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Abstract

We study incentive-compatible mechanisms that maximize the Nash Social Welfare. Since traditional

incentive-compatible mechanisms cannot maximize the Nash Social Welfare even approximately, we pro-

pose changing the traditional model. Inspired by a widely used charging method (e.g., royalties, a lawyer

that charges some percentage of possible future compensation), we suggest charging the players some

percentage of their value of the outcome. We call this model the percentage fee model.

We show that there is a mechanism that maximizes exactly the Nash Social Welfare in every setting

with non-negative valuations. Moreover, we prove an analog of Roberts theorem that essentially says

that if the valuations are non-negative, then the only implementable social choice functions are those that

maximize weighted variants of the Nash Social Welfare. We develop polynomial time incentive compat-

ible approximation algorithms for the Nash Social Welfare with subadditive valuations and prove some

hardness results.

1 Introduction

The field of Mechanism Design aims to develop and analyze algorithms for strategic players. In a typical

scenario, we have a planner interested in implementing some social goal. The challenge is to design incentive-

compatible mechanisms that achieve this social goal, despite the players behaving in a strategic way that might

be misaligned with the desired social goal.

In this paper, we are interested in mechanisms that are dominant strategy incentive compatible when the

values of the players are private information. As for the social goals – many different ones are studied in the

literature. However, largely speaking, it is fair to say that (with some very notable exceptions) the two most

common and well-studied objectives are social welfare maximization [32, 9, 24] and revenue maximization

[28]. These two social goals are very different: social welfare maximization (i.e., outputting an outcome that

maximizes the sum of values of the players) is an objective that is defined for each instance, independently of

the assumptions on the strategic behavior of the players. In contrast, revenue maximization is relative – the

quality of a mechanism is measured with respect to its closeness to the revenue of some “ideal” mechanism.

Taking a bird’s-eye view, most will agree that welfare maximization is by far the most successful “benchmark-

free” objective in the mechanism design literature and that good mechanisms for other “benchmark-free” ob-

jectives usually exist only for quite restricted settings (e.g., makespan minimization in the so-called “single

parameter” settings). This grim situation is, of course, not due to the incapability of mechanism designers: it is
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possible to prove that incentive-compatible mechanisms can only achieve few objectives. In fact, Roberts the-

orem [29] tells us that social welfare maximization is unique in that in some settings, the set of implementable

objective functions includes only slight variants of social welfare maximization.

Indeed, we have a good understanding of which social goals can and cannot be achieved by incentive-

compatible mechanisms in many settings of interest. Obviously, being able to mathematically prove that

incentive-compatible mechanisms are not powerful enough in some settings is of significant academic interest.

Still, it is disappointing news from a practical perspective. Fairness is a case in point. In recent years we have

seen a surge of interest in fairness. Notions such as EF1 ([7] envy freeness up to one good), EFX ([8] envy

freeness up to any good), and the Nash Social Welfare (the product of the values of the players) have been

extensively studied. Much of the work focused on existence and “algorithmic” issues: does a “fair” outcome

exist in every instance? Can we find this outcome efficiently? Yet, even for the most extensively-studied

fairness notions, we have no good mechanisms that implement them if the agents are strategic, except perhaps

for relatively simple settings (e.g., [2, 10, 12])1.

This paper attempts to bridge the chasm between incentives and fairness. We aim to design incentive-

compatible mechanisms for one of the most prominent fairness promoting objectives, the Nash Social Welfare.

Unfortunately, it is not hard to see that dominant strategy mechanisms cannot always output the allocation

with the highest Nash Social Welfare, nor can they always output an allocation that provides a reasonable

approximation to it2.

In this paper we suggest to reconsider the traditional payment model. The taxation principle tells us that

in the traditional model of mechanism design, each player is (essentially) facing a menu that sets a price for

each possible alternative. This corresponds to a common real-life fee type known as a “fixed fee”. However,

another common fee type is the “percentage fee”. Percentage fees might be used, e.g., by a lawyer who may

charge the client a portion of the future compensation or in a lease agreement of a retail store that commits to

paying a percentage of its sales as rent. Royalties are another example for percentage fees.

This paper’s take-home message is that percentage fees are an efficient way of constructing fair incentive-

compatible mechanisms. We view our results as a way of escaping the dead end that the traditional mechanism

design model leads us to as far as implementing fairness notions is concerned.

Our Model

This work primarily studies fair dominant-strategy mechanisms in a combinatorial auction setup. However,

the model is defined for the most general mechanism design setting, and some of our results also apply to this

general model.

In the most general setup, we have a set N of players and a set A of alternatives. Each player i has a

valuation function vi : A → R. The set of all possible valuation functions of player i is denoted Vi. A

(direct) mechanism is composed of a social choice function f : V1 · · · Vn → A and a payment function

p : V1 · · · Vn → R
n.

Much of the mechanism design literature assumes that the profit of player i in the instance −→v = (v1, . . . , vn)
is vi(f(

−→v ))− pi(
−→v ) and looks for dominant strategy mechanism given this definition of profit. I.e., for each

1An interesting singular exception is running the VCG mechanism when all players are unit demand: VCG outputs not only the

welfare maximizing solution but also one that is envy-free [26].
2To see this, consider a dominant strategy algorithm for two players, Alice and Bob, and two items, a and b. The valuation of

both players is additive. Consider an instance where Alice’s valuation is 1 for item a and x for item b, and Bob’s value is x for a and

x3 for item b. Suppose that x >> 1. The only allocation that reasonably approximates the Nash social welfare is to give a to Alice

and b to Bob. Now consider an instance where Alice’s values are the same, but Bob’s values are t for item a and t + x3 for item b,

t >> x. By weak monotonicity, Bob is always allocated item b, and possibly also item a. However, Bob cannot be allocated both

items because then the Nash social welfare of the outcome will be 0. Thus, the mechanism must output the allocation that gives Alice

item a and Bob item b. Note that the Nash social welfare of the allocation that gives Alice item b and Bob item a is bigger by a factor

of x. Thus no dominant strategy mechanism can obtain a reasonable approximation to the Nash social welfare.
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player i, valuations vi, v
′
i ∈ Vi and valuations of the other players v−i it holds that

vi(f(vi, v−i))− pi(vi, v−i) ≥ vi(f(v
′
i, v−i))− pi(v

′
i, v−i)

We refer to this model as the traditional model.

In contrast, in the percentage fee model each player i is charged a fraction of his value: pi(
−→v ) ·vi(f(−→v )).

Thus, the profit of player i in the instance −→v = (v1, . . . , vn) is vi(f(
−→v )) · (1−pi(

−→v )). We are also interested

in dominant strategy mechanisms in this model, but note that the definition of dominant strategy now considers

the new profit model. That is, for each player i, valuations vi, v
′
i ∈ Vi and valuations of the other players v−i

it holds that

(1− pi(vi, v−i)) · vi(f(vi, v−i)) ≥ (1− pi(v
′
i, v−i)) · vi(f(v′i, v−i))

We will mainly be interested in individually rational mechanisms with no positive transfers. That is, for every

i, pi(·) takes values in [0, 1) only3. We stress that the players are still quasilinear as before. I.e., they want

to maximize their value for the selected alternative minus the payment. We call this model the percentage fee

model.

Our main focus in this paper is maximizing the Nash Social Welfare in combinatorial auctions by dominant

strategy mechanisms in the percentage fee model. In a combinatorial auction, we have a set N of players

(|N | = n) and a set M of heterogeneous items (|M | = m). Each player i has a valuation function vi : 2
M →

R that gives a value for each possible subset of the items. We assume that each valuation function v is non-

decreasing and v(∅) = 0. One common goal is to maximize the social welfare: Σivi(Si). In this paper, our

primary focus is to maximize the Nash Social Welfare (NSW), where the NSW of an allocation S1, . . . , Sn is

the geometric mean of the valuations (
∏n

i=1 vi(Si))
1/n.

We consider several standard classes of valuations in this paper. A valuation v is called additive if for

every bundle S, v(S) = Σj∈Sv({j}). v is subadditive if for every S, T , v(S)+ v(T ) ≥ v(S ∪T ). v is XOS if

there exists additive functions a1, . . . , at such that for every bundle S, it holds that v(S) = max1≤j≤t aj(S).

Applicability of Mechanisms with Percentage Fees

Mechanisms with percentage fees are applicable whenever the auctioneer can learn how much a player values

the selected outcome. We stress that the auctioneer does not necessarily learn the values of other unrealized

outcomes. For example, one can auction a license for the right to use some asset in exchange for a fraction

of the future revenue, where the latter can be verified, e.g., by official tax returns. Our mechanisms are

particularly attractive when the auction goal is to maximize fairness. One extreme example would be land

reforms, where (typically) agricultural land is redistributed by the government to maximize both efficiency

and equality. Land reforms also take a less radical form: In some countries, e.g., Israel, it is not uncommon

to repartition land rights and move land from a “strong” municipality to a neighboring, economically weaker

one. In the US, mechanisms that are used to redistribute resources to promote equality include gaming rights

for native American tribes. Similarly, our mechanisms are applicable when resources are allocated internally

within a large organization or corporation, where the management can evaluate the value of the allocated

resources for the winning units.

Our work is related to the work on contingent payments (see [25, 14] and the survey [30], among others).

A typical scenario in this research direction includes multiple firms competing on acquiring a target firm,

where the seller of the target firm receives, for example, a combination of cash and some percentage of the

merged firm.

3We do not allow pi(·) = 1 to rule out trivial implementations that make little economic sense, like setting pi(~v) = 1 for every

player i in instance ~v. In this implementation the profit of all players is always 0 (since if alternative a is chosen the mechanism charges

each player i its full value vi(a)), so pairing this payment function with any allocation function will give an incentive compatible

mechanism.

3



Similarly, sharecropping is a common type of legal agreement that can be seen as a mechanism with per-

centage fees. In sharecropping, the landowner allows the use of the land in return to a share of the crop. Thus,

assuming that the tenant’s utility is linear in the amount of produced crop, the landowner can charge a per-

centage fee even without knowing the precise value of the tenant or the crop. Sharecropping was extensively

studied, in particular in the economic literature. See, e.g., an influential paper by Stiglitz [31].

Our Results I: Incentive Compatible Mechanisms that Maximize the NSW

The Nash Social Welfare has been heavily studied recently in Algorithmic Game Theory. Its game theoretic

properties have been analyzed (e.g., [8]) and the possible approximation ratios achievable in different settings

have been studied (e.g., [11, 1, 5, 27]). Unfortunately, as discussed earlier, no dominant strategy mechanisms

can maximize the NSW in the traditional model. In the percentage fee model, we observe the following in

Subsection 2.1:

Theorem: In the percentage fee model, the social choice function that selects an alternative that maximizes

the Nash Social Welfare is implementable as long as all valuations are positive or all valuations are non-

negative and there is a “null” alternative with value 0 for all players.

We have that just as the VCG mechanism is always applicable in the traditional model, maximizing the NSW

is possible in the percentage fee model. Recall that in the traditional model, the VCG mechanism is unique

as Roberts theorem tells us that if the valuations are unrestricted, then the only implementable social choice

functions are weighted variations of maximizing the social welfare. In Subsection 2.2 we prove that in the

percentage fee model, only Nash Social Welfare maximization variants are implementable.

Theorem: Let M be an incentive compatible mechanism in the percentage fee model when the valuations

are positive but otherwise unrestricted. Suppose that the size of the image of the allocation function of M is

at least 3. Then, there exist constants αa (for each a ∈ A) and βi (for each player i) such that in every instance

(v1, . . . , vn) the allocation function of M outputs an alternative that belongs to argmaxa∈A αa ·
∏

i vi(a)
βi .

We do not prove this theorem directly but instead present a reduction from Roberts theorem. The reduction

relies on a simple yet powerful observation. Given a positive valuation v, let the valuation logv : 2M → R

be defined as logv(S) = log v(S). Now, let V be a class of non-negative valuations and let logV denote

the class of valuations: logV = {logv : v ∈ V}. We show a one-to-one and onto correspondence between

mechanisms in the traditional model when each valuation is in logV and mechanisms in the percentage fee

model when each valuation is in V . Note that if V is the set of unrestricted positive valuations, then logV
is the set of unrestricted valuations. Thus, Roberts theorem applies to the set of implementable social choice

functions in the traditional model when each valuation is in logV . We use this to characterize the set of

implementable social choice functions when the valuations are in V in the percentage fee model.

The first paper to observe a connection between implementability and logV is Cole et al. [12]. They con-

struct a mechanism that maximizes the Nash Social Welfare as a mechanism that can be seen as an implemen-

tation of the VCG mechanism in logV . In their setup the valuations are homogeneous, so this implementation

does not require money, similarly to the sharecropping setting discussed above.

We also study the set of implementable functions in the single parameter setting. We focus on binary single

parameter domains where for each player i, the set of alternatives A is divided into “winning” alternatives

Wi and “losing” alternatives Li. For every player i and valuation vi ∈ Vi there is a value hvi such that

vi(a) = hvi , for all a ∈ Wi. For every player i, there exists a value li > 0 such that for every valuation

vi ∈ Vi and alternative a ∈ Li, vi(a) = li. Unlike implementability in rich domains, in single-parameter

settings we get that the set of implementable allocation functions is identical in the percentage fee model and

in the traditional model (Subsection 2.3):

Theorem: Let f be an allocation function when the domains of all players are binary single parameter. Then,
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f is implementable in the percentage fee model if and only if f is monotone4 for each player i.
The characterization results that we provide in this paper are similar in spirit to a paper by Deb and Mishra

[14] on implementability in domains with contingent payments. However, the set of allowed payments in [14]

is different than ours as well as some of their assumptions (e.g., their “binary independence” assumption).

Thus, the characterization results of neither paper imply the other. Furthermore, the techniques used to obtain

the characterization results vary significantly.

Our Results II: Computationally Efficient Approximation Mechanisms

We have seen that maximizing the Nash Social Welfare is possible with percentage fees. However, maximizing

the Nash Social Welfare is NP-hard even in very simple settings, e.g., when the valuations are additive. Thus,

much work has focused on developing approximation algorithms for the NSW, e.g., a constant approximation

for combinatorial auctions with submodular valuations [27, 22].

One could hope that the correspondence that is used to obtain the analog of Roberts theorem would enable

the “automatic conversion” of every computationally efficient approximation mechanism in the traditional

model to an approximation mechanism in the percentage fee model with a comparable approximation ratio.

Unfortunately, the correspondence does not preserve the approximation ratio. We thus must develop new

computationally efficient and incentive-compatible approximation mechanisms for the percentage fee model.

One obstacle in constructing good incentive compatible mechanisms is that simple mechanisms for max-

imizing the social welfare do not provide any reasonable approximation ratio for the Nash Social Welfare.

For example, both the mechanism that allocates the grand bundle to the player that values it the most and the

mechanism that randomly allocate the items provide an n approximation to the social welfare, but the first

mechanism provides no approximation to the NSW and a random allocation might output an instance with

non-zero NSW with exponentially small probability5 . To overcome this obstacle, we “derandomize” this ran-

dom allocation mechanism and get a deterministic mechanism that runs in polynomial time when the number

of players n is constant (Subsection 3.1):

Theorem: Consider a combinatorial auction with m items and n players with XOS valuations. There is a

deterministic mechanism in the percentage fee model that guarantees an approximation ratio of (1 + ǫ)n, for

any constant ǫ > 0. If the valuations are subadditive, then the approximation ratio is O(n logm). The running

time of the mechanism is O(mn) (i.e., poly(m) for a constant number of players).

The mechanism enumerates over the support of an n-wise independent distribution, where at least one of them

provides a good approximation to the NSW. We develop the percentage fee analog of (traditional) maximal-

in-range mechanisms to prove incentive compatibility.

Maximal-in-range mechanisms were heavily studied in the traditional model as a way of obtaining com-

putationally efficient dominant strategy mechanisms [17, 18, 6, 13]. In a maximal-in-range mechanism, there

is a fixed set of allocations (independent of the input) and the mechanism finds the welfare-maximizing allo-

cation in the range. If the welfare-maximizing allocation in the range always guarantees a good approximation

ratio and can be efficiently found, then applying the VCG mechanism (with respect to the restricted range)

ensures incentive compatibility. Similarly, for maximizing the NSW in the percentage fee model, we identify

a restricted range in which the best allocation in the range always has a high NSW. The range structure will

be simple enough so that the best allocation can be efficiently found. Incentive compatibility of maximal-in-

range mechanisms in the percentage fee model is proved similarly to proving the incentive compatibility of

maximizing the NSW that was discussed above.

4Recall that f is monotone for player i if for each vi, v−i for which i wins in the instance (vi, v−i), i also wins in the instance

(v′i, v−i) when v′i > vi.
5Suppose we have n players and n items. Each player is interested only in one unique item for a value of 1 and the rest for a value

of 0. The only allocation that gives a positive NSW is the one that gives each player his unique item.
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Theorem: Consider a combinatorial auction with m items and n players with subadditive valuations. There

is an incentive compatible O(min(n2, mn )) = O(m
2

3 )-approximation mechanism in the percentage fee model.

The mechanism makes poly(m,n) value queries and runs in poly(m,n) time.

This mechanism can be found in Subsection 3.2. Note that in this setting, the best known approximation

algorithm (which is not incentive compatible) is that of [4] which provides an approximation ratio of n
53

54 , but

this algorithm uses demand queries. Using value queries, there was a known O(n)-approximation [23, 3], and

in terms of the number of items the best approximation ratio that one can hope for algorithms for subadditive

valuations that use polynomially many value queries, even ignoring incentives, is O(
√
m) [19]6. In Subsection

3.3 we match this approximation ratio with incentive-compatible mechanism with polynomially many value

queries but with an exponential running time:

Theorem: Consider a combinatorial auction with m items and n players with subadditive valuations. There is

an incentive compatible maximal-in-range mechanism in the percentage fee model that guarantees an approx-

imation ratio of Õ(min(n, mn )) = Õ(m
1

2 ). The mechanism uses poly(m,n) value queries and 2npoly(m)
running time.

Our last result (Subsection 3.4) shows that even for a constant number of players n, no polynomial time

maximal-in-range mechanism can guarantee an approximation ratio better than n. This is tight, considering

the maximal-in-range mechanisms discussed above. We also note that without incentive-compatibility, a

constant factor of 1−1/e− ǫ can be achieved for NSW with any constant number of players with submodular

valuations [23].

Theorem: Let M be a maximal-in-range mechanism for n players with valuations from a class that includes

additive and valuations. Suppose that M guarantees an approximation ratio of 1/n + ε, for some constant

ε > 0. Then, M does not run in polynomial time, unless NP ⊆ P/poly.

2 Implementability in the Percentage Fee Model

In this section we will see that maximizing the Nash Social Welfare is possible with percentage fees. We will

then prove an analog of Roberts theorem by showing that if the valuations are positive but unrestricted, the only

set of implementable social choice functions in the percentage fee model are those that maximize weighted

versions of the Nash Social Welfare. Finally, we study single-parameter mechanisms in the percentage fee

model.

2.1 Maximizing the Nash Social Welfare

Theorem 2.1 (Nash Social Welfare Maximization). Consider a domain V where all valuations are positive

or all valuations are non-negative and there is an alternative null such that vi(null) = 0 for every player

i. Let f be a social choice function defined on Vn that selects an alternative that maximizes the Nash Social

Welfare. Suppose that when the optimal Nash Social Welfare is 0, f selects the alternative null. Then, f is

implementable in the percentage fee model.

Note that the theorem holds in particular for combinatorial auctions, where all valuations are non-negative

and the allocation that does not allocate any items has value 0 for all players. In fact, the use of this condition

is a technicality and the function that maximizes the Nash Social Welfare can be implemented in any domain

6Formally, the result of [19] applies to maximizing the social welfare, not the NSW. However, if in a lower bound proof for the

social welfare, the optimal welfare maximizing solution gives all players approximately the same value, then the arithmetic/geometric

mean inequality suffices to claim the same bound for NSW. This is the case for this particular lower bound proof, and in fact all lower

bounds for the social welfare in all oracle models that we are aware of have this property.
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if we do allow pi(v1, . . . , vn) = 1, but it suffices to allow that only if the Nash Social Welfare in the instance

(v1, . . . , vn) is 0.

Proof. Let pi be the following function:

pi(v1, . . . , vn) =







1−
∏

j 6=i vj(f(v1,...,vn))

maxa∈A

∏
j 6=i vj(a)

if maxa∈A
∏

j vj(a) > 0;

0 if maxa∈A
∏

j vj(a) = 0.

Observe first that the mechanism (f, p) is well defined, as for every player i and v1, . . . , vn we have that

0 ≤ pi(v1, . . . , vn) < 1.

To see that this payment function is incentive compatible, start by fixing v−i. We first handle the case

in which maxa∈A
∏

j vj(a) > 0. We have that (1 − pi(vi, v−i)) · vi(f(vi, v−i)) =
(
∏

j 6=i vj(o))·vi(o)
maxa∈A

∏
j 6=i vj(a)

, for

o = f(vi, v−i) ∈ argmaxa
∏

j vj(a). For any other v′i, we have that (1 − pi(v
′
i, v−i)) · vi(f(v′i, v−i)) =

(
∏

j 6=i vj(w))·vi(w)

maxa∈A

∏
j 6=i vj(a)

, for w = f(v′i, v−i). Incentive compatibility follows by
(

∏

j 6=i vj(o)
)

·vi(o) ≥
(

∏

j 6=i vj(w)
)

·
vi(w) since o maximizes the NSW.

Now, consider the case in which maxa∈A
∏

j vj(a) = 0. Recall that in this case the mechanism outputs the

null alternative which all players value at 0. Observe that for every v′i it is either the case that f(v′i, v−i) = null
or that f(v′i, v−i) = w 6= null and vi(w) = 0. In either case we have that vi(f(vi, v−i)) · (1− p(vi, v−i)) =
vi(f(v

′
i, v−i)) · (1− p(v′i, v−i)) = 0.

2.2 Characterizations: An Analog of Roberts Theorem

We now prove an analog of Roberts theorem: we show that if the valuations are unrestricted the only set of

social choice functions that are implementable in the percentage fee model are those that maximize weighted

versions of the Nash Social Welfare.

Instead of proving this result directly, we prove a meta theorem that provides a one to one and onto corre-

spondence between mechanisms in the percentage fee model and mechanisms in the traditional model. This

correspondence will allow us to prove the characterization. However, it does not preserve the approximation

ratio. Thus, in Section 3 we devise computationally efficient approximation mechanisms in the percentage fee

model.

Definition 2.2. Let v be a positive valuation. Define logv to be the valuation such that for every bundle S,

logv(S) = log v(S). Given a class of positive valuations V , let logV denote the class of valuations

logV = {logv : v ∈ V}

Theorem 2.3. Let M be an n-player mechanism in the percentage fee model that is composed of an allocation

function f : Vn → A and a payment function p, where V is a class of positive valuations. Let M′ be an n-

player mechanism in the traditional model with an allocation function f ′ : logVn → A and payment function

p′. Suppose that for every instance (v1, . . . , vn) and player i, f(v1, . . . , vn) = f ′(logv1, . . . , logvn) and

p′i(logv1, . . . , logvn) = log 1
(1−pi(v1,...,vn))

.

Then, M is incentive compatible in the percentage fee model if and only if M′ is incentive compatible in

the traditional model.

Note that M and M′ are both well defined since pi(v1, . . . , vn) 6= 1.

Proof. For simplicity of presentation we prove incentive compatibility for player 1 only. The proof for the

other players is identical. Fix the valuations of all players except player i. It suffices to prove that if there

7



exists a profitable deviation in one model than there exists a profitable deviation in the other model as well.

Below we use the standard notation (u, v−1) = (u, v2, . . . , vn). We will also use the notation (u, logv−1) =
(u, logv2, . . . , logvn).

v1(f(v1, v−1)) · (1− pi(v1, v−1)) ≥ v1(f(v
′
1, v−1)) · (1− pi(v

′
1, v−1))

⇐⇒
log v1(f(v1, v−1)) + log(1− pi(v1, v−1)) ≥ log v1(f(v

′
1, v−1)) + log(1− pi(v

′
1, v−1))

⇐⇒

log v1(f(v1, v−1))− log(
1

1− pi(v1, v−1)
) ≥ log v1(f(v

′
1, v−1))− log(

1

1− pi(v′1, v−1)
)

⇐⇒
logv1(f

′(logv1, logv−1))− p′i(logv1, logv−1) ≥ logv1(f
′(logv′1, logv−1))− p′i(logv

′
1, logv−1)

We say that M and M′ from the statement of the lemma are twin mechanisms. Although technically

simple, the connection is quite powerful and allows us to easily adapt known results in the traditional model

to the percentage fee model:

Theorem 2.4 (an analog of Roberts’ theorem). Let M be an n-player incentive compatible mechanism in the

percentage fee model for an unrestricted domain of positive valuations Vn. Let A be the set of alternatives

and suppose that the size of the image of the allocation function of M is at least 3. Then, there exist constants

αa (for each a ∈ A) and βi (for each player i) such that the allocation function of M in every instance

(v1, . . . , vn) selects an alternative in A that maximizes αa ·
∏

i vi(a)
βi .

Proof. Let M′ be the twin mechanism of M. Since Vn is an unrestricted domain of positive valuations,

logV is an unrestricted domain (with no positivity condition). By Roberts’ theorem, M must be an affine

maximizer, i.e. it maximizes αa +
∑n

i=1 βiwi(a) for some parameters αa, βi. This also defines the allocation

function of the mechanism M to be as in the statement of the theorem.

2.3 Single Parameter Domains

We now study single parameter domains in the percentage fee model. We focus on binary single parameter

domains where for each player i, the set of alternatives A is divided to “winning” alternatives Wi and “losing”

alternatives Li. For every player i and valuation vi ∈ Vi there is a value hvi such that vi(a) = hvi , for all

a ∈ Wi. There is also some value7 li > 0 such that for every valuation vi ∈ Vi and alternative a ∈ Li,

vi(a) = li.
Recall that a social choice function f is monotone for player i if, for every v, u for which hv < hu and

v−i it holds that if f(v, v−i) ∈ Wi then f(u, v−i) ∈ Wi. Recall that in the traditional model monotonicity

characterizes implementability. Unlike implementability in rich domains where different functions can be

implemented in the traditional model and in the percentage fee model, for single parameter domains we

get that the set of implementable social choice functions is identical in the percentage fee model and in the

traditional model:

Theorem 2.5. Let f be a social choice function when the domains of all players are single parameter. Then,

f is implementable in the percentage fee model if and only if f is monotone for each player i.

7Note that we assume that li > 0 since if li = 0 only trivial functions can be implemented: fixing v−i, player i will get

an alternative in Li only if for all u it holds that fi(u, v−i) ∈ Li, as if there is some u for which fi(u, v−i) ∈ Wi, then

vi(f(u, . . . , vn))(1− pi(v1, . . . , vn) > vi(f(vi, . . . , vn))(1− pi(v1, . . . , vn).
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Proof. Let M be a mechanism that implements f with a payment function p. To show that f is monotone is

will be easier to work with a “normalized” mechanism in which the payment for winning player is always 0.

We define M′ to be a mechanism with a social choice function f and payment function p′ that is defined as

follows:

p′i(v1, . . . , vn) =











0 f(v1, . . . , vn) ∈ Wi;

1− 1−pi(v1,...,vn)
1−pi(w,v−i)

f(v1, . . . , vn) ∈ Li and ∃w s.t. f(w, v−i) ∈ Wi;

pi(v1, . . . , vn) otherwise.

Note that M′ may not be formally a mechanism since it might be that p′i(·) 6∈ [0, 1). However, it is still

incentive compatible: for every vi, ui, v−i such that f(vi, v−i) ∈ Wi and f(ui, v−i) ∈ Li, it holds that:

vi(f(vi, v−i)) · (1− pi(vi, v−i)) ≥ vi(f(ui, v−i)) · (1− pi(ui, v−i))

⇐⇒

vi(f(vi, v−i)) ≥ vi(f(ui, v−i)) ·
(1− pi(ui, v−i))

(1− pi(vi, v−i))

⇐⇒
vi(f(vi, v−i)) · (1− p′i(vi, v−i)) ≥ vi(f(ui, v−i)) · (1− p′i(ui, v−i))

We can similarly show that for every vi, ui, v−i such that f(vi, v−i), f(ui, v−i) ∈ Li

vi(f(vi, v−i)) · (1− pi(vi, v−i)) ≥ vi(f(ui, v−i)) · (1− pi(ui, v−i))

⇐⇒
vi(f(vi, v−i)) · (1− p′i(vi, v−i)) ≥ vi(f(ui, v−i)) · (1− p′i(ui, v−i))

As for vi, ui, v−i such that f(vi, v−i), f(ui, v−i) ∈ Wi, we get that vi(f(vi, v−i)) · (1 − p′i(vi, v−i)) =
vi(f(ui, v−i)) · (1− p′i(ui, v−i)).

We prove that f is monotone for each player i by using the fact that M′ implements it. Fix some v−i and

let vi be some valuation such that f(vi, v−i) ∈ Wi and ui be some valuation such that f(ui, v−i) ∈ Li (if

there is no such vi or no such ui then the function is trivially monotone with respect to player i and this v−i).

We have that vi(f(vi, v−i)) · (1−p′i(vi, v−i)) ≥ vi(f(u, v−i)) · (1−p′i(u, v−i)) if and only if some alternative

in Wi is selected. Recalling that p′i(vi, v−i) = 0 we get that hvi ≥ li · (1 − p′i(u, v−i)) if and only if some

alternative in Wi is selected. That is, for each valuation v′i for which hv′i > hvi , an alternative from Wi is

selected, as needed.

3 Computationally Efficient Approximation Mechanisms

This section studies the power of polynomial-time incentive-compatible algorithms. The primary tool that

we use is maximal-in-range mechanisms. In the percentage fee model, these are mechanisms that find an

allocation that maximizes the Nash Social Welfare over some predefined set of allocations. The incentive

compatibility of maximal-in-range mechanisms with suitable payments follows from Theorem 2.1.

First, we develop polynomial-time incentive-compatible mechanisms for a constant number of players n
with XOS or subadditive valuations (Subsection 3.1). The approximation ratio of the mechanisms is n for XOS

valuations and n · logm for subadditive valuations. Note that achieving an n-approximation via an incentive-

compatible mechanism is easy in the traditional model of social welfare: either conduct a second-price auction

on the grand bundle or allocate all items randomly. However, these mechanisms do not approximate the NSW

well (a second price auction on the grand bundle provides an approximation ratio of 0, and a random allocation

9



may provide a reasonable approximation with an exponentially small probability). We develop a new method

that provides an n-approximation by utilizing n-wise independent distributions.

When n is not necessarily a constant, we develop two randomized maximal-in-range algorithms. The

first one (Subsection 3.2), provides a ratio of O(m
2

3 ) in polynomial time with poly(n,m) value queries.

The second one (Subsection 3.3) provides a better ratio of O(m
1

2 ) with poly(n,m) value queries. However,

although the number of queries of the latter algorithm is polynomial, its running time is exponential.

Finally, in Subsection 3.4, we show that maximal-in-range mechanisms cannot do much better in polyno-

mial time: for any constant number of players n > 1, there is no maximal-in-range algorithm that provides an

approximation ratio better than n, unless NP ⊆ P/poly.

3.1 Approximations for a Constant Number of XOS / Subadditive Players

Theorem 3.1. For m items and n players with XOS valuations, there is a deterministic mechanism in the

percentage fee model that guarantees an (1+ε)n-approximation to the Nash Social Welfare (for any constant

ε > 0). If the valuations are subadditive, then the approximation ratio is O(n logm). The running time of the

mechanism is O(mn), hence polynomial for a constant number of agents n.

We remark that a trivial mechanism maximizing over all possible allocations would have a running time of

O(nm). This is exponential even for a constant number of agents n. (We may assume that m ≥ n, otherwise

in every allocation there is one player that is not allocated any item, thus the NSW is always 0.)

Proof. Our mechanism is a maximal-in-range mechanism with the following range: Given a set of items M
and a set of agents N , consider an n-wise independent distribution over NM , i.e. a distribution D such that

for any j1, j2, . . . , jn ∈ M , D projected on N{j1,...,jn} is a uniform product distribution. Such distributions

are known with support of size O(mn), with exact uniformity for m,n powers of a prime p, and with some

small deviation from uniformity for general m,n.8 The deviation from uniformity is the reason for (1 + ε)n
in the statement, otherwise we get a factor of n. In the following, we ignore this issue and assume that we

have a uniform n-wise distribution D.

Given valuations v1, . . . , vn, the mechanism maximizes
∏n

i=1 vi(Si) over all allocations (S1, . . . , Sn) in

the support of D, which takes takes O(mn) running time (by simple exhaustive search). The remaining claim

is that this mechanism provides an n-approximation to the optimal Nash Social Welfare. We prove that

E(S1,...,Sn)∼D

[

n
∏

i=1

vi(Si)

]

≥ 1

nn

n
∏

i=1

vi(Oi) (1)

where (O1, . . . , On) is an optimal allocation. Hence, the best allocation in the support of D provides an

n-approximation in terms of the Nash social welfare, (
∏n

i=1 vi(Si))
1/n ≥ 1

n (
∏n

i=1 vi(Oi))
1/n

. 9

The proof of (1) is as follows: consider an optimal allocation (O1, . . . , On) and for each agent, an additive

valuation in their XOS representation that attains the value of Oi: vi(Oi) =
∑

j∈Oi
wij . We also have

8Assuming m > n are powers of the same prime p, and Fm is a field with m elements, we consider a polynomial p(x) =
∑n−1

k=0
akx

k where a0, a1, . . . , an−1 are uniformly random in Fm. Agent i receives item j if and only if p(j) = i (mod n).
The random variables p(j) are n-wise independent, and uniformly distributed in Fm. The size of the probability space is O(mn),
corresponding to the choices of n coefficients in Fq . For general values of m,n, we can choose a prime power q > m, q = O(m)
and embed our construction in Fq , with some small non-uniformity in our distribution (due to q not being divisible by n).

9Note a subtle point here: We cannot claim that a randomized mechanism which samples a random allocation from D provides an

n-approximation in expectation, because E[
(
∏n

i=1
vi(Si)

)1/n
] could be substantially smaller than

(

E[
∏n

i=1
vi(Si)]

)1/n
.)
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vi(S) ≥
∑

j∈S wij for every bundle S, by the definition of XOS valuations. Hence,

E(S1,...,Sn)∼D

[

n
∏

i=1

vi(Si)

]

≥ E(S1,...,Sn)∼D





n
∏

i=1

∑

j∈Si

wij





≥ E(S1,...,Sn)∼D





n
∏

i=1

∑

j∈Si∩Oi

wij





= E(S1,...,Sn)∼D





∑

j1∈S1∩O1

. . .
∑

jn∈Sn∩On

n
∏

i=1

wiji





=
∑

j1∈O1

. . .
∑

jn∈On

Pr[j1 ∈ S1, . . . , jn ∈ Sn]
n
∏

i=1

wiji .

Now by the property of uniform n-wise independent distributions, we have Pr[j1 ∈ S1, . . . , jn ∈ Sn] =
∏n

i=1 Pr[ji ∈ Si] =
1
nn . So we can write

E(S1,...,Sn)∼D

[

n
∏

i=1

vi(Si)

]

≥
∑

j1∈O1

. . .
∑

jn∈On

1

nn

n
∏

i=1

wiji

=
1

nn

n
∏

i=1

∑

j∈Oi

wij =
1

nn

n
∏

i=1

vi(Oi)

which is the desired inequality (1).

Finally, for subadditive valuations, we recall that for every subadditive valuation v there is an XOS valua-

tion v′ that approximates it within an O(logm) factor: for every S, v′(S) ≤ v(S) ≤ v′(S) · logm [15]. As a

corollary, the same analysis gives a factor of O(n logm) for subadditive valuations.

3.2 A Polynomial Time O(m
2

3 )-Approximation Mechanism

We now provide a randomized maximal-in-range mechanism that provides an approximation ratio of O(m
2

3 )
for subadditive valuations. The mechanism combines two maximal-in-range algorithms. The first mechanism

finds an allocation that maximizes the NSW among all allocations that allocate one item to each player. This

mechanism provides an approximation ratio of m
n . Note that this mechanism can be implemented by running

a bipartite matching algorithm on the graph that contains players on one side and items on the other. The

graph has an edge between player i and item j if vi({j}) > 0 and in this case its weight is log vi({j}) .

The second mechanism partitions the set of items to n2 bundles S1, ..., Sn, by allocating each item to

one of the bundles independently at random and finding the allocation that maximizes the NSW among all

allocations in which each player gets one such bundle. This allocation can be found by running a bipartite

matching algorithm, similarly to before. We show that this mechanism provides an approximation ratio of

O(n2). Intuitively, the idea of the algorithm is as follows. Consider some player i and the bundle Oi that he

gets in the optimal solution. For each player i there is at least one bundle Si that is valuable enough for her,

since by subadditivity there is at least one bundle Sj such that vi(Sj ∩ Oi) ≥ vi(Oi)
n2 . We say that player i

is interested in the bundle Sj . A simple application of the birthday paradox shows that since the bundle Sj

that player i is interested in is distributed uniformly and independently, the probability that no two players are

interested in the same bundle Sj is at most 1
2 . Thus we can allocate each player i the bundle Sj that she is

interested in and get an approximation ratio of 1
n2 .
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The Algorithm

• Randomly partition the items into n2 bundles, S1, . . . , Sn2 . Each item j is assigned to a set uniformly

and independently of the other items.

• Choose the allocation that maximizes the Nash Social Welfare from the union of the following sets of

allocations:

1. The set of allocations which consists of all allocations in which each player gets one item.

2. The set of allocations which consists of all allocations in which each player gets one of the bundles

S1, . . . , Sn2 .

Theorem 3.2. There are payments that make the mechanism above incentive compatible in the percentage

fee model. The mechanism guarantees an approximation ratio of min(mn , n
2) = m

2

3 with probability at least
1
2 whenever the valuations of the players are subadditive. There is an implementation of the mechanism that

uses polynomially many value queries and runs in polynomial time.

It is easy to implement the mechanism with polynomially many value queries: query each player i for

her value vi({j}), for every item j, and for her value for the bundles S1, . . . , Sn2 . The total number of

queries is at most n · (m + n2). Note that given these queries we can find the allocation that maximizes the

NSW in polynomial time, by running a bipartite matching twice, once for each set of allocations. Incentive

compatibility also follows since the mechanism is maximal-in-range (in the percentage fee model).

As stated above, the mechanism is randomized and succeeds with probability 1
2 . Thus, we can run the

mechanism t times and the success probability increases to 1 − (12)
t. That is, the failure probability is

1/exp(m,n) when t is large enough but still polynomial. In general, incentive compatibility is not preserved

when repeating an incentive compatible mechanism several times and choosing the best outcome. However,

the incentive compatibility of maximal-in-range mechanisms (and hence also of this specific mechanism) is

preserved: randomization is used only to define the range of the mechanism. When payments are computed

with respect to the union of the ranges produced by the different coin flips, the composed mechanism is

incentive compatible.

It remains to prove that the mechanism provides the required approximation ratio. This will be proved by

the following two lemmas by noting that min(mn , n
2) ≤ m

2

3 for all possible values of m,n.

Lemma 3.3. With probability 1, the mechanism returns a solution of NSW at least n
mOPT .

Proof. We will show that this approximation ratio is guaranteed even if we consider only the first set of

allocations, where each player gets at most one item.

Let (O1, . . . , On) denote an allocation that maximizes the NSW. For each Oi, let oi denote an item in

Oi with the largest value as a singleton, i.e., oi ∈ argmaxj∈Oi vi({j}). Let ({a1}, . . . , {an}) denote the

allocation that maximizes the NSW in the first set of allocations. We have that:

n
∏

i=1

vi({ai}) ≥
n
∏

i=1

vi({oi}) ≥
n
∏

i=1

1

|Oi|
· vi(Oi) ≥

( n

m

)n
n
∏

i=1

vi(Oi)

where the second inequality is due to subadditivity and the last inequality follows from Σi|Oi| ≤ m and the

AM-GM inequality.

Lemma 3.4. With probability at least 1
2 , the mechanism returns a solution of NSW at least 1

n2OPT .

Proof. We will show that this approximation ratio is guaranteed with the specified probability even if we

consider only the second set of allocations.
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Let (O1, . . . , On) denote an allocation that maximizes the NSW. By subadditivity, we are guaranteed that

for each player i there exists at least one index ji ∈ [n2] such that vi(Oi ∩ Sji) ≥ vi(Oi)
n2 (if there are several

such ji’s, choose one uniformly at random). Note that since each item is assigned to one of S1, . . . , Sn2

independently, the ji’s are independent and uniform in {1, 2, . . . , n2}. The rest of the proof follows from the

following claim, which is essentially the (flip side of the) birthday paradox:

Claim 3.5. With probability at least 1
2 , there are no two players i, i′ such that ji = ji′ .

Proof. Fix two players, i, i′. Since ji, ji′ are chosen independently and uniformly from a range of n2 values,

the probability that ji = ji′ is 1
n2 . The number of pairs is

(

n
2

)

, so by the union bound, the probability that there

exists a pair of players i 6= i′ such that ji = ji′ is at most
(n
2
)

n2 < 1
2 .

Let ALG denote the NSW of the best allocation in the range. This is at least as good as the allocation that

gives each player i the bundle Sji , which provides an approximation ratio of n2:

ALG ≥
(

n
∏

i=1

vi(Sji)

)1/n

≥
(

n
∏

i=1

vi(Oi)

n2

)1/n

≥ 1

n2
OPT.

3.3 An Õ(m
1

2 )-Approximation Mechanism using O(n+m) Value Queries

We now show how to improve the approximation ratio of the algorithm provided in Subsection 3.2. However,

while the number of queries the algorithm of this subsection makes is still polynomial, the running time is not

polynomial.

We again combine two maximal-in-range algorithms. The first one finds an optimal matching and provides

an approximation ratio of m
n exactly as before. In the second mechanism, we partition the items uniformly

and independently into t = 2n bundles, S1, . . . , St. Our range consists of allocations where each player gets

either one of the bundles Sj or a singleton item. We show that the approximation factor of this mechanism is

Õ(n) w.h.p.

Consider an optimal allocation (O1, . . . , On). We show that if player i does not have an item j ∈ Oi

that contributes Ω̃(1t vi(Oi)), then E[vi(Si ∩Oi)] = Ω̃(1t vi(Oi)) with high probability. So if a typical bundle

Sj is not valuable for player i with high probability, then there is a “significant item” which is valuable for

player i (if there are several such item, arbitrarily choose one item the “significant item” of player i). Thus,

the following allocation gives a good approximation with high probability: if player i has a significant item,

allocate this item to the player. For the remaining players, allocate them an arbitrary bundle that does not

contain items that are significant for some player. Note that since there are at most n players and thus n item

that are significant for some player, there are at most n bundles that contain items that are significant for some

player. Hence, at most n out of the 2n bundles can be invalidated in this way, and so at least n bundles still

remain available to be allocated to players that do not have significant items.

We note that the first type of allocation (one item for each player) is actually a special case of the second

type, so we state only the second type in our algorithm.

The Algorithm

• Randomly partition the items into t = 2n bundles, S1, . . . , St. Each item j is assigned to Si for a

random i ∈ [t] uniformly and independently of the other items.
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• Choose an allocation that maximizes the Nash Social Welfare over the following set of allocations: All

allocations in which each player i either gets some bundle Sj , or a single item outside of the bundles

allocated to other players.

Theorem 3.6. The mechanism above with suitable payments is incentive-compatible in the percentage fee

model, and guarantees an approximation ratio of min(mn , O(n · log2m)) = O(m1/2 · logm) with probability

at least 1 − 1/m whenever the valuations of the players are subadditive. There is an implementation of the

mechanism that uses O(m+ n) value queries, and the running time is 2O(n)poly(m).

It is easy to implement the mechanism withO(m+n) value queries: Given the random partition (S1, . . . , Sn),
query each player i for her value vi({j}) for every item j, and her value v(Si) for every bundle Si, 1 ≤ i ≤ t.
The total number of such queries is m + 2n. To find the best allocation in the range, we enumerate over all

subsets A of players who should get a full bundle, and over all subsets B of |A| bundles to be allocated as a

full bundle: these are 2O(n) configurations to consider. For each configuration, we find the best assignment

B to A by solving a max-weight matching problem with weights log vi(Sj) (if vi(Sj) > 0), and also the best

assignment of singletons outside of
⋃

i∈B Si to the players outside of A, by solving another matching problem

with weights log vi({j}) (if vi({j}) > 0). This takes poly(m,n) time for each configuration. So the total

running time is 2O(n)poly(m).
It remains to prove that the mechanism provides the required approximation ratio. We will use the follow-

ing lemma:

Lemma 3.7. For some constant c > 0, the following holds. Let v : 2S → R+ be subadditive and let S′ be a

random subset of S that is obtained by including each item of S independently with probability 1
t , for some

t > 1. Suppose that for every j ∈ S, v({j}) ≤ v(S)

c·t·log2 m
. Then,

Pr

[

v(S′) ≥ v(S)

c · t · logm

]

> 1− 1

m2
.

Proof. We use the following claim from [15], which is essentially a result on approximation of subadditive

functions by XOS ones.

Claim 3.8 ([15]). There exists a constant c′ > 0 such that for every subadditive function v : 2S → R+, there

exist prices (pj : j ∈ S) such that

1.
∑

j∈S pj ≥ v(S)
c′·log |S| ,

2. ∀S′ ⊆ S,
∑

j∈S′ pj ≤ v(S′).

We choose the c in the lemma as c = 6c′. Given S, consider the prices pj given by the claim. We will

give a lower bound on the expected value of v(S′), where each element of S appears independently with

probability 1/t. We will use the following Chernoff bound:

Pr[X < (1− ε)µ] < e−ε2µ/2

where X =
∑

j∈S ajXj , 0 ≤ aj ≤ 1, {Xj : j ∈ S} are independent random values in {0, 1}, and µ = E[X].

In our setting, Xj is the indicator variable of the event j ∈ S′, and we set aj = c·t·log2 m
v(S) pj . Thus, by

assumption we have aj ≤ c·t·log2 m
v(S) v({j}) ≤ 1, µ = E[X] = 1

t

∑

j∈S aj =
6c′·log2 m

v(S)

∑

j∈S pj ≥ 6 logm and

hence by the Chernoff bound with ǫ = 5/6,

Pr[X < logm] ≤ Pr[X < µ/6] < e−(5/6)2µ/2 < e−µ/3 ≤ 1

m2
.
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Consequently, with probability more than 1− 1/m2, X ≥ logm, and

v(S′) ≥
∑

j∈S′

pj =
v(S)

c · t · log2 m
∑

j∈S′

aj =
v(S)

c · t · log2 mX ≥ v(S)

c · t · logm.

The approximation ratio can now be proved by combining the following two lemmas.

Lemma 3.9. With probability 1, the mechanism outputs an allocation of value at least n
mOPT .

The proof of this Lemma is identical to the proof of Lemma 3.3, using the fact that allocations of 1 item to

each player are included in our range: We select a set of players A who obtain a full bundle Sj , and the other

agents obtain a singleton item. As a special case, we consider A = ∅, in which case the allocation is simply a

matching.

Lemma 3.10. With probability 1−1/m, the mechanism outputs an allocation of value at least 1
2cn log2 m

OPT .

Proof. Let (O1, . . . , On) denote an allocation that maximizes the NSW. We call player i focused if there exists

some item si ∈ Oi such that vi({si}) ≥ vi(Oi)

c·t·log2 m
. In this case, we call si the significant item of player i (if

there are several such items, we choose one arbitrarily). If the significant item si of a focused player i is

assigned to a set Sj , we say that player i is interested in the set Sj .

Let’s call a bundle available if it doesn’t contain any significant item. Observe that at most n of the

bundles S1, . . . , St can contain a significant item of some player, and hence at least n bundles are available

(recall that t = 2n). Let us allocate some available bundle Sσ(i) to each player i who is not focused; we

can do this uniformly at random, given the set of available bundles. Since items are assigned to bundles Sj

independently, the choice of σ(i) is independent of how Oi is partitioned among the bundles. Hence, from the

point of view of an unfocused player i (assuming that she cares only about the items in Oi), the choice of σ(i)
is uniformly random, and the set Oi ∩ Sπ(i) can be viewed as sampling elements of Oi with probability 1/t.
Hence, we can apply Lemma 3.7.

Claim 3.11. Assuming OPT > 0, with probability at least 1 − 1
m , for each player i that is not focused it

holds that vi(Sσ(i)) ≥ vi(Oi)
c·t·logm .

Proof. For each player i that is not focused, the value of every singleton is bounded by vi({j}) < vi(Oi)

c·t·log2 m
. As

discussed above, Oi ∩Sσ(i) is a random subset of Oi where each item appears independently with probability

1/t. By Lemma 3.7, Pr[vi(Oi ∩ Sσ(i)) < vi(Oi)
c·t·logm ] < 1

m2 . By the union bound, since there are at most n

players that are not focused, the statement of the lemma holds with probability at least 1 − n
m2 ≥ 1 − 1

m
(where in the last inequality we use n ≤ m otherwise in any allocation at least one player gets no items and

OPT = 0).

We can now finish the proof of the lemma by considering the following allocation: Each player i that

is focused receives its significant item si. Each player i that is not focused receives the bundle Sσ(i). By

construction, these are disjoint sets and hence this is a valid allocation. With probability at least 1 − 1/m,

every player i receives value at least
vi(Oi)

c·t·log2 m
, either from their bundle or their significant item. Hence, the

allocation provides an approximation factor of 1
2c·n log2 m

.

To conclude, we note that the mechanism achieves simultaneously an approximation factor of n
m and

1
2cn log2 m

. Hence, we have a factor at least max{ n
m , 1

n log2 m
} ≥ 1

m1/2 logm
for all possible values of m,n (the

worst case being n = m1/2

logm ).
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3.4 An Impossibility Result for MIR Mechanisms with Additive Valuations

We now prove that the Nash Social Welfare cannot be maximized to within a factor better than 1/n by a

maximal-in-range mechanism in polynomial time. The proof is composed of two steps. In the first step we

show that if the range of some mechanism contains many allocations then there is a relatively large subset of

the items S and a set of players T such that projecting the set of all allocations of the mechanism on the subset

S, we get all possible allocations of the items in S to the players in T . The proof relies on similar lemmas

that were obtained to prove the limits of polynomial time maximal-in-range mechanisms for maximizing the

social welfare. We then use these sets S, T to show that the maximal-in-range mechanism must solve exactly

the problem of maximizing the NSW for two players with additive valuations, which is NP-hard.

Theorem 3.12. Fix a constant ε > 0 and n ≥ 2. There is no polynomial-time maximal-in-range mechanism

for n players with additive valuations that provides a ( 1n+ε)-approximation to the Nash social welfare, unless

NP ⊆ P/poly.

Definition 3.13. Let R be a set of allocations. We say that R contains an (S, T )-shattering if the range R
restricted to the set of items S, contains T S , i.e. all possible allocations of items in S to players in T .

The next lemma follows from a similar lemma in [6].

Lemma 3.14. Suppose that |M | = m, |N | = n, ε ∈ (0, 14), m ≥ 2
ε2
n log(2n). Then there exists δ =

δ(n, ǫ) > 0 such that if M is a maximal-in-range mechanism with range R ⊆ NM that provides a ( 1n + ε)-
approximation in terms of Nash social welfare for additive valuations, then there exists a subset of items

S ⊆ M , |S| ≥ δm, and a subset of the players T ⊆ N , |T | ≥ 2, such that R contains an (S, T )-shattering.

Proof. Consider a uniformly random function f : M → N . We interpret f as an instance of Nash Social

Welfare, where f−1(i) is the set of items in which player i is interested, and her (additive) valuation is

vi(S) = |S ∩ f−1(i)|. We assume that M provides a c-approximation, hence there must be an allocation in

the range (S1, . . . , Sn) ∈ R such that

(

n
∏

i=1

vi(Si)

)1/n

=

(

n
∏

i=1

|Si ∩ f−1(i)|
)1/n

≥
(

1

n
+ ε

)

· OPT =

(

1

n
+ ε

)

·
(

n
∏

i=1

|f−1(i)|
)1/n

(2)

This holds for every instance f , but we are particularly interested in those instances where the sets f−1(i) are

“ε-balanced”: |f−1(i)| ≥ (1− ε)mn for every i. By Chernoff bounds, this happens for a uniformly random f
with probability at least 1/2: For each i, |f−1(i)| is a summation of independent 0/1 random variables with

expectation µ = m/n, and by the Chernoff bound, Pr[|f−1(i)| < (1−ε)µ] < e−ε2µ/2 ≤ e− log(2n) = 1/(2n)
by the assumptions of the lemma.

Assuming that f is ε-balanced, (2) implies the following: By the AM-GM inequality,

1

n

n
∑

i=1

|Si ∩ f−1(i)| ≥
(

n
∏

i=1

|Si ∩ f−1(i)|
)1/n

≥
(

1

n
+ ε

)

·
(

n
∏

i=1

|f−1(i)|
)1/n

≥
(

1

n
+ ε

)

(1− ε)
m

n
>

(

1

n
+

ε

2

)

m

n
. (3)

Let us define a function g : M → N ∪ {∗} encoding (S1, . . . , Sn): g(j) = i if j ∈ Si and g(j) = ∗ if j
is not contained

⋃n
i=1 Si. Equation (3) can be interpreted as saying that f and g agree on at least

(

1
n + ε

2

)

m
coordinates, i.e. the Hamming distance between f and g is at most (1 − 1

n − ε
2)m. Now we refer to Lemma

4.4 in [6], with U = M , V = N , γ = 1/2, q = 2: The lemma concludes that for some δ(n, ǫ) > 0 there

is a set of items S ⊆ M and a set of players T ⊆ N such that |S| ≥ δ|M |, |T | ≥ 2, and R contains an

(S, T )-shattering.

16



Lemma 3.15. Let M be a maximal-in-range mechanism for n players, for some constant n ≥ 2. Suppose

for some fixed δ > 0 and every m, the range of M contains an (S, T ) shattering, for |S| ≥ δm and |T | ≥ 2.

Then, M does not run in polynomial time, unless NP ⊆ P/poly.

Proof. We use M to exactly solve the problem of maximizing the NSW with a set of 2 additive players and

m′ items. Recall that this problem is NP-hard (by a simple reduction from the NP-complete Subset Sum

problem). Let (v′1, v
′
2) be such an instance on m′ items.

Given m′, we consider instances of NSW with n players and m = ⌈m′/δ⌉ items. Our assumed MIR

mechanism with these parameters contains an (S, T )-shattering where |S| ≥ δm ≥ m′ and |T | ≥ 2. We

can actually assume that |T | = 2, which is implied by any shattering with a larger T . Let us also assume for

convenience that S = [m′] = {1, 2, . . . ,m′} and T = {1, 2}.

Given the valuations v′1, v
′
2 on [m′], we define additive valuations v1, v2 on [m] as follows: vi(j) = v′i(j),

for 1 ≤ j ≤ m′, and vi(j) = 0 otherwise. To extend this to an instance with n players, we need to define the

valuations of players 3, . . . , n. For each such player i, we will have a set of (1 − ε)m permissible valuations

vji : For every m′ < j ≤ m, we set vji ({j}) = 1 and vji ({j′}) = 0, if j′ 6= j.

Note that the set of permissible valuations for each extra player is of size (1 − ε)m and thus there are

((1− ε)m)n−2 instances that may be obtained by each extra player having one valuation from its permissible

set. We run M on all such instances and choose an allocation that maximizes the NSW. Thus, the total running

time of the reduction is O(mn−2) times the running time of the mechanism M, which is polynomial assuming

that n is constant and the running time of M is polynomial as well. The correctness of the reduction follows

from the following claim.

Claim 3.16. In all iterations of the reduction, the optimal NSW of the constructed instance is at most the

optimal NSW of the original instance. Further, there exists an iteration of the reduction in which the optimal

NSW equals the optimal NSW in the original instance.

Consider some iteration of the reduction, where the choice of the valuation of each player i, n ≥ i > 2,

is vji . Consider some allocations of the items (S1, . . . , Sn). Note that
∏n

i=3 v
j
i (Si) ∈ {0, 1}, by construction.

Also note that
∏2

i=1 vi(Si) =
∏2

i=1 vi(Si ∩ [m′]) =
∏2

i=1 v
′
i(Si ∩ [m′]). We thus have that

∏n
i=1 vi(Si) ≤

∏2
i=1 v

′
i(Si ∩ [m′]). Note that (S1 ∩ [m′], . . . , Sn ∩ [m′]) is an allocation of the items in [m′]. Hence, the first

part of the claim follows.

We now prove the second part of the claim. Let (O1, O2) be an optimal allocation of items in [m′] to

players in T = {1, 2}. Note that there since the range has an (S, T )-shattering with S = [m′], T = {1, 2},

there is an allocation (S1, . . . , Sn) such that
∏2

i=1 vi(Si ∩ [m′]) =
∏2

i=1 v
′
i(Oi). We can assume that for each

i > 2, Si 6= ∅, otherwise the NSW of (S1, . . . , Sn) is always 0 and thus we can assume that this allocation is

not in the range of the algorithm in the first place. Consider the iteration where the valuation of each player

i > 2 is vji , for some j ∈ Si. We have that
∏n

i=3 v
j
i (Si) = 1. In total we get that

∏n
i=1 vi(Si) =

∏2
i=1 v

′
i(Oi),

as needed.

To summarize, the maximum NSW over all allocations in the range would be one whose value is exactly

v′1(O1) · v′2(O2) and we could also find O1, O2 (or another allocation of equal NSW value) by restricting the

output of our mechanism to the first two players. Hence, we would be able to solve an NP-hard problem for

every given input size (possibly non-uniformly, hence the conclusion is NP ⊂ P/poly).

Conclusion and Future Directions

In this work we design incentive compatible mechanisms that maximize the Nash Social Welfare by consider-

ing a novel percentage fee model. Our work leaves a number of open questions. At the most immediate level,

can we obtain an approximation ratio of m
1

2 not just with a polynomial number of value queries but also in

polynomial time? In addition, our hardness result applies only to maximal-in-range mechanisms; is it possible
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to prove that obtaining an approximation ratio better than m
1

2 for any incentive-compatible mechanism in our

model is computationally hard, or requires an exponential number of queries? Such impossibilities are known

in the traditional model [16, 21, 20] but we do not know how to obtain analogous results for approximating

the NSW in the percentage fee model.

In addition, all of our bounds use simple value queries. We do not know whether more complicated

queries, e.g., demand queries, can help obtain better approximation ratios.

Finally, in this paper we have demonstrated how different payment schemes enable the implementation

of useful social choice functions. Is it always possible to characterize the set of implementable social choice

functions as a function of the payment method? Specifically, what can be implemented if the designer is

allowed to offer, for each alternative, either a fixed fee or a percentage fee? It will also be very interesting to

understand whether there are other natural payment schemes that enable the incentive-compatible implemen-

tation of different fairness notions.
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