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While many real-world programs are shipped with configurations to enable/disable functionalities, fuzzers

have mostly been applied to test single configurations of these programs. In this work, we first conduct an

empirical study to understand how program configurations affect fuzzing performance. We find that limiting

a campaign to a single configuration can result in failing to cover a significant amount of code. We also observe

that different program configurations contribute differing amounts of code coverage, challenging the idea that

each one can be efficiently fuzzed individually. Motivated by these two observations, we propose ConfigFuzz,

which can fuzz configurations along with normal inputs. ConfigFuzz transforms the target program to encode

its program options within part of the fuzzable input, so existing fuzzers’ mutation operators can be reused

to fuzz program configurations. We instantiate ConfigFuzz on six configurable, common fuzzing targets, and

integrate their executions in FuzzBench. In our evaluation, ConfigFuzz outperforms two baseline fuzzers in

four targets, while the results are mixed in the other targets due to program size and configuration space. We

also analyze the options fuzzed by ConfigFuzz and how they affect the performance.
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1 INTRODUCTION

Fuzz testing has been successful at detecting security vulnerabilities in standalone programs. Such
programs often have command-line options to enable/disable different functionalities at runtime.
We define the combinations of command-line options of a program as its configurations. In addition
to a configuration, a program typically takes input data, either from a file or stdin. Both the
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configuration and input data determine the program code that is executed at runtime. However,
most fuzzers (and scientific evaluations thereof) focus on fuzzing the input data given a single, fixed
program configuration (e.g., References [16, 19]) and may therefore fail to properly test significant
portions of a program’s functionality. As a result, potential rare bugs may escape detection, and
scientific evaluations of fuzzing performance may fail to account for the complete picture.

This article considers the potential benefits of configuration-aware fuzzing. To start, we assess
how program configurations affect fuzzing performance by performing an empirical study that ran
AFL [2] on three common, configurable fuzzing targets (Section 3). We found that fuzzing configu-
rations with different option settings resulted in significant difference in code coverage, and some
code could only be reached by a unique configuration. For example, about 13% of lines reached
when fuzzing FFmpeg [6] with sampled configurations were not reached by its default configu-
ration. This result suggests a missed opportunity to achieve higher code coverage and/or to find
more bugs than when a fuzzer is used to test a single configuration.

A simple remediation to this problem is to fuzz all valid program configurations. However, the
configuration space of real-world programs is often large, making it infeasible to exhaustively
fuzz all configurations. The software testing literature has conducted extensive research on this
issue. A widely adopted solution is combinatorial testing [17, 18], which proposes to test a sam-
ple of configurations that covers certain properties of the configuration space (e.g., all pairs of
options appear in some configurations in the sample). In addition, dictionary- or grammar-based
approaches have been developed to fuzz program configurations [27, 29]. Program configurations
generated by these techniques can then be used as inputs to fuzz the program’s input file. How-
ever, lacking further in-advance knowledge, prior techniques would spend equal time on each
configuration even though different configurations enable different amounts of reachable code;
such equal treatment wastes resources. AFL has an experimental argv_fuzzing feature [2] that
fuzzes a program’s argv along with program’s input data. While it is possible to fuzz program
configurations with argv_fuzzing by modeling them as unbounded strings in argv, we find this
approach wastes most of the time trying to reach a valid configuration.

The above observations motivated us to design ConfigFuzz, which enables efficiently fuzzing the

program configurations and the input data at the same time (Section 4). ConfigFuzz separates a pro-
gram’s input space into two parts: the configuration bytes and data bytes. We encode the program
options into the configuration bytes in a transformed program and allow a fuzzer’s mutation opera-
tors to decide when and how to mutate the program’s configurations during the fuzzing campaign.
As the configuration space is highly structured, ConfigFuzz’s encoding ensures that the mutations
on program options always generate valid configurations. At the same time, the data bytes (i.e., the
normal input data) are also mutated by the fuzzer and given as an input of the target program’s
main function.

Specifically, ConfigFuzz takes a program’s options specification—essentially a grammar for the
options—as input. This specification distinguishes different option types (i.e., bool, choice, numeric,
and string) and specifies valid values of each option. For example, the valid values of a numeric
option are integer or real numbers that can be specified with a range. The specification is designed
in a way that users can freely control which options to fuzz and can disable certain combination
of options. This is because sometimes fuzzing program configurations may not be helpful. Some
command-line options are not developed to be used in a security-critical context, such as options
for experimental features. In addition, there may exist dependence or conflict relationship between
program options, and certain combinations of these options should be avoided when fuzzing con-
figurtions. For example, Clang’s options -march=mblaze and -msse4.2 have conflicts, and using
them together is meaningless [14].
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Using the program’s options specification, ConfigFuzz outputs a C code wrapper that first parses
in an encoding of the options (i.e., configuration bytes) from the start of the program input and then
invokes the main function of the target program with its options set to the decoded values; the re-
maining input (i.e., data bytes) is used by the target program as usual. The fuzzer, e.g., AFL, fuzzes
the transformed (wrapped) program. This enables the fuzzer to mutate the option and/or its set-
tings during fuzzing. We design the expanded input to ensure that the mutation on a specific byte al-
ways updates the setting of the same option, while mutation on a byte that decides a setting has no
effect when its associated option is not selected by the fuzzer. This makes the feedback mechanism
built in existing fuzzers useful for fuzzing configurations. ConfigFuzz is parameterized to decide
the number of program options (through a parameter that can be set in the options specification).

While the approach of ConfigFuzz is applicable to many languages, our current implementation
focuses on C programs. We used ConfigFuzz to transform six common fuzzing targets and carried
out the evaluation using a modified version of Google’s FuzzBench [7] framework, running the AFL
and AFL++ [19] fuzzers (Section 5). We compare ConfigFuzz’s fuzzing performance against that
of two baselines: (1) when always fuzzing the single default configuration; and (2) when fuzzing,
in sequence and with equal time, each of a sample of configurations drawn from 2-way covering
arrays. ConfigFuzz shows better performance than the baseline setups in four targets, while on the
other two targets, ConfigFuzz does not always outperform the baselines. We analyze the target pro-
grams’ source code and the options fuzzed by ConfigFuzz to reason about the fuzzing performance.
We also show that parameterizing ConfigFuzz to fuzz configurations with up to two options of-
ten leads to higher code coverage than up to one option, while fuzzing many more options with
ConfigFuzz may decrease the performance.

This article made the following contributions:

• An empirical study that motivates the importance of fuzzing configurations of program
options.
• ConfigFuzz, a tool that encodes program configurations, specified by a grammar, into the

input space to allow reusing existing fuzzing algorithms to fuzz program options.
• The implementation of ConfigFuzz that automatically generates configuration stubs and

the integration of ConfigFuzz into FuzzBench.
• An evaluation that shows ConfigFuzz’s performance comparing to the baselines and an

analysis that provides insights on the behavior of ConfigFuzz.

2 RELATED WORK

The idea of encoding the options into the program input space as a prefix to the actual input
was first proposed by AFL [2]; its experimental feature argv_fuzzing reads input from stdin

and puts it into argv. A function call to AFL_INIT_ARGV() needs to be inserted at the beginning
of the main function to enable argv_fuzzing. This approach does not require a configuration
grammar and encodes configurations automatically, relying on the program itself to reject invalid
ones. However, the option encoding chosen by AFL often leads to invalid configurations, causing
many early terminations that waste resources; this was observed by the AFL authors [1], and we
confirmed it with our own experiments. We thus adopted a more efficient encoding that Config-
Fuzz automatically generates based on a configuration grammar. Given that the grammar correctly
models a program’s configuration space, ConfigFuzz cannot find bugs in the program logic that
handles invalid configurations, while AFL’s argv_fuzzing feature can.

TOFU [27] is a directed fuzzer, meaning that it aims to drive the fuzzer to particular targets. Since
such targets might require certain options to be enabled, TOFU begins by fuzzing the option space
using a grammar-based mutator to try different options and see what coverage they enable. It then
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selects configurations that cover code close to the targets before starting fuzzing the program’s
input file. ConfigFuzz is more general: It enables exploring configurations along with fuzzing pro-
gram inputs, not just before, and it allows the reuse of existing general-purpose fuzzers’ mutators.

POWER [21] is a recently developed fuzzer that fuzzes a target program with configurations in
multiple steps. First, in its exploratory stage, POWER iteratively generates configurations using
dictionary-based mutation while it also fuzzes the input files with byte-level mutation. Next, it
selects a set of configurations based on a relevance heuristic. Finally, its main fuzzing stage fuzzes
the input files using the selected configurations as the seed corpus. Different from POWER, Con-
figFuzz fuzzes configurations together with the input files throughout the fuzzing process and
allows reusing existing fuzzers’ mutation operators by taking an expanded input that encodes the
program options.

The Fuzzing Book [29] introduces a tool that automatically extracts command-line options and
infers a configuration grammar. The tool then uses the inferred grammar to generate configura-
tions to fuzz, assigning equal amount of resources on each configuration. As already mentioned,
assigning each configuration equal weight very likely wastes resources, since different configura-
tions offer uneven amounts of reachable code; ConfigFuzz addresses this problem by fuzzing the
options and the rest of the input together. The Fuzzing Book tool also complements ConfigFuzz
by automatically extracting the configuration space of the target program.

OpFuzz [28] and TypeFuzz [24] fuzz configurations of SMT solvers. Both approaches fuzz
configurations by first defining a popular configuration as a default mode for each SMT solver and
then fuzzing more configurations by introducing additional options on top of the default modes.
Both fuzzers found most of the bugs in the default modes and observed that few bugs were found
under the configurations that included more than two additional options on top of the default
modes. Their results show that it is infeasible to fuzz each configuration separately and motivate
us to develop an efficient approach to allocate different resources on different configurations
during fuzzing.

3 HOW DO PROGRAM CONFIGURATIONS AFFECT FUZZING PERFORMANCE?

We perform an empirical study to understand how configurations make a difference in fuzzing
outcomes. While it is expected that different configurations could result in different parts of code
being executed, there is no prior study that focuses on understanding how tuning a program’s
configurations would affect a fuzzer’s results in terms of code coverage. The answer to this question
can be used to motivate the design of a fuzzer that fuzzes configurations.

3.1 Study Setup

We chose nm-2.37 [11], gif2png-2.5.8 [9], and FFmpeg-n4.4 [6] as the target programs for this study.
These programs are popular fuzzing targets [16, 20, 25] with command-line options. We inspected
the configuration documentation of each target program to understand its allowed options. We
found that each command-line option falls into one of four possible types:

• Bool: The setting of a bool option is a binary value to decide the presence.
• Choice: the setting of a choice option is an element in a finite set of possible choices.
• Numeric: the setting of a numeric option is either an integer (i.e., the intnum subtype) or a

real number (i.e., the realnum subtype).
• String: the setting of a string option is an arbitrary string.1

1The constraints of a string option are usually not shown in the configuration documentation, even if the programs may

check the valid settings of a string option at runtime (e.g., through regular expressions).
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Table 1. Command-line Options of Target Programs

in the Empirical Study

Program Bool Choice Numeric String

nm-2.37 13 1 0 0
gif2png-2.5.8 12 0 0 0
FFmpeg-n4.4 0 1 0 0

Table 2. Total and Unique Line Coverage for FFmpeg Configurations

Default -f mpeg -f mp4 -f flv -f h264 -f webm all configs

# of all lines 56,183 41,902 36,124 33,582 21,082 2,640 63,884
# of unique lines 9,578 1,749 1,975 2,048 272 237 -
% of unique lines 17% 4% 5% 6% 1% 9% -

To answer how program configurations affect fuzzing performance, we generate multiple con-
figurations of each program and perform fuzzing runs on each generated configuration to compare
their code coverage. We used a subset of the command-line options of each program, shown in Ta-
ble 1. For nm, we generated 13 configurations, each enabling one of its 13 bool options. We also
generated three configurations from the choice option -f, which has three settings bsd, posix,
and sysv. Specifically, bsd is the default setting. As a result, we used 16 nm configurations for
this preliminary study. For gif2png, we generated 12 configurations, each enabling one of its 12
bool options. In addition, we used a default configuration that does not turn on any of its options,
totaling 13 gif2png configurations. FFmpeg has a much larger configuration space; we selected
five settings (flv, mpeg, h264, mp4, and webm) for an important choice option -f, which forces the
format of FFmpeg’s audio and video conversion. We also used a default configuration with only
-i option turned on to accept input file, totaling 6 FFmpeg configurations.

We used AFL-2.52b as the fuzzer for this preliminary study. We ran five trials for each configura-
tion, and every trial ran for 24 hours. All programs used two seeds: a seed with corresponding file
format distributed by AFL (e.g., we used a small gif file as the seed for gif2png) and the default in-
valid seed used by FuzzBench (a text file of string hi). Line coverage was extracted by llvm-cov [10]
after the completion of each AFL trial.

3.2 Study Results

Overall, we observed that different configurations contributed disproportionally to code coverage,

while almost every individual configuration enabled some unique code to be reached. This result
strongly motivates the design of an effective fuzzer for program configurations.

Table 2 shows the total and unique numbers of lines covered by each configuration in FFmpeg.
We report the number of lines covered by each configuration by aggregating the distinct lines in
all five trials. A unique line (third row) means that this code was only reached in the fuzzing runs
of a specific configuration, and we also show the percentage of these unique lines of all the lines
covered by each configuration (fourth row). The last column of Table 2 (“all configs”) shows the
number of distinct lines covered in the fuzzing runs of the FFmpeg configurations.

We observe that while the default configuration covered the most code, only 88% of all code
covered by fuzzing these six configurations was due to the default configuration. This indicates
limiting runs to a single program configuration, as most past fuzzing experiments have done
(e.g., [16, 19]), is a missed opportunity to reach more code. We also see that different configu-
rations make different contributions to the overall code coverage. The default, -f mpeg, -f mp4,
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Table 3. Total and Unique Line Coverage for nm Configurations

-l –synthetic -g –w-sym-v2 -s –size-sort

# of all lines 13,525 12,908 12,678 12,612 12,511 12,495
# of unique lines 1,426 275 35 5 3 159
% of unique lines 11% 2% 0% 0% 0% 1%

-u -r -A -n –special-syms –defined-only

# of all lines 12,484 12,480 12,451 12,356 12,255 12,106
# of unique lines 13 11 9 44 1 5
% of unique lines 0% 0% 0% 0% 0% 0%

-D -f bsd -f posix -f sysv all configs

# of all lines 11,056 1,409 1,409 1,409 15,243
# of unique lines 29 4 4 4 -
% of unique lines 0% 0% 0% 0% -

and -f flv configurations all covered more than 30,000 lines of code, but fuzzing the configura-
tion -f webm only covered about 2,600 lines. Nevertheless, there are unique lines only covered by
each FFmpeg configuration. About 17% of the lines covered by the configuration Default were
unique; even the configuration that covered the least code (-f webm) had 237 unique lines. This
result is consistent with what we observed from the code investigation on these configurations.
The settings of -f option, which specify the format of FFmpeg’s audio and video conversion, reach
very different parts of FFmpeg’s implementation.

Table 3 shows the total and unique numbers of lines covered by each configuration in nm. All
configurations covered some unique lines. However, unlike FFmpeg, where each configuration
covered about 300–9,600 unique lines (accounting for 1% to 17% of all lines covered by each config-
uration), 75% (12 out of 16) nm configurations covered less than 50 unique lines. Through manual
investigation, we found that it is important to test the option -l, because it controls about 100 lines
of code in the nm.c file to find a filename and line number for each symbol with debugging infor-
mation. This explains why fuzzing the -l configuration covered the most lines and many unique
lines in Table 3. The configurations that covered the least numbers of lines are those that set the -f
option. This is surprising, because the settings of -f decide the output format. After investigating
the fuzzing log, we found that AFL ignored the valid seed and kept fuzzing the invalid seed, and
therefore was unable to generate any new seed in 24 hours.

Table 4 illustrates the aggregated and unique lines covered for each gif2png configuration. Ta-
ble 4 shows that all but one configuration covered between 2,700 and 2,900 lines, a smaller variance
in terms of line coverage. This is because all command-line options except for -w differ in only a
few branches in gif2png. The configuration -w exits gif2png earlier compared to other configura-
tions, therefore only covered 570 lines of code.

In summary, program options often decide unique branches to execute in a target program,
which make fuzzing different configurations contribute disproportionally to code coverage. The
unique branches sometimes resulted in a few more statements being executed compared to the
default configuration, but sometimes direct the program execution to a very different route.

4 CONFIGFUZZ

Our study results suggest that different configurations can have differing levels of impact on
fuzzing code coverage. To best allocate different resources to a fuzzing task, we should prioritize

2Abbreviation for the configuration --with-symbol-versions.
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Table 4. Total and Unique Line Coverage for gif2png Configurations

-h -g -v -r -m -p -f

# of all lines 2,898 2,884 2,861 2,860 2,847 2,844 2,839
# of unique lines 63 49 18 55 12 9 4
% of unique lines 2% 2% 1% 2% 0% 0% 0%

-O Default -i -s n -w all configs

# of all lines 2,834 2,829 2,829 2,818 2,714 570 3,108
# of unique lines 13 0 3 3 3 13 -
% of unique lines 0% 0% 0% 0% 0% 0% -

Fig. 1. Overview of ConfigFuzz.

fuzzing the configurations that are likely to lead to more coverage. However, it is difficult to know
in advance which are the high-coverage configurations.

We propose ConfigFuzz to address this challenge by transforming the target program to inte-
grate configurations into the program input that is subject to fuzzing. This allows the fuzzer to
change the configuration on the fly if doing so will improve coverage. ConfigFuzz requires a gram-
mar of the configuration accepted on the target program’s command line, and uses these to drive
the transformation. The transformed program effectively allows the fuzzer to mutate expanded

inputs, which include both a configuration part and a normal input data part.
Figure 1 shows an overview of ConfigFuzz and how to fuzz with ConfigFuzz. Given a target pro-

gram and its configuration documentation as inputs, the test engineer first constructs a formatted

configuration grammar file. This grammar describes each fuzzable program option with its type
and constraints (e.g., valid range of a numeric option). The configuration stub generator then uses
this grammar to create a C-code stub that decodes binary input into a set of options. In particular,
the stub is fed the expanded fuzzable input, whose prefix consists of configuration bytes and whose
remainder consists of data bytes. It decodes the configuration bytes into a set of command-line op-
tions and their settings, which it writes into argc and argv. It directs the remaining data bytes into
the program’s input stream (e.g., stdin or an input file path). The generated stub is injected into
the start of the target program’s main function. Doing so allows any fuzzer’s original algorithm
(e.g., the mutator) to fuzz both the program’s input configuration and its normal input at once.

4.1 Configuration Grammar

The configuration grammar describes the allowed command-line options and settings of a program.
Each option is specified using an identifier (id), name, and type. There are five possible types:
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Fig. 2. An excerpt of configuration grammar of FFmpeg.

• bool: a command-line option that is either present or not present. Its setting is a Boolean
value to decide the presence.
• choice: a command-line option whose setting is an element in a finite set of possible choices.
• intnum: a command-line option whose setting is a number with no fractional part.
• realnum: a command-line option whose setting is a number with a fractional part.
• string: a command-line option whose setting is an arbitrary string.

Types bool and choice have finite number of settings, while intnum, realnum, and string have arbi-
trarily large setting space.

The configuration grammar is expressed using a simple JSON format; an example is shown in
Figure 2. A program may take input files in different ways. For example, FFmpeg takes an input
file with its -i option, specified in line 2. For programs taking input data from stdin, an input
option < will be specified in the grammar, so data in input file will be redirected to stdin. For
a choice option, the possible settings are listed in the choices field. For example, lines 4–6 specify
that the choice option -f has the five settings: flv, mpeg, h264, mp4, and webm. For a numeric
option, the range field is used to specify the range of its valid values. For example, lines 7–8
specify that the valid range of the intnum option -vframes is 0 to 43,200. When the range of a
numeric option is not given, this option is potentially unbounded; instead, we use the range of
int and double types in C as the default range for intnum and realnum options, respectively.
Line 9 specifies a bool option -vn. For all string options, like -filter on lines 10–11, the strmax
field is used to specify their maximum number of characters. Line 15 specifies that at most 19
characters are allowed for all string option settings in FFmpeg.3

When manually inspecting the configuration documentation, we also identified that there exist
two types of interactions among command-line options: dependence and conflict. Similar interac-
tions between the program options were identified by Mordahl and Wei in other configurable
software [22]. We say option A depends on option B when option A can only be set if the bool

3We use strmax=19 as the default value for ConfigFuzz.

ACM Transactions on Software Engineering and Methodology, Vol. 32, No. 2, Article 53. Pub. date: March 2023.



Fuzzing Configurations of Program Options 53:9

Fig. 3. Structure of ConfigFuzz expanded input.

option B is set. We say option A conflicts with option B when at most one of the two options can
be set in the program’s configuration. For example, lines 13–14 specify that -vn conflicts with
-vframes.

Last, we use the maxopts field to enforce a maximum degree of option combinations that may
be generated during fuzzing. Line 16 specifies that configurations with up to two options explicitly
set can be generated.

Note that the configuration grammar does not need to be accurate for ConfigFuzz to work. In-
valid command-line options often cause immediate failures when a program executes, and fuzzers
will not waste much resources on them. The same situation also applies on option interactions,
where fuzzers will not prioritize invalid option combinations. Therefore, we expect ConfigFuzz
to still work with a slightly incorrect grammar. In addition to correctly describing the configura-
tion space of a program, the option interactions in the grammar also enables users to customize
the fuzzing space. For example, users can turn off certain combinations of options that come with
meaningless errors, as discussed in Reference [14].

4.2 Configuration Stub Generation

ConfigFuzz transforms the target program to take an expanded input that contains both its con-
figuration and its data input. This expanded input, with configuration bytes followed by data bytes,

is processed by an automatically generated C-code stub. The stub decodes the options from the
configuration bytes and redirects the remaining data bytes to program’s main input channel. This
stub is injected at the beginning of a program’s main function (see Section 4.3).

The configuration data is encoded in the expanded input, as shown in Figure 3. The configuration

bytes precede the data bytes, and these configuration bytes are divided into two parts: the bytes
responsible for encoding which options to turn on (i.e., option bytes), and the bytes responsible for
encoding which setting to use for an option (i.e., the group of setting bytes that follows the option

bytes).
The number of bytes needed for option bytes is decided by maxopts specified in the configuration

grammar, that is, at most maxopts options are turned on in the generated configurations. One byte
is needed to encode each option assuming a program does not have more than 256 options. The
rest of the configuration bytes are used for encoding the setting of each option in the configuration
grammar. For the setting bytes of each option, the number of bytes needed is decided by the option
type and its constraint. Specifically, (1) a bool option needs 1 byte, (2) a choice option needs ceiling
of log256[number_o f _choices] bytes, (3) a numeric option needs ceiling of log256[size_o f _ranдe]
bytes, where the size of range is computed by subtracting the lower bound from the upper bound,
both specified in the configuration grammar, and (4) a string option needs strmax+1 bytes, where
strmax is specified in the configuration grammar.

Figure 4 shows the pseudocode for part of a configuration stub generated with the grammar
described in Figure 2 for FFmpeg. Line 1 reads two option bytes from the input (the first two bytes),
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as maxopts is set as 2 in our example. Line 2 reads the next byte from the input as the setting bytes

of option_id=0; 1 byte is read because in our example, this option (-f) is a choice option with 5
choices, and 1 byte is large enough to encode them. The omitted code at line 3 reads the setting
types for each remaining option. Line 4 reads the remaining data into data bytes, which is later
used as program input. For each option byte, lines 6 and 7 transform it into an option. The option
id is determined by taking the reminder of the option byte divided by the total number of options
(4 in our example, as shown on line 6). The option is then looked up in the options array (which
is generated with the rest of the stub when processing the configuration grammar), per line 7. Line
8 retrieves the setting bytes per the option id. Lines 9–16 decode the setting of option -f, which is
a choice-type option. First, a setting_id is calculated from the setting bytes, and then this byte is
used to select the actual choice. Other option types are encoded as follows:

• For a bool option, its setting is empty (i.e., turning on the bool option only requires adding
the option to the argument without a setting).
• For a numeric option, we first obtain the range of the option and then the encoding is based

on the setting bytes and the range. Specifically, we follow two equations for the calculation:
rsize=range.max-range.min+1 and setting=range.min+setting_bytes%rsize.
• For a string option, its setting is directly transformed from the setting bytes with string type

cast.

Returning to Figure 4, lines 17 and 18 append the option and setting strings to argv and increment
argc of the program based on the encoding. These simulate the command-line arguments given
to the main function. We update argc and argv the same way on all options except bool options.
Because bool options do not have any setting, we only append the option string to argv and
increment argc by 1. Finally, in lines 20–22, we dump the data bytes into an in-memory file, append
argv with the input options (i.e., -i for FFmpeg) and file name, and increment argc accordingly.

This structure for configuration bytes’ encoding ensures that each byte can always be legally
interpreted as specifying an option or its setting. As a result, a mutation performed on the same
byte always properly updates the encoded option or setting, making the coverage feedback of a
fuzzer more efficient. We call this encoding the hash encoding. One limitation of hash encoding is
that it may not encode options and settings with equal probability. For example, we use one option
byte to encode a program with 255 command-line options; one option (option_id=0) will have a
higher probability of being selected. We may allocate more bytes for selecting an option or a setting
to remediate this problem, but it makes the input larger, which may reduce fuzzing effectiveness.

4.3 Configuration Stub Injection

The stub injection step of ConfigFuzz takes the source code of the generated stub and injects it into
the beginning of the target program’s main function, implemented with a Python script. The stub
modifies main’s parameters argc and argv to hold the decoded options. ConfigFuzz assumes that
a fuzzer will run the transformed program with the expanded input and no other command-line op-
tions, because the command-line options are written by the injected stub. Therefore, the inputs of
the stub will usually be argc of 2 and argv[1] being the path to a file storing the expanded input.

The modified parameters are then given to the rest of the main function, mimicking the situa-
tion where command-line options are stored in argv, and a fuzzer fuzzes the program along with
configurations.

5 EVALUATION

We conducted experiments to evaluate ConfigFuzz, comparing its performance on different
settings against two baseline setups: one fuzzes a default configuration and the other samples
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Fig. 4. Configuration stub pseudocode generated for FFmpeg.

Table 5. Command-line Options of Target Programs in the Evaluation

Program Bool Choice Numeric String Total

cxxfilt-2.37 7 1 0 0 8
FFmpeg-n4.4 7 3 8 12 30
gif2png-2.5.8 14 0 1 0 15
nm-2.37 20 4 0 1 25
objdump-2.37 30 7 5 6 48
xmllint-2.9.12 49 1 1 7 58

configurations drawn from covering arrays. In this section, we present the setup and results of
the experiments.

5.1 Experimental Setup

5.1.1 Target Programs and Fuzzers. ConfigFuzz-transformed programs are compatible with
most existing fuzzers. In the evaluation, we ran experiments using two fuzzers: AFL-2.57b [2]
and AFL++-3.14a [19]. Using more than one fuzzer, we can check if performance of ConfigFuzz is
consistent in both fuzzers and/or if the behavior is specific to a fuzzer.

The experiments were run on six popular fuzzing targets: cxxfilt-2.37 [5], FFmpeg-n4.4 [6],
gif2png-2.5.8 [9], nm-2.37 [11], objdump-2.37 [12], and xmllint-2.9.12 [13]. We ran both fuzzers
on five programs, but ran only AFL on gif2png-2.5.8, because we could not build gif2png-2.5.8
with AFL++. Table 5 shows the configuration space of these target programs; the numbers of
command-line options ranging from 8 (cxxfilt) to 58 (xmllint).
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5.1.2 ConfigFuzz Settings and Baselines. We experimented with five settings of ConfigFuzz.
Specifically, we set maxopts to 1, 2; i.e., fuzzing configurations with at most 1 and 2 options explic-
itly set. We also set maxopts to the total number of options in each program, We call these three
variations as ConfigFuzz-1, ConfigFuzz-2, and ConfigFuzz-max. We excluded string options from
ConfigFuzz’s configuration grammar to be consistent with the baselines, because a sample-based
baseline could not always generate valid string settings, as explained below.

We compared ConfigFuzz-1, ConfigFuzz-2, and ConfigFuzz-max with two baselines. The first
baseline (called Baseline-def) fuzzes only the default configuration of the target program. The
second baseline (called Baseline-2-way) fuzzes a sample of configurations generated by two-way
covering arrays [23]. Such sample contains two-way combinations of all option settings [18], en-
hancing the likelihood of discovering interactions compared to just a random sample. We consid-
ered two-way interactions to reduce the configuration space, and because it is commonly assumed
that most faults are caused by the interaction of only a few features [26]. We used ACTS 3.2, a
combinatorial testing tool from NIST [3], to generate the configuration samples. We included all
settings of bool options and choice options with less than 50 settings. On objdump and FFmpeg,
choice options with more than 50 settings cause the number of covering arrays to explode and fail
the program execution. Therefore, a random sample of 10 settings are taken on these options. For
numeric options, we took the lower and upper bound of the range and randomly sampled 8 num-
bers in between to generate 10 choices. For string options, considering a randomly sampled string
is mostly likely to yield an invalid setting, we removed all strings options from the configuration
grammar. As a result, 17, 294, 22, 2567, 362, and 46 sample configurations were generated for cxxfilt,
FFmpeg, gif2png, nm, objdump, and xmllint, respectively. To fairly compare with ConfigFuzz, we
modified the fuzzing process to fuzz an equal amount of time for each sampled configuration
(i.e., [total time]/[number of configurations]) in sequence, while retaining the seeds from previous
fuzzing progress.

The remaining two settings enable string options. Similar to ConfigFuzz-1 and ConfigFuzz-2, we
explicitly set at most 1 and 2 options during fuzzing with the entire configuration grammar and call
them ConfigFuzz-str-1 and ConfigFuzz-str-2. Results of ConfigFuzz-str-1 and ConfigFuzz-str-2 are
compared with ConfigFuzz-1 and ConfigFuzz-2 to evaluate the impact of fuzzing configurations
that include string options.

5.1.3 Research Questions. Our experiments answer three research questions:

• RQ1: Does ConfigFuzz outperform baselines?
• RQ2: How do ConfigFuzz-1, ConfigFuzz-2, and ConfigFuzz-max compare?
• RQ3: How does ConfigFuzz perform on string options?

For RQ1, we check if ConfigFuzz can result in more code coverage than fuzzing Baseline-def
and Baseline-2-way. For RQ2, we check if ConfigFuzz-2, which can generate configurations
that interact with 2 options, can result in more code coverage than ConfigFuzz-1 to assess the
importance of fuzzing the interactions among program options. Moreover, we compare the
performance of ConfigFuzz-max, which does not limit the number of configuration interactions,
with ConfigFuzz-1 and ConfigFuzz-2 to study how highly interacted configurations affect fuzzing
performance. For RQ3, we compare the results of ConfigFuzz-str-1 and ConfigFuzz-str-2 with
ConfigFuzz-1 and ConfigFuzz-2 to evaluate how fuzzing configurations with string options
contributes to code coverage.

5.1.4 Experimental Design. We integrated ConfigFuzz into FuzzBench [7] to allow repro-
ducible and reusable experiments. We added ConfigFuzz-transformed programs into FuzzBench
benchmarks and specified the fuzzing targets to be the executables containing the modified
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Fig. 5. Line coverage growth plots on xmllint.

main functions. FuzzBench originally expected LibFuzzer harnesses as entry points (compiled
with Clang [4] and the fsanitize-coverage=trace-pc-guard flag), while ConfigFuzz is
designed to fuzz whole programs with command-line options. We modified the FuzzBench scripts
to allow running fuzzers on the whole programs following AFL’s tutorial [8]. Specifically, the
modified scripts build fuzzing targets using each fuzzer’s own compiler for instrumentation, and
the command to run each fuzzer was also updated accordingly to ensure the expanded input is
correctly passed to the target programs, as discussed in Section 4.3.

We ran each of ConfigFuzz-1, ConfigFuzz-2, ConfigFuzz-max, ConfigFuzz-str-1, ConfigFuzz-str-
2, Baseline-def, and Baseline-2-way on each program with five trials and 24-hour timeout. We
report the median number of lines covered by each fuzzer after post-processing code coverage
using llvm-cov [10]. For each of the five programs, we used an invalid seed, which is Fuzzbench’s
default seed (a text file containing string hi) and one valid seed taken from AFL’s repository [2] as
seeds. There does not exist a valid seed for cxxfilt in AFL’s repository; instead, we used the mangled
version of function name f() as the valid seed for cxxfilt. The invalid seed for cxxfilt is the same
text file as the other five programs. As ConfigFuzz takes part of the input data as configuration
bytes, the remaining data bytes will not form a valid seed. Therefore, for each ConfigFuzz setup,
we prepended bytes on the original seeds to make sure the data bytes are valid.

All experiments were conducted on a server with 2 Intel Xeon Silver 4,116 CPUs (each with
24 cores) and 192 GB of RAM running Ubuntu 16.04.

5.2 Results

5.2.1 RQ1: Does ConfigFuzz Outperform Baselines? Figures 5 to 7 show line coverage growth of
each fuzzer over time on all the six target programs. Results of default (Baseline-def), ConfigFuzz-1,
ConfigFuzz-2, ConfigFuzz-max, and covering arrays (Baseline-2-way) are represented by lines in
black, blue, red, orange, and green, respectively.

Overall, the performance of ConfigFuzz varied based on the target programs. ConfigFuzz clearly
outperformed the baselines on xmllint, gif2png, cxxfilt, and FFmpeg, as a result of ConfigFuzz
prioritizing configurations that may lead to larger code coverage. However, Baseline-2-way and/or
Baseline-def achieved higher coverage on nm and objdump. In general, ConfigFuzz performed
better than the baseline settings on programs that can be well-explored in the 24-hour timeout (i.e.,
xmllint, gif2png, and cxxfilt) by effectively allocating resources in the whole configuration space.
It is also possible for ConfigFuzz to perform well on more complicated programs (i.e., FFmpeg) due
to the same reason. While on other complicated programs (i.e., nm and objdump), ConfigFuzz may

ACM Transactions on Software Engineering and Methodology, Vol. 32, No. 2, Article 53. Pub. date: March 2023.



53:14 Z. Zhang et al.

Table 6. Top 5 Most Frequently Fuzzed Options xmllint with AFL

ConfigFuzz-1 ConfigFuzz-2 ConfigFuzz-max ConfigFuzz-str-1 ConfigFuzz-str-2

–html (32%) –html (36%) –sax1 (87%) –html (29%) –html (42%)
–recover (16%) –repeat (22%) –recover (68%) –xpath (16%) –xpath (23%)
–repeat (8%) –recover (19%) –debug (68%) –recover (11%) –repeat (15%)
–stream (6%) –maxmem (13%) –debugent (60%) –repeat (7%) –recover (14%)
–maxmem (5%) –sax1 (13%) –copy (45%) –stream (5%) –sax1 (12%)

spend a lot resources fuzzing the configurations that continuously generate new coverage, but not
noticing that exploration of the other configurations may lead to even more coverage. We now
analyze the performance on each program in detail.

For xmllint (Figures 5(a) and 5(b)), every setting of ConfigFuzz outperformed the two baselines
by a large margin for both AFL and AFL++. ConfigFuzz-1, ConfigFuzz-2, and ConfigFuzz-max not
only achieved higher coverage than Baseline-def and Baseline-2-way at a very early stage of the
fuzzing campaign, but also grew faster. This is a strong indication that ConfigFuzz outperformed
the baselines by exploring more command-line options. For both AFL and AFL++, Baseline-def
only covered less than 7,000 lines while every setting of ConfigFuzz covered more than 15,000
lines. This result indicates that a large portion of xmllint code may not be reachable through its
default configuration. Using more preset configurations (Baseline-2-way) did increase the coverage
of the fuzzers, reaching 13,000 lines, but still less effective than ConfigFuzz.

To provide more insights on how ConfigFuzz performed during the fuzzing campaign, we col-
lected all the generated seeds and extracted their configurations. We analyzed the distribution of
the options that appeared in these configurations. Columns 1–3 in Table 6 show the five most fre-
quent options in ConfigFuzz-1, ConfigFuzz-2, and ConfigFuzz-max results. Most options rarely
appeared (less than 5%) in the generated configurations. The three most frequent options in
ConfigFuzz-1 results were -html, -recover, and -repeat; they appeared 15,523, 7,622, and 4,004
times, respectively. These options were also frequently fuzzed by ConfigFuzz-2 and ConfigFuzz-
max. This shows that ConfigFuzz was able to frequently fuzz these non-default options that led
to higher coverage. By investigating the source code, we observed that enabling -html and/or
-recover allows ConfigFuzz to reach many unique lines. However, enabling the -repeat option
would iteratively execute xmllint’s main functionality (which parses and prints the input xml file)
100 times. This may confuse the fuzzers on its potential to generate new coverage.

Results on cxxfilt (Figures 6(a) and 6(b)), FFmpeg (Figures 6(c) and 6(d)), and gif2png (Fig-
ure 6(e)) show similar trend where all settings of ConfigFuzz outperformed the two baselines,
while Baseline-def always performed the worst. ConfigFuzz also consistently fuzzed a small set
of options more frequently across the three ConfigFuzz settings. Different from xmllint, these
frequently fuzzed options in gif2png did not contribute much to ConfigFuzz’s performance. Actu-
ally, the number of unique lines exposed by enabling each individual option in gif2png is usually
small. Nevertheless, fuzzing all options led to ConfigFuzz outperforming Baseline-def. The option
-w caused the poor performance of Baseline-2-way. By enabling -w, gif2png lists images without
animation or transparency and exits earlier compared to other options. Baseline-2-way has about
half of its 2-way covering arrays enabling -w. However, ConfigFuzz allocated much less resources
on -w. Unlike xmllint, the baselines produced better coverage at some stages of the fuzzing cam-
paigns. For example, for AFL-cxxfilt, Baseline-def achieved higher coverage than ConfigFuzz in the
first two hours but was eventually surpassed in a few hours. This result suggests that ConfigFuzz
may not always find the most effective configurations to fuzz at the beginning but was capable
of finding such configurations given time. The most frequently fuzzed options by ConfigFuzz in
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Fig. 6. Line coverage growth plots on cxxfilt, FFmpeg, and gif2png.

cxxfilt, --format and -t, are both important. The main functionality of cxxfilt is to demangle
a string, and the settings of --format decide the demangling style. Similar to the -w option in
gif2png, disabling -t terminates cxxfilt’s execution earlier compared to other options.

The results on nm (Figures 7(a) and 7(b)), however, show that ConfigFuzz performed worse
than both baselines. Baseline-2-way was significantly better than other approaches, reaching
15,000 and 17,500 lines using AFL and AFL++, respectively. Even Baseline-def outperformed all
ConfigFuzz settings. To understand this behavior, in Table 7, we extracted the 10 most frequently
fuzzed options in ConfigFuzz-1, ConfigFuzz-2, and ConfigFuzz-max using AFL. We observe that
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Fig. 7. Line coverage growth plots on nm and objdump.

Table 7. Top 10 Most Frequently Fuzzed Options of nm with AFL

ConfigFuzz-1 ConfigFuzz-2 ConfigFuzz-max

–target (25%) –target (60%) –target (81%)
–defined-only (22%) -a (15%) -a (50%)
-a (11%) -S (13%) –special-syms (43%)
–quiet (10%) –format (8%) -s (39%)
-u (6%) –no-recurse-limit (5%) -l (28%)
-A (4%) –size-sort (4%) –demangle (26%)
-D (3%) -D (4%) –defined-only (24%)
–format (3%) –defined-only (4%) –quiet (24%)
-s (3%) –no-demangle (4%) –format (24%)
–size-sort (2%) –radix (3%) -A (21%)

different options were fuzzed more frequently in these settings. Over the 24 hours of fuzzing, the
frequently fuzzed options such as --target, -defined-only and -a continuously generated
new coverage, a potential reason why ConfigFuzz did not allocate more resources on other
options. This indicates that ConfigFuzz might not be the most efficient when handling the large
program and configuration space in nm.

AFL and AFL++ produced different results on objdump (Figures 7(c) and 7(d)). Baseline-def
had the best performance using AFL with ConfigFuzz-max being the second; while using AFL++,
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ConfigFuzz-2 was the best and Baseline-def was the second. First, unlike most other programs, the
coverage growth on objdump did not flatten after a few hours of fuzzing. This indicates that the
search space of this program is large and all fuzzers; even when only the default configuration is
fuzzed, the fuzzers continue discovering new coverage steadily over the 24 hours. Second, the re-
sults in Figures 7(c) and 7(d) show that the effectiveness of ConfigFuzz also depends on the fuzzer.
Using AFL and AFL++, ConfigFuzz-2 performed significantly different, covering about 20,000 and
90,000 lines, respectively.

5.2.2 RQ2: How Do ConfigFuzz-1, ConfigFuzz-2, and ConfigFuzz-max Compare? Comparing the
performance of ConfigFuzz-1, ConfigFuzz-2, and ConfigFuzz-max in Figures 5 to 7, ConfigFuzz-
max did not always produce the highest coverage among these ConfigFuzz settings, and
ConfigFuzz-2 outperformed ConfigFuzz-1 in most cases. The performance of these ConfigFuzz
settings was impacted by two aspects of the configuration space of the target programs. First,
there exist interactions between two options, where some source code lines can only be reached
by either enabling both options or enabling one and disabling the other. Second, some options
cause longer running time of the program execution, and when ConfigFuzz generates configura-
tions including such option(s), the fuzzing process will be slower.

On xmllint (Figures 5(a) and 5(b)), ConfigFuzz-2 covered 18% more lines than ConfigFuzz-1 in
24 hours (statistically significant through Mann-Whitney U test [15, 20]), which can be attrib-
uted to option interactions. One of the options generated frequently by ConfigFuzz was --html.
It interacts with --push, --memory, --insert, --xlmout, and --debugent and was the main
reason why ConfigFuzz-2 outperformed ConfigFuzz-1. Although ConfigFuzz-max outperformed
ConfigFuzz-1, it was worse than ConfigFuzz-2. This result indicates that while covering option in-
teractions may help improve the coverage, considering many option interactions may make Con-
figFuzz less effective.

In Figure 6(e) the coverages of ConfigFuzz-1 and ConfigFuzz-2 on gif2png are close. This is
because there is only one interaction in gif2png’s options by enabling -O and disabling -r, and the
interaction is associated with only a few unique lines.

On objdump, as discussed above, due to the large size of this program, the performance of
ConfigFuzz-1, ConfigFuzz-2, and ConfigFuzz-max varied significantly between AFL and AFL++.
ConfigFuzz-max covered more than three times the number of lines than that of ConfigFuzz-1 or
ConfigFuzz-2 using AFL, while ConfigFuzz-2 was the best when using AFL++. The performance
between ConfigFuzz-1 and ConfigFuzz-2 is not significantly different in other programs, in most
cases. Interestingly, ConfigFuzz-max in a few cases performed worse than both ConfigFuzz-1 and
ConfigFuzz-2. This is because ConfigFuzz-max was slowed down by including too many options
in its generated configurations. For example, on gif2png AFL ran about 11,000,000 executions with
ConfigFuzz-2 and about 6,800,000 executions with ConfigFuzz-max.

5.2.3 RQ3: How Does ConfigFuzz Perform on String Options? For the four programs with
string options (FFmpeg, nm, objdump, and xmllint), we additionally fuzzed them including
the string options. Figures 8 and 9 show the coverage growth plots comparing ConfigFuzz-1
and ConfigFuzz-2 with ConfigFuzz-str-1 and ConfigFuzz-str-2 for these programs. Results of
ConfigFuzz-1, ConfigFuzz-2, ConfigFuzz-str-1, and ConfigFuzz-str-2 are represented by lines in
blue, red, yellow, and purple, respectively.

For xmllint (Figures 8(a) and 8(b)), ConfigFuzz performed better with string options included
in the fuzzing space. ConfigFuzz-str-1 and ConfigFuzz-str-2 achieved higher coverage than
ConfigFuzz-1 and ConfigFuzz-2 from early stage. At the end of 24 hours, fuzzing configurations
with string options on xmllint resulted in more than 50% increase in line coverage. The string
option -xpath was frequently fuzzed and enabled ConfigFuzz to reach many unique lines. Also,
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Fig. 8. Line coverage growth plots on string options with ConfigFuzz including string options on xmllint and

nm.

this string option was more frequently fuzzed by ConfigFuzz-str-2 than ConfigFuzz-str-1, as it was
more likely to be generated in a configuration with two options, compared to a configuration with
a single option.

Adding the string options did not help ConfigFuzz improve the performance on nm. As shown
in Figures 8(c) and 8(d), the coverages of ConfigFuzz-str-1 and ConfigFuzz-str-2 are similar to
the coverages of ConfigFuzz-1 and ConfigFuzz-2. The only string option --ifunc-chars in
nm was not frequently fuzzed by ConfigFuzz-str-1 and ConfigFuzz-str-2. This is likely because
--ifunc-chars only controls 4 unique lines in nm and was quickly exploited by ConfigFuzz.

String options in objdump are mostly structured strings. For example, the --ctf and
--ctf-parent options take section names that are hard to be generated by ConfigFuzz. An excep-
tion is --source-comment, which prefixes its setting to the source code lines. ConfigFuzz spent
a lot of resources on this option but did not achieve higher coverage. In Figures 9(a) and 9(b),
ConfigFuzz-str-1 and ConfigFuzz-str-2 did not outperform ConfigFuzz-1 and ConfigFuzz-2.

FFmpeg has 12 string options, and we set the max size of string setting to be 19 in this evaluation.
The implementation of ConfigFuzz enforced all options that are not bool type (23 in FFmpeg, as
shown in Table 5) to have the same size of setting bytes, meaning that there needs to be 460
setting bytes to represent these options. When the input data size is smaller than the configuration
bytes, ConfigFuzz will run the target program with the default configuration. ConfigFuzz-str-1 and
ConfigFuzz-str-2 were not able to generate large enough seeds during most of the fuzzing time,
resulting in their worse performance than ConfigFuzz-1 and ConfigFuzz-2.
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Fig. 9. Line coverage growth plots on string options with ConfigFuzz including string options on objdump

and FFmpeg.

5.3 Threats to Validity

A potential threat to validity is that we measure code coverage instead of ground-truth bugs when
comparing the fuzzers, which may not accurately measure the effectiveness of fuzzers [20]. To
our knowledge, there do not exist any ground-truth benchmarks that are suitable for evaluating
fuzzers that consider program configurations. It is future work to develop such benchmarks (e.g.,
based on RevBugBench, we recently developed Reference [30] to allow fair comparison between
fuzzers on programs with configurations).

6 CONCLUSIONS AND FUTURE WORK

In this article, we present ConfigFuzz, an approach that enables fuzzing program options and pro-
gram input at the same time. A key idea of ConfigFuzz is to transform the target to take an ex-
panded input that encodes the program options, so existing fuzzers’ mutation operators can be
reused to fuzz program configurations. The options are specified by a grammar, and code is gen-
erated and injected into the target to decode them from the expanded input; the option encoding
is designed to ensure that mutations are effective. ConfigFuzz’s design was motivated by an em-
pirical study that showed different configurations can have differing levels of impact on fuzzing
code coverage. We integrated ConfigFuzz into FuzzBench to evaluate it. Our experiments on six
programs show that ConfigFuzz outperformed the baselines on four programs, while the results
were mixed in the other two. We provided insights of these results through the analysis of options
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fuzzed by ConfigFuzz. We also compared the performance of ConfigFuzz using different parame-
ters and including different options.

We identify several directions to explore in future work. First, as our empirical study shows,
the coverage achieved by fuzzing configurations is associated with the unique branches covered
by those configurations. While ConfigFuzz enables the fuzzers to allocate different resources on
different configurations, the allocation may be further augmented with static analysis of each con-
figuration. Second, fuzzing too many options together slows down the fuzzing process. Instead
of enforcing the number of options in a configuration generated by ConfigFuzz, there could be a
feedback loop adjusting the number of options in the generated configurations. Third, we observe
that ConfigFuzz was unable to efficiently fuzz large configuration space and may frequently fuzz
options that do not lead to the largest coverage. ConfigFuzz can be further improved by introduc-
ing an exploration stage, in which all configurations are allocated the same resources to identify
the configurations that may lead to better performance.
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