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Abstract

We explore the performance of polynomial-time incentive-compatible mechanisms in single-
crossing domains. Single-crossing domains were extensively studied in the economics literature.
Roughly speaking, a domain is single crossing if monotonicity characterizes incentive compatibility
(intuitively, an algorithm is monotone if a bidder that “improves” his valuation is allocated a better
outcome). That is, single-crossing domains are the standard mathematical formulation of domains
that are informally known as “single parameter”. In all major single-crossing domains studied so
far (e.g., welfare maximization in various auctions with single-minded bidders, makespan mini-
mization on related machines), the performance of the best polynomial-time incentive-compatible
mechanisms matches the performance of the best polynomial-time non-incentive-compatible algo-
rithms. Our two main results make progress in understanding the power of incentive-compatible
polynomial-time mechanisms in single-crossing domains:

• We provide the first proof of a gap in the power of polynomial-time incentive-compatible
mechanisms and polynomial-time non-incentive-compatible algorithms in any single-crossing
domain: we present an objective function in a single-crossing multi-unit auction for which
there exists an incentive-compatible mechanism that exactly optimizes the objective func-
tion. For this objective function, there is polynomial-time algorithm that provides an ap-
proximation ratio of 1

2
, yet no polynomial-time incentive-compatible mechanism provides a

finite approximation (under standard computational complexity assumptions).

• The objective function used above is not natural. We show that to some extent this is
unavoidable by providing a sweeping positive result for the most natural objective function
in multi-unit auctions, that of welfare maximization. We present an incentive-compatible
FPTAS mechanism for every multi-unit auction with single-crossing domains. This improves
over the mechanism of Briest et al. [STOC’05] that only applies to the much simpler case
of single-minded bidders.
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1 Introduction

Taking a bird’s eye view of Algorithmic Mechanism Design, one can observe that each problem in
the field is traditionally classified to one of two major categories: “single parameter” or “multi-
parameter”. As we later discuss in-depth, there is no consensus on which domains constitute a
multi-parameter domain and which are not, nor a general agreement on the precise mathematical
definition of each domain category. However, for the sake of getting an intuitive feel, an agent is a
“single parameter” if a single number can represent its valuation. For example, some papers (e.g.,
[LOS02, APTT04]) consider combinatorial auctions with single-minded bidders, where the parameter
is the value of the set that the bidder is interested in. Other papers consider single-minded bidders
in a multi-unit environment (e.g., [MN08, BKV11]). A more involved environment is scheduling with
related machines, introduced by Archer and Tardos [AT01], in which that parameter of each machine
is its speed. In each of these domains there exists an incentive-compatible mechanism that optimizes
the objective function exactly, but this mechanism is NP-hard to compute. Yet, the performance of
the best computationally-efficient incentive-compatible mechanisms matches the performance of the
best computationally-efficient non-incentive-compatible algorithms.

By no coincidence, the references above can be considered as a list of greatest hits of the early
days of Algorithmic Mechanism Design. Indeed, the conventional wisdom is that single-parameter
domains are “easy” in the sense that they allow for a plethora of incentive-compatible algorithmic
constructions. Roughly speaking, the algorithm must obey a relatively easy-to-satisfy monotonicity
condition to be implemented in an incentive-compatible way. In contrast, in multi-parameter domains
– informally defined as all domains for which describing the valuation requires two numbers or more
– there is no analogous easy-to-work-with condition. The “hardness” of multi-parameter domains
is supported by the relative lack of applicable algorithmic constructions, limiting characterizations
(e.g.,[Rob79, LMN03]), as well as by a series of computational impossibility results (e.g., [Dob11,
Dob16, AKSW20]).

The algorithmic success of single-parameter mechanism design raises the question of whether
polynomial-time incentive-compatible mechanisms in single-parameter domains are as powerful as
their non-incentive-compatible algorithmic counterparts (when the objective function can be exactly
optimized by an incentive-compatible mechanism that is not computationally efficient under standard
complexity assumptions1). This is also the main question that we consider in this paper. We currently
do not even have a candidate domain nor an objective function that might illustrate a separation
between the two. In all relevant domains that were considered in the literature, the performance
of polynomial-time incentive-compatible mechanisms matches the performance of polynomial-time
non-incentive-compatible algorithms.

Single-Crossing Domains

Before we begin our journey in single-parameter domains, it seems appropriate to lay stable math-
ematical foundations for the discussion. The naive attempt to define single-parameter domains as
ones in which the valuation can be represented by a single number [Wik21] does not hold water as,
e.g., multiple numbers can be encoded by a single number.

We start by revisiting the basic mechanism design definitions. There are n players, and a finite
set of alternatives A. Each player i has a valuation function vi : A → R that specifies the value

1This paper considers worst-case analysis. However, the situation is quite different in the Bayesian world: a line of
work that has culminated in [DHKN21] shows how to reduce any computationally efficient Bayesian welfare-maximizing
algorithm to a comparable incentive-compatible mechanism. This demonstrates the “easiness” of mechanism design
in Bayesian settings, as this reduction applies even to multi-parameter settings. In contrast, the impossibility results
discussed above show that there are no similar reductions in our non-Bayesian setting.
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of the player for every possible alternative. The set of possible valuations of player i is Vi. A
(deterministic, direct) mechanism is a pair (f, P ) where f :

∏n
i=1 Vi → A is a social-choice function

that specifies the chosen alternative, and P :
∏n

i=1 Vi → R
n outputs a vector that specifies the

payment of each player i. A mechanism (f, P ) implements a social-choice function f in dominant
strategies if for every two valuations vi, v

′
i of player i and valuations v−i of the other players, it holds

that vi(f(vi, v−i))−Pi(vi, v−i) ≥ vi(f(v
′
i, v−i))−Pi(v

′
i, v−i). For concreteness, consider the following

settings:

• “Binary Single-Parameter Domains”: for each player i there is a set of “good” alternatives
Ai ⊆ A and a number ti > 0 such that vi(a) = ti if a ∈ Ai, whereas vi(a) = 0 otherwise. The
standard example for a binary single parameter domain is the domain of known single-minded
bidders.

• “Linear Single-Parameter Domains”: for each player i there is a vector (c1, . . . , cA) such that
for each v ∈ Vi there is a number tv such that for every alternative a ∈ A, v(a) = tv · ca. An
example for a linear single-parameter setting is scheduling with related machines.

• “Function Based Domains”: order the valuations in each Vi in some order. For each alternative
a ∈ A, there is a function f i

a : R → R such that v(a) = f i
a(tv) for every v ∈ Vi, where tv is the

index of v in the order.

As their names hint, the first two domains are intuitively “single parameter”: the valuations of
each player i are defined by a single number that naturally defines an order ≻v

i on the valuations. It is
well known [Mye81, AT01] that in these domains it holds that f is dominant-strategy implementable
if and only if the following “monotonicity” property holds: for every player i and every valuations
vi ≻v

i v′i, and for every valuation profile v−i, it holds that vi(f(vi, v−i)) ≥ vi(f(v
′
i, v−i)). Payment

formulas for functions f that are implementable in these domains are also given in [Mye81, AT01].
We have to be more careful when considering the third domain. It is not hard to see that as

written, even though f i
a receives a single parameter, without any restriction on f i

a its definition
allows to encode all possible domains. However, for some choices of the f i

a’s, it makes sense to call
the valuations “single parameter”. For example, if there are two alternatives a, a′ with f i

a(x) = x2

and f i
a′(x) =

√
x and the value of the remaining alternatives is identically 0, then one can verify that

any monotone allocation function is implementable. Therefore, the challenge is to understand the
conditions on the f i

a’s that lead to “single-parameter” implementability.
Luckily, this question was extensively studied in the economic literature and several similar con-

ditions are considered and used in, e.g., [GL84, LM09, Her14]. The “right” generalization of single-
parameter domains is often referred to as the Single-Crossing property. The condition was first used
by [Mir71] in the context of finding optimal taxation policies, and by [Spe73] in the context of the
role of signaling in the job market, and thus it is also called Spence-Mirrlees property.

Specifically, in this paper we use the following formulation: a domain Vi is single-crossing if there
is a total order on the valuations ≻v

i and a total order on the alternatives ≻a
i , such that for every

two valuations v′ ≻v
i v and two alternatives a′ ≻a

i a it holds that v′(a′)− v′(a) ≥ v(a′)− v(a). When
the single-crossing property holds, then indeed monotonicity (up to tie breaking) is equivalent to
implementability. Note that binary single-parameter domains and linear domains are indeed single-
crossing domains.

Multi-Unit Auctions

The goal of this paper is to understand the performance of polynomial-time dominant-strategy mech-
anisms in single-crossing domains: is the power of polynomial-time dominant-strategy mechanisms
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for single-crossing environments weaker than the power of polynomial-time algorithms that are not
necessarily incentive-compatible? We focus on multi-unit auctions, a domain which often serves
as an ideal playground for understanding the computational complexity of incentive-compatible
mechanisms both in single-parameter domains [MN08, BKV11] and in multi-parameter domains
[LMN03, DN11, DN15]. See also a survey by Nisan [Nis15].

In a multi-unit auction there are m identical items and n players. Each player i has a valuation
function vi : [m] → R. As usual, we assume that the valuations are non-decreasing and normalized
(vi(0) = 0). The single-crossing property translates in multi-unit auctions to having some order ≻i

on the valuations of each player i such that for each vi ≻i vi and s > s it holds that vi(s)− vi(s) ≥
vi(s) − vi(s). The input consists of a number ti for each player i that specifies that the valuation
of player i is the ti’th valuation according to player i’s order ≻v

i and the number of items m. We
assume that for each player i we have access to extended value queries: given an index t and number
of items s, an extended values query returns the value vti(s), where vti is the t’th valuation in the
single-crossing domain Vi of player i. Ideally, the running time is polynomial in the input size
poly(log(Σi|Vi|), logm,n).

Our Results

Polynomial-Time Algorithms Beat Mechanisms in Single-Crossing Domains

Our first result is a separation result: we show that there is a single-crossing setting in which the
approximation ratios that polynomial-time dominant-strategy mechanisms can provide are strictly
worse than the approximation ratios provided by polynomial-time algorithms. Such separations
are known for various multi-parameter domains [PSS08, Dob11, DV12, Dob16, AKSW20] but our
separation is the first in a simpler (and thus harder to separate) “single-parameter” setting. It
is also important to note that with the exception of [DV12], the separations above are all in the
communication setting, whereas our separation is in the Turing machine model.

To prove this result we take liberty in defining our objective function. Many objective functions
were considered in the literature (e.g., welfare maximization, makespan minimization, various fair-
ness notions). Some of them cannot be implemented by any dominant-strategy mechanism (e.g.,
Rawlsian welfare). More relevant to this paper are objective functions that can be implemented by a
dominant-strategy mechanism, but not in a computationally efficient way, like welfare maximization,
or makespan minimization for related machines. Our main negative result is a separation result for
single-crossing multi-unit auction domains:

Theorem: There exists an objective function for a multi-unit auction with two single-crossing
bidders such that:

• There is an incentive-compatible mechanism that exactly optimizes the objective function.

• There is a polynomial-time algorithm that provides an approximation ratio of 1
2 to the optimum.

• Every polynomial-time incentive-compatible mechanism that provides some finite approxima-
tion to the optimum satisfies that computing its allocation rule is TFNP-hard.2

Although this is the first separation of its kind in single-crossing domains3, we note that it is a

2Recall that TFNP stands for ”Total Function Nondeterministic Polynomial”. This is the class of search problems
that are guaranteed to have an answer that can be verified in polynomial time. For example, every problem in the
classes PPAD (including computing a Nash equilibrium) and PLS is also in TFNP.

3Related is the paper [GLT20] that shows the impossibility of a black box that converts any algorithm to an
incentive-compatible mechanism in binary single-parameter settings. But even this result comes short of pointing out
a specific setting that is hard for polynomial-time mechanisms.
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synthetic separation. The objective function we use gives score of 2 to welfare-maximizing allocations
(we carefully construct our domain so that deciding whether a given allocation maximizes the welfare
is easy), most other allocations get a score of 0, except a few of them which get a score of 1.

Maximizing the objective function can be done by an incentive-compatible mechanism that com-
putes the welfare-maximizing allocation and uses VCG payments. However, computing a welfare-
maximizing allocation is TFNP hard. A polynomial-time algorithm can overcome this barrier by
selecting sometimes allocations with score 1, but we show that in this case monotonicity is not pre-
served and thus the algorithm cannot be implemented in dominant strategies. Thus, a monotone
polynomial-time algorithm must sometimes output an allocation with score 0, and thus does not
achieve any finite approximation to the objective function.

An Incentive-Compatible FPTAS for Multi-Unit Auctions with Single-Crossing Valua-
tions

Can a similar separation be achieved for some natural objective function? For makespan minimization
with related machines a long line of work established that the approximation ratio that can be
achieved by polynomial-time incentive-compatible mechanisms matches what can be achieved by
polynomial-time algorithms (e.g., [AT01, Kov05, DDDR11, CK13]).

The other well-studied goal is welfare maximization, that is, find an allocation (s1, . . . , sn) that
(approximately) maximizes

∑n
i=1 vi(si). For single-minded bidders, Briest et al. [BKV11] provide

an incentive-compatible FPTAS, which matches the best approximation that can be achieved by a
polynomial-time algorithm4. However, domains of single-minded bidders are a relatively simple type
of single-crossing domains. Ignoring incentives issues, there is a simple FPTAS to the welfare for all
domains, including single-crossing domains. Exact welfare-maximization is known to be NP-hard,
regardless of incentives (see ,e.g., [Nis15]).

Our main positive result is an incentive-compatible FPTAS for welfare maximization for all
single-crossing multi-unit auctions, implying that for welfare maximization in single-crossing domains,
polynomial-time incentive-compatible mechanisms are as powerful as polynomial-time algorithms.5

In fact, we identify single-crossing domains as the richest set of settings currently known for which
incentive-compatible deterministic mechanisms are as powerful as their randomized counterparts.

Theorem (informal): There exists an incentive-compatible FPTAS for maximizing the welfare in
multi-unit auctions with single-crossing bidders.

To get some intuition for our algorithm, let us first recall the standard (non-incentive-compatible)
FPTAS. That FPTAS starts by rounding the values of each player to the nearest multiple of some
δ > 0. It then applies dynamic programming to find an exact welfare-maximizing solution with
respect to the rounded values. If the valuations are single minded, then this results in an incentive-
compatible mechanism as long as the choice of δ does not depend on the values of the players.

However, for this algorithm to give an FPTAS, the parameter δ must be chosen at the appropriate
scale so that the rounded values are close to the original values. The challenge is that different
roundings result in different allocations. That is, if we simply use the value of the player with the
highest value to determine the rounding parameter δ, this player might win his favorite bundle with
one value but might lose it when increasing his value, and the desired monotonicity is not obtained.

4For the case of multi-unit auctions with general valuations we have a 1
2
-approximation mechanism that makes

polynomially many value queries [DN10], as well as some evidence that this is the best possible ratio achievable
by polynomial mechanisms [DN15]. If randomization is allowed, there exists an incentive-compatible-in-expectation
FPTAS [DD13] and a universally incentive-compatible PTAS [Vö19].

5Similarly to [BKV11], our result is in fact more general and a more careful analysis shows that it applies also to
unknown single minded bidders, see Appendix A.
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[BKV11] cleverly solve this problem of finding the right δ > 0 by essentially “trying” all possible
choices of δ and choosing the one that maximizes the welfare. They show that this algorithm is
incentive-compatible and can be efficiently implemented. However, we do not know how to extend
this result to all single-crossing domains. Thus we start by developing an alternative incentive-
compatible FPTAS for single-minded bidders.

Our construction is quite simple: we let the rounding parameter depend on the value of the player
with the highest value, but we give the player with the highest value a reward when computing the
best outcome using the “standard” dynamic program. The higher the value of the player with the
highest value, the bigger the reward is. Choosing the reward appropriately, we get that a winning
player keeps his winning bundle even when the rounding changes.

Next, we extend this new monotone FPTAS for single-minded bidders to single-crossing k-minded
bidders. A k-minded valuation of bidder i has k steps (quantities for which value might increase),
with steps at quantities si1, . . . , s

i
k, where the sik’s are publicly known. It is clear that if we want to

somehow use the standard dynamic program we somehow have to round valuations so they will all be
multiples of δ. To understand how to obtain the right rounding, we spell out the following principle in
the design of monotone algorithms: let S be a subset of the domain. Applying an allocation rule that
is monotone only with respect to S on the full domain by replacing every v with the maximal v′ ∈ S
such that v ≻ v′, results in a monotone algorithm with respect to the full domain. For example, for
a given δ in the domain of single-minded bidders, S is the set of valuations rounded down to the
nearest multiple of δ, and the allocation rule is selecting the welfare-maximizing allocation.

We observe that rounding the k-minded valuations in the most straightforward way (i.e., round
down each value to the nearest multiple of δ) does not seem to be very helpful since the domain of
rounded down valuations is in general not single crossing and thus applying a monotone algorithm
on it does not guarantee incentive compatibility. Instead, we suggest to obtain a single-crossing
domain of “rounded down” valuations by appropriately rounding down the marginal values. Now,
the allocation rule that finds a welfare-maximizing allocation (after this novel rounding and after
applying our reward scheme) is monotone. This results in an incentive-compatible FPTAS for single-
crossing k-minded bidders. Note that the running time of this algorithm depends on k.

The final step is obtaining an incentive-compatible FPTAS for general single-crossing domains.
Ideally, we would want to prove that for k = poly(logm, 1

ε
), every single-crossing domain of player

i admits a k-sketch: bundles si1, . . . , s
i
k such that for every bundle j, sit ≤ j < sit+1 and a single-

crossing valuation v in the domain, v(sit) ≤ v(j) ≤ (1 + ε) · v(sit). The existence of such k-sketch
effectively reduces general single-crossing domains to k-minded domains, for which we already have
an algorithm. Unfortunately, there are single-crossing domains that do not admit k-sketches of size
that is sub-linear in m (see Appendix B).

We overcome this barrier by considering a more nuanced variant of k-sketches, one in which a
correct sketch is guaranteed only for bundles that have large enough values. We conclude the proof
by showing that such a variant exists in every possible single-crossing domain and that this restricted
variant indeed provides a (1− ε)-approximation by a monotone allocation rule.

Open Questions

We conclude the introduction with some open problems. One result of this paper is that there exists
a problem in a single-crossing domain in which the approximation ratio achievable by polynomial-
time dominant strategy mechanisms is strictly worse than the approximation ratio achievable by
polynomial-time algorithms. However, the objective function used in this separation was unnatural.
Perhaps the biggest question left open in this paper is to determine whether there exists a single-
crossing domain for which a similar separation be achieved for the standard objective of welfare
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maximization.
Understanding single-crossing combinatorial auctions might be the first step in this direction: is

there a deterministic polynomial-time dominant strategy mechanism that achieves an approximation
ratio of O(

√
m) for combinatorial auctions when the domains are single crossing? Understanding

other natural objective functions is interesting as well. For example, is there a deterministic dominant
strategy PTAS for minimizing the makespan with related machines when the domains are single
crossing?

Structure of the Paper

In Section 2 we give some necessary preliminaries. In Section 3 we provide an algorithm for single-
crossing k-minded bidders. Section 4 gives an algorithm for all single-crossing domains and in Section
5 we prove a gap in the power of polynomial-time incentive-compatible mechanisms and polynomial-
time algorithms. In Appendix A we present a different monotone FPTAS for single-minded bidders
than the one obtained by [BKV11].

2 Single Crossing Domains: The Basics

We assume that there are n players and a finite set of alternatives A. Each player i has a domain
of valuations Vi, where an element of Vi is a valuation vi : A → R. A (direct, deterministic)
mechanism M = (f, P1, . . . , Pn) is composed of a social-choice function f : V1 × · · · × Vn → A
and n payment schemes P1, . . . , Pn : V1 × · · · × Vn → R. A mechanism M = (f, P1, . . . , Pn) is
incentive-compatible if for every player i, for every vi, v

′
i ∈ Vi, and for every v−i ∈ V−i it holds that

vi(f(vi, v−i))− Pi(vi, v−i) ≥ vi(f(v
′
i, v−i))− Pi(v

′
i, v−i).

A function fi : Vi → A is implementable for player i if there exists a payment function Pi : Vi → R

such that vi(fi(vi))−Pi(vi) ≥ vi(fi(v
′
i))−Pi(v

′
i) for every v′i, vi ∈ Vi. Similarly, a social-choice function

f is implementable if for every player i, and for every v−i ∈ V−i, the function f(·, v−i) : Vi → A is
implementable for player i.

Fix some player i and let ≻v
i be some total order on the valuations in Vi and ≻a

i be some total
order on the alternatives. A function fi : Vi → A is monotone for player i with respect to ≻v

i and ≻a
i

if for every v′i ≻v
i vi it holds that fi(v

′
i) �a

i fi(vi). A social-choice function f : V1 × · · · × Vn → A is
monotone if for every player i, and for every v−i ∈ V−i, the function f(·, v−i) : Vi → A is monotone
for player i with respect to some orders ≻v

i and ≻a
i .

Definition 2.1. Let Vi be a set of valuations, ≻v
i an order on Vi, and ≻a

i an order on the alternatives.
The domain Vi is a single-crossing domain with respect to ≻v

i and ≻a
i , if for every v′i ≻v

i vi ∈ Vi and
for every a′ ≻a

i a ∈ A it holds that v′i(a
′)− v′i(a) ≥ vi(a

′)− vi(a).

Note that our definition is very similar but slightly more permissive than other definitions, e.g., of
[Her14] (namely, weak inequality and not a strict one). We observe that using our definition, single-
crossing domains are exactly the set of domains where “monotonicity implies implementability”.
Towards this end, we recall that in an incentive-compatible mechanism, by the taxation principle,
each alternative has price for each player that does not depend on the valuation of the player. Thus,
we slightly abuse notation and use Pi(a, v−i) to denote the price of player i for alternative a, given
the valuations v−i of the other players. In what follows, we use Pi(a) when v−i is clear from the
context. Proofs from this section (which are similar to other proofs that appear in the literature)
can be found in Appendix C:

Definition 2.2. Fix some player i and let Vi be his set of valuations. Let ≻v
i be some total order on

Vi and ≻a
i be some total order on the alternatives. Vi is a monotone-implementability domain with

6



respect to ≻v
i and ≻a

i , if every function that is monotone for player i with respect to ≻v
i and ≻a

i is
also implementable for player i.

Proposition 2.3. Fix some player i and let Vi be his set of valuations. Let ≻v
i be some total order

on Vi, and ≻a
i some total order on the alternatives. Vi is a monotone-implementability domain with

respect to ≻v
i and ≻a

i if and only if it is also single-crossing with respect to ≻v
i and ≻a

i . Moreover,
let f be a monotone social-choice function and let aj denote the j’th alternative (according to ≻a

i ) in
the image of f . A payment function that implements f is given by:

Pi(aj)− Pi(aj−1) = inf
vi∈Vi

{vi(aj)− vi(aj−1) | f(vi) = aj}

The set of functions that can be implemented in a monotone-implementability domain is slightly
larger than the set of monotone functions. We will now describe this set of functions. Fix some
player i and let ≻v

i be some total order on the valuations in Vi and let ≻a
i be some total order on

the alternatives. A function f : Vi → A is monotone up to tie-breaking with respect to ≻v
i and ≻a

i

if and for every v′i ≻v
i vi and for every a′ ≻a

i a such that f(v) = a′ and f(v′) = a, it holds that
v′(a′)− v′(a) = v(a′)− v(a).

Proposition 2.4. Fix some player i and let Vi be a single-crossing domain with respect to some total
order ≻v

i on Vi and some total order ≻a
i on the alternatives. Let f be an implementable function in

Vi. Then, f is monotone up to tie breaking with respect to ≻v
i and ≻a

i .

3 A Monotone FPTAS for k-Minded Single-Crossing Domains

In this section we present a deterministic incentive-compatible FPTAS for multi-unit auctions with
single-crossing k-minded bidders. Its running time depends polynomially on k. In Section 4 we
provide an incentive-compatible FPTAS for all multi-unit auctions where the bidders have single-
crossing valuations that are not necessarily k-minded. The mechanism of Section 4 uses (as a black
box) this section’s mechanism. We start with a formal definition.

Definition 3.1. A valuation v is k-minded if there exists a k-tuple K = (s1, . . . , sk) such that
v(s) = v(s − 1) for every s /∈ K. A domain of valuations Vi is k−minded if all valuations in the
domain are k-minded with respect to the same set of quantities K.

In this section and Section 4 we assume that for each player i we have access to extended value
queries: given an index t and a quantity s, return the value vti(s), where vti is the t’th valuation in
the single-crossing domain Vi of player i (we may think about the oracle that answers these queries
as a succinctly represented circuit that describes the single-crossing domain).

The input of the algorithm is (t1, . . . , tn), where ti denotes the index of the valuation vi of agent i
in the single-crossing domain Vi, and the number of items m. We also assume that (rational) numbers
in the queries are given in some standard way such that the number of bits that it takes to represent
some number x is not larger than the number of bits it takes to represent any number x′ > x.

3.1 The Mechanism

We now describe the allocation rule. We will show that it gives (1−ε)-approximation to the maximum
welfare, and that it can be implemented by an incentive-compatible mechanism in polynomial time.
For the description of the allocation rule, we need to introduce two technical components. The first
one is a particular way of rounding valuation functions by rounding the marginals.
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Definition 3.2. Let v be a valuation function. The δ-marginal-rounded valuation of v is:

vδ(s) =

{

0, s = 0;
∑s

j=1⌊v(j) − v(j − 1)⌋δ , s 6= 0.

where ⌊x⌋δ denotes the value of x rounded down to the nearest multiple of δ. Note that we round
the marginals of the valuation to multiples of δ, and not the values.

In addition, the algorithm outputs an allocation of the items that maximizes the welfare in
some instance. If there are several such welfare-maximizing allocations, we choose one of them
according to the following order that we use as a tie-breaking rule: for every two different allocations
s′ = (s′1, . . . , s

′
n), s = (s1, . . . , sn) satisfy that s′ ≻ s if

∑n
j=1 s

′
j is smaller than

∑n
j=1 sj. If

∑n
j=1 sj =

∑n
j=1 s

′
j, then s′ ≻ s if s′l > sl, where l is the largest index where s and s′ differ. The tie breaking

rule chooses the largest allocation according to ≻ among all the welfare-maximizing allocations.
We are finally ready to describe the allocation rule. Fix ε > 0. The allocation rule is as follows:

1. Let δ = maxp∈Z
{

(4kn)p|(4kn)p ≤ ε·vmax

3n2k2

}

where vmax = maxi vi(m).

2. For every player i, let vδi to be the δ-marginal-rounded valuation of vi.

3. Let TOP =
{

i ∈ [n]
∣

∣ vi(m) ≥ 3δn2k2

ε

}

. For each player i /∈ TOP , let uδi = vδi . For each player
i ∈ TOP which is ki-minded with respect to Ki = (ki1, ..., k

i
ki
), define uδi by

uδi (s) = vi(s) + |{j|kij ≤ s}| · 2δkn

where k = maxi |Ki|.

4. Find a welfare-maximizing allocation for the instance (uδ1, . . . , u
δ
n) and allocate accordingly. If

there are several optimal allocations, choose one using the tie breaking rule described above.

Theorem 3.3. Let c be the number of bits used to represent numbers in an instance (v1, . . . , vn).
The allocation rule above is implementable and outputs an allocation that is a (1− ε) approximation
to the maximal welfare. The allocation rule and its associated payments can be computed in time
poly(k, n, 1

ε
, logm, c, log(maxi ti)) with the same amount of extended value queries.

A formal proof can be found in Subsection 3.2, but let us now give a brief informal proof sketch.
Assume for simplicity that all values are integers. Our plan is to solve the problem using the standard
dynamic program (see, e.g., [Nis15]) which computes the optimal solution in time poly(n, logm,W ),
where W is at least the value OPT of the optimal solution. The problem is that W might be large
and in any case it is not clear how to obtain an estimation of W in an incentive-compatible way so
we cannot directly apply this dynamic program.

Assume for now that W is known. Ignoring incentives, the standard algorithm rounds down
each value to the nearest multiple of some δ. Finding the optimal solution with the rounded down
valuations now takes time poly(n, logm, W

δ
) and gives a solution with value at least OPT−n·δ, which

is a good approximation when, e.g., OPT ≤ W ≤ n · OPT and δ = ε·W
n2 . This rounding technique

works well for binary single-parameter domains, e.g., single-minded bidders, simply because running
any monotone allocation rule on the rounded valuations preserves the monotonicity of the allocation
rule. Indeed, it yields an incentive-compatible FPTAS for single-minded bidders when W is known.

When the valuations are k-minded, it is less obvious how to correctly round the valuations. Thus,
we observe the following general rounding technique for single-crossing domains: select a subset of
the valuations R from the domain.“Round down” each valuation v to the largest valuation in R that
precedes it in the order that is specified by the single-crossing domain. The key observation is that
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running a monotone allocation rule (e.g., the dynamic program mentioned above) on the rounded
down valuations preserves monotonicity. The set R that we use is the set of δ-marginal-rounded
valuations6 (Definition 3.2). Note that every valuation is well approximated by its δ-marginal-
rounded down version, thus the optimal welfare in any instance is very close to the optimal welfare
with respect to the instance when each valuation is “rounded down” to a valuation in R. Also, the
optimal allocation in instances where each valuation is δ-marginal rounded down can be computed
in time poly(n, logm, W

δ
, k) by the dynamic program, since we have an upper bound of W on the

value of the optimal solution and all values in the set R are multiples of δ. Hence we get a good
incentive-compatible approximation algorithm as long as W is known.

It is left to find a good estimate W on OPT . When bidder i changes his valuation from vi to vi
such that vi ≻ vi, the allocation of the bidder does not decrease if W does not change. Thus, we only
need to take care of the case where W does change. Suppose that our estimation W changes and
thus the rounding parameter changes from δ to δ. Denote by (o1, . . . , on) the optimal solution in the
instance (vi, v−i). We have two competing forces that determine the number of items player i gets
in the instance (vi, v−i). On one hand, when we compare the welfare of allocations in the instance
(vi, v−i) to their welfare in (vi, v−i), the increase in the value of every allocation in which player i
gets t items is at least the increase in the value of every allocation where player i gets less than t
items, because of the single crossing property. This makes player i more likely to win more items in
(vi, v−i) than in (vi, v−i). However, the change in the rounding parameter might cause the (rounded)
values of the other players to go down for some allocations where player i wins many items, and the
(rounded) values in some allocations where player i wins less items might remain unaffected. The
result might be that another allocation (which has values that are less affected by the rounding) is
the optimal solution in the instance (vi, v−i). If player i gets less than oi items in this new optimal
allocation, monotonicity is violated. The reward given to player i in Step 3 “compensates” on the
loss due to the new rounding, and guarantees that player i gets at least oi items.

3.2 Proof of Theorem 3.3

We now prove Theorem 3.3. We start by proving that the allocation rule can be efficiently imple-
mented. We then analyze the approximation ratio of the algorithm and prove that the allocation
rule is implementable. Finally, we observe that the payments can be computed in polynomial time.

3.2.1 The Complexity of Implementing the Allocation Rule

The only step in the algorithm that is non-trivial to implement is the last one, which outputs a
welfare-maximizing allocation with respect to valuations uδ1, . . . , u

δ
n. We use a standard dynamic

program for that (see, e.g., [Nis15]) with our specific tie breaking rule.
Let W = n · maxi u

δ
i (m). We construct a table T of size n × (W/δ) such that T (i, w) contains

the minimum number of items such that allocating them optimally between players 1, . . . , i with
valuations uδ1, . . . , u

δ
i yields welfare of at least w. As standard, we use pointers to track the allocation

that corresponds to each entry in the table. Formally, we use the following recursive formula:

∀w ∈ {0, δ, . . . ,W}, T (1, w) = arg min
s∈[m]

{uδ1(s) ≥ w}

∀w ∈ {0, δ, . . . ,W}, ∀i ∈ {2, . . . , n}, T (i, w) = min
0≤j≤w

δ

{

arg min
s∈[m]

{uδi (s) ≥ jδ} + T (i− 1, w − jδ)
}

6In fact, the set R does not have to be a subset of the original single-crossing domain, e.g., in our case the domain
might not contain some δ-marginal-rounded valuations. However, our allocation rule is monotone with respect to the
union of the original domain and R, so monotonicity is still preserved.
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After we construct the table, we output the allocation with the highest welfare among the allocations
in column n that allocate at most m items.

Correctness is almost immediate, by recalling that for valuations uδ1, . . . , u
δ
n the welfare of every

allocation is a multiple of δ, and that W is an obvious upper bound on the optimal welfare. Note
that as described, the program only finds the value of the maximal welfare.

To implement the tie breaking rule, in each cell T (i, w) we choose the largest allocation according
to the order ≻, among the allocations that we consider in the “min” expression. We also implement
the pointers as follows. If we allocate xi items to player i in the cell T (i, w), then this cell points to
the cell T (i− 1, w − vi(xi)). A simple induction gives that the tie-breaking rule mentioned above is
implemented correctly:

Lemma 3.4. For every value w and for every player i, let s be the allocation that the cell T (i, w)
is associated with. Then, every allocation ŝ that allocates to the players 1, . . . , i and has welfare at
least w satisfies that s ≻ ŝ.

Proof. We prove the lemma by induction. The claim trivially holds for all cells in the first column (for
T (1, ·)). The strong induction hypothesis says that every cell T (j, w′) where j ≤ i − 1 is associated
with the largest allocation according to the order ≻ that allocates to the player 1, . . . , i− 1 and has
welfare at least w′.

Fix a cell T (i, w) in column i, and denote with s = (s1, . . . , si, ∅, . . . , ∅) the largest allocation
according to the order ≻ that has welfare at least w. Assume in contradiction that T (i, w) is
associated with an allocation ŝ = (ŝ1, . . . , ŝi) such that s ≻ ŝ. Therefore,

∑i
j=1 sj =

∑i
j=1 ŝj

(
∑i

j=1 sj ≤ ∑i
j=1 ŝj because s ≻ ŝ, and the correctness of the dynamic program guarantees that

∑i
j=1 sj ≥

∑i
j=1 ŝj). Since s ≻ ŝ, sl > ŝl where l ≥ 2 is the largest index where s and ŝ differ.

We obtain a contradiction by analyzing the cell T (l, w − ∑l+1
j=1 u

δ
j(ŝj)) which is associated by

construction with (ŝ1, . . . , ŝl, ∅, . . . , ∅). We remind that by definition for every j > l, sj = ŝj.
Therefore,

∑n
j=l+1 u

δ
j(sj) =

∑n
j=l+1 u

δ
j(ŝj), so both (s1, . . . , sl, ∅, . . . , ∅) and (ŝ1, . . . , ŝl, ∅, . . . , ∅) have

welfare of at least w − ∑l+1
j=1 u

δ
j(ŝj). In addition, it implies that

∑n
j=l+1 sj =

∑n
j=l+1 ŝj so com-

bining this with the equality above implies that
∑l

j=1 sj =
∑l

j=1 ŝj. By assumption, sl > ŝl, so

(s1, . . . , sl, ∅, . . . , ∅) ≻ (ŝ1, . . . , ŝl, ∅, . . . , ∅) even though the cell T (l, w − ∑l+1
j=1 u

δ
j(ŝj)) is associated

with the allocation (ŝ1, . . . , ŝl, ∅, . . . , ∅), so we get a contradiction to the induction hypothesis, as
needed.

Now for the analysis of the running time. The running time of the first two steps of the allocation
rule is poly(k, n, c, 1

ε
), because writing a value requires at most c bits. Note that our choice of δ

guarantees that 4nkδ ≥ ε·vmax

3n2k2
, so δ ≥ ε·vmax

12n3k3
. Therefore, the number of rows in the table is at most:

W

δ
≤ n · [vmax + 2k2δn]

δ
= poly(k, n,

1

ε
)

The number of columns is n, so the total number of cells is poly(k, n, 1
ε
). The value of each cell can

be computed in time poly(k, n, 1
ε
, logm, c) (we use binary search to find the minimal number of items

that gives value at least w). Therefore, the total running time is poly(k, n, 1
ε
, logm, c).

3.2.2 The Approximation Ratio

Let s = (s1, . . . , sn) be the allocation that the algorithm specified above outputs for (v1, . . . , vn), and
let o = (o1, . . . , on) be an optimal allocation. Denote

∑

i vi(si) with ALG and
∑

i vi(oi) with OPT .
When proving that ALG ≥ (1− ε) · OPT we observe that for every quantity s:

0 ≤vi(s)− vδi (s) ≤ kδ (1)
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This is because zero marginals are not affected by the rounding, and each of the k marginals of v
that is affected decreases by at most δ.

ALG =
∑

i

vi(si)

≥
∑

i

vδi (si)

≥
∑

i

uδi (si)− 2n2k2δ (by Step 3)

≥
∑

i

uδi (oi)− 2n2k2δ (s is optimal for u1, . . . , un)

≥
∑

i

vδi (oi)− 2n2k2δ (by Step 3)

≥
∑

i

vi(oi)− nkδ − 2n2k2δ (by Equation (1))

≥ OPT − 3n2k2 · ε · vmax

3n2k2
(by the definition of δ)

≥ (1− ε) · OPT (vmax ≤ OPT )

3.2.3 Monotonicity of the Allocation Rule

Fix a player i and a valuation profile v−i of all other players. Let vi ≻ vi ∈ Vi. Let s = (s1, . . . , sn)
be the allocation that the algorithm outputs for (vi, v−i). Our goal is to show that player i wins at
least si items in the instance (vi, v−i).

We denote with δ and with δ the rounding parameters when the input of the algorithm is (vi, v−i)
and (vi, v−i), respectively. Let (vδi , v

δ
−i) be the valuations defined in Step 2 of the algorithm when

the input is (vi, v−i), and let (vδi , v
δ
−i) be the valuations when the input is (vi, v−i). Similarly, let

(uδi , u
δ
−i) and (uδi , u

δ
−i) be the valuations defined in Step 3 for the two inputs. We will also use the

notation vδi to denote the δ-marginal-rounded valuation of vi. We divide the analysis into two cases:

Case I: δ > δ. Fix an allocation ŝ = (ŝ1, . . . , ŝn) with ŝi < si. We will show that uδi (si) +

Σj 6=iu
δ
j(sj) > uδi (ŝi) + Σj 6=iu

δ
j(ŝj), which implies that the algorithm outputs an allocation where

player i wins at least si items.
We start by observing that for any δ, the domain of δ-marginal-rounded valuations of Vi is also

single crossing and preserves the order of Vi. Therefore:

vδi ≻ vδi =⇒ vδi (si)− vδi (ŝi) ≥ vδi (si)− vδi (ŝi) (2)

Also, the allocation s maximizes the welfare in the instance (uδi , u
δ
−i). Hence:

uδi (si) +
∑

j 6=i

uδj(sj) ≥ uδi (ŝi) +
∑

j 6=i

uδj(ŝj)

=⇒ vδi (si) +
∑

j 6=i

vδj (sj) + 2n2k2δ ≥ vδi (ŝi) +
∑

j 6=i

vδj (ŝj)
(3)

where the latter inequality holds due to Step 3 of the algorithm. In addition, note that by (1), we
have that for every player j:

vδj (s)− vδj (s) ≤ vj(s)− vδj (s) ≤ kδ (4)
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Therefore:

vδi (ŝi) +
∑

j 6=i

vδj (ŝj) ≤ vδi (ŝi) +
∑

j 6=i

vδj (ŝj) (δ is a multiple of δ)

= vδi (ŝi)− vδi (ŝi) + vδi (ŝi) +
∑

j 6=i

vδj (ŝj)

≤ vδi (si)− vδi (si) + vδi (ŝi) +
∑

j 6=i

vδj (ŝj) (by (2), as ŝi < si)

≤ vδi (si)− vδi (si) + vδi (si) +
∑

j 6=i

vδj (sj) + 2n2k2δ (by (3))

= vδi (si) +
∑

j 6=i

vδj (sj) + 2n2k2δ

≤ vδi (si) +
∑

j 6=i

vδj (sj) + nkδ + 2n2k2δ (by (4))

< vδi (si) +
∑

j 6=i

vδj (sj) + 2nkδ (2nkδ < δ)

=⇒ vδi (ŝi)+
∑

j 6=i

vδj (ŝj) < vδi (si) +
∑

j 6=i

vδj (sj) + 2nkδ

Since the rounding factor strictly increases when player i’s valuation is vi, in the instance (vi, v−i)

we have that the only player in the set TOP is player i, and thus uδj(ŝj) = vδj (ŝj) for every j 6= i.

Denote with l, l̂ respectively the indices of si, ŝi in the k-tuple Ki. By adding 2nkl̂ · δ to both sides
of the inequality above, and as uδi (ŝj) = vδi (ŝj) + l̂ · 2δkn, we get:

uδi (ŝi) +
∑

j 6=i

uδj(ŝj) < vδi (si) +
∑

j 6=i

uδj(sj) + 2nk(l̂ + 1)δ

≤ uδi (si) +
∑

j 6=i

uδj(sj) (si > ŝi, so l ≥ l̂ + 1)

Thus, the algorithm does not output the allocation ŝ given (v̄i, v−i). Therefore, it necessarily outputs
an allocation where player i wins at least si items, as needed.

Case II: δ = δ. Observe that if the valuation of player i changes in a way that does not affect
the rounding parameter δ, then all the marginals in his δ-marginal-rounded valuation either increase
or do not change. We will show that in this case – also because the tie breaking rule is fixed – the
number of items that the player gets does not decrease, so the allocation rule is monotone.

Let s be the optimal allocation that the algorithm outputs given (uδ
i , u

δ
−i) (if there are several

optimal allocations, then s is chosen according to the tie-breaking rule). We will show that si ≥ si.

Observe that uδi (si)−uδ
i (si) ≥ uδi (si)−uδi (si), since the set of all δ-marginal rounded valuations of Vi

is single crossing, δ = δ by assumption and the rewards of Step 3 do not change the marginal values.
We also observe that since the rounding parameter is identical in the instances (vi, v−i) and

(vi, v−i), then the sets of players that are in TOP in both instances are identical, perhaps except

player i. Therefore, uδj = uδj for every j 6=i. In addition, the allocation s is optimal for the instance

(uδi , u
δ
−i). Together, assuming towards a contradiction that si > si:

uδi (si)− uδi (si) ≥ uδi (si)− uδi (si) ≥
∑

j 6=i

uδj(sj)−
∑

j 6=i

uδj(sj) =
∑

j 6=i

uδj(sj)−
∑

j 6=i

uδj(sj) (5)
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I.e., in the instance (uδi , u
δ
−i), the welfare of the allocation s is at least the welfare of the allocation

s. Since by definition s maximizes the welfare in the instance (uδi , u
δ
−i),the allocations s, s have the

same welfare in this instance. Therefore, by our tie breaking rule, s ≻ s, so the fact that the dynamic
program outputs the allocation s given (uδ

i , u
δ
−i) implies that:

uδi (si) +
∑

j 6=i

uδj(sj) < uδi (si) +
∑

j 6=i

uδj(sj)

Therefore:

uδi (si)− uδi (si) ≤ uδi (si)− uδi (si) <
∑

j 6=i

uδj(sj)−
∑

j 6=i

uδj(sj) =
∑

j 6=i

uδj(sj)−
∑

j 6=i

uδj(sj)

which is a contradiction since s maximizes the welfare in (uδi , u
δ
−i). Hence, si ≥ si, as needed.

3.2.4 Payment Computation

Assume that player i is k-minded with respect to the tuple of quantities Ki. Note that we can always
assume that the number of items a bidder is assigned is in Ki ∪ {0}, since by “rounding down” the
input to the nearest element in Ki ∪ {0} the value of the bidder does not change.

Thus, to compute the payment that is specified in Proposition 2.3, for every quantity sj ∈ Ki that

is smaller than the number of items that player i wins given the output of f(v
[ti]
i , v−i), we find the

valuation vji such that fi(v
j
i , v−i) = sj and the marginal vji (sj)− vji (sj−1) is minimal, by executing a

binary search over the subset of valuations {v[0]i , . . . , v
[ti]
i } ⊆ Vi.

Observe that payment computation depends only on valuations that precede vi in the single-
crossing order. Thus, by assumption, the number of bits used to represent numbers in every query is
at most c. We have that the payment of the players can be computed with poly(k, n, c, log(maxi ti))
extended value queries in time poly(k, n, 1

ε
, logm, c, log(maxi ti)).

4 A Monotone FPTAS for all Multi-Unit Single-Crossing Domains

In this section we show that there is an incentive-compatible FPTAS for maximizing the welfare in
every single-crossing multi-unit domain. In particular, this improves over the FPTAS of [BKV11] that
applies only to multi-unit auctions with single-minded bidders. We obtain the FPTAS by reducing
any multi-unit single-crossing domain to k-minded single-crossing domain, for a small enough k. We
then use the monotone FPTAS of Section 3 as a black box to derive our result.7

As in Section 3, for each player i we have access to extended value queries. The input is (t1, . . . , tn),
where ti denotes the index of valuation vi of agent i in the single-crossing domain Vi.

Theorem 4.1. For every ε > 0 there exists a deterministic incentive-compatible mechanism that
provides an (1− ε)-approximation to the welfare in multi-unit auctions where the domain Vi of each
player i is finite and single crossing. Both the allocation and the payments are computed in time
poly(n, 1

ε
, logm, b) with poly(n, 1

ε
, logm, b) extended value queries, where b is the maximal number of

bits used to represent numbers in the domains V1, . . . , Vn.

Note that the input size is
∑n

i=1 log(|Vi|) + logm. Thus, as long as b is polynomial in the input
size we get an FPTAS that runs in time that is polynomial in the input size and 1

ε
(as well as the

7For unknown single-minded bidders, the reduction that we perform in this section does not preserve the mono-
tonicity of the allocation rule. Fortunately, as detailed in Appendix A, the reduction is superfluous in this case.
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unavoidable terms, n and logm). In particular, in the “standard” case in which each possible value
of a bundle is in the set of integers {1, 2, 3, . . . , poly(m)}, we get an algorithm that runs in time
poly(n, 1

ε
, logm).

The main lemma of this section “reduces” a single-crossing domain to a single-crossing k-minded
domain without losing too much in the approximation ratio. We start with a definition.

Definition 4.2. Let K ⊆ [m] be a subset of quantities. For a valuation v, let vK the following
(|K|-minded) valuation: vK(s) = max{v(x) | x ≤ s, x ∈ K}.

Lemma 4.3. Fix ε > 0 and let V be a single-crossing multi-unit auction domain. Let b be the
maximal number of bits needed to represent a value in V . Then, there exists a set K ⊆ [m] of size
poly(1

ε
, b) such that:

1. For every v ∈ V and for every s ∈ [m], |v(s)− vK(s)| < ε · v(m).

2. Let V K = {vK | v ∈ V }. Then, the domain V K is single crossing and satisfies that for every
v, v ∈ V :

v ≻ v =⇒ vK ≻ vK

Moreover, K can be found in time poly(1
ε
, logm, b) by making poly(1

ε
, logm, b) extended value queries.

We prove Lemma 4.3 in Subsection 4.1. We show how the lemma implies the theorem in Subsec-
tion 4.2.

4.1 Proof of Lemma 4.3

We gradually construct K, initializing K = {0}. Let u1 be the first valuation in V that is not
identically zero. For this valuation u1, we add to K the first quantity s1 that satisfies that u1(s1) > 0.
Then, we proceed by adding to K the smallest quantity s2 such that u1(s2) ≥ (1 + ε

2)u1(s1), then
we add to K the smallest quantity s3 such that u1(s3) ≥ (1 + ε

2)u1(s2), and so on. Observe that
since each number is rational and represented by b bits, up until now |K| ≤ log1+ ε

2
2b = poly(1

ε
, b)

quantities.
Now, let u2 be the smallest valuation such that u2(m) ≥ (1 + ε

2 )u1(m). Similarly to before,
we add to K the smallest quantity s1 such that u2(s1) > 0, then the smallest quantity s2 such
that u2(s2) ≥ (1 + ε

2)u2(s1), and so on. We then choose u3 to be the smallest valuation such that
u3(m) ≥ (1 + ε

2)u2(m), and proceed until we finish processing the entire domain V . Denote with
U ⊆ V the valuations that we added quantities for.

Note that |U | ≤ log1+ ε

2
2b. For each u ∈ U , we add at most poly(1

ε
, b) quantities to K. Thus,

when the process terminates, |K| = poly(1
ε
, b). For the time and query bound, note that we apply

binary search over [m] to find each quantity sj given sj−1, and similarly we also apply binary search
over the domain Vi to find each ui given ui−1. Since V is single crossing, |V | ≤ 2b, so the running
time of the binary search is O(b). 8

We now prove that K has the claimed properties. For the first property, fix some valuation v ∈ V
and s ∈ [m]. Let u ∈ U be the largest valuation such that v � u. By the single-crossing definition:

v(m)− v(s) ≥ u(m)− u(s) =⇒ v(m)− u(m) ≥ v(s)− u(s)

Therefore, since by construction v(m)−u(m) ≤ ε
2 ·u(m) we have that v(s)−u(s) ≤ ε

2 ·u(m) as well.

8To see this, let v′ ≻ v ∈ V be two valuations. Since the v, v′ are different and V is single crossing, there is some s

such that v′(s) > v(s). v′(m)− v′(s) ≥ v(m)− v(s) which implies that v′(m) > v(m). Thus every valuation in Vi gives
a different value to the grand bundle. |Vi| ≤ 2b follows since we use b bits to represent values.
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Next, we want to show that u is “close” to uK . Let s∗ ∈ K be the largest quantity in K such
that s ≥ s∗. Note that such a quantity necessarily exists because 0 ∈ K. Note that by construction
uK(s) = u(s∗). Thus, by the construction we also have that:

u(s)− uK(s) = u(s)− u(s∗) ≤ ε

2
· u(s∗) ≤ ε

2
· u(m)

In addition, note that by definition, v � u implies that for every x ∈ [m], v(x) ≥ u(x), so by
construction vK(s) ≥ uK(s). Therefore:

v(s)− vK(s) = v(s)− u(s) + u(s)− vK(s)

≤ (v(s) − u(s)) + (u(s)− uK(s)) (vK(s) ≥ uK(s))

≤ ε · u(m)

≤ ε · v(m)

Finally, we observe that V K is a single-crossing domain that admits the same order as V . Consider
two valuations v ≻ v from the single-crossing domain and two quantities, s and r. We want to prove
that vK(s)− vK(r) ≥ vK(s)− vK(r). Let sK, rK be the largest quantities in K that are at most s, r,
respectively. Note that: vK(s)− vK(r) = vK(sK)− vK(rK) = v(sK) − v(rK) and that analogously
vK(s) − vK(r) = v(sK) − v(rK). Observe that v(sK) − v(rK) ≥ v(sK) − v(rK) since V is single-
crossing. Combining the aforementioned equalities gives the proof.

4.2 Proof of Theorem 4.1

The Mechanism For each player i, the mechanism obtains the set Ki as guaranteed by Lemma 4.3
where we use the accuracy parameter ε

2n . We can now run any incentive-compatible α-approximation

mechanism M for (maxi |Ki|)-minded single-crossing valuations on the instance (vK1
1 , . . . , vKn

n ), allo-
cate and charge accordingly to obtain an incentive-compatible mechanism with a comparable approx-
imation ratio.9 Here, we use and analyze the mechanism of Theorem 3.3 with a precision parameter
ε
2 .

The Approximation Guarantee. Fix a valuation profile (v1, . . . , vn) and let (s1, . . . , sn) be the
output of M . Let (o1, . . . , on) be a welfare-maximizing allocation. Denote the welfare of (s1, . . . , sn)
with ALG and the welfare of o1, . . . , on with OPT . Observe that:

ALG =
∑

i

vi(si)

≥
∑

i

vKi

i (si)

≥ (1− ε

2
) ·

∑

i

vKi

i (oi) (by Theorem 3.3)

≥ (1− ε

2
) ·

(

∑

i

[

vi(oi)−
ε

2n
· vi(m)

]

)

(by Lemma 4.3)

≥ (1− ε

2
) ·

(

OPT − ε

2n
· n ·OPT

)

(vi(m) ≤ OPT )

≥ (1− ε) ·OPT

9We only have to make sure that the number of items that player i gets in M is in Ki. This is easy to achieve by
rounding down the allocation of each player to the nearest quantity in Ki. Note that the incentive compatibility and
the approximation guarantee of M are preserved.
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Incentive Compatibility. Note that none of the sets Ki depends on the valuation of player i,
that each player i can only be assigned a number of items that is in Ki and that values of quantities
that are not in Ki do not affect the allocation. Thus, the incentive compatibility of M for k-minded
single-crossing bidders immediately implies that our mechanism is incentive-compatible as well.

Time and Query Complexity. By Lemma 4.3, finding the set Ki for every player i takes time
poly(n, 1

ε
, logm, b) and poly(n, 1

ε
, logm, b) extended value queries. Given the set of quantities Ki,

projecting vi to vKi

i requires at most poly(n, 1
ε
, b) value queries and poly(n, 1

ε
, logm, b) running time.

Now, the mechanism that is specified in Theorem 3.3 takes poly(n, 1
ε
, logm, b) time, so the total time

and query complexity of the allocation rule are poly(n, 1
ε
, logm, b).

5 Algorithms Beat Mechanisms in Single-Crossing Domains

In this section we prove the first separation between the power of polynomial-time algorithms and
polynomial-time incentive-compatible mechanisms in a single-crossing setting. We prove the result
for the setting of single-crossing multi-unit auctions.

Formally, an objective function is a function obj : V1 × · · · × Vn × A → R that takes as input
a valuation profile and an alternative, and outputs the score of the alternative given this profile of
valuations. A social choice function f : V1 × · · · × Vn → A is an α-approximation to an objective
function obj : V1 × · · · × Vn × A → R if for every (v1, . . . , vn) ∈ V1 × · · · × Vn , it holds that
obj(v1, . . . , vn, f(v1, . . . , vn)) ≥ α ·maxA∈A{obj(v1, . . . , vn, A)}.

Our interest in this section is in objective functions that can be implemented by an incentive-
compatible mechanism but not in polynomial time (under standard complexity assumptions), e.g.,
welfare maximization. We present an objective function for which there exist a 1

2 -approximation
polynomial-time algorithm, yet every polynomial-time incentive-compatible mechanism does not pro-
vide a finite approximation ratio10. The downside of our construction is that the objective function is
not natural. This is unavoidable to some extent as for the most natural objective function – welfare
maximization – this paper shows that there is no gap between polynomial-time algorithms and their
incentive-compatible counterparts.

We base our result on the hardness of TFNP, the class of total search problems. The class of
TFNP contains subclasses such as PPAD, PLS, and CLS, and in particular many problems in TFNP
that are widely assumed to be hard, e.g., finding a Nash equilibrium of a game and integer factoring.

Theorem 5.1. Let T be a problem in TFNP . There exists an objective function in a multi-unit
auction with two single-crossing bidders such that:

1. There exists an incentive-compatible mechanism that exactly optimizes the objective function.

2. There exists a (non-incentive-compatible) polynomial-time algorithm that provides an approxi-
mation ratio of 1

2 to the optimum.

3. Computing the allocation function of any incentive-compatible mechanism that provides a finite
approximation to the optimum is at least as hard as computing T (up to polynomial factors).

Proof. Denote the length of the input of T by n and recall that by definition, for every input there
is a witness of length nc, for some fixed integer c > 0. We consider multi-unit auction valuations
on m = 2n

c

items. For s > 1, we associate every bundle that contains s items with a binary string

10The constant 1
2
is arbitrary and can be replaced by any other function of the input.
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in the natural way, by using the binary representation of the number s. The domain of each player
consists of 2n valuations. The x’th valuation in the domain VA of Alice is:

vxA(s) =















0, s = 0;
10n + 10 · x+ 4 · s · x, s = 1;
10n + 10 · x+ 4 · s · x, s > 1 and the string associated with s is not a witness for x;
10n + 10 · x+ 4 · s · x+ 1, s > 1 and the string associated with s is a witness for x.

The x’th valuation of Bob in the domain VB is:

vxB(s) =

{

0, s = 0;

10 · x+ 4 · s · x, s ≥ 1.

Note that the domains of Alice and Bob satisfy the single-crossing property, because for every
v ≻ v in either VA or VB, and for every quantity s ∈ {1, . . . ,m}, v(s)− v(s− 1) ≥ v(s)− v(s − 1).

Our objective function is as follows. Consider an instance (vaA, v
b
B) ∈ VA × VB. If a > b, the

allocation that gives all items to Alice gets a score of 2. If b > a, then the allocation that gives m−1
items to Bob and one item to Alice gets a score of 2. If a = b, then any allocation (s,m− s) where
s is a witness for a gets a score of 2 (by the totality of T , there is at least one such allocation). In
addition, when a = b the allocation where Bob gets all items gets a score of 1. Every other allocation
gets a score of 0.

Note that an allocation has a score of 2 if and only if it maximizes the welfare. Hence, the VCG
mechanism implements our objective function in an incentive-compatible way, proving Part 1.

As for Part 2, consider this algorithm: in an instance (vaA, v
b
B) ∈ VA × VB , if a > b allocate Alice

all items, and if b > a allocate Alice one item and Bob m− 1 items. When a = b allocate all items
to Bob (and get a score of 1). This allocation rule can be implemented in polynomial time but
by Proposition 2.4 it is not implementable because it is not monotone up to tie breaking (Alice’s
allocation in the instance (vxA, v

x+1
B ) is one item, but it is zero items in the instance (vx+1

A , vx+1
B ),

whereas vxA(1) − vxA(0) < vx+1
A (1) − vx+1

A (0)).
Finally, we prove Part 3. Let f be a social-choice function that provides a finite approximation

to the objective function. We will show that f necessarily maximizes the objective function. We
assume for the sake of contradiction that there exist two valuations (vaA, v

b
B) such that f does not

output an allocation with score 2. Since by assumption f provides a finite approximation to the
welfare it must output an allocation with score 1 given (vaA, v

b
B), so by construction, a = b. Note

that Bob must get all the items in this case.
We proceed with case analysis. If a > 0, then a valuation va−1

A exists, so given the instance
(va−1

A , vbB) we have that a−1 < b and thus Alice must be allocated one item by f for the approximation
guarantee to hold. However, by construction vaA(1)−vaA(0) > va−1

A (1)−va−1
A (0), so f is not monotone

up to tie breaking. By Proposition 2.4, it is not implementable.
Similarly, if vaA is the smallest valuation in VA, then a valuation vb+1

B necessarily exists. In this

case, in the instance (vaA, v
b+1
B ) we have that a < b + 1 and thus Bob wins m − 1 items, which is

contradiction to implementability due to the same reasons. Therefore, every incentive-compatible
algorithm that provides a finite approximation to the objective function must maximize the objective
function. Observe that maximizing the objective function is at least as hard as finding a witness for
T , because for every instance x of length T , the optimal allocation for (vxA, v

x
B) outputs an allocation

(s,m− s) such that s is a witness for x. Thus, computing an incentive-compatible algorithm for the
objective function is at least as hard as solving T , which concludes the proof.

We can also use this proof to derive a proof of hardness of welfare maximization in single-
crossing multi-unit auctions with only two players. In contrast, recall that the hardness result for
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single-minded bidders necessarily requires many players, since with single-minded bidders exhaustive
search takes time that is exponential in the number of players.

Proposition 5.2. Finding the welfare-maximizing allocation for two bidders with valuations in a
single-crossing domain is NP-hard.

The proof is a straightforward adaption of the proof of Theorem 5.1 by replacing the problem T
with any NP -hard problem and replacing the objective function with welfare maximization.
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A Another Monotone FPTAS for Single-Minded Bidders

The problem of welfare maximization for single-minded bidders admits a monotone fully polynomial-
time approximation scheme (FPTAS) [BKV11]. In this section we present another monotone FPTAS
for the single-minded problem, illustrating one of the main ideas that we use in the approximation
scheme for single-crossing bidders. In addition, we remind that [BKV11] have presented a monotone
FPTAS algorithm for a wide class of problems: multi-unit auctions, job scheduling with deadlines
and more. The algorithm that we describe below applies to all those settings as well.

Note that every single-minded valuation vi can be represented by a value parameter xi and a
quantity parameter qi such that for every s ≥ qi it holds that vi(s) = xi, and vi(s) = 0 for every
s < qi. We say that bidder i is a known single-minded bidder if his domain of valuations Vi satisfies
that there is a single quantity qi which is the quantity parameter of all the valuations in Vi. We
say that bidder i is unknown single-minded bidder if there exist valuations in Vi that differ in their
quantity parameters. We remark that the algorithm that we describe below does not only solve the
problem for known single-minded bidders, but rather solves the more general problem of unknown
single-minded bidders.11

Let (x1, q1), . . . , (xn, qn) be the valuations of n single-minded bidders. For simplicity, we assume
that the values of all players are integers in {0, 1, . . . , poly(m)}. Given an allocation (s1, . . . , sn), we
say that a player wins if si ≥ qi, and otherwise we say that he loses.

It well known that rounding the valuations to multiples of δ =
ǫ · vmax

n
, where vmax = maxi vi(m)

and then running a dynamic program to find the welfare-maximizing allocation yields a fully polynomial-
time approximation scheme. However, it is not monotone: it could be that a player wins his desired
quantity when his value is xi, but when he increases it to be xi > xi, then he no longer wins because
of the effect that he has on the rounding parameter δ through the report of the maximal value.

The monotone approximation scheme of [BKV11] uses the following two techniques to handle this
issue: the social-choice function that they describe is the one with the maximum welfare among an

11Note that a domain of unknown single-minded bidders does not necessarily satisfy the single-crossing property.

20



infinite set of bitonic12 social-choice functions, where the bitonicity of each function in the set implies
that the maximizer is monotone. However, it is not immediate how this social-choice function can
be implemented in polynomial time. To handle the issue of maximization over an infinite set, they
have shown that it suffices to iterate over a “small” subset of the set of bitonic functions to find the
maximizer.

Our solution addresses the monotonicity problem of the allocation of the player with the highest
value in a more straightforward manner. We choose the rounding parameter δ to be the largest power
of 4 that is smaller than ǫ·vmax

3n . Then, we round down all valuations v1, . . . , vn to have values that
are multiples of δ, and we denote the rounded valuations with vδ1, . . . , v

δ
n.

We now define new valuations u1, . . . , un, in which the player with the maximum value, which we
call top, wins a reward. if there is more than one such player, ties are broken in favor of the lowest
index player. For player top, we set uδtop(qtop) = vδtop(qtop) + 2nδ. For every player j other than top,

we set uj = vδj . Then, we output a welfare-maximizing allocation for u1, . . . , un, using a standard
“knapsack-like” dynamic program (see [Nis15]). Similarly to [BKV11], we compute the “threshold”
payment for every player i with valuation (xi, qi) by performing a binary search on the valuations
with quantity qi and values below xi.

Now, showing that this algorithm (1 − ǫ)-approximates the welfare and that its running time is
poly(n, logm, 1

ǫ
) is straightforward. We now explain why it is also monotone. Fix a player i, and

the valuations v−i = (x1, q1), . . . , (xi−1, qi−1), (xi+1, qi+1), (xn, qn) of players 1, . . . , i− 1, i+ 1, . . . , n.
Assume that player i wins his desired quantity qi if he bids vi = (xi, qi). We denote the allocation
(vi, v−i) with swin. Let vi be a valuation such that vi = (xi, qi), where xi ≥ xi and qi ≤ qi.

Now, we want to show that player i wins his desired bundle qi given vi. For illustration, we
explain only the “interesting” case, where the rounding parameter changes to be δ instead of δ where
player i bids vi. Note that the welfare of swin increases by at least 2n(δ − δ) (because swin allocates
to player i his desired bundle) and decreases by at most nδ due to the increase in the rounding factor.

We denote with (uδi , u
δ
−i) and (uδi , u

δ
−i) the valuations following the rounding an the rewards given

(vi, v−i) and with (vi, v−i) respectively. We remind that by construction δ ≥ 4δ, so:

uδi (s
win
i ) +

∑

j 6=i

uj(s
win
j ) < uδi (s

win
i ) +

∑

j 6=i

uδj(s
win
j ) (6)

I.e., the welfare of swin strictly increases when increasing the rounding parameter, because δ ≥
δ implies that the additive term added to the valuation of the player with the maximum value
“compensates” for the loss of value due to the increased rounding factor. Let slose be some allocation
where player i wins less than qi items. Observe that:

uδi (s
lose
i ) +

∑

j 6=i

uδj(s
lose
j ) ≤

∑

j 6=i

uδj(s
lose
j ) (uδi (s

lose
i ) = 0)

≤ uδi (s
lose
i ) +

∑

j 6=i

uδj(s
lose
j ) (δ is a multiple of δ)

≤ uδi (s
win
i ) +

∑

j 6=i

uδj(s
win
j ) (swin maximizes the welfare given (uδi , u

δ
−i))

< uδi (s
win
i ) +

∑

j 6=i

uδj(s
win
j ) (by Equation (6))

12Roughly speaking, bitonicity (originally defined by [MN08]) means that two conditions hold: first, if a losing player
increases his value and still loses, then the welfare does not increase. If a winning player increases his value he still
wins and the welfare does not decrease.
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Therefore, given (uδi , u
δ
−i), the dynamic program outputs an allocation where player i wins at least

qi items, which completes the proof.

B Single-Crossings Domains Do Not Admit k−Sketches

In this section we prove that valuations in single-crossing domains cannot be approximated by fixing
any number of quantities smaller than m, and projecting the valuations on these quantities to get
a k-sketch. A k-sketch of a domain Vi is a set of bundles si1, . . . , s

i
k such that for every bundle

sit ≤ j < sit+1 and a single-crossing valuation v ∈ V , v(sit) ≤ v(j) ≤ (1 + ε) · v(sit). The construction
we present below demonstrates that there exist single-crossing domains that do not even admit an
(m− 1)-sketch. Note that finding such a domain is straightforward if we allow valuations that grow
exponentially. For example, even a domain that consists of the single valuation v(s) = 2s − 1 does
not admit any (m − 1)-sketch. In contrast, in the construction presented below, all the values are
rational numbers where both the numerator and denominator are integers of size at most poly(m).

Lemma B.1. There exists a single-crossing domain Vi where all values are integers in the range
{0, 1, . . . , poly(m)} that does not admit any (m− 1)-sketch.

Proof. In the proof we demonstrate that leaving out one coordinate always results in a loss of factor
of at least 2. In fact, the proof holds for any constant number, and our choice of 2 is arbitrary. We
gradually construct a domain of size m

logm . We assume without loss of generality that m is a power

of 2. The first non-zero valuation in it, v[1], is defined as follows:

∀s ∈ {1, . . . ,m− logm} v[1](s) = 0

∀s ∈ {m− logm+ 1, . . . ,m} v[1](s) = 2s−(m−logm)

Note that the values of the last logm quantities are subsequent powers of two, so none of them can
be left out from the sketch without losing a factor of 2. Now, given a valuation v[x−1] we define v[x]

as follows:

v[x](0) = 0

∀s ∈ {1, . . . ,m− x logm} v[x](s) = 0

∀s ∈ {m− x logm+ 1, . . . ,m− (x− 1) logm} v[x](s) = 2s−(m−x logm)

∀s ∈ {m− (x− 1) logm+ 1, . . . ,m} v[x](s) = v[x](s− 1) + v[x−1](s)− v[x−1](s− 1)

For an illustration of the domain Vi, see Table 1. Note that every valuation v[x] satisfies that the
quantities in {m− x logm+ 1, . . . ,m− (x− 1) logm} have to be included the sketch. Therefore, all
m quantities have to be inside any sketch that gives an approximation better than 1

2 . In addition, it
is easy to verify that the domain above is single crossing.

C Missing Proofs

In this section we present proofs that were missing from Section 2. Before we begin, we repeat here
a well known result that we will use in our proofs. For that, we remind that a function f : Vi → A
is weakly monotone for player i if for every vi, v

′
i ∈ Vi, if f(v) = a and f(v′) = a′, it implies that

v′(a′) − v′(a) ≥ v(a′) − v(a). It is easy to see [LMN03] that every function f : Vi → A that is
implementable for player i is weakly monotone.
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0 . . . . . . . . . m( m

logm
− 2) + 2 . . . m( m

logm
− 1) m( m

logm
− 1) + 2 m( m

logm
− 1) + 4 . . . m

2

logm

Table 1: The table above specifies the valuations in the domain Vi, which is a domain that does not admit an (m−1)-

sketch. The cell in row t and column s specifies the value of v
[t]
i
, the valuation at index t, for s items. The valuations

are ordered according to the order ≻v
i that is associated with Vi.

C.1 Proof of Proposition 2.3

Let Vi be a single-crossing domain with respect to ≻a
i ,≻v

i . We begin by proving that every monotone
function f can be implemented in a single-crossing domain. We present a price for every alternative
and then show that the allocation rule with these prices is an incentive-compatible implementation
of f .

For every aj in the image of f such that j ≥ 2, set the difference of the prices to P (aj)−P (aj−1) =
infvi∈Vi

{vi(aj) − vi(aj−1)| f(vi) = aj} (note that P (a1) can be arbitrary). Therefore, for every two
alternatives al ≻a

i ak in the image:

P (al)− P (ak) =
l

∑

j=k+1

inf
vi∈Vi

{vi(aj)− vi(aj−1) | f(vi) = aj}

To see that the payment function P indeed implements f , let v be a valuation of player i such that
f(v) = a. Our goal is to show that a is a profit-maximizing alternative of player i. Suppose that
the profit of v for some aj is less than its profit on aj−1: v(aj) − P (aj) < v(aj−1) − P (aj−1). By
rearranging, v(aj) − v(aj−1) < P (aj) − P (aj−1) = infvi∈Vi

{vi(aj) − vi(aj−1)| f(vi) = aj}. Since
it holds that v(aj) − v(aj−1) < vi(aj) − vi(aj−1) for all valuations vi with f(vi) = aj , v precedes
these valuations in the single crossing order. By the monotonicity of f , aj ≻a

i a. Similarly, if
v(aj) − P (aj) > v(aj−1) − P (aj−1), then a ≻a

i aj. That is, v(aj) − P (aj) ≥ v(aj−1) − P (aj−1) for
every aj such that a ≻a

i aj and v(aj) − P (aj) ≤ v(aj−1) − P (aj−1) for every aj such that aj ≻a
i a.

I.e., the profit series {v(aj) − P (aj)}j does not decrease up to alternative a and does not increase
afterwards, hence a is one of the profit maximizing alternatives, as needed.

For the other direction, let Vi be a monotone-implementability domain with respect to ≻a
i ,≻v

i . If
Vi is not a single-crossing domain with respect to ≻v

i ,≻a
i , then there exist two valuations v′i≻v

i vi ∈ Vi

and two alternatives a′≻a
i a such that v′i(a

′)− v′i(a) < vi(a
′)− vi(a). Let f be the following monotone

function: f(ui) = a′ for every valuation ui≻v
i vi, and for any other ui let f(ui) = a. Note that

f(vi) = a and f(v′i) = a′, so f is not weakly monotone as v′i(a
′)− v′i(a) < vi(a

′)− vi(a). Hence, f is
not implementable for player i, and thus Vi is not a monotone-implementability domain.

C.2 Proof of Proposition 2.4

Fix two valuations v′i≻v
i vi and a′≻a

i a such that f(v′i) = a and f(vi) = a′. Since Vi is single-crossing
with respect to ≻v

i and ≻a
i , it holds that v′i(a

′) − v′i(a) ≥ vi(a
′) − vi(a). f is implementable, hence

weakly-monotone, so vi(a
′)−vi(a) ≥ v′i(a

′)−v′i(a). We get the proof by combining the two inequalities.
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