completes the proof. □

For unit weights over voters and plurality scores over candidates, notice that a veto order
corresponds to an ordering of voters and SerialVeto (Algorithm 1) returns a set of winners
containing the winner of PluralityVeto for the same ordering. Naturally, in this special case,
every possible winner is guaranteed to have distortion 3 by Lemma 2.
Unlike PluralityVeto, the voting rule proposed by Moulin [1981a] for electing a candidate

from the veto core does not insist on picking a single winner. However, while it does allow for
ties, it frequently fails to include multiple candidates who should be “obviously” tied; in particular,
it does not always return candidates tied at a common matching. Indeed, the ties allowed by
Moulin’s rule appear to be less by design8 than an artifact of the combination of two choices:
(1) eliminating a candidate when his score reaches 0, and (2) insisting that the winner not be
eliminated at all (rather than only at the end). We believe that the combination of these two choices
is the primary reason why Definition 2 is a bit more convoluted than Definition 3, and it also
introduces various number-theoretic arguments into the analysis of the rule.

8For example, the rule cannot return tied candidates when 𝑛 and𝑚 are relatively prime.



12 Fatih Erdem Kizilkaya and David Kempe

4.3 Characterization of the Veto Core by SerialVeto

Theorem 2 guarantees that for every veto order (𝑣1, . . . , 𝑣𝑁 ), the outcome of running SerialVeto for
this veto order results in a set of winners tied at some (p, q)-matching. Here, we show the converse:
for every (p, q)-matchingM, there exists a veto order under which the set of winners is𝑊 ⊇𝑊 (M)
In particular, this implies that the (p, q)-veto core is exactly characterized by the set of possible
winners under SerialVeto with suitably chosen veto orders.

The main technical tool in our proof is the concept of a bottom trading cycle, similar to the notion
of top trading cycles widely used in fair allocation tasks.

Definition 7 (Bottom Trading Cycles). Given an election E = (𝑉 ,𝐶, #—≻) along with weight vectors
p ∈ Δ𝑁 (𝑉 ) and q ∈ Δ𝑁 (𝐶), a bottom trading cycle of a (p, q)-matching M ∈ Δ𝑁 (𝑉 × 𝐶) is
an alternating sequence of voters and candidates 𝜙 = (𝑣1, 𝑐1, . . . , 𝑣𝑘 , 𝑐𝑘 ) such that

• 𝑀 (𝑣𝑖 , 𝑐𝑖 ) > 0 for all 𝑖 ∈ [1, 𝑘],
• bot[q≠0] (𝑣𝑖 ) = 𝑐𝑖+1 for all 𝑖 ∈ [1, 𝑘 − 1], and bot[q≠0] (𝑣𝑘 ) = 𝑐1.

We use M̂ = M ◦ 𝜙 to denote the outcome of swapping along 𝜙 , defined as the same (integral)
(p, q)-matching asM except

• 𝑀 (𝑣𝑖 , 𝑐𝑖 ) = 𝑀 (𝑣𝑖 , 𝑐𝑖 ) − 1 for all 𝑖 ∈ [1, 𝑘],
• 𝑀 (𝑣𝑖 , 𝑐𝑖+1) = 𝑀 (𝑣𝑖 , 𝑐𝑖+1) + 1 for all 𝑖 ∈ [1, 𝑘 − 1], and𝑀 (𝑣𝑘 , 𝑐1) = 𝑀 (𝑣𝑘 , 𝑐1) + 1.

Fig. 1. A bottom trading cycle 𝜙 = (𝑣1, 𝑐1, . . . , 𝑣4, 𝑐4) of a (p, q)-matchingM is illustrated above. Notice that
M◦𝜙 is the same matching asM except that the weight on each bold edge is decremented by 1 and the weight
on each dotted edge is incremented by 1.

First, we show that if M is a matching in which no voter has positive edge weight to her bottom
choice, then M must contain a bottom trading cycle.

Lemma 3. Given an election E = (𝑉 ,𝐶, #—≻) along with weight vectors p ∈ Δ𝑁 (𝑉 ) and q ∈ Δ𝑁 (𝐶),
if M ∈ Δ𝑁 (𝑉 × 𝐶) is a (p, q)-matching with 𝑀 (𝑣, bot[q≠0] (𝑣)) = 0 for all 𝑣 ∈ 𝑉 , then M contains

a bottom trading cycle.

Proof. Suppose that𝑀 (𝑣, bot[q≠0] (𝑣)) = 0 for all 𝑣 ∈ 𝑉 . If𝑁 = 1 then the lemma holds vacuously.
Hence, assume that 𝑁 > 1. Then, there exist a voter 𝑣1 and a candidate 𝑐1 such that𝑀 (𝑣1, 𝑐1) ≠ 0.
For 𝑖 = 1, 2, . . ., let 𝑐𝑖+1 = bot[q≠0] (𝑣𝑖 ) and let 𝑣𝑖+1 be an arbitrary voter such that𝑀 (𝑣𝑖+1, 𝑐𝑖+1) ≠ 0.
Note that there always exists such a voter 𝑣𝑖+1 because𝑀 (𝑣𝑖 , 𝑐𝑖+1) = 0 and 𝑞(𝑐𝑖+1) > 0 by definition.
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Since there are only𝑚 candidates, after at most𝑚 + 1 steps, a candidate must repeat; let 𝑗 ≠ 𝑘

be indices such that 𝑐 𝑗 = 𝑐𝑘 . Then, (𝑣 𝑗 , 𝑐 𝑗 , 𝑣 𝑗+1, 𝑐 𝑗+1, . . . , 𝑣𝑘−1, 𝑐𝑘−1) is a bottom trading cycle ofM,
which completes the proof. □

Next, we show that if a candidate admits a matching, and one swaps along a bottom trading
cycle, the candidate admits the new matching as well.

Lemma 4. Given an election E = (𝑉 ,𝐶, #—≻) along with weight vectors p ∈ Δ𝑁 (𝑉 ) and q ∈ Δ𝑁 (𝐶),
suppose thatM ∈ Δ𝑁 (𝑉 ×𝐶) is a (p, q)-matching with bottom trading cycle 𝜙 = (𝑣1, 𝑐1, . . . , 𝑣𝑘 , 𝑐𝑘 ).
If candidate 𝑎 admits M, then 𝑎 also admits M̂ = M ◦ 𝜙 .

Proof. For all 𝑖 ∈ [1, 𝑘], we show that (𝑣𝑖 , bot[q≠0] (𝑣𝑖 )) ∈ 𝐸𝑎 , which suffices to prove that
candidate 𝑎 admits M̂ since M̂ is the same (p, q)-matching asM except that voter 𝑣𝑖 reassigns a unit
of her weight from candidate 𝑐𝑖 to bot[q≠0] (𝑣𝑖 ).
Let 𝑖 ∈ [1, 𝑘]. Since candidate 𝑎 admits M and 𝑀 (𝑣𝑖 , 𝑐𝑖 ) ≠ 0, we have (𝑣𝑖 , 𝑐𝑖 ) ∈ 𝐸𝑎 , i.e., 𝑎 ≽𝑣𝑖 𝑐𝑖 .

Note that 𝑞(𝑐𝑖 ) ≠ 0 since𝑀 (𝑣𝑖 , 𝑐𝑖 ) ≠ 0. Then, 𝑐𝑖 ≽𝑣𝑖 bot[q≠0] (𝑣𝑖 ) by definition. Combining the two,
we get that 𝑎 ≽𝑣𝑖 bot[q≠0] (𝑣𝑖 ). Thus, (𝑣𝑖 , bot[q≠0] (𝑣𝑖 )) ∈ 𝐸𝑎 . This completes the proof. □

Theorem 3. Let E = (𝑉 ,𝐶, #—≻) be an election with weight vectors p ∈ Δ𝑁 (𝑉 ) and q ∈ Δ𝑁 (𝐶), and
letM ∈ Δ𝑁 (𝑉 ×𝐶) be an (integral) (p, q)-matching. There exists a veto order 𝜎 = (𝑣1, . . . , 𝑣𝑁 ) under p
for which SerialVeto (Algorithm 1) returns a subset of candidates𝑊 with𝑊 ⊇𝑊 (M).

Proof. The proof is by induction on 𝑁 . As the base case, consider the case where 𝑁 = 0. Because
no iterations are run, all candidates will be winners, establishing the claim. Now consider an
election E = (𝑉 ,𝐶, #—≻) with p ∈ Δ𝑁 (𝑉 ) and q ∈ Δ𝑁 (𝐶) such that 𝑁 ≥ 1. Let M be an integral
(p, q)-matching, i.e., M ∈ Δ𝑁 (𝑉 ×𝐶).
If𝑀 (𝑣, bot[q≠0] (𝑣)) = 0 for all voters 𝑣 , then Lemma 3 implies the existence of a bottom trading

cycle 𝜙 ofM. Let M̂ = M ◦𝜙 . By Lemma 4, we have𝑊 (M̂) ⊇𝑊 (M). We will construct a veto order
𝜎 such that𝑊 ⊇𝑊 (M̂) ⊇𝑊 (M), which will imply the claim. Notice that by definition of bottom
trading cycles and M̂, for all voters 𝑣 along 𝜙 , we have𝑀 (𝑣, bot[q≠0] (𝑣)) > 0. In particular, we can
update M with M̂, and ensure the existence of a voter 𝑣1 for whom𝑀 (𝑣1, bot[q≠0] (𝑣1)) > 0.
We now define 𝑣1 to be the starting voter of the sequence 𝜎 , and let 𝑐1 = bot[q≠0] (𝑣1). Define

the following modified weights p ∈ Δ𝑁−1 (𝑉 ) and q ∈ Δ𝑁−1 (𝐶). Let 𝑝 (𝑣1) = 𝑝 (𝑣1) − 1 and
𝑝 (𝑣) = 𝑝 (𝑣) for all 𝑣 ∈ 𝑉 \ {𝑣1}, and similarly 𝑞(𝑐1) = 𝑞(𝑐1) − 1 and 𝑞(𝑐) = 𝑞(𝑐) for all 𝑐 ∈ 𝐶 \ {𝑐1}.
Define the modified matchingM ∈ Δ𝑁−1 (𝑉 ×𝐶) by𝑚(𝑣1, 𝑐1) = 𝑀 (𝑣1, 𝑐1) − 1 and𝑚(𝑣, 𝑐) = 𝑀 (𝑣, 𝑐)
for all (𝑣, 𝑐) ∈ (𝑉 × 𝐶) \ {(𝑣1, 𝑐1)}. Notice that M is a (p, q)-matching. By induction hypothesis,
there exists a veto order 𝜎 = (𝑣1, . . . , 𝑣𝑁−1) under p for which Algorithm 1 returns a subset of
candidates𝑊 ⊇𝑊 (M). Define 𝜎 = (𝑣1, 𝑣1, 𝑣2, . . . , 𝑣𝑁−1), which is a veto order under p.

Given the input E, q and 𝜎 , Algorithm 1 first decrements the weight of 𝑐1 by 1. Then, the algorithm
runs exactly the same way as if it were given the input E, q and 𝜎 , and thus, it returns𝑊 . □

As an immediate corollary, we obtain the following:

Corollary 2. Every candidate in the (p, q)-veto core can win under SerialVeto with some veto order.

Proof. Whenever𝐺𝑎 has an integral (p, q)-matching, the claim follows directly from Theorem 3.
But it is impossible that𝐺𝑎 contains only fractional (p, q)-matchings, because all entries of p and q
are integral, so the existence of an integral matching follows from the integrality part of the
Max-Flow Min-Cut Theorem. □
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5 A PRACTICAL VOTING RULE ELECTING FROM THE VETO CORE

In this section, we present a continuous-time extension of SerialVeto called SimultaneousVeto
which does not require the specification of a veto order; as a result, the rule does not prioritize any
voter over another. Our rule can also be considered as a generalization (beyond the proportional
veto core) of the VetoByConsumption algorithm (Definition 12) of Ianovski and Kondratev [2021].
We will discuss this connection in more detail below. We show that this voting rule still picks
a set of winners tied at a (p, q)-matching; thus, it constitutes a canonical rule for electing from
the (p, q)-veto core. Most importantly, we show that SimultaneousVeto with uniform weights
over voters and plurality scores over candidates satisfies many axioms desirable in practice.

5.1 SimultaneousVeto

SimultaneousVeto, given in Algorithm 2, starts off with the set of all candidates as eligible
winners, just like SerialVeto (Algorithm 1). However, instead of a particular veto order, all voters
are processed simultaneously in continuous time. From time 0 to 1, every voter 𝑣 , starting from her
bottom choice, instantly eliminates those with weight 0 and moves on to her next bottom choice.
When she arrives at a candidate with positive weight, she decrements his weight continuously at
rate 𝑝 (𝑣). The set of winners consists of all candidates who are not eliminated until time 1.

Theorem 4. SimultaneousVeto (Algorithm 2) returns a non-empty subset of candidates𝑊 consisting

of the winners tied at a (p, q)-matching.

Proof. For proving the theorem, wewill be using the continuous-time description of Algorithm 2.
The proof proceeds along the same lines as that of Theorem 2. We first show that Algorithm 2
returns a non-empty subset of candidates. The weights of candidates initially add up to 1, and
each voter 𝑣 ∈ 𝑉 decrements the weights at rate 𝑝 (𝑣) from time 0 to 1. Since 𝑝 (𝑉 ) = 1, there is
a candidate𝑤 whose weight reaches 0 only at time 1. Since a candidate can be removed from𝑊

only after his weight reaches 0,𝑤 ∈𝑊 when the algorithm terminates. Thus, Algorithm 2 returns
a non-empty subset of candidates.

Next, we show that𝑊 consists of the winners tied at some (p, q)-matching when the algorithm
terminates. Let 𝑐𝑣 (𝑡) denote the candidate whose weight is decremented by voter 𝑣 at time 𝑡 .
Let I𝑣,𝑐 (𝑡) be an indicator function which takes the value 1 if 𝑐 = 𝑐𝑣 (𝑡) and 0 otherwise. Let
M ∈ Δ𝑁 (𝑉 × 𝐶) be defined by 𝑀 (𝑣, 𝑐) =

∫ 1
0 I𝑣,𝑐 (𝑡) · 𝑝 (𝑣) d𝑡 for all 𝑣 ∈ 𝑉 and 𝑐 ∈ 𝐶 , i.e., the

total amount by which 𝑣 decreases the weight of 𝑐 over the entire algorithm. Note that M is a
(p, q)-matching since each voter 𝑣 decrements the weight of 𝑐𝑣 (𝑡) at rate 𝑝 (𝑣) from time 𝑡 = 0 to 1,
and the weight of each candidate 𝑐 (initialized with 𝑞(𝑐)) must have reached 0 by the end. We will
show that Algorithm 2 returns the winners tied at M.
We use 𝐶𝑣 (𝑡) = {𝑐 ∈ 𝐶 | 𝑐 ≽𝑣 𝑐𝑣 (𝑡)} to denote the set of candidates that voter 𝑣 ranks weakly

higher than 𝑐𝑣 (𝑡). Note that 𝐶𝑣 (𝑡) ⊆ 𝐶𝑣 (𝑡 ′) for all 𝑡 > 𝑡 ′, because the set of remaining candidates
shrinks over time, and 𝑣 always decrements theweight of her lowest-ranked remaining candidate. All
candidates are initially in𝑊 and, for all voters 𝑣 ∈ 𝑉 , candidates 𝑐 ∈𝑊 that 𝑣 ranks lower than 𝑐𝑣 (𝑡)
(i.e., candidates not in 𝐶𝑣 (𝑡)) are removed at time 𝑡 by the while loop (lines 3 – 4). Note that such
candidates 𝑐 must haveweight 0 at time 𝑡 ; otherwise, by definition, 𝑣 would decrease the score of such
a candidate instead at time 𝑡 . By induction on time9,𝑊 =

⋂1
𝑡=0

⋂
𝑣∈𝑉 𝐶𝑣 (𝑡) =

⋂
𝑣∈𝑉 𝐶𝑣 (1) at the end.

By definition, the set of winners tied at M is𝑊 (M) = {𝑐 ∈ 𝐶 | 𝑐 ≽𝑣 top[M(𝑣)≠0] (𝑣) for all 𝑣 ∈ 𝑉 } =
{𝑐 ∈ 𝐶 | 𝑐 ≽𝑣 𝑐𝑣 (1) for all 𝑣 ∈ 𝑉 } = ⋂

𝑣∈𝑉 𝐶𝑣 (1) which completes the proof. □

9Induction can be formally performed by considering only the time steps when a candidate is removed from𝑊 , i.e., by
considering the discrete set of values that are assigned to the variable time in the implementation via discrete events.
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In Algorithm 2, along with the above continuous-time description, SimultaneousVeto is also
given using discrete events corresponding to the time steps at which a candidate is eliminated;
this shows that SimultaneousVeto can be implemented efficiently in a standard computational
model. Here bot−1𝑊 (𝑐) denotes the set of voters whose bottom choice among the subset 𝑊 of
candidates is candidate 𝑐 .

Algorithm 2 SimultaneousVeto

Input: An election E = (𝑉 ,𝐶, #—≻),
weight vectors p ∈ Δ(𝑉 ) and q ∈ Δ(𝐶).

Output: A non-empty subset of candidates𝑊 in the (p, q)-veto core of E
who are the winners tied at a (p, q)-matchingM, i.e.,𝑊 =𝑊 (M).

Initialization: 𝑊 = 𝐶 ,
weight(𝑐) = 𝑞(𝑐) for all 𝑐 ∈ 𝐶 .

Continuous-Time Description:

1: from time = 0 to 1 do
2: for all 𝑣 ∈ 𝑉 in parallel do
3: while weight(bot𝑊 (𝑣)) = 0 do
4: remove bot𝑊 (𝑣) from𝑊

5: decrement weight(bot𝑊 (𝑣)) at rate 𝑝 (𝑣)
6: return𝑊

Implementation via Discrete Events:

1: time = 0
2: while time < 1 do
3: for all 𝑐 ∈ 𝐶 \ [weight ≠ 0] do
4: if bot−1𝑊 (𝑐) ≠ ∅ then
5: remove 𝑐 from𝑊

6: 𝛿 = min𝑐∈𝑊
weight(𝑐 )

𝑝 (bot−1𝑊 (𝑐 ) )

7: for all 𝑐 ∈𝑊 do
8: decrement weight(𝑐) by 𝛿 · 𝑝 (bot−1𝑊 (𝑐))
9: increment time by 𝛿

10: return𝑊

As mentioned above, SimultaneousVeto is a generalization of the VetoByConsumption
rule for picking a candidate from the proportional veto core given by Ianovski and Kondratev
[2021]. Therefore, their rule also satisfies our definition of ties, and consequently, the convexity
property given in Section 4.1. However, the generalization to arbitrary weights, while preserving
the convexity property, is not trivial because if the weight of a candidate 𝑐 is 0 and no voter ranks 𝑐 at
the bottom, then the naive generalization is not well-defined, as it involves dividing 0 by 0. Another
way to deal with this issue would be to ignore candidates with weight 0 as in PluralityVeto;
however, doing so may lead to violating convexity of the set of returned winners.
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We also remark that SimultaneousVeto can be easily generalized further. The rates at which
a voter decrements the weight of her bottom choice need not stay constant over time. Instead,
a voting rule can prescribe rates 𝑟𝑣 (𝑡) ≥ 0 for all voters 𝑣 and times 𝑡 ∈ [0, 1], so long as these rates
satisfy

∫ 1
0 𝑟𝑣 (𝑡)d𝑡 = 𝑝 (𝑣). The proof of Theorem 4 then carries through verbatim. This general rule

then also subsumes the discrete rule SerialVeto, by having voter 𝑣𝑖 decrement at rate 𝑁 during
the interval [(𝑖 − 1)/𝑁, 𝑖/𝑁 ), while all other voters have rate 0 during that interval.

5.2 Axiomatic Properties of SimultaneousPluralityVeto

We refer to the instantiation of SimultaneousVeto (Algorithm 2) with uniform weights over
voters and plurality scores over candidates as SimultaneousPluralityVeto. For ease of notation,
in the analysis in this section, we treat SimultaneousVeto as using unnormalized weights, i.e.,
the initial scores are 𝑞(𝑐) = plu(𝑐), and each voter reduces scores at a rate of 1. Of course, scaling
all 𝑝 (𝑣) and 𝑞(𝑐) by 1/𝑛 translates the arguments to an implementation with normalized scores and
rates. Our main result here is that in addition to guaranteeing metric distortion 3 (due to Lemma 2),
SimultaneousPluralityVeto satisfies a number of desirable axioms:

• Anonymity and Neutrality, respectively, require the voting rule to not discriminate a
priori between voters and candidates. In other words, the outcome should depend only on
the rankings, not the identities of voters or candidates.

• Resolvability requires that for any set of tied winners𝑊 , adding a new voter 𝑣 whose top
choice is some candidate𝑤 ∈𝑊 makes𝑤 the unique winner.

• Monotonicity requires that when a voter moves a winning candidate𝑤 higher up in her
ranking, then𝑤 still wins.

• Mutual Majority requires that if a strict majority of voters rank all candidates in 𝑆 ahead
of all other candidates, then the winner(s) must be from 𝑆 . Majority requires this only
for singleton sets 𝑆 . Majority Loser requires it only for sets 𝑆 whose complement is a
singleton.

• Reversal Symmetry requires that if a candidate𝑤 is the unique winner, and the ranking
of each voter is reversed, then𝑤 must not be a winner any longer.

Theorem 5. SimultaneousPluralityVeto returns a non-empty set𝑊 of tied winners all of whom

have distortion at most 3, and for every metric space consistent with the rankings for which convexity is

defined,𝑊 is convex
10
. Furthermore, the voting rule satisfies Anonymity, Neutrality, Resolvability,

Monotonicity,Majority, Majority Loser, Mutual Majority, and Reversal Symmetry.

5.3 Axioms Violated by SimultaneousPluralityVeto

Before giving the proof of Theorem 5, we discuss some other important axioms that are violated by
SimultaneousPluralityVeto.

Candidate 𝑎 is a Condorcet winner if for every other candidate 𝑏, there are at least 𝑛/2 voters who
rank 𝑎 higher than 𝑏. A Condorcet winner does not always exist. A voting rule satisfies Condorcet
Consistency if it picks a Condorcet winner whenever one exists. Gkatzelis et al. [2020] showed that
a Condorcet winner is not always a plurality dominant candidate; thus, neither PluralityMatching
nor PluralityVeto nor SimultaneousPluralityVeto is Condorcet consistent. On the other
hand, Anshelevich et al. [2015] showed that the distortion of any Condorcet winner is at most 3; as
a result, all of the above voting rules can be made Condorcet consistent by forcing them to pick
a Condorcet winner when one exists, without hurting the distortion.

10In the sense that the interior of the convex hull of𝑊 contains no candidates other than those in𝑊 (see Section 4.1).
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A voting rule 𝑓 satisfies Electoral Consistency [Young 1975] if, when the election E = (𝑉 ,𝐶, #—≻)
is partitioned into two elections E1 = (𝑉1,𝐶, #—≻) and E2 = (𝑉2,𝐶, #—≻) with disjoint voters such that
𝑓 (E1) ∩ 𝑓 (E2) ≠ ∅, the set of winners of the whole election is 𝑓 (E) = 𝑓 (E1) ∩ 𝑓 (E2). The following
example shows that 𝑓 = SimultaneousPluralityVeto violates Electoral Consistency.

Example 3. There are five candidates 𝐶 = {𝑎, 𝑏, 𝑐, 𝑑, 𝑒}, and five voters partitioned as 𝑉1 = {1, 2, 3}
and 𝑉2 = {4, 5}. The rankings are as follows:

• 𝑎 ≻1 𝑐 ≻1 𝑑 ≻1 𝑏 ≻1 𝑒

• 𝑏 ≻2 𝑐 ≻2 𝑎 ≻2 𝑑 ≻2 𝑒

• 𝑑 ≻3 𝑐 ≻3 𝑏 ≻3 𝑎 ≻3 𝑒

• 𝑐 ≻4 𝑎 ≻4 𝑏 ≻4 𝑑 ≻4 𝑒

• 𝑒 ≻5 𝑑 ≻5 𝑏 ≻5 𝑎 ≻5 𝑐

𝑓 (E) ≠ 𝑓 (E1) ∩ 𝑓 (E2) because 𝑓 (E) = {𝑎, 𝑏, 𝑐}, 𝑓 (E1) = {𝑎, 𝑏, 𝑐, 𝑑} and 𝑓 (E2) = {𝑎, 𝑏, 𝑐, 𝑑, 𝑒}.

Perhaps most concerning is that SimultaneousPluralityVeto violates the Pareto Property,
which requires that a Pareto dominated candidate 𝑎 (i.e., a candidate whom every voter ranks below
some candidate 𝑏) can never be chosen as a winner. The Pareto property is violated in an input
with𝑚 candidates and two voters with respective rankings 𝑐1 ≻ 𝑐2 ≻ 𝑐3 ≻ · · · ≻ 𝑐𝑛−1 ≻ 𝑐𝑛
and 𝑐𝑛 ≻ 𝑐2 ≻ 𝑐3 ≻ · · · ≻ 𝑐𝑛−1 ≻ 𝑐1. In this input, all candidates are tied at the unique matching,
and hence are returned as winners by SimultaneousPluralityVeto, even though 𝑐3, . . . , 𝑐𝑛−1
are Pareto dominated by 𝑐2. Fortunately, in a sense, this type of preferences is the only setting in
which a Pareto dominated candidate can win: a Pareto dominated candidate 𝑎 can only win if the
candidate 𝑏 dominating him (and hence 𝑎 himself) has plurality score 0. To see this, notice first
that the score of 𝑏 cannot be decreased until 𝑎 has been eliminated. Because the score of 𝑏 must
reach 0 by time 1, 𝑏’s score must be decremented before time 1, so 𝑎 would be eliminated before
time 1, and could not win.
To restore the Pareto Property, one could of course post-process the set of winners𝑊 and

eliminate any Pareto dominated candidates. This will leave a non-empty set of winners, because
with any Pareto dominated candidate 𝑎, any candidate 𝑏 dominating 𝑎 will always be a winner.
Unfortunately, it would come at the expense of violating convexity and the principle that candidates
with the same witnessing matching should all be returned by the voting rule.

An alternative approach — which would resolve the specific example we gave above — is to have
candidates start not with their plurality scores, but with a score that also accounts for intermediate
positions, e.g., scores that decrease exponentially with the rank of a candidate, or even Borda count
scores. However, for such scores, the analogue of Lemma 2 is not known to hold, and probably does
not hold verbatim. Thus, this approach will necessitate a more refined analysis of the distortion
of SimultaneousVeto (or, equivalently, candidates in the (p, q)-veto core) under more general
candidate weights q. We discuss this direction more in Section 6.

5.4 Proof of Theorem 5

The fact that all of the winning candidates have distortion at most 3 holds by Lemma 2, because
the winners are all in the plurality veto core. The fact that the set of winning candidates is convex,
for every metric space consistent with the rankings for which convexity is defined, follows from
Proposition 2 because SimultaneousVeto returns the winners tied at a (p, q)-matching M by
Theorem 4 and𝑊 (M) is prefix-intersecting by Proposition 3.

SimultaneousPluralityVeto is completely symmetric with respect to members of both groups,
and thus, Anonymity and Neutrality follow directly from the definition. We prove the remaining
properties as separate lemmas.
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Lemma 5. SimultaneousPluralityVeto satisfies Majority, Majority Loser & Mutual Majority.

Proof. We prove that SimultaneousPluralityVeto satisfies the Mutual Majority property.
Then,Majority andMajority Loser are special cases. Suppose that a strict majority 𝑉 ′ ⊆ 𝑉 of
voters rank all candidates in 𝑆 ahead of all other candidates. Then, the initial total weight of 𝑆 is
strictly greater than that of 𝑆 . Until all candidates from 𝑆 are eliminated, each voter in 𝑉 ′ will veto
a candidate in 𝑆 , so the total weight on 𝑆 is decreased at a strictly higher rate than the total weight
on 𝑆 . As a result, the total weight of 𝑆 must reach 0 strictly before the total weight of 𝑆 reaches 0.
In particular, no candidate from 𝑆 can be a winner. □

Lemma 6. SimultaneousPluralityVeto satisfies Reversal Symmetry.

Proof. We first prove that if 𝑤 is the unique winner, then plu(𝑤) > veto(𝑤). We prove the
contrapositive, so we assume that veto(𝑤) ≥ plu(𝑣). The voters ranking𝑤 last, i.e., bot−1 (𝑤), will
oppose𝑤 until𝑤 is eliminated. Since𝑤 wins, this happens only at time 1, so none of the voters
in bot−1 (𝑤) will ever decrement the weight of another candidate. Thus, the total weight of all
candidates except𝑤 is decremented at rate at most 𝑛−veto(𝑤) ≤ 𝑛−plu(𝑤). Since the total weight
of all candidates other than𝑤 is initially 𝑛 − plu(𝑤), it cannot reach 0 until time 1. Therefore, at
least one candidate other than𝑤 is a winner as well. So we have proved that plu(𝑤) > veto(𝑤).
In the election with reversed rankings, plu(𝑤) < veto(𝑤) instead. Then, 𝑤 is not a plurality-

dominant candidate due to Lemma 6 in Gkatzelis et al. [2020]; this can also be directly observed
by mildly adapting the argument we just gave in the case plu(𝑤) ≤ veto(𝑤). Thus,𝑤 cannot be a
winner in the election with reversed rankings. □

The proofs of Monotonicity and Resolvability are more involved. They involve comparing
the winner(s) under the original rankings with those under suitably modified rankings. To facilitate
the analysis, we introduce the following notation; the notation with a prime refers to the execution
with modified rankings.

• 𝜏 (𝑐) and 𝜏 ′ (𝑐) denote the time when candidate 𝑐 is eliminated. When 𝑐 is not eliminated
until time 1 (i.e., a winner), we write 𝜏 (𝑐) = 1.

• For any time 𝑡 ∈ [0, 1], let𝑊 (𝑡) = {𝑐 | 𝜏 (𝑐) ≥ 𝑡} and𝑊 ′ (𝑡) = {𝑐 | 𝜏 ′ (𝑐) ≥ 𝑡} denote the sets
of candidates who are not eliminated before time 𝑡 . Thus,𝑊 =𝑊 (1) and𝑊 ′ =𝑊 ′ (1) are
the winning candidates.

• Similarly, let𝑊+ (𝑡) = {𝑐 | 𝜏 (𝑐) > 𝑡} and𝑊 ′
+ (𝑡) = {𝑐 | 𝜏 ′ (𝑐) > 𝑡} be the sets of candidates

eliminated strictly after time 𝑡 , i.e., the set of non-eliminated candidates at time 𝑡 after
the while loop (lines 3–4) in the continuous-time description has been executed.

• weight(𝑐, 𝑡) and weight′ (𝑐, 𝑡) denote the weight of candidate 𝑐 at time 𝑡 .
• We write 𝐵(𝑐, 𝑡) = bot−1

𝑊 (𝑡 ) (𝑐) and 𝐵′ (𝑐, 𝑡) = bot−1
𝑊 ′ (𝑡 ) (𝑐) for the sets of voters opposing

candidate 𝑐 among candidates not eliminated before time 𝑡 , i.e., the sets of voters whose
bottom choice among candidates not eliminated before time 𝑡 is 𝑐 .

• Similarly, we write 𝐵+ (𝑐, 𝑡) = bot−1
𝑊+ (𝑡 ) (𝑐) and 𝐵′

+ = bot−1
𝑊 ′

+ (𝑡 )
(𝑐) for the sets of voters

opposing candidate 𝑐 among candidates eliminated strictly after time 𝑡 .

Lemma 7. SimultaneousPluralityVeto satisfies Monotonicity.

Let 𝑤 ∈𝑊 be a winner ranked higher by a voter in the modified election. We begin with the
following simple proposition, which will be used repeatedly:
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Proposition 4. If𝑊 (𝑡) ⊇𝑊 ′ (𝑡), then 𝐵(𝑐, 𝑡) ⊆ 𝐵′ (𝑐, 𝑡) for any candidate 𝑐 ∈𝑊 ′ (𝑡) \ {𝑤}.

Proof. Consider a voter 𝑣 ∈ 𝐵(𝑐, 𝑡). By definition, 𝑣 ranks 𝑐 below all candidates 𝑐′ ∈ 𝑊 (𝑡)
under the original election. Because 𝑐 ≠ 𝑤 , and candidates other than𝑤 can only be ranked lower
or in the same place in the modified election, 𝑣 also ranks 𝑐 below all candidates 𝑐′ ∈ 𝑊 (𝑡) in
the modified election. And because𝑊 ′ (𝑡) ⊆ 𝑊 (𝑡), 𝑣 ranks 𝑐 below all candidates 𝑐′ ∈ 𝑊 ′ (𝑡) in
the modified election, meaning that 𝑣 ∈ 𝐵′ (𝑐, 𝑡). □

We are now ready to prove Lemma 7.
Proof of Lemma 7. Let 𝑡1 < 𝑡2 < · · · < 𝑡𝑘 = 1 be the times at which one or more candidate
is eliminated under the modified election, i.e., {𝑡1, . . . , 𝑡𝑘 } = {𝜏 ′ (𝑐) | 𝑐 ∈ 𝐶}. For notational
convenience, we write 𝑡0 = 0.
We will prove the following by induction on 𝑖 = 0, . . . , 𝑘 :

• For all 𝑐 ∈𝑊 ′ (𝑡𝑖 ) \ {𝑤}, the weight at time 𝑡𝑖 is weakly lower in the modified election, i.e.,
weight′ (𝑐, 𝑡𝑖 ) ≤ weight(𝑐, 𝑡𝑖 ).

• 𝑊 (𝑡𝑖 ) ⊇𝑊 ′ (𝑡𝑖 ), i.e., candidates can only be eliminated earlier in the modified instance.
For 𝑖 = 0, the first part holds because any candidate 𝑐 ≠ 𝑤 can only have moved down or stayed

in the same place in each ranking, so the initial weights are weakly lower. The second part of
the hypothesis holds because𝑊 ′ (0) =𝑊 (0) = 𝐶 .
For the induction step from 𝑖 to 𝑖 + 1, consider time 𝑡𝑖 for 𝑖 < 𝑘 . First, consider the while loop

(lines 3–4) in the continuous-time description. By induction over its iterations, in each iteration,
we maintain that the set of uneliminated candidates in the original election is a superset of the
uneliminated candidates in the modified election. This holds initially by the outer induction
hypothesis. Whenever it holds, Proposition 4 implies that 𝐵(𝑐, 𝑡𝑖 ) ⊆ 𝐵′ (𝑐, 𝑡𝑖 ) for all 𝑐 ≠ 𝑤 . In
particular, if 𝑐 gets eliminated at time 𝑡𝑖 in the original election, then𝐵(𝑐, 𝑡𝑖 ) ≠ ∅ andweight(𝑐, 𝑡𝑖 ) = 0.
Thus, 𝐵′ (𝑐, 𝑡𝑖 ) ≠ ∅, and the while loop also eliminates 𝑐 at time 𝑡𝑖 in the modified election, because
weight′ (𝑐, 𝑡𝑖 ) ≤ weight(𝑐, 𝑡𝑖 ) = 0 and 𝑐 is opposed by a non-empty set of voters. Thus, we showed
that𝑊+ (𝑡𝑖 ) ⊇𝑊 ′

+ (𝑡𝑖 ).
Next, observe that because the sum of all weights at time 𝑡𝑖 is exactly𝑛(1−𝑡𝑖 ) in both elections, and

every candidate 𝑐 ≠ 𝑤 has weight′ (𝑐, 𝑡𝑖 ) ≤ weight(𝑐, 𝑡𝑖 ), we have weight′ (𝑤, 𝑡𝑖 ) ≥ weight(𝑤, 𝑡𝑖 ).
Applying Proposition 4 after the while loop terminates, we obtain that 𝐵′

+ (𝑐, 𝑡𝑖 ) ⊇ 𝐵+ (𝑐, 𝑡𝑖 )
for all candidates 𝑐 ≠ 𝑤 . Since each voter opposes exactly one candidate,

⋃
𝑐∈𝑊+ (𝑡𝑖 ) 𝐵+ (𝑐, 𝑡𝑖 ) =

𝑉 =
⋃

𝑐∈𝑊 ′
+ (𝑡𝑖 ) 𝐵

′
+ (𝑐, 𝑡𝑖 ). Hence, the facts that 𝐵′

+ (𝑐, 𝑡𝑖 ) ⊇ 𝐵+ (𝑐, 𝑡𝑖 ) for all 𝑐 ∈ 𝑊 ′
+ (𝑡𝑖 ) \ {𝑤} and

𝑊 ′
+ (𝑡𝑖 ) ⊆𝑊+ (𝑡𝑖 ) imply that 𝐵′

+ (𝑤, 𝑡𝑖 ) ⊆ 𝐵+ (𝑤, 𝑡𝑖 ). Combining this fact with the bounds on weights,
and defining 𝛿𝑐 =

weight(𝑐,𝑡𝑖 )
|𝐵+ (𝑐,𝑡𝑖 ) | and 𝛿 ′𝑐 =

weight′ (𝑐,𝑡𝑖 )
|𝐵′

+ (𝑐,𝑡𝑖 ) |
(with the definition that 0/0 := ∞), we observe

that 𝛿 ′𝑤 ≥ 𝛿𝑤 and 𝛿 ′𝑐 ≤ 𝛿𝑐 for all 𝑐 ≠ 𝑤 .
Since the weight of each uneliminated candidate 𝑐 at time 𝑡𝑖 is decreased at rate |𝐵′

+ (𝑐, 𝑡𝑖 ) | under
the modified election, the next elimination will happen at time 𝑡𝑖+1 = 𝑡𝑖 +min𝑐∈𝑊 ′

+ (𝑡𝑖 )
weight′ (𝑐,𝑡𝑖 )
|𝐵′

+ (𝑐,𝑡𝑖 ) |
.

If 𝑤 minimizes this expression, then we obtain that 𝑡𝑖+1 = 𝑡𝑖 + 𝛿 ′𝑤 ≥ 𝑡𝑖 + 𝛿𝑤 ≥ 𝜏 (𝑤) = 1, and
thus, 𝑤 is a winner. Otherwise, for all candidates 𝑐 ∈ 𝑊+ (𝑡𝑖+1) \ {𝑤}, we have weight(𝑐, 𝑡𝑖+1) =

weight(𝑐, 𝑡𝑖 ) − (𝑡𝑖+1 − 𝑡𝑖 ) · |𝐵+ (𝑐, 𝑡𝑖 ) | ≥ weight′ (𝑐, 𝑡𝑖 ) − (𝑡𝑖+1 − 𝑡𝑖 ) · |𝐵′
+ (𝑐, 𝑡𝑖 ) | = weight′ (𝑐, 𝑡𝑖+1). Thus,

we showed that the first part of the hypothesis (inequality on weights) holds at time 𝑡𝑖+1.
A further consequence of this inequality on weights is that, in the time interval (𝑡𝑖 , 𝑡𝑖+1), no

candidate from𝑊 ′
+ (𝑡𝑖 ) can be eliminated in the original election, i.e.,𝑊 ′

+ (𝑡𝑖 ) ⊆𝑊 (𝑡𝑖+1). Furthermore,
𝑊 ′ (𝑡𝑖+1) =𝑊 ′

+ (𝑡𝑖 ) by definition of 𝑡𝑖+1. Therefore,𝑊 ′ (𝑡𝑖+1) =𝑊 ′
+ (𝑡𝑖 ) ⊆𝑊 (𝑡𝑖+1), which completes

the proof for the second part of the hypothesis. Thus, we have shown that𝑤 ∈𝑊 ′. □
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Lemma 8. SimultaneousPluralityVeto satisfies Resolvability.

The proof of resolvability is similar to the proof of monotonicity. Again, let𝑤 ∈𝑊 be a winner
in the original election. Recall that in the modified election, all voters in the original election keep
their original rankings, and there is an additional voter 𝑣 who ranks𝑤 at the top; the rest of her
ranking is arbitrary. The following proposition is similar to Proposition 4, and captures a stronger
inference that can be drawn here.

Proposition 5. If𝑊 (𝑡) ⊇ 𝑊 ′ (𝑡), then 𝐵(𝑐, 𝑡) ⊆ 𝐵′ (𝑐, 𝑡) for any candidate 𝑐 ∈ 𝑊 ′ (𝑡) \ {𝑤}, and
unless𝑊 ′ (𝑡) = {𝑤}, there exists a candidate 𝑐 ∈𝑊 ′ (𝑡) \ {𝑤} for whom the set inclusion is strict, i.e.,

𝐵(𝑐, 𝑡) ⊊ 𝐵′ (𝑐, 𝑡).

Proof. Fix any candidate 𝑐 ∈ 𝑊 ′ (𝑡) \ {𝑤}, and consider a voter 𝑣 ∈ 𝐵(𝑐, 𝑡). By definition,
𝑣 ranks 𝑐 below all candidates 𝑐′ ∈ 𝑊 (𝑡) ⊇ 𝑊 ′ (𝑡). Therefore, 𝑣 ranks 𝑐 below all candidates
𝑐′ ∈𝑊 ′ (𝑡), implying that 𝐵(𝑐, 𝑡) ⊆ 𝐵′ (𝑐, 𝑡). To prove strictness for at least one candidate, assume
that𝑊 ′ (𝑡) ≠ {𝑤}. Then, 𝑣 ranks some candidate 𝑐 ∈𝑊 ′ (𝑡) \ {𝑤} lowest among𝑊 ′ (𝑡), and thus,
𝑣 ∈ 𝐵′ (𝑐, 𝑡) \ 𝐵(𝑐, 𝑡) for that candidate 𝑐 . □

Proof of Lemma 8. As in the proof of Lemma 7, let 𝑡1 < 𝑡2 < · · · < 𝑡𝑘 = 1 be the times at which
one or more candidate is eliminated under the modified election, i.e., {𝑡1, . . . , 𝑡𝑘 } = {𝜏 ′ (𝑐) | 𝑐 ∈ 𝐶}.
For notational convenience, we write 𝑡0 = 0.
We first prove the exact same facts about the process by induction on 𝑖 = 0, . . . , 𝑘 , namely:

• For all 𝑐 ∈𝑊 ′ (𝑡𝑖 ) \ {𝑤}, the weight at time 𝑡𝑖 is weakly lower in the modified election, i.e.,
weight′ (𝑐, 𝑡𝑖 ) ≤ weight(𝑐, 𝑡𝑖 ).

• 𝑊 (𝑡𝑖 ) ⊇𝑊 ′ (𝑡𝑖 ), i.e., candidates can only be eliminated earlier in the modified instance.
For 𝑖 = 0, the first part of the hypothesis holds because only𝑤 has gained one additional point

initially from 𝑣 , while every other candidate’s score is the same as before. The second part holds
simply because𝑊 ′ (0) =𝑊 (0) = 𝐶 .
For the induction step from 𝑖 to 𝑖 + 1, consider time 𝑡𝑖 for 𝑖 < 𝑘 . First, an identical proof to that

of Lemma 7 proves that𝑊+ (𝑡𝑖 ) ⊇𝑊 ′
+ (𝑡𝑖 ), substituting Proposition 5 for Proposition 4 in the inner

inductive step.
In the original election, the sum of all weights at time 𝑡𝑖 is 𝑛 · (1 − 𝑡𝑖 ), while in the modified

election, it is (𝑛 + 1) · (1 − 𝑡𝑖 ). Because every candidate 𝑐 ≠ 𝑤 has weight′ (𝑐, 𝑡𝑖 ) ≤ weight(𝑐, 𝑡𝑖 ),
we obtain that weight′ (𝑤, 𝑡𝑖 ) ≥ 1 + weight(𝑤, 𝑡𝑖 ).

We now distinguish two cases. First, if𝑊 ′
+ (𝑡𝑖 ) = {𝑤}, then 𝑤 is the only remaining candidate

at time 𝑡𝑖 , and the time is 𝑡𝑖 < 1 since 𝑖 < 𝑘 . Thus, 𝑤 is the unique winner, completing the proof
of Resolvability. Otherwise, we apply Proposition 5, and obtain that 𝐵′

+ (𝑐, 𝑡𝑖 ) ⊇ 𝐵+ (𝑐, 𝑡𝑖 ) for all
candidates 𝑐 ∈ 𝑊 ′

+ (𝑡𝑖 ) \ {𝑤}, and the inclusion is strict for at least one such candidate. Because
each voter opposes exactly one candidate,

⋃
𝑐∈𝑊+ (𝑡𝑖 ) 𝐵+ (𝑐, 𝑡𝑖 ) = 𝑉 and

⋃
𝑐∈𝑊 ′

+ (𝑡𝑖 ) 𝐵
′
+ (𝑐, 𝑡𝑖 ) = 𝑉 ∪ {𝑣}.

Now, the facts that 𝐵′
+ (𝑐, 𝑡𝑖 ) ⊇ 𝐵+ (𝑐, 𝑡𝑖 ) for all 𝑐 ∈𝑊 ′

+ (𝑡𝑖 ) \ {𝑤} and𝑊 ′
+ (𝑡𝑖 ) ⊆𝑊+ (𝑡𝑖 ), along with the

fact that the inclusion is strict for at least one candidate, imply that |𝐵′
+ (𝑤, 𝑡𝑖 ) | ≤ |𝐵+ (𝑤, 𝑡𝑖 ) |. Again,

we define 𝛿𝑐 and 𝛿 ′𝑐 as the distance in time by when 𝑐 would be eliminated at the current opposition
rates. The previous inequalities then imply that 𝛿 ′𝑐 ≤ 𝛿𝑐 for all 𝑐 ∈𝑊 ′

+ (𝑡𝑖 ) \ {𝑤}, and 𝛿 ′𝑤 ≥ 𝛿𝑤 .
The rest of the inductive proof is now exactly the same as for Lemma 7, proving that under the

modified election, the set of eliminated candidates remains a supserset at all times, and the weights
remain weakly lower at all times.
Finally, consider time 𝑡𝑘−1 (i.e., the last step at which a candidate was eliminated). Assume for

contradiction that after the while loop, in the modified election, at least one candidate other than
𝑤 was uneliminated, i.e.,𝑊 ′

+ (𝑡𝑘−1) ≠ {𝑤}. Consider the candidate 𝑐 with 𝐵′
+ (𝑐, 𝑡𝑘−1) ⊋ 𝐵+ (𝑐, 𝑡𝑘−1)



Generalized Veto Core and a Practical Voting Rule with Optimal Metric Distortion 21

who is guaranteed to exist by the strict inclusion part of Proposition 5. This candidate then has
𝛿 ′𝑐 < 𝛿𝑐 . Because no candidate survived until after time 1, we have that 𝛿𝑐 ≤ 1 − 𝑡𝑘−1, and thus,
𝛿 ′𝑐 < 1− 𝑡𝑘−1. This means that 𝑐 must be eliminated strictly between times 𝑡𝑘−1 and 1 = 𝑡𝑘 under the
modified election. But by definition of the 𝑡𝑖 , no eliminations occur between 𝑡𝑘−1 and 𝑡𝑘 , giving a
contradiction. Therefore,𝑊 ′

+ (𝑡𝑘−1) = {𝑤}, and𝑤 is the unique winner under the modified election.
□

6 CONCLUSION AND FUTURE DIRECTIONS

We introduced a generalization of the veto core, and showed that it is precisely characterized by the
winners under a natural class of sequential veto-based voting rules in which the given weights for
candidates are counterbalanced by the given weights for voters. Applying this insight continuously
to the veto core for initial candidate weights equal to plurality scores yields a very natural and
simple voting rule with metric distortion 3 which remedies the key flaws of the recently proposed
PluralityVeto, by being anonymous, neutral, and resolvable. In addition, this new rule satisfies
many important social choice axioms; combined with its simplicity, this makes it well suited for
practical adoption.

Our work raises a wealth of interesting questions for future work. The study of the generalized
veto core and its connection to metric distortion is very intriguing. In particular, for which initial
candidate weights q do candidates in the core guarantee constant (or otherwise small) distortion?
This question is particularly important in the context of eliminating Pareto dominated candidates,
which ideally should come without sacrificing optimal distortion or the characterization of winners
in terms of matchings. Which other interesting guarantees are obtained by electing candidates
from a weighted core?
An interesting and natural choice of initial weights for candidates are the 𝑘-plurality scores:

the number of voters who rank a given candidate in their top 𝑘 choices. Notice that, as 𝑘 ranges
between 1 and𝑚, these initial weights interpolate between the plurality veto core and the propor-
tional veto core. Thus, they give rise to a spectrum of voting rules achieving different tradeoffs
between the protection of minorities and the majority. For a quantification of majority and minority
principles, see Kondratev and Nesterov [2020].

The characterization in terms of veto orders also raises interesting questions. The simultaneous
version of the rule was motivated largely by ensuring anonymity, a very desirable fairness criterion
for an election. The focus on fairness raises an interesting question about veto orders: what would
the voters prefer to be the veto order? It is not difficult to show that a voter 𝑣 is always weakly better
off (in the sense of preferring the outcome) by moving her vote to the very end of the sequence.
However, we currently do not know whether a stronger version holds: do voters always weakly
prefer moving their veto later in the sequence? While we have not identified counter-examples to
this stronger conjecture, we suspect that counter-examples might exist. However, if the conjecture
were true, it would provide additional principled justification for the simultaneous veto process.

We verified that SimultaneousPluralityVeto satisfies several desirable axioms for voting
rules, but fails to satisfy certain others: the Pareto property, Condorcet consistency, and consistency.
Over the years, researchers have identified dozens of desirable axioms for voting rules, and a
more complete exploration may be of interest as well — indeed, Ianovski and Kondratev [2023]
very recently posted an updated version of their [2021] paper which undertakes such an analysis
for the proportional veto core. For axioms which SimultaneousPluralityVeto fails to satisfy,
it would be interesting to see whether modifications to the voting rule can satisfy these axioms,
while retaining the distortion-3 guarantee or sacrificing only a small loss in the distortion guarantee.
Perhaps even more fundamentally, it would be interesting to investigate which combinations of
axioms are fundamentally incompatible with low metric distortion.
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SimultaneousPluralityVeto has the desirable property of Resolvability, meaning that a tie
can always be resolved in favor of any winning candidate𝑤 by adding a single voter ranking𝑤 at
the top. In a sense, this implies that ties should be “rare”. The desideratum of rare ties motivates
the axiom of Asymptotic Resolvability [Schulze 2011], requiring that the proportion of profiles
resulting in a tie approach zero as the number of voters increases. It would be of interest to
understand whether SimultaneousPluralityVeto is asymptotically resolvable, and perhaps even
to quantify the probability of ties under a suitable probabilistic model of voter preferences.
Ianovski and Kondratev [2021] showed that the expected size of the proportional veto core is

𝑚/2 as 𝑛 → ∞ under the “Impartial Culture” (uniformly random preferences) assumption. It would
be interesting to study the expected size of the plurality veto core because it gives a lower bound
on the expected number of candidates with distortion at most 3 due to Lemma 2. It could be also of
interest to study the expected size of the (p, q)-veto core in general.

We round out our discussion with two conjectures on the structure of the veto core.

Conjectures on The Structure of Veto Core

We showed that for any fixed (p, q)-matchingM, the set of candidates𝑊 (M) admittingM is always
convex. The (p, q)-veto core is the union of all the𝑊 (M), and as such cannot be directly inferred
to be convex. Despite extensive search, we have not found any instances where the veto core is not
convex. Is there such an example, or is the veto core always convex? A similar question was raised
in Kizilkaya and Kempe [2022], though due to tie breaking issues, the question was phrased only
for the special case of the peer selection setting.

Conjecture 1. The (p, q)-veto core is convex in all metric spaces consistent with the given rankings

(for which convexity is defined).

Other natural structural questions arise about the family Wp,q of sets of winners𝑊 (M) for all
(p, q)-matchings M. Do they possess some useful structure? After some search, we have not found
any instances where W is not laminar, i.e., for every pair of (p, q)-matchings M and M̂, either
𝑊 (M) ∩𝑊 (M̂) = ∅ or𝑊 (M) ⊆ 𝑊 (M̂) or𝑊 (M̂) ⊆ 𝑊 (M). If laminarity were true, then Wp,q
provides a treelike partitioning of the underlying metric space into convex sets which might be
useful for other metric distortion problems such as committee election [Caragiannis et al. 2022],
facility location [Anshelevich and Zhu 2021] or distributed voting [Anshelevich et al. 2022].

Conjecture 2. The familyWp,q of sets of winners𝑊 (M) for all (p, q)-matchings M is laminar.
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