
ar
X

iv
:2

30
9.

13
24

4v
1

 [
cs

.G
T

]
 2

3
Se

p
20

23

Chunking Tasks for Present-Biased Agents

Joe Halpern1, Aditya Saraf1

1Cornell University

September 26, 2023

Abstract

Everyone puts things off sometimes. How can we combat this ten-
dency to procrastinate? A well-known technique used by instructors
is to break up a large project into more manageable chunks. But
how should this be done best? Here we study the process of chunk-
ing using the graph-theoretic model of present bias introduced by
Kleinberg and Oren (2014). We first analyze how to optimally chunk
single edges within a task graph, given a limited number of chunks.
We show that for edges on the shortest path, the optimal chunking
makes initial chunks easy and later chunks progressively harder. For
edges not on the shortest path, optimal chunking is significantly more
complex, but we provide an efficient algorithm that chunks the edge
optimally. We then use our optimal edge-chunking algorithm to opti-
mally chunk task graphs. We show that with a linear number of chunks
on each edge, the biased agent’s cost can be exponentially lowered, to
within a constant factor of the true cheapest path. Finally, we extend
our model to the case where a task designer must chunk a graph for
multiple types of agents simultaneously. The problem grows signifi-
cantly more complex with even two types of agents, but we provide
optimal graph chunking algorithms for two types. Our work highlights
the efficacy of chunking as a means to combat present bias.

1 Introduction

Everyone puts things off sometimes. How can we combat this tendency
to procrastinate? A well-known technique used by instructors is to break
up a large project into more manageable chunks. But how should this be
done best? Here we study the process of chunking using the graph-theoretic
model of present bias introduced by Kleinberg and Oren (2014). One of our

1

http://arxiv.org/abs/2309.13244v1

main results confirms the intuition long held by teachers: in many cases, the
best way to chunk a single task involves making the initial subtasks easy
and then getting progressively harder. We also provide algorithms that can
best “distribute” chunks across many tasks, which could be applied in an
automated to-do list chunking app.

Present bias is the tendency of agents to overweight costs and rewards
experienced in the current time period, which helps explain many irrational
behaviors, from procrastination to task abandonment. Kleinberg and Oren
(2014) had the crucial insight that this diverse behavior could be captured
in a single graph-theoretic model. They represent tasks using a directed,
acyclic graph G, with designated start s and end t. A path through this
graph corresponds to a plan to complete the task; each edge represents one
step of this plan. The weights on edges represent the costs of completing
that step. While the model is simple, it is deceptively complex to analyze;
it has been a popular starting point for present bias in the CS commu-
nity (see, e.g., (Gravin et al., 2016; Albers and Kraft, 2017; Oren and Soker,
2019; Ma et al., 2019; Anagnostopoulos et al., 2020; Fomin et al., 2020)).

The goal of an agent is to complete the task while incurring the least
cost. An optimal (unbiased) agent simply computes the shortest path and
takes it. A naive present-biased agent with bias parameter b > 1 behaves
as follows. At s, they compute their perceived cost of each path to t by
scaling up the cost of the first edge on each path by b. Then they take one
step along this path, say to vertex u, and then recompute their perceived
costs, this time by scaling up the costs on the edges out of u. Notice that
the agent may plan to take some path P at s, but then deviate from their
plan after one step. This is because they (naively) do not take the future
impact of their present bias into account when planning; see Figure 1 for an
example.

We extend the Kleinberg-Oren model by giving a task designer the power
to break up an edge into chunks. The agent completes the chunks one at
a time, which reduces the impact of their present bias. We consider the
chunks to be a mental feature – the designer does not actually check that
the agent completes the task in chunks, but instead suggests a chunking to
the agent. Our model is a good fit for many, but not necessarily all tasks.
We now highlight three families of applications and consider the extent to
which our results apply to them.

The first family of applications are personal tasks, such as in the example
given by George Akerlof of repeatedly putting off an errand until the next
day (Akerlof, 1991). In these examples, we believe that chunking can be
an effective tool. Breaking even a simple task like “mailing books” down

2

s

x

v
0

t

z
21

y
6

0
0

0

11

Figure 1: Taken from Saraf et al. (2020). The cheapest path is (s, x, t) with
total cost 6. However, an agent with bias b = 2 will take path (s, v, z, t),
with cost 21. Importantly, when the agent is deciding which vertex to move
to from s, they evaluate the path starting with x as having total cost 12,
while the path starting with v has total cost 11. This is because they assume
they will behave optimally at v by taking path (v, y, t). However, they apply
their bias at v and deviate to the most expensive path.

into smaller components like “gather the books”, “package the books”, and
“drive to the post office” seems like a typical way to convince oneself to do
an errand. However, there is no real task designer here. Further, our results
assume a known bias, but agents in our model are not fully aware that they
have present bias. Thus, personal tasks are not the main application we
consider (though our overall takeaway that chunking is valuable still applies
to these tasks).

Next we consider educational examples, where students procrastinate on
course work (while not planning with this in mind). Our model applies well
here, as the task designer (the instructor) really does have a vested interest
in ensuring that students complete the course, and do so as efficiently as
possible. As mentioned before, we do not model the teacher as actively
enforcing the chunks, for example with grades or deadlines. Our model is
better understood as the teacher suggesting chunks to the students. We
discuss further at the end of Section 2.

Finally, another application with great potential is to automatically
chunk to-do lists. Consider an app that automatically takes in a user’s
to-do list, which could have multiple dependencies, and suggests ways to
chunk some tasks. To avoid overwhelming the user, the app would not want
to suggest too many chunks. 1

We are not the first to consider ways of alleviating the harm caused by
present bias (which can be quite significant—as shown by Kleinberg and Oren

1Interestingly, it seems that Google’s acquisition of the startup Timeful has led to users
of Gmail getting various “nudge” reminders, where the nudges chosen are based in part
on research on present bias [J. Kleinberg, private communication, 2022].

3

(2014) and Tang et al. (2017), the ratio of the optimal agent’s cost to the bi-
ased agent’s cost can be exponential in the size of the graph). Kleinberg and Oren
(2014) propose a model where a reward is given after finishing the task, and
where the agent will abandon the task if at any point, they perceive the
remaining cost to be higher than the reward. Unlike an optimal agent, a
biased agent may abandon a task partway through; see Figure 2 for an ex-
ample. As a result, Kleinberg and Oren give the task designer the power
to arbitrarily delete vertices and edges, which can model deadlines. They
then investigate the structure of minimally motivating subgraphs, the small-
est subgraph where the agent completes the task, for some fixed reward.
Follow-up work of Tang et al. (2017) shows that finding any motivating
subgraph is NP-hard. Instead of deleting edges, Albers and Kraft (2019)
consider the problem of spreading a fixed reward onto arbitrary vertices to
motivate an agent to complete a task, and find that this too is NP-hard
(with a constrained budget).

s 2 tv 6

Figure 2: Let (s, v) represent buying a gym membership and (v, t) represent
working out regularly for a month (Roughgarden, 2016). At t, the agent
receives a reward of 11 due to health benefits. With bias b = 2, the agent
initially believes this task is worth completing, but due to his bias, abandons
the task at vertex v, after having already purchased the membership.

These results focus on the problem of convincing an agent to complete
a task, rather than redirecting agents to cheaper paths. Though these goals
are related, it’s natural to wonder how we might sway agents towards more
optimal behavior, rather than merely settling for task completion. In other
words, even if agents are willing to complete a task using a needlessly ex-
pensive path (perhaps because of a large reward), we should still consider
how to make them behave more optimally. Kleinberg et al. (2016) partially
investigate this question in a model involving sophisticated agents, who plan
around their present bias. They consider several types of commitment de-
vices – tools by which sophisticated agents can constrain their future selves.
However, these tools may require more powerful agents or designers, and
don’t necessarily make sense for naive agents. Saraf et al. (2020) takes a
different approach, arguing that task designers can induce optimal behav-
ior by setting up a competition between biased agents. While they obtain
strong results for several families of graphs, there are also graphs where their
competitive model can offer no benefit to agents.

4

Finally, Kleinberg and Oren (2014) consider a restricted version of our
chunking problem, which is close to a special case of our model. They focus
on the single edge graph (s, t), and derive the optimal chunking in that
setting. When considering general graphs, we obtain a similar result when
chunking edges on the cheapest path; for other edges, the optimal chunking
is more complex. Further, looking at general graphs allows us to ask how a
fixed chunking budget should be best allocated across multiple edges, and,
more broadly, how to convince agents to take a different (and cheaper) path.

The rest of the paper is organized as follows. In Section 2, we present
a model for chunking and explain its simplifying features. In Section 3,
we focus on chunking single edges within a graph. We first describe how
chunking an edge (u, v) can be thought of as lowering the agent’s present
bias towards only that edge. We then explore the structure of optimal edge
chunkings, that is, chunkings that lower the agent’s “selective bias” as much
as possible. For edges on the shortest path, we provide a closed form for
the optimal chunking. For other edges, optimal chunkings are considerably
more complex, but we provide an efficient algorithm to compute them. In
Section 4, we provide an algorithm to optimally distribute a fixed number
of chunks across multiple edges within a graph. In Section 5, we provide a
tight bound on the cost ratio for biased agents in terms of the number of
chunks alloted to the task designer. Our bound implies that with a linear
number of chunks alloted to each edge, the cost ratio can be reduced to a
constant factor. Finally, in Section 6, we consider the problem of chunking
a single task graph for two types of agents simultaneously, where an agent’s
type is their bias. As an example, consider an instructor who wants a good
chunking for both rare and frequent procrastinators. We provide algorithms
to chunk optimally under local and global budgets for two types of agents.
We also show how to extend our result to m types of agents, if we add the
(simplifying) constraint that all agents must take the same path through
the graph.

2 Chunking Model

We first explain the model of present bias in more detail. As mentioned
before, we start with a weighted, directed, acyclic graph G that represents
a task, with start s and end t. A present-biased agent with bias parameter
b behaves as follows. Let c(v → t) represent the cost of the shortest path
from v to t, and let c(u, v) represent the weight of edge (u, v). From node
u, the agent goes to vertex argminv:(u,v)∈E bc(u, v) + c(v → t). We refer

5

to bc(u, v) + c(v → t) as the agent’s perceived cost of starting with edge
(u, v) and then taking the shortest path to t. We abbreviate this as the
agent’s perceived cost of starting with (u, v). At each vertex, they go to the
neighbor that minimizes their perceived cost, continuing until they reach t.

We next consider chunking. We distinguish two different settings where
chunking helps:

1. The task designer wants agents to take the cheapest path through the
graph, rather than the more expensive path their bias would lead them
to take.

2. In a model where agents can abandon their path at any time (if the
perceived cost is less than the reward), the task designer wants to
prevent such abandonment.

We mainly focus on the first case in this paper, but our analysis easily ex-
tends to the abandonment setting. To investigate different models of chunk-
ing, consider the following graph, the n-fan (in which a biased agent can take
an exponentially more expensive path than optimal (Kleinberg and Oren,
2014)):

0

0 0

c c2 c3

cn

1
s

v1

vn

v3

· · ·

t

v2

The task designer wants the agent to take the path (s, t) instead of the
longer path around the fan that an agent will take when their bias b > c.
The simplest model of chunking allows them to break the edge (s, t) into
pieces as follows:

0

0 0

c c2 c3

cn

x 1− x
s

v1

vn

v3

· · ·

t

v2

s1

6

The designer gets to choose x (i.e., they get to choose how much work is
done in the first and second chunk). Note that the intermediate node s1
doesn’t have any connections, except to t. It’s easy to show that the best
choice of x is 0, as this means that the agent’s present bias does not play
any role in their decision (all edges out of s have 0 cost). From a different
perspective, this model seems to be taking advantage of the “lock-in” effect
of s1 – once the agent goes there, they cannot take an alternative path, even
though they did not actually do any work to get there. But our intuition
suggests that chunking a very difficult task into a cost 0 “task” followed by
the same difficult task should not help much. So, this doesn’t seem to be a
good model for chunking. As an aside, even if we require that x is not too
small, the obvious solution for the task designer is to make the first chunk
as small as allowed – there’s not much interesting in this model.2

The more interesting model of chunking that we study breaks the edge
(s, t) into pieces as follows:

0

0 0

c c2 c3

cn

x 1− x

0
s

v1

vn

v3

· · ·

t

v2

s1

Here, the node s1 keeps all the edges to other task nodes that s had. This
reflects the fact that even after completing a chunk, an agent may decide
to take another path to t – completing a chunk doesn’t “lock” an agent
into a particular path. Of course, they will be less likely to take another
path if they finished a particularly difficult chunk. Thus the model has
the necessary tension – the designer wants to set x high enough so that
the agent actually still takes the (s, s1, t) path, but not so high that they
don’t take edge (s, s1) in the first place. Put another way, since the agent
can deviate at s1, the designer wants to ensure that the perceived costs of
starting with (s, s1) and with (s1, t) are both low. While we have shown only

2If we move to the abandonment setting, the task designer is incentivized to do a non-
trivial split here; they would want to balance the perceived costs of starting with edges
in their chunking in order to avoid abandonment. However, the model we investigate
induces a similar balancing problem even without abandonment (and extends naturally
to the abandonment setting).

7

2-chunk examples, in our general model the task designer splits an edge into
k chunks, whose costs sum to the original cost.3

It is worth discussing three simplifying features of our model. First, we
assume that tasks can be arbitrarily split: each edge in the chunking can
have any cost, so long as the total cost remains fixed. A more realistic model
might constrain edges to have fixed chunking options. For example, when
chunking an essay, it could be the case that each chunk must consist of some
number of paragraphs; essays cannot be chunked more finely. However,
we believe that solving our continuous relaxation will provide reasonable
insight into the discrete problem. Our informal argument is as follows: if
the number of potential chunks in the discrete problem is high, then our
optimal solution to the continuous version will be a good approximation. If
the number of potential chunks is low, then solving the discrete problem is
easy (there aren’t many possible chunkings). Though we will not consider
the discrete version further, it would be interesting to understand if there
are fundamentally different challenges in that setting.

The second simplifying assumption is that the chunking “overhead” cost
to the agent is zero. In other words, no matter how many chunks an edge
is split into, the total cost of that edge remains fixed (notably, it does not
increase). In reality, there is probably some cost to the agent per chunk. For
instance, the agent might stop working between chunks, and then have some
cost associated with getting back to work. We assume that this “restarting”
cost is very low relative to the other costs, and thus ignore it. In any
case, since each chunk gives the task designer (weakly) more power in our
model, we typically assume that there is some given chunking budget k; if
chunking instead had some fixed overhead, there would exist an optimal k,
as additional chunks have diminishing returns but fixed overhead.

Lastly, we specify how agents break ties. If an agent at u views multiple
neighbors as having the same perceived cost, the agent will pick the neighbor
that is part of a chunked path if exactly one neighbor is part of a chunked
path. Otherwise, they pick the first vertex in some lexicographical ordering.
This tie-breaking behavior is mathematically convenient when construct-
ing the optimal chunking, as we can simply ensure that the perceived cost
starting with each step in the chunking matches the agent’s otherwise best
option. For a more thorough treatment of tie-breaking rules in the base

3Note that in our formalization, we remove the original edge for simplicity. However,
if we kept the original edge, the agent would never strictly prefer it, no matter what the
chunking. So it’s mathematically equivalent to think of the original edge still being there.
Moreover, this interpretation maps better to our examples, where the task designer does
not actually enforce the chunking.

8

model of present bias, see (Dementiev et al., 2021).
We also contrast our model with a model of “checkpoints”. As we men-

tioned, we consider chunking to be a purely mental tool to combat present
bias. One might consider a stronger model, where the task designer (e.g.,
an instructor) can incentivize agents to complete a task in chunks. For ex-
ample, the instructor might set an earlier (graded) deadline for the thesis
statement of an essay. We can model this as the task designer having the
power to split up the final reward r onto intermediate vertices or edges, in
addition to being able to chunk edges. Although we will not investigate this
checkpoint model in this paper, we hope to investigate it in future work.
While both the chunking model and checkpoint model are realistic choices
to model classwork, we believe that the chunking model is a better fit for
algorithmically chunking a user’s to-do list; in that setting, the algorithm
cannot enforce the chunks, but merely suggests them to the user.

3 Optimal Edge-Chunking

In this section, we consider how to optimally chunk a single edge. What
do we mean by an optimal chunking? As mentioned earlier, we think of
chunking as lowering an agent’s selective bias towards the chunked edge. In
other words, for any chunking, an agent with bias b will take the chunked
path from u to v if and only if an agent with bias b′ < b towards edge (u, v)
(and bias b otherwise) will take (u, v) in the original graph. We say that such
a chunking induces a selective bias of b′ towards (u, v).4 So, by an optimal
chunking, we mean one in which the agent’s selective bias is brought as low
as possible (given a fixed bound k on the total number of chunks).

Our results show that as the number of chunks tends to infinity, the
selective bias tends to 1 (i.e., unbiased behavior). Thus, the number of
chunks is a powerful parameter in our model; in the next section we answer
the broader question of how to best chunk is an arbitrary task graph with
a limited chunking budget.

3.1 Edges on the shortest path

The problem of optimally chunking is subtly different for edges on the short-
est path (where “shortest” ignores bias) and edges on other paths. We first
consider the simpler case of edges on the shortest path, and start with two
chunks.

4When it is clear from context, we often leave the edge unspecified.

9

Lemma 1. To optimally split an edge (u, v) that is on the shortest path into
two chunks, the first chunk should be a b−1

2b−1 fraction of the work. With this

split, the agent will behave with a selective bias of b
2−1/b .

Proof. Suppose we chunk (u, v) into (u1, u2, v). First, note that, because
(u, v) is on the shortest path in the original graph, no matter how the edge
is chunked, the optimal behavior from u2 will be to go to v – this can only be
cheaper than (u, v) in the original graph. Thus, the perceived cost of starting
with edge (u1, u2) while at vertex u1 is bc(u1, u2) + c(u2, v) + c(v → t), as
the agent naively believes they will behave optimally in the future. This is
the only way that we use the fact that (u, v) is on the shortest path.

The designer wants to minimize the maximum of the perceived cost of
starting with (u1, u2) and the perceived cost of starting with (u2, v), to best
ensure that the agent takes the chunked path. These perceived costs are
bc(u1, u2) + c(u2, v) + c(v → t) and bc(u2, v) + c(v → t) respectively.

Let x = c(u, v) represent the total amount of work to be chunked, and let
x1 and x2 represent c(u1, u2) and c(u2, v) respectively. Note that x2 = x−x1.
We now plug the x’s into the expressions above to get perceived costs of

bx1 + x− x1 + c(v → t) and

b(x− x1) + c(v → t).

We want to set x1 to minimize the maximum of the two quantities. That
is, we choose x so that

argmin
0≤x1≤x

max(bx1 + x− x1 + c(v → t), b(x− x1) + c(v → t))

= argmin
0≤x1≤x

max(bx1 + x− x1, b(x− x1))

= argmin
0≤x1≤x

max((b− 1)x1 + x,−bx1 + bx).

Both expressions are linear functions of x1, with the first increasing and
the second decreasing. The minimum of the maximum is thus where they
intersect, that is, when

(b− 1)x1 + x = −bx1 + bx.

Simple algebra then shows that

x1 =
b− 1

2b− 1
x.

10

With this value of x1, the perceived costs starting with (u1, u2) and with
(u2, v) are identical. The latter perceived cost is

b(x− x1) + c(v → t) = bx ·
b

2b− 1
+ c(v → t)

=
b

2− 1/b
· c(u, v) + c(v → t). (since x = c(u, v))

(It’s easy to verify that the former perceived cost matches.) Thus, the agent
with bias b takes the path (u1, u2, v) when an agent with bias b∗ = b

2−1/b

would have taken (u, v) in the original graph.

We now state the following theorem, which extends the above results to
k chunks. We first state a more general version which will be helpful in the
next section. The proof is in the appendix.

Theorem 1. Suppose we partition an edge (u, v) of cost x into k chunks. Let
u1, . . . , uk represent the vertices in this chunking, and let c(ui, ui+1) = xi,
where, for 1 ≤ i ≤ k, the xi’s are defined below.

1 ≤ i ≤ k : xi =
(b− 1)k−ibi−1

bk − (b− 1)k
x.

With this chunking, the agent has selective bias 1

1−(b−1
b)

k . If, with this chunk-

ing, the shortest path from ui to t is through ui+1 for all i > 1, then this
chunking is optimal.

The following corollary immediately follows from this theorem.

Corollary 1. For an edge (u, v) on the shortest path, the chunking given in
Theorem 1 is optimal.

Proof. No matter how an edge on the shortest path is chunked, the shortest
path from any chunk to t must be through the next chunk, as chunking does
not increase the total cost of the edge. This satisfies the condition in the
theorem to get optimality.

The corollary says that the designer is not best served by evenly splitting
the cost between the edges – the designer should lower the cost of earlier
edges. When they do so, the agent will behave as if they had selective
bias 1

1−(b−1
b)

k in the original graph towards edge (u, v) (while having bias b

towards all other edges).

11

For a simple application of this corollary, suppose the agent’s bias is
2. Then, splitting each edge on the shortest path once (so k = 1) causes
the agent to behave as if they have bias 4/3 on the shortest path in the
unmodified graph (and they still perceive other edges with bias 2).

3.2 Edges not on the shortest path; a motivating example

We first motivate our results. For edges that are on the shortest path, it’s
clear why a designer would want to chunk them – they want to convince
agents to incur as little cost as possible. However, in the next section we
consider the natural problem where the designer has a fixed chunking budget
k. In such cases, our earlier results imply that if the agent’s bias is sufficiently
high, it may not be possible to convince them to stick to the shortest path.
However, the designer may be able to lower the agent’s cost by chunking
other edges, which are not on the shortest path. Consider the following
graph as an example.

0
76

14 60.1

65
2

w

s = u v t

z

Suppose that the agent has bias 2. Let Pw, Pv , Pz represent the paths to t
through w, v, or z respectively. The agent’s bias causes them to take Pz, the
most expensive path. How should we best use a fixed budget of 3 chunks to
lower the agent’s cost? First, note that by Theorem 1, the optimal chunking
of (u,w) induces a selective bias of 8/7. Even with this optimal chunking,
the agent would still prefer Pz, as 8/7 · 65+2 > 76. So, we cannot lower the
agent’s cost by chunking (u,w). Will chunking (u, v) instead help?

Note that, for edges not on the shortest path (which we will sometimes
abbreviate to “non short-path edges”), we could still apply the chunking
from Theorem 1 to get the selective bias described in that theorem. For
(u, v), Theorem 1 tells us to set x1 = 2, x2 = 4, and x3 = 8, resulting in the
following graph.

12

0

76

60.1

65

2

2

65

0

4

65

0

8

w

s = u1 v t

z

u2 u3

Under this chunking, the cheapest path from u1, u2, or u3 to t all go through
w. The agent’s perceived costs of starting with the edges in the chunking
are, in order, 71, 75, and 76.1 (so the agent would take edge (u3, z) instead
of sticking to the chunking). If (u, v) was a shortest edge in the original
graph (for example, if w did not exist), then the same chunking would
have identical perceived costs of 76.1 starting with all edges. But when the
cheapest path from a chunked vertex to t is through the external vertex
w, the perceived cost of starting with early edges decreases. An optimal
chunking should thus increase the cost of early edges and decrease the cost of
later edges to result in more balanced perceived costs. In the example above,
if we split the costs so that c(u1, u2) = c(u2, u3) = 3.55 and c(u3, v) = 6.9,
then the cheapest path from u1 or u2 to t is through w, while the cheapest
path from u3 to t is through v. Thus, the perceived costs of starting with
the first edge and the second edge are both 74.1, and the perceived cost
of starting with (u3, v) is 73.9. This is the optimal chunking of (u, v), and
it improves the agent’s cost by convincing them to take Pv instead of Pz.
Thus, this example shows that we have good reason to chunk non short-path
edges, and our existing chunking results are insufficient for such edges.

3.3 Optimally chunking for edges not on the shortest path

As the example in the previous section suggests, it’s important to keep track
of the shortest path from chunking vertices to t. Note that if the shortest
path from ui to t is through w rather than ui+1, then the shortest path from
any uj to t, where j < i, is also through w.

Thus, for any chunking, define uτ as the transition vertex : the last vertex
where the shortest path is through w, where w is the next vertex on the
shortest path from u to t in the original graph. If the shortest path always
follows the chunking, then define τ as 0. On the other hand, if the shortest

13

path is always through external vertices, then τ = k. For a shortest-path
edge, all chunkings have τ = 0 (and thus the optimal chunking is given
by Theorem 1). But for non short-path edges, the optimal chunking may
have a higher value of τ (in the previous example, the optimal chunking
had transition vertex τ = 2). Though the case where τ = 0 admits a nice
closed form, in general we provide an algorithm that determines the optimal
chunking by trying all possible values of τ .

We can think of τ as the smallest value such that, for all neighbors w
of u, we have c(u,w) + c(w → t) ≥ c(uτ+1, uτ+2) + c(uτ+2 → t). We can
rewrite this as follows, using the notation of Theorem 1:

c(u,w) + c(w → t) ≥ c(uτ+1, uτ+2) + c(uτ+2 → t)

= xτ+1 +
∑k

i=τ+2 xk + c(v → t)
= x−

∑τ
i=1 xi + c(v → t).

(1)

Let δ = x+ c(v → t)− (c(u,w)+ c(w → t)) represent the difference between
the cost of the cheapest path from u to t through v and the cost of the
cheapest path from u through w in the original graph (in the previous ex-
ample, δ = 74.1− 67 = 7.1). Then Equation 1 is equivalent to

∑τ
i=1 xi ≥ δ.

For an edge on the shortest path, δ is negative, which is why τ must be
equal to 0 for those edges. Moreover, if δ ≤ x, then it is possible to split the
costs among the edges to allow any choice of τ : we simply put at least δ of
the cost on the first τ edges while ensuring that the sum of costs of the first
τ −1 edges does not exceed δ. So, in addition to requiring that

∑τ
i=1 xi ≥ δ,

we also need
∑τ−1

i=1 xi < δ.
Before we get to our main result, we first introduce some more definitions

and notation. Let ei = (ui, ui+1) be the ith edge of a chunking, and let
p(ei) = bxi + c(ui+1 → t) represent the perceived cost of starting with edge
ei. Let the bottleneck of a chunking be the highest perceived cost starting
with any edge on that chunking (i.e. maxi p(ei)). It’s easy to see that the
bottleneck of a chunking determines the selective bias the chunking will
induce; any agent who will get past the bottleneck will complete the entire
chunked path. So an optimal chunking is a chunking with the smallest
bottleneck. Finally, let a k-chunking of an edge be any chunking that splits
the edge into k chunks.

We now state some useful lemmas; their proofs can be found in the
appendix.

Lemma 2. Suppose that C is a chunking with bottleneck β. If another
chunking O has bottleneck β′ < β and the same transition vertex τ , then O

14

must lower the cost of all edges that are bottlenecks in C, and thus raise the
cost of the remaining edges.

Though the lemma seems obvious at first glance, it relies crucially on
the fact that C and O have the same transition vertex τ . It’s possible for
O to not lower the cost of all edges that are bottlenecks in C but still get
a lower bottleneck cost if O has a different transition point. But with τ
fixed, the difference between the perceived costs starting with any edge in C
compared to O depends only on the cost the chunkings assign to the edge.

Lemma 3. If a chunking C has the same perceived cost starting with any
edge in the chunking, then C is optimal.

Lemma 3 guides the algorithm, which tries to ensure that the perceived
costs starting with edges in C are as close as possible. At a high level,
the algorithm enumerates over all values of τ ∈ {1, . . . , k}. We start with
a chunking where the first τ edges are assigned cost δ/τ , which ensures
that they all have the same perceived cost α. We then use Theorem 1 to
distribute the remaining cost over the last k− τ edges, which also equalizes
their perceived cost to some β. If α ≥ β, we argue that this chunking is
optimal for the fixed τ . Otherwise, we make some local updates to the
chunking, which brings β as close to α as possible while maintaining the
invariant that β ≥ α. The full description of this algorithm, Algorithm 1,
can be found in the appendix.

Theorem 2. Given any edge (u, v), we can determine the optimal k-chunking
in O(k) time, assuming that the shortest paths from u → t and v → t have
been precomputed.

Proof Sketch. For a fixed τ , we start by setting x1 = x2 = · · · = xτ = δ/τ ,
and chunk the remaining x−δ cost over the remaining k−τ edges according
to Theorem 1. Doing so ensures that p(ei) = α for all i ≤ τ and that
p(ei) = β for all i > τ (α and β are defined in the appendix). If α = β, by
Lemma 3 we’re done. In the case where α > β, we show that we’re done for
this fixed τ .

The case where β > α is the bulk of the proof. The key is that p(eτ) can
be grouped into either the earlier or later edges. Since β > α, we carefully
increase the cost of the first τ − 1 edges and decrease the cost of the later
edges to produce the optimal chunking for this value of τ .

15

4 Optimal Chunking in Task Graphs

In the previous section, we focused on optimally chunking a single edge. One
reason why a task designer might want to do that is to convince agents to
take much cheaper paths through the graph, by chunking the right edges. In
this section, we assume that the designer can chunk any edge in the graph,
but can place only a limited number of chunks (their chunking “budget”).
Which edges should they chunk to ensure that the present-biased agent takes
as cheap a path as possible, and how should they chunk those edges?

We first answer the latter question. Is lowering the agent’s selective bias
towards an edge as much as possible (i.e., optimally chunking that edge)
always the best way to reduce their overall cost? Though this might seem
obviously true, a surprising fact is that a present-biased agent’s cost is not
monotone in their bias; a smaller bias may sometimes increase their total
cost (Kleinberg et al., 2016). Despite this, when trying to minimize the
agent’s cost, the designer should optimally chunk any edge they want to
chunk (e.g., by using Algorithm 1). The only challenge is in finding which
edges to chunk.

To see why this is true, first note that chunking an edge (u, v) will not
change its overall cost, and thus will not impact the agent’s decisions unless
they are at u. Second, it’s easy to see that chunking cannot increase one’s
selective bias, as no edge in the chunking can have more cost than the
original edge cost. Thus, any chunking of edge (u, v) serves to convince the
agent to take (u, v). And the best way to accomplish that is to minimize
the agent’s perceived cost starting with that chunked edge, which is exactly
what an optimal edge-chunking does.

4.1 Local Constraints

We consider two types of constraints on the designer. We call the first a local
constraint; in this case the designer can break any set of edges into up to k
chunks, for some parameter k. If we think of edges as representing relatively
large subtasks, then this just says that any relatively large subtask can be
split into up to k smaller subtasks. We call the second a global constraint:
in this case, the designer gets a budget of k chunks, and can use no more
than k chunks altogether.

In this section we consider local constraints. A naive approach would be
to just optimally chunk every edge into k chunks, using our earlier results.
But this wouldn’t necessarily give the best overall chunking for the graph.
Why not? The intuition is that we want the agent’s perceived cost of the

16

path that the designer actually wants the agent to use to be low. We are
better served by not chunking edges away from this path, so that the agent
is not tempted to deviate. So at a high level, the algorithm first figures out
the cheapest feasible path for the agent (given k), and then uses the optimal
edge-chunking algorithm to actually chunk this path.

Theorem 3. Given any task graph G = (V,E) and a local constraint k, we
can optimally chunk G with at most |E| applications of Algorithm 1, for a
total runtime of O(|E|k + |V |).

Proof. First, we can use well-known algorithms to find the costs of the
shortest path from any node to t in time O(|E|+|V |), since G is a di-
rected, acyclic graph Cormen et al. (2009). Given a vertex u, let w =
argminv:(u,v)∈E bc(u, v) + c(v → t) be the vertex that the present-biased
agent would go to without any chunking. Further, let αu = p(u,w) be the
perceived cost of starting with edge (u,w). Let v 6= w be an arbitrary out-
neighbor of u (i.e., a vertex v such that there is an edge (u, v)). Algorithm 1
gives us the lowest possible bottleneck cost of a k-chunking of (u, v); denote
this as βu,v. If βu,v ≤ αu, the agent can be made to take (u, v). If not, then
they won’t take (u, v) under any k-chunking.

The algorithm is straightforward. At every vertex u, determine αu as
well as βu,v for all out-neighbors v of u. If βu,v > αu, remove edge (u, v)
from the graph. Call the resulting graph G′. Then, simply compute the
shortest path in G′, and chunk every edge on that path with Algorithm 1.

There will always be an s-t path in G′, as the edges the agents would
take without chunking can never be removed. By construction, the path
in G′ that we chunk is one that the agent will take in G after chunking.
Finally, there can be no cheaper path, as we remove only edges that the
agent cannot be convinced to take.

We briefly discuss a different perspective on the algorithm above, which
will be useful when comparing to the results of the next section. We can
think of the algorithm as a dynamic program with the following recurrence:

cost[u] = min
v:(u,v)∈E,βu,v≤αu

c(u, v) + cost[v].

Here, cost[u] is the cost of the cheapest u to t path we can convince the
agent to take, and the base case is simply cost[t] = 0. This recurrence
is exactly the recurrence that a shortest-path algorithm solves, except for
the condition that βu,v ≤ αu. Thus, the first part of the algorithm simply
removes edges that do not satisfy this condition, and then the solution to
the shortest path problem will solve the above recurrence.

17

4.2 Global Chunking Budget

In this section we consider global constraints; the designer must consider
where to best allocate chunks to have the most impact. As before, we
can use the optimal edge-chunking algorithm to solve this problem; only
marginally more computation is required.

Theorem 4. Given any task graph G = (V,E) and a global constraint k, we
can determine the optimal chunking configuration with at most O(|E|log k)
applications of Algorithm 1, for a total runtime of O(|E|k log k + |V |).

Proof. As before, we first compute the cost of the shortest path from any
node to t in time O(|V |+|E|). For a local budget, we sorted edges into
feasible and infeasible edges, where an edge was feasible if we could convince
the agent to take it with at most k chunks. Here, we instead determine the
minimum number of chunks that’s necessary for an agent to take each edge
(if the number is at most k). Since the optimal bottleneck cost is decreasing
in the number of chunks k, we can simply use binary search to find this
minimum number.

In more detail, let u be an arbitrary vertex and define αu as above. For
any out-neighbor v of u, let βl

u,v be the lowest possible bottleneck cost of any

l-chunking of (u, v). Let lu,v be the smallest l ≤ k such that βl
u,v ≤ αu. If no

such l exists, then lu,v = ∞. lu,v can be computed in O(log k) applications
of Algorithm 1 with binary search, since βl

u,v is decreasing in l.
Now let cost[u, i] denote the cost of the cheapest path from u to t that

we can convince the agent to take with at most i chunks. The base case is
simply cost[t, i] = 0 for all 0 ≤ i ≤ k. The recurrence is as follows.

cost[u, i] = min
v:(u,v)∈E,lu,v≤i

c(u, v) + cost[v, i− lu,v].

The final solution is cost[s, k]. The correctness of this recurrence follows
from the fact that lu,v is the smallest number of chunks needed to convince
the agent to take edge (u, v). For the runtime, note that it takes O(Ek log k)
to compute lu,v for all (u, v) ∈ E. For the recurrence, the min considers |E|
possibilities for each value of i ∈ {0, . . . , k}, for a total runtime of O(|E|k).
Finally, to actually compute the recurrence, we can simply proceed back-
wards through some topological ordering of the graph.

5 Optimizing the cost ratio

Define the cost ratio of a present-biased agent to be Cb(s → t)/c(s → t),
where Cb(s → t) is the cost that a present-biased agent with bias param-

18

eter b incurs in the graph, and c(s → t) is the shortest path cost. The
goal of this section is to understand how the cost ratio of the present-biased
agent decreases as the task designer places more chunks in the graph. Put
another way, in the previous section we provided algorithms that optimally
chunked task graphs, given a fixed chunking budget k. Here, we prove perfor-
mance guarantees on those algorithms, where the algorithm’s “performance”
is measured in how much it reduces the cost of the agent’s path.

Existing results have characterized the worst-case cost ratio over all task
graphs.

Theorem 5 (Adapted from Tang et al. (2017)). The cost ratio for an agent
with present bias b is at most bn, over all task graphs. The n-fan (see
Figure 3) can get arbitrarily close to this cost ratio as c approaches b from
below.

We want to characterize the worst-case cost ratio after chunking. More
precisely, we consider the following question. Let G be arbitrary, and let
G′ denote an optimal k-chunking of G. What is the worst-case cost ratio
for G′? We start by considering local constraints; thus, G′ is the result of
breaking an arbitrary number of edges in G into at most k chunks. Let bmin

be the selective bias guaranteed by Theorem 1. That is, let:

bmin =
1

1−
(

b−1
b

)k
.

Theorem 6. If G′ is an optimal chunking of G with local constraint k, then
the cost ratio for an agent with present bias b in G′ is at most bn

min
.

Proof. We simply chunk every edge into k chunks using the chunking given
in Theorem 1, which results in the agent viewing every edge with a selective
bias of bmin. Call the resulting graph G′′. By the definition of selective bias,
for every edge (u, v) ∈ G, an agent with bias bmin would go from u to v if and
only if the agent with bias b would traverse the chunking (u1, u2, . . . , uk, v)
in G. Since this holds for every edge, the agent will incur exactly the same
cost as an agent with bias bmin would incur in G. So by Theorem 5, they
incur cost at most bnmin in G′′, with bias b.

The theorem follows from the fact that G′ is an optimal chunking of G,
so the agent will only do better there as compared to G′′.

Corollary 2. Given a local constraint k = O(n), the optimal chunking G′

of G has constant cost ratio.

19

Proof. The proof involves only arithmetic after applying Theorem 6. Details
can be found in the appendix.

The corollary shows that we can get an exponential reduction in the
agent’s worst-case cost with only a linear number of chunks on every edge,
demonstrating the power of chunking. However, from a different perspective,
the bound in Theorem 6 seems weak. We showed earlier that it’s never
necessary to chunk two edges leading out of the same vertex, but here we
chunk all edges. Further, we chunk every edge with Theorem 1, despite
that chunking not being optimal for non short-path edges. Despite these
concerns, the bound in the theorem is tight, as demonstrated by chunking
the n-fan.

0

0 0

c c2 c3

cn

1
s

v1

vn

v3

· · ·

t

v2

Figure 3: This graph is the n-fan. If c < b, the agent will prefer edge
(vi, vi+1) to (vi, t) for all i. Thus, the agent goes all the way around the fan,
and incurs cost cn.

Lemma 4. If G is an n-fan with c < bmin and G′ is an optimal chunking
of G given local constraint k, then the cost ratio for an agent with present
bias b is cn in G′.

Proof. LetG′ be constructed by chunking every edge in the n-fan via Theorem 1
(we can ignore the 0 cost edges, as chunking a 0 cost edge has no impact on
the agent’s decisions). In G′, the agent acts as if they had bias bmin in G.
And such an agent would incur cost cn by going all the way around the fan,
since c < bmin. It remains to show that G′ is an optimal chunking of G.

In fact, we show the stronger claim that any chunking of G with a local
budget of k is (weakly) optimal, as no such chunking can cause the agent
to take a cheaper path. To see this, suppose there is a chunking G∗ of
G such the agent goes from vi to t, for i < n (this is the only way they
could take a cheaper path). Then, G∗’s chunking of edge (vi, t) must have

20

lower bottleneck cost than in G′. We claim that this is impossible, because
Theorem 1 will give the optimal chunking for edge (vi, t). To see this, notice
that the shortest path from vi to t is through edge (vi, t), which is exactly
when Theorem 1’s chunking is optimal. As a result, no G∗ exists, and so G′

is an optimal chunking.

We have provided a tight characterization for the worst-case cost ratio in
terms of the number of chunks given a local constraint. We conjecture that
a similar result extends to global constraints. Let k be the global chunking
budget. Clearly, we could get an upper bound on the worst-case cost ratio
similar to that of Theorem 6 by evenly splitting the chunks so that each edge
satisfies a local constraint of k/m, where m = |E|. We conjecture that this
would also be an asymptotically tight bound, as it seems that the optimal
chunking in the n-fan would need to spread chunks evenly among half the
edges (i.e., the edges (vi, t)).

6 Optimal Chunking for Multiple Agents

We now consider the problem of chunking a task graph for two types of
agent, where an agent’s type is their bias. For example, an instructor might
reasonably expect some students to procrastinate rarely and others to pro-
crastinate frequently. Yet the instructor cannot chunk the task separately
for different students (indeed, they may well not know a given student’s
type). How should they chunk the task while balancing the cost that both
types of students incur? We answer this question in two settings. We first
show how to optimally chunk the graph for two types of agents, A1 and A2

with b1 < b2. Second, we show how to optimally chunk the graph for m
types of agents, with the additional constraint that all agents take the same
path. Allowing agents to take different paths gives the designer more power
but also makes the problem significantly more complex to analyze; removing
this possibility allows us to design for m types, rather than 2.

Note that in the case of a single agent, there is an obvious way to define
the “optimal” way to chunk an edge – it’s the one that agent perceives as
cheapest. This definition is also useful for chunking the task graph optimally,
as it tells us which edges we can persuade the agent to take. With two agents,
it’s unclear what it would mean to “optimally” chunk an edge. An intuitive
definition would be that the optimal chunking for an edge minimizes the
average perceived cost of the two agents. But that is wholly unhelpful for
graph chunking, as it doesn’t tell us which edges we can persuade either
agent to take. So, we instead consider two related problems: convincing

21

agents to take the same path, and convincing agents to split up. Solving
these two problems will allow us to chunk the task graph while minimizing
the sum of the agents’ costs.

6.1 Splitting Agents onto Separate Paths

In this section, we want to find the chunking C∗ of (u, v) such that A1

takes C∗ and A2 finds C∗ “maximally unappealing”: formally, C∗ has the
maximum perceived cost for A2 over all chunkings A1 would take. We can
use such a chunking to split up two agents who are both at the same vertex.
We start by defining some terms. Let p(e; bi) represent the perceived cost
of edge e for the agent with bias bi. Here, agent A1 has bias b1, and agent

A2 has bias b2, where b1 < b2. Then, let α
(i)
u represent Ai’s perceived cost

of their best option at u (without chunking). So, α
(i)
u = p(u,wi; bi), where

wi = argminv:(u,v)∈E bic(u,wi) + c(wi → t).
We now describe the algorithm that solves this problem, Algorithm 2,

at a high level; a full description can be found in the appendix. Algorithm 2
first computes C∗1 , the optimal chunking of (u, v) for A1.

5 Then, the algo-
rithm iterates over all choices of ei and raises p(ei; b2) as much as possible
while ensuring that A1 still takes the chunking. It does so by “siphoning”
cost from other edges in the chunking onto ei. It repeats this process for all
choices of ei. This siphoning has three phases.

In the first phase, we siphon from xi−1, . . . , x1 to xi.
6 In the second

phase, we siphon from xi+1, . . . , xk to xi. These phases are very straightfor-

ward, and terminate when p(ei; b1) = α
(1)
u , where α

(1)
u is the perceived cost

of the best alternative to (u, v) from A1’s perspective. In the third phase,
we decrease x>i and increase x≤i; because b1 < b2, doing this results in
increasing p(ei; b2) without increasing p(ei; b1).

Call the resulting chunking Ci. Note that A1 will surely take Ci: A1 took
the original chunking, and all edges which were increased (potentially all e≤i)

were not increased beyond α
(1)
u . We first prove the following conditions of

the algorithm.

Lemma 5. Let Ci = (e1, . . . , ek) be the chunking produced by iteration i of
Algorithm 2. Then:

5The algorithm does not rely on starting with an optimal chunking; any chunking that
A1 takes would work.

6To ease exposition, we can think of “siphoning” as a continuous process where one
cost is decreased as another increases. In practice, how much to siphon can be computed
in O(1) time; see the appendix for details.

22

(a)
∑

j 6=i xj > 0 =⇒ p(ei; b1) = α
(1)
u

(b)
∑

j>i xj > 0 =⇒ ∀j ≤ i, p(ej ; b1) = α
(1)
u

Proof. For (a), if any xj > 0, then the algorithm terminated early in phase

1 or phase 2, which implies that p(ei; b1) = α
(1)
u . For (b), if more could be

siphoned from x>i, then the algorithm would siphon more in phase 3, unless
no edges in e<i can be increased further.

The following theorem says that A2 finds edge ei in Ci maximally un-
appealing over all chunkings A1 would take; the proof is in the appendix.

Theorem 7. If Ci is the output of the ith iteration of Algorithm 2 and C ′

is another chunking such that p(e′i; b2) > p(ei; b2), then A1 will not take C ′.

The theorem can be applied to show that our algorithm is correct. Let
C∗ be the chunking with the maximum perceived cost from A2’s perspective
that A1 will still take. Let i∗ be the bottleneck of C∗ for A2. Then, the
contrapositive of the theorem shows that our algorithm will find C∗ (or a
chunking with equivalent A2-perceived cost) when i = i∗.

Unfortunately, this problem is not symmetric with respect to A1 and A2.
In other words, we still must solve the problem of chunking an edge such that
A2 takes it but A1 finds it maximally unappealing. The only modification
we need to make is to phase 3, where we instead increase x>i and decrease
x≤i, which will increase p(ei; b1) without increasing p(ei; b2). More details
can be found in the appendix.

6.2 Keeping Agents on the Same Path

In this section, we consider the problem of chunking a single edge (u, v) so
that all agents take the chunking. This problem can solved greedily, even if
we have m types of agents. This algorithm will produce a chunking that
the agents will all take, iff such a chunking exists. We use the following
lemma, which is proven in the appendix. To introduce the lemma, we define
a partial chunking as a chunking that does not assign all the cost of the
original edge. Algorithm 3 can be viewed as building partial chunkings into
a complete chunking.

Lemma 6. Let C and C ′ be two (possibly partial) chunkings of the same
edge. Suppose that

∑k
i=l x

′
i >

∑k
i=l xi. Then, there exists an i ∈ [l, k] such

that for all b > 1, p(e′i; b) > p(ei; b).

23

Algorithm 3: Greedily chunk edge (u, v) into k chunks for m agents

for i = k to 1 do

maximize xi such that p(ei; bj) ≤ α
(j)
u for all j ∈ [m]

if xi < 0 then
return ⊥

if
∑

i xi ≥ x then
lower xi so that

∑

i xi = x
return chunking C

return ⊥ //
∑

i xi < x

The lemma says that if a chunking C ′ assigns more cost to the last k− l
edges than C ′, then one of those last k−l edges must have a higher perceived
cost (for any present-biased agent). We now prove that the algorithm is
correct.

Theorem 8. Algorithm 3 runs in time O(mk). Further:

(a) If Algorithm 3 returns a chunking C, then all agents will take C.

(b) If Algorithm 3 returns ⊥, then no chunking exists that all agents would
take.

Proof. Statement (a) is obvious; if a chunking is returned, then it must be

the case that p(ei; b1) ≤ α
(j)
u for all i and for all j. Thus, every chunk is more

appealing than every agent’s best outside option, and so all agents take C.
The runtime is also obvious: inside the loop, the only work being done is

computing the maximum xi such that p(ei; bj) ≤ α
(j
u), for all j ∈ [m].

We prove statement (b) by looking at two cases. For the first case,
suppose the algorithm returns ⊥ at iteration i. This means that when

xi = 0, p(ei; bj) > α
(j)
u for some agent j. However, note that if xi = 0, then

p(ei; bj) = min(c(u,w) + c(w → t),
∑

l>i xl + c(v → t)), where
∑

l>i xl ≤ x
(or the algorithm would have terminated at i+ 1). Over all chunkings, the
smallest perceived cost of the first edge is achieved when no weight is placed
on it. Let emin

1 be the first edge in such a chunking. Then, p(emin
1 ; bj) =

min(c(u,w) + c(w → t), x + c(v → t)). Since x ≥
∑

j>i xj, we know that

p(emin
1 ; bj) ≥ p(ei; bj) > α

(j)
u . Thus, in any other chunking, the agent j would

deviate at the first chunk.
In the second case, suppose the algorithm returns ⊥ at the end. This

means that, for all i, p(ei; bj) = α
(j)
u for some agent j and

∑

i xi < x. In other
words, the chunking C that the algorithm produces is a partial chunking,

24

and a complete chunking must assign more cost. However, Lemma 6 says
that if any chunking C ′ assigns more cost, then there would be some edge
e′ of C ′ which all agents would perceive as more expensive. So, some agent
would abandon their path at e′. Thus, there is no complete chunking that
all agents would take.

6.3 Optimal Graph Chunking for Multiple Agents

We now revisit the problem of optimal graph chunking, with a local or global
chunking budget, k.

6.3.1 Two Types

We first assume we have a local chunking budget of k chunks per edge, and
try to minimize the sum of the two agents’ (real) costs.7 We first reformulate
our solution to the single agent case to introduce the idea of “persuadable”
edges. In that case, we used the recurrence cost[u] to represent the minimum
cost of any u → t path that we could persuade the agent to take. We
computed the recurrence via cost[u] = minv∈P(u) c(u, v) + cost[v], where
P(u) = {v : (u, v) ∈ E, βu,v ≤ αu} represents the set of vertices we can
persuade the agent to take from u.

We can define a very similar recurrence for two agents. Say that two
paths P and Q are (A1, A2)-compatible if we can chunk (some of) the edges
along P and Q such that A1 takes P and A2 takes Q. Let cost[u, y] represent
the minimum sum of the costs of any u→ t path P and a y → t path Q such
that (P,Q) are (A1, A2)-compatible. Further, let P(u, y) be the set of all
edges (v, z) such that (u, v) and (y, z) can be “compatibly-chunked”. This
means that, if (u, v) = (y, z), then there exists a chunking of (u, v) that both
agents take. Otherwise, there exist chunkings C1, C2 of (u, v) and (y, z) such
that A1 takes C1 and A2 takes C2. If u 6= y (i.e., the agents start at different
vertices), then P(u, y) can be easily computed via the algorithms in Section
4. And P(u, u) can be computed via the algorithms in Section 6.1 and 6.2.

With these functions, the recurrence can be broken into three cases. The
first case is when A2 is about to go to the vertex, u, that A1 is currently at.
In this case, we need to ensure that our chunking of (u, v) for A1 doesn’t

7It’s trivial to modify the recurrence to instead minimize the maximum of the two
types’ costs, a weighted average (useful if one type is much more common), or many other
such functions.

25

cause issues for A2. This case can be represented as:

C1(u, v, y) =

{

c(y, u) + cost[u, u] if (v, u) ∈ P(u, y)

∞ otherwise.

The second case is similar, but with the agents flipped.

C2(u, y, z) =

{

c(u, y) + cost[y, y] if (y, z) ∈ P(u, y)

∞ otherwise.

Finally, if neither of the previous cases occur, the cost is:

C3(u, v, y, z) = c(u, v) + c(y, z) + cost[v, z].

Putting it all together, the recurrence is:

cost[u, y] = min
(v,z)∈P(u,y)

min(C1(u, v, y), C2(u, y, z), C3(u, v, y, z)).

We first prove the correctness of this recurrence.

Lemma 7. The recurrence for cost[u, y] above is the cost of the cheapest
paths P : u→ t and Q : y → t such that P and Q are (A1, A2)-compatible.

Proof. Assume that cost[v, z] have been correctly computed for all v (resp.
z) that are out-neighbors of u (resp. y). We know that u 6= v and y 6= z,
because there are no self-loops in a DAG. We now proceed by cases.

Case 1: u = y. First, note that v 6= u, z 6= u for all (v, z) ∈ P(u, u). So,
we will only be in the first case of the min. In this case, P (u, y) = P (u, u)
will return all (v, z) such that there exist chunkings C1 of (u, v) and C2 of
(u, z) such that A1 takes C1 and A2 takes C2, if both are at u. Further,
if v = z, then C1 = C2 (i.e., (u, v) is chunked such that both agents take
it). Recall that cost[v, z] is the cheapest cost of (A1, A2) compatible paths
P ′ : v → t and Q′ : z → t. Since A1 going from u→ v is compatible with A2

going from u → z, we get that the paths P : (u, v) ∪ P ′ and Q : (u, z) ∪Q′

are (A1, A2) compatible.

Case 2: u 6= y. When u 6= y, all three cases of the min are possible. Since
P (u, y) describes all possible ways to chunk for A1 at u and A2 at y, the min
will be correct as long as all three cases lead to (A1, A2)-compatible paths,
so that’s what we’ll prove.

26

In the first case, assume that v 6= y, u 6= z. From the correctness of
cost[v, z], and the fact that (u, v) and (y, z) share no endpoints, it immedi-
ately follows that the u→ t and y → t paths are (A1, A2)-compatible.

In the second case, assume that v = y (this implies that z 6= u, as
otherwise u and y form a cycle). In other words, A1 will go from u to
y and meet A2 there. Thus, we simply add the edge (u, y) to A1’s path
and continue the traversal with both agents at y. So by the correctness of
cost[y, y], it follows that the u→ t and y → t paths are (A1, A2)-compatible.

The third case, where z = u, is symmetric to the second case, but with
the agents swapped.

Suppose that there is a local budget of k chunks per edge.

Theorem 9. Given any task graph G = (V,E) and a local constraint k, we
can optimally chunk G for two types of agents in time O(|E|2k2 + |V |).

Proof Sketch. The runtime of the algorithm is dominated by determining
when it’s possible to split the agents onto separate paths. All together, this
will take O(|E|2) applications of the algorithm in Section 6.1, for a total
runtime of O(|E|2k2). The algorithm first computes P(u, y) for all u, y ∈ V ,
and then computes the cost recurrence. More details can be found in the
appendix.

Finally, suppose there is a global budget of k chunks.

Theorem 10. Given any task graph G = (V,E) and a global constraint k,
we can optimally chunk G for two types of agents in time O(|E|2k3 log k +
|V |).

Proof Sketch. Like in the single-agent global budget case, we first modify
the function P to P ′, where P ′(u, y) returns the set of (v, z, i) such that
i is the minimum number of chunks to compatibly chunk (u, v) and (y, z)
(where i = ∞ if no chunking is possible). The bottleneck is in computing
the minimum number of chunks to split the agents from one vertex to two
separate vertices.

6.3.2 m Types of Agents Taking the Same Path

Assume that there are m types of agents but only chunkings where all m
types take the same path are allowed. This easily reduces to the single agent
case (found in Section 4), but we simply use Algorithm 3 to determine what
edges we can persuade the group of agents to take. More detail can be found
in the appendix; here, we simply state the main theorems.

27

Theorem 11. Given any task graph G = (V,E) and a local constraint k, we
can find the optimal single-path chunking of G for m types of agents with at
most |E| applications of Algorithm 3, for a total runtime of O(|E|mk+ |V |).

Theorem 12. Given any task graph G = (V,E) and a global constraint
k, we can find the optimal single-path chunking of G for m types of agents
with at most |E|log k applications of Algorithm 3, for a total runtime of
O(|E|mk log k + |V |).

7 Conclusion

We have supplemented a graph-theoretic model of present bias with a model
of chunking, giving task designers the ability to chunk edges in order to
reduce the impact of present bias. We found that the best way to chunk
an edge is relatively straightforward for edges on the shortest path, but
significantly more complicated for edges off the shortest path. We then
used our optimal edge-chunking algorithm to optimally chunk task graphs.
We provided tight theoretical guarantees on how much we can reduce an
agent’s cost ratio as a function of the number of chunks we place in the
graph. Finally, we showed how to optimally chunk task graphs for two
types of agents simultaneously. Overall, our work highlights the efficacy of
chunking as a means to defeat the harms agents incur due to their present
bias.

Our work raises several open questions. We highlight two interesting
future directions. First, we saw that the problem grew significantly more
complicated when designing for two types of agents. Can we extend our
results to an arbitrary number of types? More generally, suppose the task
designer was uncertain about the agents’ present-bias and captured this
uncertainty with a distribution over b. Our work can be seen as solving this
problem when the support of this bias distribution is two. But can we chunk
in the case where b is continuously distributed?

Second, as explained before, our model is best understood as the task
designer suggesting a chunking to agents, rather than enforcing this chunk-
ing. In some situations, such as classroom settings, the task designer may
want to place intermediate checkpoints to guarantee that agents make reg-
ular progress on the task. How should these checkpoints be modeled, and
how much can they lower agents’ costs compared to chunking?

28

Acknowledgements

The authors were supported in part by NSF grant IIS-1703846, MURI grant
W911NF-19-1-0217, ARO grant W911NF-22-1-0061, and AFOSR grant FA23862114029.

References

George A Akerlof. 1991. Procrastination and obedience. The american
economic review 81, 2 (1991), 1–19.

Susanne Albers and Dennis Kraft. 2017. On the value of penalties in time-
inconsistent planning. arXiv preprint arXiv:1702.01677 (2017).

Susanne Albers and Dennis Kraft. 2019. Motivating time-inconsistent
agents: A computational approach. Theory of computing systems 63,
3 (2019), 466–487.

Aris Anagnostopoulos, Aristides Gionis, and Nikos Parotsidis. 2020. Collab-
orative Procrastination. In 10th International Conference on Fun with Al-
gorithms (FUN 2021). Schloss Dagstuhl-Leibniz-Zentrum für Informatik.

Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford
Stein. 2009. Introduction to Algorithms, Third Edition (3rd ed.). The
MIT Press.

Yuriy Dementiev, Fedor V Fomin, and Artur Ignatiev. 2021. Inconsistent
Planning: When in doubt, toss a coin! arXiv preprint arXiv:2112.03329
(2021).

Fedor V Fomin, Pierre Fraigniaud, and Petr A Golovach. 2020. Present-
Biased Optimization. arXiv preprint arXiv:2012.14736 (2020).

Nick Gravin, Nicole Immorlica, Brendan Lucier, and Emmanouil Poun-
tourakis. 2016. Procrastination with variable present bias. arXiv preprint
arXiv:1606.03062 (2016).

Jon Kleinberg and Sigal Oren. 2014. Time-inconsistent planning: a compu-
tational problem in behavioral economics. In Proceedings of the fifteenth
ACM conference on Economics and computation. 547–564.

Jon Kleinberg, Sigal Oren, and Manish Raghavan. 2016. Planning problems
for sophisticated agents with present bias. In Proceedings of the 2016 ACM
Conference on Economics and Computation. 343–360.

29

Hongyao Ma, Reshef Meir, David C Parkes, and Elena Wu-Yan. 2019.
Penalty Bidding Mechanisms for Allocating Resources and Overcoming
Present Bias. arXiv preprint arXiv:1906.09713 (2019).

Sigal Oren and Dolav Soker. 2019. Principal-Agent Problems with Present-
Biased Agents. In International Symposium on Algorithmic Game Theory.
Springer, 237–251.

Tim Roughgarden. 2016. CS269I: Incentives in Computer Science Lec-
ture#19: Time-Inconsistent Planning. (2016).

Aditya Saraf, Anna R Karlin, and Jamie Morgenstern. 2020. Competition
Alleviates Present Bias in Task Completion. In International Conference
on Web and Internet Economics. Springer, 266–279.

Pingzhong Tang, Yifeng Teng, Zihe Wang, Shenke Xiao, and Yichong Xu.
2017. Computational issues in time-inconsistent planning. In Thirty-First
AAAI Conference on Artificial Intelligence.

A Optimal Edge Chunking Proofs

Theorem 1. Suppose we partition an edge (u, v) of cost x into k chunks. Let
u1, . . . , uk represent the vertices in this chunking, and let c(ui, ui+1) = xi,
where, for 1 ≤ i ≤ k, the xi’s are defined below.

1 ≤ i ≤ k : xi =
(b− 1)k−ibi−1

bk − (b− 1)k
x.

With this chunking, the agent has selective bias 1

1−(b−1
b)

k . If, with this chunk-

ing, the shortest path from ui to t is through ui+1 for all i > 1, then this
chunking is optimal.

Proof. Lemma 1 proves the case where k = 2. Suppose that the theorem
holds for k − 1 chunks; we prove it for k chunks. For now, we assume that
the shortest path from ui to u is ui+1 for all i > 1. At the end, we’ll consider
when this is not true. Say we put cost x1 on the first edge. Then, we apply
the inductive hypothesis to the other k − 1 edges, now with a task of cost
x− x1. The costs x2, . . . , xk are thus:

xi =
(b− 1)k−i−1bi−2

bk−1 − (b− 1)k−1
(x− x1).

30

Because the shortest path through ui is ui+1 for all i > 2 as well, we know
from the inductive hypothesis that this chunking is optimal (given that x1 is
on the first edge). Further, the perceived costs of starting with those edges
are all

1

1−
(

b−1
b

)k−1
(x− x1) + c(v → t).

We want to minimize the maximum of the perceived cost of starting with
edge (u1, u2) and all the other edges. As before, we can do so by setting
the perceived costs equal, as one side is decreasing in x1 while the other
is increasing in x1. Because the shortest path from ui is through ui+1 for
i > 1, the perceived cost of starting with (u1, u2) is bx1 + c(u2 → t) =
bx1+x2+c(u3 → t) = · · · = bx1+

∑k
i=2 xi+c(v → t) = bx1+x−x1+c(v →

t) = (b− 1)x1 + x+ c(v → t).

(b− 1)x1 + x+ c(v → t) =
1

1−
(

b−1
b

)k−1
(x− x1) + c(v → t)

(b− 1)x1 + x =
bk−1

bk−1 − (b− 1)k−1
(x− x1)

(

b− 1 +
bk−1

bk−1 − (b− 1)k−1

)

x1 =

(

bk−1

bk−1 − (b− 1)k−1
− 1

)

x

(b− 1)(bk−1 − (b− 1)k−1) + bk−1

bk−1 − (b− 1)k−1
x1 =

bk−1 − bk−1 + (b− 1)k−1

bk−1 − (b− 1)k−1
x

(bk − bk−1 − (b− 1)k + bk−1)x1 = (b− 1)k−1x

x1 =
(b− 1)k−1

bk − (b− 1)k
x.

Thus, x1 matches the chunking in the theorem. We now verify that the
perceived cost matches:

(b− 1)x1 + x+ c(v → t) = (b− 1) ·
(b− 1)k−1

bk − (b− 1)k
· x+ x+ c(v → t)

=

(

(b− 1)k

bk − (b− 1)k
+ 1

)

x+ c(v → t)

=
(b− 1)k + bk − (b− 1)k

bk − (b− 1)k
x+ c(v → t)

=
bk

bk − (b− 1)k
x+ c(v → t)

31

=
1

1−
(

b−1
b

)k
x+ c(v → t).

A similar calculation will show that all the perceived costs are the same:

1

1−
(

b−1
b

)k−1
(x− x1) + c(v → t)

=
bk−1

bk−1 − (b− 1)k−1

(

x−
(b− 1)k−1

bk − (b− 1)k
x

)

+ c(v → t)

=
bk−1

bk−1 − (b− 1)k−1

(

1−
(b− 1)k−1

bk − (b− 1)k

)

x+ c(v → t)

=
bk−1

bk−1 − (b− 1)k−1

(

bk − (b− 1)k − (b− 1)k−1

bk − (b− 1)k

)

x+ c(v → t)

=
bk−1

bk−1 − (b− 1)k−1

(

bk − (b− 1)k−1(b− 1 + 1)

bk − (b− 1)k

)

x+ c(v → t)

=
bk−1

bk−1 − (b− 1)k−1

(

b(bk−1 − (b− 1)k−1)

bk − (b− 1)k

)

x+ c(v → t)

=
bk

bk − (b− 1)k
x+ c(v → t)

=
1

1−
(

b−1
b

)k
x+ c(v → t).

Finally, we can plug the value of x1 into the formula for xi:

xi =
(b− 1)k−ibi−2

bk−1 − (b− 1)k−1
(x− x1)

=
(b− 1)k−ibi−2

bk−1 − (b− 1)k−1

(

x−
(b− 1)k−1

bk − (b− 1)k
x

)

=
(b− 1)k−ibi−2

bk−1 − (b− 1)k−1

(

1−
(b− 1)k−1

bk − (b− 1)k

)

x

=
(b− 1)k−ibi−2

bk−1 − (b− 1)k−1

(

b(bk−1 − (b− 1)k−1)

bk − (b− 1)k

)

x

(see previous derivation)

=
(b− 1)k−ibi−1

bk − (b− 1)k
x.

Thus, we’ve shown all components of the inductive statement. To summa-
rize, under the assumption that the shortest path from ui is through ui+1

32

for all i > 1, we’ve shown that the chunking in the theorem is optimal and
produces the correct selective bias.

When the shortest path from ui to t is through some external vertex w
instead of ui+1, we’ve overestimated the perceived cost at some edges. In
our calculations, we assumed that all edges would have perceived cost bxi+
∑

j>i xj + c(v → t), but actually some edges would have a lower perceived
cost of p(ei) = bxi+c(w → t). However, the final edge (uk, v) would still have
perceived cost bxk + c(v → t), as we assumed in the theorem, and thus the
perceived cost of that edge in the chunking would be 1

1−(b−1
b)

kx+ c(v → t).

So, though optimality can no longer be guaranteed, the chunking in the
theorem produces the expected selective bias regardless of whether the edge
is on the shortest path.

As a brief sanity check, we show that the xi’s defined in the theorem
actually sum to x.

Proposition 1.

∀k ≥ 1,

k
∑

i=1

(b− 1)k−ibi−1 = bk − (b− 1)k.

Proof. When k = 1, the left side is (b − 1)0b0 = 1, while the right side is
b1 − (b− 1)1 = 1. Suppose that the statement holds for k. Then:

k+1
∑

i=1

(b− 1)k+1−ibi−1 = bk +

k
∑

i=1

(b− 1)k+1−ibi−1

= bk + (b− 1)
k
∑

i=1

(b− 1)k−ibi−1

= bk + (b− 1)(bk − (b− 1)k)
by the inductive hypothesis

= bk + bk+1 − bk − (b− 1)k+1

= bk+1 − (b− 1)k+1.

Lemma 2. Suppose that C is a chunking with bottleneck β. If another
chunking O has bottleneck β′ < β and the same transition vertex τ , then O
must lower the cost of all edges that are bottlenecks in C, and thus raise the
cost of the remaining edges.

33

Proof. Let C have bottleneck β andO have bottleneck β′, where both chunk-
ings have the same transition vertex τ . Let J = {j : p(eCj) < β} and I = {i :

p(eCi) = β} partition the indices. We will show that
∑

j∈J x
O
j >

∑

j∈J x
C
j

and that xOi < xCi for all i ∈ I.
Since O has a lower bottleneck, it must be the case that p(eOk) < β for

all k. This implies that for all i ∈ I, we get that p(eOi) < p(eCi) (since
p(eCi) = β). Note that c(uOi → t) = c(uCi → t), as both chunkings have
the same transition vertex τ . Since p(eOi) = bxOi + c(uOi → t) and p(eCi) =
bxCi + c(uCi → t), the fact that p(eOi) < p(eCi) implies that xOi < xCi .

Clearly if xOi < xCi for all i ∈ I, then
∑

j∈J x
O
j >

∑

j∈J x
C
j , as I and J

partition the indices, and both chunkings must sum to x.

Lemma 3. If a chunking C has the same perceived cost starting with any
edge in the chunking, then C is optimal.

Proof. Let C have bottleneck β and transition vertex τ , and let O have
bottleneck β′ < β (and an arbitrary transition vertex). We prove that
∑j

i=1 x
C
i >

∑j
i=1 x

O
i for all j by induction. With this proven, we get our

desired contradiction with
∑k

i=1 x
C
i = x >

∑k
i=1 x

O
i , which means that O

does not assign all the cost.
For the base case of j = 1, note that p(eC1) > p(eO1) (because the bottle-

neck is lower). Expanding the perceived cost equations:

p(eC1) > p(eO1)

bxC1 + c(uC2 → t) > bxO1 + c(uO2 → t)

bxC1 +min c(u,w) + c(w → t), x− xC1 + c(v → t) > bxO1 +min c(u,w) + c(w → t), x− xO1 + c(v → t).

If xO1 = xC1 + ε for any positive ε, the first term would go up by bε and the
min would decrease by at most ε (if the both mins were the second term).
Because b > 1, this would never satisfy the above equation, and so xC1 > xO1 .

The inductive case is essentially analogous to the base case. The per-
ceived cost equation for arbitrary j expands to:

bxC1 +min(c(u,w) + c(w → t), x−

j−1
∑

i=1

xCi − xCj + c(v → t))

> bxO1 +min(c(u,w) + c(w → t), x−

j−1
∑

i=1

xOi − xOj + c(v → t)).

The inductive hypothesis tells us that
∑j−1

i=1 x
C
i >

∑j−1
i=1 x

O
i , so these terms

do not change the argument. The only way that the inequality can be

34

satisfied is if xCj < xOj . Otherwise, if xO1 = xC1 +ε for any positive ε, the first
term would go up by bε and the min would decrease by at most ε (since the
sum is greater on the left hand side). So by induction, we get the desired
result.

Theorem 2. Given any edge (u, v), we can determine the optimal k-chunking
in O(k) time, assuming that the shortest paths from u → t and v → t have
been precomputed.

Proof. Let w denote the node following u on the shortest path from u to
t. If v = w, we can simply apply Theorem 1 to immediately get the best
partition. So assume v 6= w. This means that δ > 0.

We first focus on the difficult case where δ ≤ x; the case where δ > x
will be covered at the end. As mentioned earlier, this means that we can
satisfy any value of τ , by placing at least δ cost on the first τ edges while
ensuring that the total cost of the first τ − 1 edges is less than δ. The case
where τ = k is an edge case that will be handled at the end. So suppose
that τ ∈ {1, . . . , k − 1}. We explain how to optimally chunk (u, v) for this
fixed value of τ ; in other words, we produce the optimal chunking over all
chunkings that satisfy

∑τ
i=1 xi ≥ δ and

∑τ−1
i=1 xi ≤ δ.

We start by setting x1 = x2 = · · · = xτ = δ/τ . Then for all i < τ ,
p(ei) = bxi + c(u,w) + c(w → t) = bδ

τ + c(u,w) + c(w → t). Further:

p(eτ) = bxτ + c(uτ+1 → t)

= bxτ +
∑k

i=τ+1 xi + c(v → t)(shortest path from uτ+1 follows the chunking)
= bxτ + x−

∑τ
i=1 xi + c(v → t)

= b · δτ − τ · δτ + x+ c(v → t) (substituing xi = δ/τ for i ≤ τ)

= bδ
τ + c(u,w) + c(w → t) (since δ = x+ c(v → t)− c(u,w) − c(w → t)).

Let α = bδ
τ + c(u,w) + c(w → t). Then p(ei) = α for all i ≤ τ .

Now we can chunk the remaining x − δ cost over the remaining k − τ
edges according to Theorem 1, which gives them perceived costs:

x− δ

1−
(

b−1
b

)k−τ
+ c(v → t)

def
= β.

From Lemma 3, we know that if α = β, we have the optimal chunking
(for any transition vertex τ , not just the current τ). In that case, we stop
the algorithm and return this chunking. Otherwise, there are two cases:

Case 1: α > β. In this case, we claim that our chunking is optimal
among all chunkings with transition vertex τ . Notice that our chunking has

35

bottleneck α. By Lemma 2, if another chunking, O with the same τ has
bottleneck lower than α, it must assign lower cost to all of the first τ edges.
But this means that

∑τ
i=1 x

O
i < δ, which means the transition vertex would

be later than τ . Thus, if α > β, our chunking is optimal (for this τ).
Case 2: β > α. The key to this case is that the perceived cost of starting

with eτ can be understood in two ways, which allows us to group it into
either the earlier or later set of edges. This isn’t the case for any other edge,
and using this fact will allow us to modify our original chunking to lower β.
More specifically, the original chunking ensures that the perceived cost of
starting with eτ is equal to all previous edges; the first modification we do
in this case is to set the perceived cost of starting with eτ equal to all later
edges instead.

We start by leaving xi fixed at δ/τ for all i < τ , but then chunking the
remaining x − δ · τ−1τ work over the remaining k − 1 + 1 edges according
to Theorem 1, which modifies xτ . Because this assignment equalizes the
perceived cost of starting with eτ with that of later edges, it must have
increased xτ to be higher than δ/τ ; by similar reasoning, all xi where i > τ
must have decreased. Thus, this chunking has p(ei) = β′ for all i ≥ τ , where
β′ < β. Further, since the perceived cost of starting with eτ was α, and xτ
increased, the new perceived cost of starting with eτ , β

′ must still be higher
than α.

We now increase x1, . . . , xτ−1 to raise α and lower β′. We do so by setting
xi to a placeholder y for all i < τ and then solving for the optimal y. Note
setting all these values equal is (weakly) dominant, because the perceived
costs of starting with these edges are all bxi + c(u,w) + c(w → t). Thus, if
another chunking had xi 6= xj, where i, j < τ , then setting xi and xj equal
to their average would only decrease maxi<τ p(ei). This would either reduce
the bottleneck (if the bottleneck is before τ) or keep it the same. So we can
set them all equal to y without loss of generality.

With this, p(ei) for i < τ is by + c(u,w) + c(w → t). We then use
Theorem 1 to optimally split the remaining x − y(τ − 1) work over the
remaining k − τ + 1 edges. With that, for all i ≥ τ , we get

p(ei) =
x− y(τ − 1)

1−
(

b−1
b

)k+1−τ
+ c(v → t).

We now set the two perceived costs equal and solve for the best y:

x− y(τ − 1)

1−
(

b−1
b

)k−τ+1
+ c(v → t) = by + c(u,w) + c(w → t), so

36

y

(

τ − 1

1−
(

b−1
b

)k−τ+1
+ b

)

=
x

1−
(

b−1
b

)k−τ+1
+ c(v → t)− c(w → t)− c(u,w).

To ease notation, let zτ = 1−
(

b−1
b

)k−τ+1
. We can then simplify as follows:

y

(

τ − 1 + zτ b

zτ

)

=
x

zτ
+ c(v → t)− c(u,w) − c(w → t), so

y =
x+ zτ (c(v → t)− c(w → t)− c(u,w))

τ − 1 + zτ b

=
δzτ + (1− zτ)x

τ − 1 + zτ b

def
= y∗.

For our final chunking, C∗, we set xi = min(y∗, δ
τ−1) for i < τ , and split the

remaining work over the latter edges via Theorem 1. Under this chunking,
let α∗ = p(ei) for i < τ and let β∗ = p(ei) for i ≥ τ . We claim the following.

Claim 1. α∗, β∗ > α

The intuition for this is that the chunking C∗ increases the cost of early
edges, while decreasing the cost of later edges. But we still ensure that the
later edges have perceived cost at least as great as the early edges.

Proof. Note that with y = δ/l, we got that α < β′. Further, with y = y∗,
the perceived costs starting with any edge would be equal, by definition of
y∗. Thus, we know that y∗ > δ/l. It follows that min(y∗, δ

l−1) > δ/l, and
thus α∗ > α.

Note that if y = y∗, then β∗ = α∗ > α, since choosing edge costs so that
the perceived costs of starting with all edge in the chunking are equal means
that the costs on the early edges increase. Further, β∗ is decreasing in y.
Since y = min(y∗, δ

l−1) ≤ y∗, this implies that β∗ > α.

We now show that C∗ has transition vertex τ . By construction, we have
that

∑

i<τ xi ≤ δ. Let i ≤ τ be arbitrary. When xi was δ/τ in the original
chunking, we had that p(ei) was α. By Claim 1, we know that p(ei) > α,
which means that xi > δ/τ (since perceived costs are strictly increasing in
the actual cost). Thus,

∑

i≤τ xi ≥ δ.
We claim that C∗ is optimal (for the fixed transition vertex). First, note

that if y∗ ≤ δ
τ−1 and thus xi = y∗ for all i < τ , then α∗ = β∗ and the

chunking is optimal (over all transition vertices) by Lemma 3. Otherwise,
suppose that y∗ > δ

τ−1 and so xi = y = δ
τ−1 for all i < τ . Since y < y∗, and

37

α∗ is increasing in y, we know that β∗ > α∗. So the bottleneck of C∗ is β∗

in this case; by Lemma 2, any better chunking O with the same transition
vertex must have

∑

i<τ x
O
i >

∑

i<τ x
C∗

i = δ. Thus, O would have an earlier
transition vertex, which is a contradiction.

Lastly, we discuss the runtime of the algorithm. In our analysis, for a
fixed τ , we must compare the α and β values in two chunkings – the initial
one where xi = δ/t for all i ≤ τ , and the modified one where xi = y for all
i < τ . Since we have closed-form equations for the α and β values in each
chunking, we do not need to construct them for each τ . We simply keep
track of which value of τ produces the smallest perceived cost, and whether
the best chunking for that τ was the initial chunking or the modified one.
We can thus do only constant work for each τ , resulting in a runtime of
O(k). See Algorithm 1 for details.

Finally, we prove the remaining two edges cases.
The first is when τ = k. In this case, the first chunking would set all

costs equal to δ/k, which would not cover the full cost of the original edge.
However, this case is also very simple, as all edges have the same perceived
cost of bxi + c(u,w) + c(w → t) when τ = k. So, this case proceeds as
follows. First, we set all xi = x/k. If x/k < δ

k−1 , this would satisfy the
constraint that τ = k, and since all edges would have the same perceived
cost, this would be optimal. Otherwise, we would set xi =

δ
k−1 for all i < k

and xk = x− δ, which would be optimal for τ = k, as this would be as close
as we could get to uniform costs.

Finally, we consider the case where δ > x. We established earlier that
the shortest path will switch from the chunking to the w vertices if at least
δ work has been completed on the chunking. Since δ > x, this can’t happen,
and so no matter how we chunk, the shortest path from any u<k is through
w. This means that p(ei) = bxi + c(u,w) + c(w → t) for all i < k. Note
that ek = (uk, v); so, this final edge locks the agent into going to v. Thus,
p(ek) = bxk + c(v → t) = b(x −

∑

i<k xi) + c(v → t). To optimally chunk,
we set all xi = y for i < k and then set the perceived cost of starting with
the final edge equal to this to find the optimal y.

by + c(u,w) + c(w → t) = b(x− (k − 1)y) + c(v → t)

byk = bx+ c(v → t)− c(u,w) − c(w → t) = δ + (b− 1)x

y =
δ + (b− 1)x

bk

def
= y∗.

We now simply set y = min
(

y∗, x
k−1

)

. If y∗ ≤ x
k−1 , then all perceived costs

are equal, so this chunking is optimal by Lemma 3. If y∗ > x
k−1 , then the

38

perceived cost of starting with the final edge is still higher, but the actual
cost of that edge cannot be reduced below 0. Note that the case where
y∗ > x

k−1 (and δ > x) is the only case where the optimal chunking might
put a cost of 0 on any edge.

B Cost Ratio Corollary

Corollary 2. Given a local constraint k = O(n), the optimal chunking G′

of G has constant cost ratio.

Proof. Let c be a constant. By Theorem 6, we will get a cost ratio of O(c)
if bmin ≤ c1/n. We thus solve for the following equation for k:

1

1−
(

b−1
b

)k
= c1/n

1

c1/n
= 1−

(

b− 1

b

)k

(

b− 1

b

)k

= 1−
1

c1/n
(

b− 1

b

)k

=
c1/n − 1

c1/n

k =
log
(

c1/n−1
c1/n

)

log
(

b−1
b

)

=
log
(

c1/n

c1/n−1

)

log
(

b
b−1

) .

Since b is a constant, log
(

b
b−1

)

is constant, and k is thus dominated by the

numerator. Similarly, c1/n < c, and thus we are interested in the asymptotic

behavior of log
(

1
c1/n−1

)

. The series expansion as n→∞ is n
log c−

1
2 +

log c
12n +

O(1
n2) = O(n).

39

40

C Non-short Path Edge Chunking Algorithm

Algorithm 1: Optimally chunk any edge. Uses Chunk-Shortest-Edge(k, x) as a
subroutine, which returns the optimal k-chunking of a shortest edge of cost x,
which is given by Theorem 1.

Input: A DAG G, edge (u, v) in G, bias factor b and chunking parameter k
Output: The optimal chunking for edge (u, v) and the associated bottleneck cost
x← c(u, v), w ← next node in shortest u→ t path
if w = v then // edge case for when (u, v) is on the shortest path

return Chunk-Shortest-Edge(k, x), 1

1−
(

b−1

b

)

k
x+ c(v → t)

δ ← x+ c(v → t) − c(u, w)− c(w → t)
if δ > x then

y∗ ←
δ+(b−1)x

bk
C ← x1, . . . , xk−1 7→ max(y∗, x

k−1
) and xk 7→ x− (k − 1)max(y∗, x

k−1
)

min bottleneck ← bmax(y∗, x
k−1

) + c(u,w) + c(w → t)

return C,min bottleneck
min bottleneck ←∞, τ∗ ← 0, opt chunk type← 0
for τ = 1 to k − 1 do

α0 ←
bδ
τ

+ c(u,w) + c(w → t), β0 ←
x−δ

1−
(

b−1

b

)

k−τ
+ c(v → t)

if α0 = β0 then
C ← x1, . . . , xτ 7→ δ/τ and xτ+1, . . . , xk 7→ Chunk-Shortest-Edge(k − τ, x− δ)
return C,α0

else if α0 > β0 then

if α0 < min bottleneck then
min bottleneck ← α0, τ∗ ← τ, opt chunk type← 0

else

if τ = 1 then // edge case for τ = 1
return Chunk-Shortest-Edge(k, x), 1

1−
(

b−1

b

)

k
x+ c(v → t)

zτ ← 1−
(

b−1
b

)k−τ+1
, y∗ ← δzτ+(1−zτ)x

τ−1+zτ b

if δ
τ−1

> y∗ then

C ← x1, . . . , xτ−1 7→ y∗ and
xτ , . . . , xk 7→ Chunk-Shortest-Edge(k − τ + 1, x− (τ − 1)y)

return C, by∗ + c(u,w) + c(w → t)
else

β ← x−δ
zτ

+ c(v → t)

if β < min bottleneck then
min bottleneck ← β, τ∗ ← τ, opt chunk type← 1

if x
k
≤ δ

k−1
then

C ← x1, . . . , xk 7→ x/k, min bottleneck ← bx
k

+ c(u, w) + d(w)
return C,min bottleneck

else

α← bδ
k−1

+ c(u,w) + c(w → t), β ← b(x− δ) + c(v → t)

if min(α, β) ≤ min bottleneck then

C ← x1, . . . , xk−1 7→
δ

k−1
and xk 7→ x− δ, min bottleneck ← min(α, β)

return C,min bottleneck
if opt chunk type = 0 then

C ← x1, . . . , xτ∗ 7→ δ/τ∗ and xτ∗+1, . . . , xk 7→ Chunk-Shortest-Edge(k − τ∗, x− δ)
else

C ← x1, . . . , xτ∗
−1 7→

δ
τ∗

−1
and xτ∗ , . . . , xk 7→ Chunk-Shortest-Edge(k − τ∗ + 1, x− δ)

return C,min bottleneck

41

D Splitting Agents onto Separate Paths

We first provide a full description of Algorithm 2. We now prove that this
algorithm is correct via the following theorem.

Theorem 7. If Ci is the output of the ith iteration of Algorithm 2 and C ′

is another chunking such that p(e′i; b2) > p(ei; b2), then A1 will not take C ′.

Proof. First, suppose that
∑

j 6=i xj = 0, that is, all of the weight is on ei in
Ci. It’s obvious that p(e

′
i; b2) ≤ p(ei; b2), as the perceived cost of any chunk

cannot exceed bc(u, v) + c(v → t), and Ci achieves this cost on ei. It follows

that
∑

j 6=i xj > 0, which implies that p(ei; b1) = α
(1)
u by Lemma 5(a). We

now consider two cases.

Case 1: x′i > xi. Suppose that
∑

j>i xj = 0. We must have x′j ≥ xj,for
all j ≥ i, as costs must be non-negative. Thus, p(e′i; b1) > p(ei; b1), and A1

will deviate from C ′ at edge i.
So, suppose instead that

∑

j>i xj > 0. By Lemma 5(b), we have that

∀j ≤ i, p(ej ; b1) = α
(1)
u . A similar now argument applies: if

∑

j>i x
′
j <

∑

j>i xj, then more weight must be put on x≤i, and it’s clear that doing
so would cause A1 to deviate before or at edge i (concretely, A1 would
deviate at the first edge with higher weight). But if

∑

j>i x
′
j ≥

∑

j>i xj ,
then p(e′i; b1) > p(ei; b1), and A1 will deviate from C ′ at edge i. Either way,
A1 will not take the chunking C ′.

Case 2: x′i ≤ xi. Recall that we can write p(ei; b2) as b2xi + c(ui+1 →
t), where c(ui+1 → t), the cost of the cheapest path from ui+1 to t, is
min(c(u,w) + c(w → t),

∑

j>i xj + c(v → t)).

p(e′i; b2) > p(ei; b2)

⇐⇒ b2x
′
i + c(u′i+1 → t) > b2xi + c(ui+1 → t)

⇐⇒ c(u′i+1 → t)− c(ui+1 → t) > b2(xi − x′i)

=⇒ c(u′i+1 → t)− c(ui+1 → t) > b1(xi − x′i)
(since b2 > b1 and xi − x′i ≥ 0)

⇐⇒ b1x
′
i + c(u′i+1 → t) > b1xi + c(ui+1 → t)

⇐⇒ p(e′i; b1) > p(ei; b1).

Since p(ei; b1) = α
(1)
u , A1 won’t take C ′ (they will deviate at e′i).

42

Algorithm 2: Chunk (u, v) such that A1 takes the chunking and A2 doesn’t,
if possible.

maxBottleneck ← 0, C∗ ← ∅
for i = 1 to k do

Ci = (x1, . . . , xk)← optimal chunking of (u, v) for A1

for j = i− 1 to 1 do

if p(ei; b1) < α
(1)
u then

δ = min(xj , (p(ei; b1)− α
(1)
u)/b1)

xj ← xj − δ
xi ← xi + δ

for j = i+ 1 to k do

if p(ei; b1) < α
(1)
u then

γw ← c(u,w) + c(w → t), γx ←
∑

l>i xl + c(v → t)
if γx ≤ γw then

δ = min(xj , (p(ei; b1)− α
(1)
u)/(b1 − 1))

else if p(ei; b1)− α
(1)
u ≤ b1(γx − γw) then

δ = min(xj , (p(ei; b1)− α
(1)
u)/(b1 − 1))

else
δ′ = γx − γw
xj ← xj − δ′

xi ← xi + δ′

δ = min(xj , (p(ei; b1)− α
(1)
u)/(b1 − 1))

xj ← xj − δ
xi ← xi + δ

λ←
∑i−1

j=1 p(ej ; b1)− α
(1)
u

δ∗ ← min(λ/(b1 − 1),
∑

j>i xj/b1
decrease x>i by b1δ

∗

xi ← xi + δ∗

j ← i− 1
while δ∗ > 0 do

δ ← min(xj , δ
∗)

xj ← xj −min(xj , δ)
δ∗ ← δ∗ − δ
j ← j − 1

bottleneck ← maxj p(ej ; b2)
if bottleneck ¿ maxBottleneck then

maxBottleneck ← bottleneck
C∗ ← C

return C∗

43

We now describe the flipped version of this problem, where we chunk
(u, v) so that A2 takes it but A1 finds it maximally unappealing. The flipped
algorithm has the same phase 1 and 2 as before.8 Phase 3 is modified to:

3. Let λ be the total amount of cost that could be added to x>i while en-

suring that p(ej ; b1) ≤ α
(1)
u for all j > i. Let δ = min(λ/b2,

∑

j<i xj/(b2−
1), xi). Decrease xi by δ, decrease the cumulative cost of x<i by
(b2 − 1)δ, and increase the cumulative cost of x>i by b2δ.

We also modify part (b) of the lemma.

Lemma 8. Let C = (e1, . . . , ek) be the chunking produced by the algorithm
above. Then:

(a)
∑

j 6=i xj > 0 =⇒ p(ei; b2) = α
(2)
u

(b)
∑

j<i xj > 0 and xi > 0 =⇒ ∀j > i, p(ej ; b2) = α
(2)
u

Proof. The proof of (a) is identical to before. For (b), as before, if more
could be siphoned from

∑

j<i xj and xi, the algorithm would, unless no
edges in e>i can be increased further.

Theorem 13. Let C be the output of the algorithm above. Let C ′ be another
chunking such that p(e′i; b1) > p(ei; b1). Then, A2 will not take C ′.

Proof. First, suppose that
∑

j 6=i xj = 0, i.e., all of the weight is on ei in
C. Then, it’s obvious that p(e′i; b1) ≤ p(ei; b1), as the perceived cost of any
chunk cannot exceed bc(u, v) + c(v → t), and C achieves this cost on ei.

So, we know that
∑

j 6=i xj > 0, which implies that p(ei; b1) = α
(1)
u by

Lemma 8(a). We now consider two cases.

Case 1:
∑

j>i x
′
j ≤

∑

j>i xj. Recall that c(ui+1 → t) = min(c(u,w) +
c(w → t),

∑

j>i xj + c(v → t)). Thus,
∑

j>i x
′
j ≤

∑

j>i xj implies that
c(ui+1 → t) ≥ c(u′i+1 → t).

p(e′i; b1) > p(ei; b1)

⇐⇒ b1x
′
i + c(u′i+1 → t) > b1xi + c(ui+1 → t)

⇐⇒ b1(x
′
i − xi) > c(ui+1 → t)− c(u′i+1 → t)

=⇒ b2(x
′
i − xi) > c(ui+1 → t)− c(u′i+1 → t)

(since b2 > b1 and c(ui+1 → t)− c(u′i+1 → t) ≥ 0)

8We omit the full pseudocode for the modified algorithm, as it’s easy to modify the
third phase of Algorithm 2.

44

⇐⇒ b2x
′
i + c(u′i+1 → t) > b2xi + c(ui+1 → t)

⇐⇒ p(e′i; b2) > p(ei; b2).

Since p(ei; b2) = α
(2)
u , A2 won’t take C ′.

Case 2:
∑

j>i x
′
j >

∑

j>i xj. Suppose, for the sake of contradiction, that
∑

j<i xj = 0. Then,
∑

j≥i xj = x, i.e., all the weight is on edges e≥i. Now,
p(e′i; b1) > p(ei; b1) requires either that x′i > xi, or that C ′ assigns more
cost to edges e≥i than C. The latter is impossible because C assigns all the
weight to edges e≥i, and thus x′i > xi. This implies that

∑

j>i x
′
j <

∑

j>i xj ,
which gives us a contradiction.

So it follows that
∑

j<i xj > 0. We now consider two cases. First, sup-
pose that xi > 0. We apply Lemma 8(b), which says that ∀j > i, p(ej ; b2) =

α
(2)
u . Since

∑

j>i x
′
j >

∑

j>i xj , by Lemma 6 there must be some edge e′j

such that p(e′j ; b2) > p(ej ; b2) = α
(2)
u , and thus A2 deviates from C ′.

Second, suppose that xi = 0. x′i ≥ xi. This combined with the fact that
∑

j>i x
′
j >

∑

j>i xj implies that p(e′i; b2) > p(ei; b2) = α
(2)
u , and thus A2

doesn’t take C ′.

E Keeping Agents on the Same Path

Lemma 6. Let C and C ′ be two (possibly partial) chunkings of the same
edge. Suppose that

∑k
i=l x

′
i >

∑k
i=l xi. Then, there exists an i ∈ [l, k] such

that for all b > 1, p(e′i; b) > p(ei; b).

Proof. We prove the contrapositive. That is, suppose that, for all i ∈ [l, k],
there exists some bi such that p(ei; bi) ≥ p(e′i; bi). We show that

∑k
i=j xi ≥

∑k
i=j x

′
i by induction from j = k to l.

For the base case, suppose that j = k. Note that p(ek; bk) ≥ p(e′k; bk) if
and only if bkxk + c(v → t) ≥ bkx

′
k + c(v → t), which implies that xk ≥ x′k,

as desired. For the inductive case, assume that
∑k

i>j xi ≥
∑k

i>j x
′
i. First,

we expand p(ej ; bj) ≥ p(e′j ; bj):

bxj +min(c(u,w) + c(w → t),

k
∑

i>j

xi + c(v → t)) ≥ bx′j +min(c(u,w) + c(w → t),

k
∑

i>j

x′i + c(v → t)).

(2)

We now proceed by cases.

45

Case 1. Suppose that min(c(u,w) + c(w → t),
∑k

i>j x
′
i + c(v → t)) =

c(u,w) + c(w → t). Since
∑k

i>j x
′
i + c(v → t) ≤

∑k
i>j xi + c(v → t) by the

inductive hypothesis, we also know that min(c(u,w) + c(w → t),
∑k

i>j xi +
c(v → t)) = c(u,w) + c(w → t). Thus, Equation 2 holds if and only if:

bxj + c(u,w) + c(w → t) ≥ bx′j + c(u,w) + c(w → t)

⇐⇒ bxj ≥ bx′j

⇐⇒ xj ≥ x′j .

Combining this with the inductive hypothesis yields
∑

i≥j xi ≥
∑

i≥j x
′
i, as

desired.

Case 2. Suppose that min(c(u,w) + c(w → t),
∑k

i>j x
′
i + c(v → t)) =

∑k
i>j x

′
i + c(v → t). Clearly min(c(u,w) + c(w → t),

∑k
i>j xi + c(v → t)) ≤

∑k
i>j xi + c(v → t). Thus, Equation 2 implies:

bxj +
∑

i>j

xi + c(v → t) ≥ bx′j +
∑

i>j

x′i + c(v → t)

⇐⇒ bxj + b
∑

i>j

xi ≥ bx′j +
∑

i>j

x′i + (b− 1)
∑

i>j

xi

(adding (b− 1)
∑

i>j xi to both sides)

=⇒ bxj + b
∑

i>j

xi ≥ bx′j + b
∑

i>j

x′i

(since
∑

i>j xi ≥
∑

i>j x
′
i by the IH)

⇐⇒
∑

i≥j

xi ≥
∑

i≥j

x′i.

The last line proves the inductive step, and thus completes the proof.

F Graph-Chunking Theorems for Multiple Agents

Theorem 9. Given any task graph G = (V,E) and a local constraint k, we
can optimally chunk G for two types of agents in time O(|E|2k2 + |V |).

Proof. The main computational bottleneck is computing P(u, y) for all u, y ∈
V . For u 6= y, this is very simple: we can chunk edges for each agent inde-
pendently when they aren’t at the same node. Doing so requires 2|E| ap-
plications of Algorithm 1 (|E| applications for each agent), for a runtime of

46

O(2|E|k). For P(u, u), consider all (v, z) ∈ N(u)×N(u). There are a total of
|E|2 such pairs over all choices of u. When v 6= z, we apply Algorithm 2 (to
(u, v) and (u, z)), and when v = z, we apply Algorithm 3. Algorithm 2 runs
in O(k2) time and Algorithm 3 runs in O(k) time (for m = 2 agents). Thus,
the total runtime to compute P is O(2|E|2k2 + |E|k + 2|E|k) = O(|E|2k2).

Once we have P, we need to compute the cost recurrence. For each
element in P, we compute the min over the three constant time functions
C1, C2, and C3, for a total time of O(|P|) = O(|E|2), since P ⊆ E × E.
Thus, the cost recurrence takes O(|E|2) time to compute, which means that
the total runtime is dominated by computing P.

For correctness, P is correct by Theorem 13, Theorem 7, and Theorem 8.
Given the correctness of P, the cost recurrence is correct by Lemma 7.

Theorem 10. Given any task graph G = (V,E) and a global constraint k,
we can optimally chunk G for two types of agents in time O(|E|2k3 log k +
|V |).

Proof. We slightly modify the definition of P ′(u, y) to be the set of (v, z, i)
such that i is the minimum number of chunks needed for (u, v) and (v, z)
to be compatibly chunked. With this, we can modify the cost recurrence in
the obvious way. The individual cases become:

C1(u, v, y, i) =

{

c(y, u) + cost[u, u, i] if (v, u) ∈ P ′(u, y)

∞ otherwise

C2(u, y, z, i) =

{

c(u, y) + cost[y, y, i] if (y, z) ∈ P ′(u, y)

∞ otherwise

C3(u, v, y, z, i) = c(u, v) + c(y, z) + cost[v, z, i].

And the recurrence becomes:

cost[u, y, i] = min
(v,z,l)∈P ′(u,y):l≤i

min(C1(u, v, y, i − l), C2(u, y, z, i − l), C3(u, v, y, z, i − l)).

Computing this recurrence will take time O(|E|2k), but this will not be
the bottleneck. The correctness of this recurrence follows simply from the
correctness of P ′. It remains to show how to compute this new P ′.

For P ′(u, y) where u 6= y, it is easy to return the minimum number
of chunks needed to chunk the edges; we already solved this problem with
binary search in the single-agent global budget case (Theorem 4). This takes
O(2|E|log k) time for all u 6= y. Now suppose u = y. If v = z, and we’re
thus trying to keep agents on the same path, we can also use binary search

47

with Algorithm 3 to find the minimum number of chunks to get both agents
to stick to the path. This takes O(|E|log k) time in total.

The bottleneck is computing the minimum number of chunks to get A1 to
take (u, v) and A2 to take (u, z). We can visualize the problem as searching
through a two dimensional binary array, where arr[i, j] = 1 iff we can get a
compatible chunking where A1 takes an i-chunking of (u, v) and A2 takes a
j-chunking of (u, z). Luckily, the array is row-wise and column-wise sorted;
that is, we can always simulate an i-chunking with an (i+1)-chunking (e.g.,
set the first chunk to 0), so if A1 can take an i-chunking of (u, v) and A2

can take a j-chunking of (u, z), then it’s true that A1 can take an (i + 1)-
chunking of (u, v) and A2 can take a j-chunking of (u, z). Our goal is to find
mini,j:arr[i,j]=1 i+ j. In the worst case, the matrix has dimensions k × k.9

One solution is to run binary search on each column of the matrix;
this involves looking at O(k log k) entries of the matrix. The minimum
indices will clearly be found this way, as the minimum point will be the
lowest 1 entry in some column. Evaluating each entry requires us to run
Algorithm 2, which runs in O(k2). Thus, the total runtime over all edges
in the graph is O(|E|2k3 log k). This brings the total computation cost
to O(|E|2k3 log k + |V |). The correctness of P ′ follows obviously from the
correctness of Algorithm 1, Algorithm 2, and Algorithm 3.

Theorem 11. Given any task graph G = (V,E) and a local constraint k, we
can find the optimal single-path chunking of G for m types of agents with at
most |E| applications of Algorithm 3, for a total runtime of O(|E|mk+ |V |).

Proof. We simply use Algorithm 3 to determine which edges can be chunked
such that all agents will take the chunking. Keep only those edges in the
graph, and run a shortest-path algorithm. This is exactly analogous to
Theorem 3, except that the runtime increases by a factor of m because
Algorithm 3 runs in O(mk) time.

Theorem 12. Given any task graph G = (V,E) and a global constraint
k, we can find the optimal single-path chunking of G for m types of agents
with at most |E|log k applications of Algorithm 3, for a total runtime of
O(|E|mk log k + |V |).

Proof. This is exactly the same as the proof of Theorem 4, except that we
use binary search to find the minimum number of chunks le such that all
agents take the optimal le chunking of edge e. Thus, we run Algorithm 3

9Technically, we care only about the lower triangle (i.e., entries arr[i, j] where i+j ≤ k),
but this doesn’t affect the asymptotic runtime.

48

log k times for each edge, resulting in a total runtime of O(|E|mk log k +
|V |).

49

	Introduction
	Chunking Model
	Optimal Edge-Chunking
	Edges on the shortest path
	Edges not on the shortest path; a motivating example
	Optimally chunking for edges not on the shortest path

	Optimal Chunking in Task Graphs
	Local Constraints
	Global Chunking Budget

	Optimizing the cost ratio
	Optimal Chunking for Multiple Agents
	Splitting Agents onto Separate Paths
	Keeping Agents on the Same Path
	Optimal Graph Chunking for Multiple Agents
	Two Types
	m Types of Agents Taking the Same Path

	Conclusion
	Optimal Edge Chunking Proofs
	Cost Ratio Corollary
	Non-short Path Edge Chunking Algorithm
	Splitting Agents onto Separate Paths
	Keeping Agents on the Same Path
	Graph-Chunking Theorems for Multiple Agents

