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Virtual reality (VR) systems are known for their susceptibility to cybersickness, which can seriously hinder users’ experience. Therefore,
a plethora of recent research has proposed several automated methods based on machine learning (ML) and deep learning (DL) to detect
cybersickness. However, these detection methods are perceived as computationally intensive and black-box methods. Thus, those
techniques are neither trustworthy nor practical for deploying on standalone VR head-mounted displays (HMDs). This work presents
an explainable arti�cial intelligence (XAI)-based framework VR-LENS for developing cybersickness detection ML models, explaining
them, reducing their size, and deploying them in a Qualcomm Snapdragon 750G processor-based Samsung A52 device. Speci�cally, we
�rst develop a novel super learning-based ensemble ML model for cybersickness detection. Next, we employ a post-hoc explanation
method, such as SHapley Additive exPlanations (SHAP), Morris Sensitivity Analysis (MSA), Local Interpretable Model-Agnostic
Explanations (LIME), and Partial Dependence Plot (PDP) to explain the expected results and identify the most dominant features.
The super learner cybersickness model is then retrained using the identi�ed dominant features. Our proposed method identi�ed eye
tracking, player position, and galvanic skin/heart rate response as the most dominant features for the integrated sensor, gameplay, and
bio-physiological datasets. We also show that the proposed XAI-guided feature reduction signi�cantly reduces the model training and
inference time by 1.91X and 2.15X while maintaining baseline accuracy. For instance, using the integrated sensor dataset, our reduced
super learner model outperforms the state-of-the-art works by classifying cybersickness into 4 classes (none, low, medium, and high)
with an accuracy of 96% and regressing (FMS 1–10) with a Root Mean Square Error (RMSE) of 0.03. Our proposed method can help
researchers analyze, detect, and mitigate cybersickness in real time and deploy the super learner-based cybersickness detection model
in standalone VR headsets.
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• Why did the model is detecting cybersickness?
• Why misclassification happen?
• Can I trust the model decision?
• Can I reduce the size of the model?
• Can I optimize the performance of the model?

ML model

ML developer

Fig. 1. Key questions in ML-based cybersickness (CS) detection.

1 INTRODUCTION

Virtual reality (VR) is being applied in various �elds containing national defense [2], education [59], health care [27],
public safety [53], and others [7, 19, 70, 76]. Speci�cally, in the current COVID-19 pandemic situation, VR o�ers a
tremendous prospect for remote learning [63], as realistic collaboration workspaces [88, 98], and also as coping strategies
for mental wellness for adults [19] as it can provide a sense of human presence. However, VR users often experience VR
sickness or cybersickness, which hinders their immersive experience. Thus cybersickness has emerged as an important
obstacle [59, 76, 87] to the wider acceptability of VR. Cybersickness can be de�ned as a set of unpleasant symptoms
such as eyestrain, headache, nausea, disorientation, or even vomiting [22, 50, 70, 87]. One of the popular techniques
to detect cybersickness is to use post-immersive subjective questionnaires such as Simulator Sickness Questionnaire
(SSQ) and the VR Sickness Questionnaire (VRSQ) [84]. In contrast, the Fast Motion Sickness Scale (FMS) [43] can assess
cybersickness severity during immersion. However, FMS relies on user feedback, i.e., needs human intervention during
the VR immersion [62]. To overcome these limitations, deep learning (DL) and machine learning (ML) has recently
become popular for cybersickness detection [1, 31, 32, 38, 41, 50, 75].

State-of-the-art ML/DL models can detect cybersickness with good accuracy from physiological signals (e.g., Heart
Rate (HR), Galvanic Skin Responses (GSR), Breathe Rate (BR), Electroencephalogram (EEG)) [19, 65, 75, 91, 100],
integrated eye and head tracking sensors, [33], and stereoscopic video [33, 52, 67]. For instance, Islam et al. [33]
proposed a cybersickness severity detection using a deep fusion network with an accuracy of 87.7% from users’ eye
tracking and head tracking data. Other researchers used electroencephalography (EEG) [75, 91, 100], stereoscopic
video [33, 67] and bio-physiological signal [31, 75] data for detecting cybersickness with good accuracy. Despite the
great prospect of ML/DL models in detecting cybersickness, these methods have several drawbacks shown (see Figure
1).

• Most of the state-of-the-art ML/DL models for VR cybersickness detection rely on black-box models; thus,
they lack explainability. Adding explainability to these black-box models can signi�cantly improve the model’s
trustworthiness and provide insight into why and how the ML/DL model arrived at a speci�c decision.

• VR sensors generate a tremendous amount of data, resulting in complex, large, and power-hungry models. This
makes real-time cybersickness detection challenging in standalone head-mounted devices (HMDs). Adding the
explanation to the ML/DL model can guide the engineers to optimize the model e�ectively by identifying the
dominating features. Indeed, reducing the dimensionality of cybersickness ML/DL models can signi�cantly
improve their training time, inference time, and size without compromising accuracy.
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To demonstrate the need for the proposed XAI approach, consider that a VR game developer may want to develop
a cybersickness detection model for their game based on alpha/beta players who are using a resource-constrained
standalone VR headset. Suppose the developer used a black box cybersickness detection model without explainability
in the game. In that case, they could not easily identify which of the model’s features (e.g., gaze origin from world
space) contributed to cybersickness prediction. Hence, they would have used trial and error to reduce the model size to
minimize resource usage on the already resource-constrained Meta Quest Pro.

It is worth mentioning that there is a signi�cant research gap in applying explainable arti�cial intelligence (XAI)
to explain cybersickness. Very recently, Kundu et al. [49] used inherently interpretable ML models for cybersickness
detection and explanation using physiological[35] and gameplay datasets[73]. However, their work considered binary
classi�ers, which can only detect the presence or absence of cybersickness. Such simple models are ine�ective for
realistic VR applications as they cannot detect cybersickness severity. Additionally, inherently interpretable models are
typically dependent on the data properties and thus su�er from the curse of dimensionality problem [83]. For instance,
decision tree and logistic regression-based inherently interpretable models can su�er from their over�tting problem
because of their dimensionality and nonlinearity, which may eventually lead to their poor performance in cybersickness
classi�cation [49, 69, 75]. Most prior works use feature selection or dimensionality reduction techniques, such as
principal component analysis (PCA) [45, 47, 60, 82, 89] to address the high-dimensionality issue in ML/DL models
for cybersickness detection. For instance, Lin et al. [55] applied ML models with PCA to extract the cybersickness-
related features to predict the cybersickness level. Similarly, Kottaimalai et al. in [48] used PCA to reduce dimensions,
complexity, and computational time for EEG signals to detect cybersickness. However, applying PCA results in loss
of information [3]. Furthermore, Mawalid et al. in [61] used time-domain feature extraction methods to extract the
EEG statistical features for classifying cybersickness. However, applying PCA results in loss of information [3]. This
means applying PCA-based dimensionality reduction may result in losing important features essential for accurate
cybersickness detection.

To address the above-mentioned challenges, we propose a novel methodology, VR-LENS–an XAI-based framework
for cybersickness detection, explanation, model reduction, and model deployment. First, to demonstrate the applicability
of our proposed method, we proposed a novel super learning-based ensemble ML model. Then, we employed post-hoc
explanation methods, SHapley Additive exPlanations (SHAP), Morris Sensitivity Analysis (MSA), Local Interpretable
Model-Agnostic Explanations (LIME), and Partial Dependence Plot (PDP) to explain the expected results and identify the
most dominant features. Speci�cally, we �rst develop a novel super learning-based ensemble MLmodel for cybersickness
detection. Then, we employ post-hoc explanation methods, namely SHapley Additive exPlanations (SHAP) [57], Morris
Sensitivity Analysis (MSA) [64], Local Interpretable Model-Agnostic Explanations (LIME) [80], and Partial Dependence
Plot (PDP) [24], to provide global and local explanations for analyzing, identifying, and ranking dominating features
causing cybersickness. The identi�ed dominating features are then used to retrain the super learner model, i.e., to train
them with a reduced number of features. This results in a lightweight cybersickness detection model with a signi�cantly
reduced number of features. Finally, to show the e�ectiveness of our VR-LENS framework, we deployed the reduced
super learner model in a Qualcomm Snapdragon 750G processor-based Samsung A52 device [30] since many state-of-art
VR devices are built using Qualcomm Snapdragon processors. We show that our proposed deployed reduced super
learner model results in faster training and signi�cantly faster inference time in the deployed device with great accuracy
outperforming the state-of-the-art works. For instance, our results show that using the integrated sensor dataset [33],
the proposed super learner model with all features classi�es the cybersickness severity into 4 classes (none, low, medium,
and high) with an accuracy of 95% and regress (FMS 1–10) the ongoing cybersickness with a Root Mean Square Error
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(RMSE) value of 0.04. However, after the XAI-based reduction of the same super learner model and the same dataset,
we can classify the cybersickness severity and predict the ongoing cybersickness with an accuracy of 96% and RMSE of
0.03, respectively, with only 1/3 of the features of the baseline model. Furthermore, our reduction approach results
in a 1.91X improvement in training time and a 2.15X improvement in the inference time in the deployed embedded
device. To the best of our knowledge, this is the �rst work that uses a super learner model and post-hoc explanation
techniques for cybersickness detection, explanations, model reduction, and deployment. Therefore, we believe the
proposed method can help future researchers understand, analyze, and design more straightforward, lightweight,
trustworthy, and accurate cybersickness detection models suitable for real-time implementation in standalone HMDs.

2 RELATEDWORKS

The term cybersickness refers to a group of symptoms, such as dizziness, nausea, etc., that are similar to motion sickness
and can occur during or after an immersive experience [51]. The most popular theory to explain the reason behind
cybersickness is the sensory con�ict [50, 51]. This theory states that cybersickness occurs when the eyes sense motion,
but the vestibular system does not. However, other theories, such as poison theory and postural instability theory, have
also been used to explain the causes of cybersickness. In addition, factors such as age, gender, and prior VR experience
of users can also impact the degree of cybersickness [15, 21, 29]. Other factors causing cybersickness are display, latency,
�ickering, lag, cybersecurity, etc., [25, 38, 50, 93, 94]. The state-of-the-art works in cybersickness detection can be
broadly divided into two categories using subjective, objective, and advanced ML/DL methods. In addition, there also
exists work in the area of dimensionality reduction of cybersickness models. In this section, we discuss these related
works as follows.

Researchers have proposed several subjective measurements such as the Simulator Sickness Questionnaire (SSQ) [8–
10, 16, 84, 96], the FMS [43], and the Motion Sickness Susceptibility Questionnaire (MSSQ) [42] to measure cybersickness.
In contrast, several researchers have also proposed objective measurements (i.e., physiological signals) for cybersickness
[31, 35, 73] detection. Previous research has shown that objective measurements (e.g., heart rate, gastric tachyarrhythmia,
galvanic skin response, eye-blink rate, pupil diameter and electroencephalogram (EEG))delta, and beta wave signals) vary
signi�cantly when cybersickness occurs [14, 35, 56, 56, 77, 79]. For instance, they found that HR and EEG delta waves
correlate positively with cybersickness, whereas EEG beta waves correlate negatively [56]. On the contrary, another
study reported that GSR has a stronger positive correlation with cybersickness than other objective measurements that
can detect cybersickness [35, 90].

Numerous ML and DL-based approaches have recently been proposed [1, 26, 31, 33, 35, 37, 44, 50, 68, 75, 78, 79, 95, 97,
99] for detecting cybersickness automatically from a variety of subjective measurements (FMSQ, MSSQ) data, objective
measurements (bio-physiological signals) data, and integrated multimodal sensors measurements (eye-tracking, head-
tracking, motion-�ow, etc.) data in HMD. For instance, Seungjun et al. [1] proposed a machine–deep–ensemble learning
method for classifying the cybersickness from bio-physiological data. In contrast, in [73], a symbolic ML-based approach
is used to identify the levels of cybersickness. Moreover, Azadeh et al. [26] used Topological Data Analysis (TDA) based
on support vector machine (SVMs) with Gaussian RBF kernel methods for predicting cybersickness from physiological
and subjective measurements data. On the other hand, Padmanaban et al. [67] used the ML algorithm on hand-crafted
features from the VR video data to predict cybersickness. Apart from the ML-based method, in recent years DL-based
method has gained more attention from cybersickness researchers. For instance, the authors in [41] applied three
DL/ML-based methods, namely Convolutional neural network (CNN), LSTM, and Support Vector Regression (SVR) for
cybersickness prediction. In contrast, Lee et al. [52] used a 3D-CNN and a multimodal deep fusion network to detect
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cybersickness using optical �ow, disparity, and saliency features from the VR video data. On the other hand, Jeong et al.
[37] applied attention-based DL models for predicting cybersickness from integrated sensor data. Likewise, in [75], an
LSTM-based attention network is used for detecting cybersickness from user bio-physiological signals. Consequently,
Islam et al. [35] applied an LSTM-based network to classify the cybersickness severity from users’ bio-physiological
data (e.g., HR, GSR, etc.). In addition, a deep fusion approach was presented in [33] for classifying cybersickness
severity from the multimodal integrated sensors data (e.g., eye-tracking, head-tracking, etc.). Although ML/DL-based
methods have shown enormous success in cybersickness detection, there is a signi�cant research gap in applying
XAI to explain detected cybersickness models. Indeed, understanding why some samples are correctly vs. incorrectly
labeled as cybersickness and which feature contributed to the cybersickness detection result is an important step toward
applying the proper mitigation technique. Therefore, explicit explanations are required to ascertain which feature (e.g.,
eye-tracking, head-tracking, HR, galvanic skin response, etc.) is responsible for cybersickness detection. Moreover,
applying XAI in cybersickness detection models can signi�cantly improve the model’s trustworthiness and provide
insight into why and how the ML/DL model arrived at a speci�c decision. In our context, the concept of trustworthy
refers to using XAI for cybersickness explanations through mechanisms such as global and local explanations and
explainable layers, which make the ML/DL model transparent, understandable, and therefore, trustworthy to users [92].
Recently, Kundu et al. [49] used three inherently interpretable ML models, namely explainable boosting Machine (EBM),
decision tree (DT), and logistic regression (LR), to detect and explain the cybersickness from a user’s bio-physiological
and subjective measurement data. However, their proposed approach is limited to binary classi�cation (cybersickness vs.
no cybersickness).. In contrast, our work considers a multi-class classi�cation problem (none, low, medium, and high)
for cybersickness detection. Another limitation in [49] is that their proposed EBM model is required higher training
time [66], which is not feasible for real-time deployment. In contrast, our work proposes a lightweight, super learner
model and uses a post-hoc explanation-based method such as SHAP, MSA, LIME, and PDP to explain black-box ML
model cybersickness detection.

There exist several works in dimensionality reduction of cybersickness models. Many researchers used PCA-based
methods to identify important features and reduce the model size [45, 47, 60, 82, 85, 89]. For example, Lin et al. [55]
used PCA based method to extract the cybersickness-related features from EEG signals. After feature extraction, they
utilized 3 ML/DL models, namely, linear regression (LR), SVM, and self-organizing neural fuzzy inference network
(SOFIN), to predict the user’s level of cybersickness. Similarly, the authors in [48] also used PCA to �nd the patterns
from the EEG signals and neural networks (NN) to classify the cognitive tasks using the Colorado University EEG signal
dataset. In contrast, Singla et al. in [85] used PCA to reduce the set of questions from the SSQ simulation. On the other
hand, Mawalid et al. in [61] used time domain feature extraction based on the statistical features (e.g., mean, variation,
standard deviation, number of peaks) and power percentage band to understand the cybersickness features and then
applied K-Nearest Neighbor and Naive Bayes classi�ers to classify cybersickness. However, PCA-based dimension
reduction is not always trustworthy and has a few drawbacks. For instance, PCA maps high-dimensional data to
low-dimensional space through projections, which often leads to the loss of information from the original data[40]. In
contrast, We use an XAI-based approach for dimensionality reduction of the cybersickness detection model to avoid the
loss of information and maintain trustworthy. Indeed, it is important to identify the key features inducing cybersickness
in VR to develop e�ective mitigation methods. This can be achieved by using XAI techniques. However, to the best of
our knowledge, XAI techniques for detecting and predicting cybersickness have not been explored yet, which motivates
our work in the paper.
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Fig. 2. Overview of VR-LENS for cybersickness (CS) detection, explanation, reduction, and deployment.

3 VR-LENS FRAMEWORK

An overview of the proposed VR-LENS framework for VR cybersickness detection, explanation, model reduction, and
deployment is shown in Figure2. At �rst, the training data is used to train the super learner-based ensemble learning
model for training for both classi�cation and regression tasks (explained in detail in the next section). The cybersickness
classi�cation and regression training phase consist of two levels of the classi�er. The level-1 classi�er consists of multiple
ML models as base models, and the level-2 classi�er consists of a meta-classi�er for the �nal classi�cation. Next, the
trained VR-LENS-based classi�cation and regression models are used for classifying and regressing the cybersickness
from the test dataset. The cybersickness regression aims at classifying the cybersickness levels with the trained super
learner model. In contrast, the cybersickness regression predicts the next value of the ongoing cybersickness FMS score
in the range of 0 to 10. The next phase uses post-hoc explanation methods, such as SHAP, LIME, Morris Sensitivity, and
PDP, to explain the cybersickness outcomes. For the global explanation, we use SHAP and Morris sensitivity tool to
explain the overall feature ranking based on the overall outcome. On the contrary, the local explanation is based on
LIME and PDP for individual feature ranking based on the speci�c test sample. Once the features are analyzed and
ranked using the explanation methods, in the model reduction phase, we use only the top features (1/3 of the features in
our case) to retrain the super learner model. This results in a signi�cantly smaller model with fewer hyperparameters,
leading to a faster training and inference time. Finally, we deploy the reduced super learner model in an embedded
platform for cybersickness detection.

3.1 Cybersickness classification using super learner

We implement a super learner-based ensemble model for combining predictions from base models and enhancing the
predictions with information from exogenous variables. It is worth mentioning that the super-learning method is based
on a general framework of several ensemble algorithms [101]. We start with building base learners and �t the base
learners with a meta learner. We use six stacked base learners, tested individually, to achieve the best performance. The
idea is to choose a suboptimal classi�er to solve the problem, improve the predictive performance, and increase the
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Algorithm 1 Super learning-based cybersickness classi�cation
Input: Training dataset: -)A08= ,

Testing dataset: -)4BC -)4BC ,
List of base learners ⌫! ,
Meta learner"! ;

Output: ⇡! = { }
1: for each base learners 8 2 ⌫! do
2: �! = _(-_CA08=)
3: -_CA08=0 = \ (-_CA08=, �!)
4: end for
5: � 0! = _(M! , -_CA08=0)
6: %! = \ 0 (� 0!,-_C4BC)
7: ⇡! = ⇡!

–
P!

8: return ⇡!

generalization performance of the super learner model. The base learners that we use to build the super learner model
are: support vector classi�er (SVC) [12], K-nearest neighbors classi�er (KNNC)[4], extra trees classi�er (ETC)[23], XG
boost classi�er (XGBC)[11], random forest classi�er (RFC)[54], gradient boosting classi�er (GBC)[18], and the meta
learner classi�er is based on a logistic regression classi�er [13].

Algorithm 1 shows the overview super learner-based ensemble MLmethod for cybersickness detection. The algorithm
takes several base learners, meta-learners, and training and testing datasets as input and returns the cybersickness level.
First, for each of the base learners ⌫! , the training data -_CA08= is �tted with the learning algorithm function _ in a
stacking manner to obtain the best-�tted base learners denoted as �! (Lines 2). Next, the meta-learning training set
-_CA08=0 is created based on the prediction function \ (Line 3). This generates the new dataset for the meta learner
using -_CA08= and �! . The meta learner "! and meta-learning training set -_CA08=0 are then �tted in the training
function _ (Line 5). The _ function calculates trained value �! from the ensemble base learner and meta learner. Then,
the cybersickness level ⇡! is predicted from the �tted meta learner � 0! based on the prediction algorithm \ (Lines 6-7).
Finally, the algorithm returns the cybersickness level when this process is complete for all the test data (Line 8).

3.2 Cybersickness regression using super learner

We use the same super learner model that we used for classi�cation for the cybersickness regression task, in which
base learners we used are support vector regressor (SVR)[12], K- nearest neighbors regressor (KNNR)[4], extra trees
regressor (ETR)[23], XG boost regressor (XGBR)[11], random forest regressor (RFR)[54], gradient boosting regressor
(GBR)[18]. Then, we used the meta learner regressor, namely the linear regression model, to forecast the cybersickness
FMS score in the range of 0 to 10. By comparing the user’s current physiological state with the previous physiological
state, cybersickness regression regresses the user’s ongoing cybersickness FMS score. The cybersickness regression
task can formally be de�ned as follows: Given a history of observed VR data (e.g., eye-tracking data, head-tracking
data, physiological signal, gameplay data, etc.) and the FMS score at previous time steps C � 1, predict the FMS score at
the next time steps C . The predicted cybersickness at time C based on the previous time C � 1 of physiological signals
is denoted by ⇠('C . For instance, if we predict the cybersickness FMS score at time C = 20 seconds, then ⇠(C can be
written as:

⇠('C ) [%C�19, %C�18, %C�17, %C�16 . . . , %C ]
7
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Table 1. Performance of 10-Fold Cross Validation on Cybersickness Severity Classification (non-reduced super learner model)

Dataset % Accuracy % Precision % Recall %F1-Score
None Low Medium High None Low Medium High None Low Medium High

Gameplay 82 91 70 56 75 92 90 67 65 91 79 61 71
Bio-physiological 98 95 - 96 95 96 - 94 97 96 - 96 95

Table 2. Performance of 10-Fold Cross Validation on Cybersickness Severity Classification (non-reduced super learner model) for the
integrated sensor dataset

Fusing modalities % Accuracy % Precision % Recall %F1-Score
None Low Medium High None Low Medium High None Low Medium High

Head-tracking 67 71 63 43 64 79 71 48 40 75 67 42 49
Eye-tracking 93 97 91 77 90 96 96 68 81 97 94 73 86

Eye + head tracking 95 98 95 87 94 99 97 79 90 98 96 83 92

where % denotes the user’s cognitive state.

3.3 Cybersickness Explanation

The XAI tools to explain cybersickness outcomes from the super learner model produce visual representations, either
as a bar graph or as a set of visualizations either in global or local explanation. We use these graphs to understand
model interpretability regarding cybersickness detection and prediction. The explanations can be categorized as global
and local explanations. The overall importance ranking (global explanation) of cybersickness detection is visualized as
bar graphs. For the local explanation, each sample is randomly chosen from the test dataset, which contains all the
features. We use SHapley Additive exPlanations (SHAP) and Morris sensitivity analysis (MSA) to explain the overall
feature importance. SHAP assigns feature importance based on a game theoretic approach. On the other hand, Morris
sensitivity analysis measures the e�ect of adjusting one feature at a time, and based on this randomized process; the
feature importance is assigned. We are using the results from the global explanation to identify the essential features
which help us e�ectively reduce the feature space.

For the local explanation, we use the Local Interpretable Model-agnostic Explanations (LIME) and partial dependence
plots (PDP) tools to explain the individual predictions from the test samples. LIME generates an explanation by
approximating the underlying model with an interpretable one to show what feature contributed to the output from
that single sample. Similarly, PDP shows the marginal e�ect one or two features have on the predicted outcome of a
machine learning model. This marginal e�ect can lead to a linear, monotonic, or more complex relation between the
output and the feature.

4 DATASETS & EXPERMENTAL SETUP

This section explains our experimental setup and datasets to validate our proposed VR-LENSE framework. We used
Scikit-Learn [71] for training and evaluating our proposed super learner-based ML model. For explaining the super
learner model, we used the SHAP [57] and the InterpretML [66] library. For deploying the super learner-based ML
model in a Qualcomm Snapdragon 750G processor-based Android device, we used Android Studio [17], and ONNX [5]
library. The super learner-based ML model is trained on an Intel Core i9 Processor and 32GB RAM option with NVIDIA
GeForce RTX 3080 Ti GPU.
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4.1 Datasets

To validate the e�ectiveness of the proposed VR-LENS framework for cybersickness classi�cation, regression, ex-
planation, and deployment, we used the three datasets, such as integrated sensor [33], bio-physiological [36], and
gameplay [74] datasets.

4.1.1 Integrated sensor dataset. The integrated sensor dataset [33] contains the eye tracking, head tracking, and
physiological signals for 27 participants (Male: 15 and Female: 12) immersed in 5 di�erent VR simulations: Beach City,
Road Side, Roller Coaster, SeaVoyage, and Furniture Shop. They recruited a total of 30 participants (Male: 15, Female:
15) to collect the experiment data. However, three participants’ data could not be collected due to technical issues (i.e.,
blacktooth and HTC-Vive wireless adapter black screen issue). Eye tracking, head tracking, and physiological data
consist of di�erent subcategories. For instance, in the eye tracking data, the subcategories are Pupil Diameter (left),
Pupil Position (x, y, z), Gaze Direction (x, y, z), Convergence Distance, and % of Eye Openness, and for the head tracking
data Quaternion Rotation of X, Y, Z, and W axis, respectively. Similarly, for the physiological signals, the subcategories
are electrodermal activity (EDA) and HR measurements. This dataset has a total of 20104 samples recorded with a
maximum of 7 minutes of VR simulation. In addition, the dataset contains four di�erent cybersickness severity classes:
none, low, medium, and high, and the FMS score ranges from 0 to 10, which is used for regression analysis.

4.1.2 Bio-physiological dataset. The bio-physiological[36] dataset consists of di�erent physiological signals such as
heart rate (HR), breathing rate (BR), heart rate variability (HRV), and galvanic skin response (GSR). The HR, BR, GSR,
and HRV data have di�erent subcategories. For instance, in HR data, the subcategories are the percentage of change
from resting baseline (PC), minimum inside 3s rolling window (MIN), the maximum value of 3s rolling window (MAX),
and moving average of 3s rolling window (AVG). Similarly, for the other bio-physiological signals, the subcategories are
the same. They recruited a total of 31 university students from a university class for the experiment (Male: 29, Female:2).
Unfortunately, they were unable to collect eight users’ data due to some reason (e.g., the battery of the HR sensors
died in the middle of the experiment, some users’ felt severe sickness during the experiment, etc.,). Therefore, these
physiological signals were collected from 23 participants immersed in a virtual roller coaster simulation. This dataset
has a total of 24533 samples recorded with a maximum of 897 seconds of VR simulation. The dataset contains three
di�erent cybersickness severity classes: low sickness, moderate sickness, and acute sickness. We labeled ‘low sickness’ as
none, ’moderate sickness’ as a medium, and ‘acute sickness’ as a high cybersickness class to reduce ambiguity. The FMS
score ranges from 0 to 10 used for regression analysis.

4.1.3 Gameplay dataset. The gameplay dataset [74] contains 22 di�erent features from the sources, such as candidate
pro�les, questionnaires, user �eld of view, user position, speed of the game in playtime, etc., for 87 participants. This
dataset is generated using two VR games, i.e., racing and �ight games. However, the data from 35 participants (Male:
26, Female: 9) was collected due to their valid cybersickness. Therefore, the data from participants in the game who
answered all virtual reality subjective questionnaires (VRSQ) correctly and completed the whole game interaction The
dataset has four cybersickness severity classes are: none, slight, moderate, and severe. The FMS score ranges from 0
to 10 and is used for regression analysis. The dataset contains a total of 9391 samples recorded with 5 minutes of VR
gameplay simulation [73]. It is worth mentioning that to reduce the ambiguity; we rename these four classes as follows:
none:none, slight: low, moderate: medium, and severe: high as like integrated sensor dataset.
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Fig. 3. AUC-ROC curve for Super Learner (a) integrated sensor dataset (b) gameplay dataset. (c) bio-physiological dataset.

4.2 Deployment Setup

We used a Samsung A52 5G device running on Android 12 with a Qualcomm Snapdragon 750G processor with up to
2.2 GHz clock speed, 6 GB of RAM, and 128 GB of memory to evaluate our proposed super learner model. Qualcomm
Snapdragon processors are typical in VR HMDs, which motivated our choice of this device. In this setup, we simulate
the VR setup by injecting integrated sensor data for the model to detect cybersickness severity and measure their
outcome and inference time to assess the model’s performance.

4.3 Performance Metrics

The performance of the super learner-based ensemble model for the cybersickness classi�cation is evaluated using the
standard quality metrics such as accuracy, precision, recall, F-1 score, the Area Under the Curve (AUC), and Receiver
Operating Characteristic curve (ROC) [1]. Likewise, the performance of the regression models is analyzed using well-
known loss functions such as Root Mean Square Error (RMSE), Mean Absolute Error (MAE), Pearson Linear Correlation
Coe�cient (PLCC) [102], and '2 score. For example, if ~C and ~̂C denote the actual and predicted cybersickness of a
candidate at time C , respectively, then the RMSE can be de�ned as follows.

'"(⇢ =

vuut
1
|# |

’
~2(

#’
C=1

(~C � ~̂C )2

where # and ( represent the total number of samples and time steps, respectively. Mathematically, the MAE can be
expressed as follows.

"�⇢ =
1
|# |

’
~2(

#’
C=1

(~C � ~̂C )

It is worth mentioning that the smaller the MAE and RMSE, the better the regression model. If
Õ(~C � ~̂C )2 andÕ(~C � ~̄)2 represent the sum squared regression (SSR) and the total sum of squares (SST) then, the '2 score can be

expressed as follows.

'2 = 1 �
Õ(~C � ~̂C )2Õ(~C � ~̄)2

Consequently, a low '2 value indicates that the regression model does not adequately capture the output variance.
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Dataset MAE '2 RMSE PLCC
Gameplay 0.11 0.57 0.21 0.75

Bio-physiological 0.01 0.99 0.02 0.99
(a) For bio-physiological and gameplay datasets

Fusing modalities MAE '2 RMSE PLCC
Head-tracking 0.72 0.49 1.08 0.70
Eye-tracking 0.23 0.92 0.43 0.96

Eye + head tracking 0.02 0.92 0.04 0.96
(b) Integrated sensor dataset

Table 3. Cybersickness regression using non-reduced super learner model (with all features)
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Fig. 4. Training time for Super learned model: non-reduced model (all features) vs. reduced model (reduced features).

5 RESULTS

This section presents the results of cybersickness detection, explanation, reduction and deployment.

5.1 Cybersickness classification and regression performance with all features

Before applying the XAI-based model reduction, we present the non-reduced super learner model development results
with their important statistics, such as training and inference time, cybersickness classi�cation, and regression accuracy.
This will help us compare our approach’s e�ectiveness (XAI-based reduction) in the following sections of the paper.

Table 4. Hyperparameters for the super learner (non-reudced vs reduced) model

Model Hyperparameters

KNN Original Default
Reduced no. of neighbors = 2

SVC Original Default
Reduced kernel= polynomial

ET Original Default
Reduced no. of estimators = 50

RF Original Default
Reduced no. of estimators = 10

XGB Original Default
Reduced no. of estimators=30

GB Original Default
Reduced learning rate= 0.05
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5.1.1 Cybersickness Detection Model Development. Table 4 shows the hyperparameters list for the super learner-based
cybersickness detection model. The model is trained based on the default hyperparameters from Scikit-learn [72] in
which every learner is taken with default hyperparameters values. We use a 10 fold cross-validation technique to train
and test the performance of the super learner model similar to [6] in which the dataset is partitioned into : groups
(i.e., in our case : = 10). Only one partition out of : is utilized for testing the model, while the remaining partitions are
used for training. The method is repeated : times, each time picking a new test partition and the remaining (: � 1)
partition as a training dataset to eliminate bias. Note we do not use a leave-participant-out validation technique to
train and test the performance of our proposed super learner model. The reason is that our dataset is quite large, and
leave-participant-out validation is more appropriate for a small dataset since it uses more training samples in each
iteration [58]. The training and inference times for integrated sensor, gameplay, and physiological datasets are shown in
Figure 4. Training the integrated sensor, gameplay, and physiological datasets using super learner (with all the features)
requires 1012, 460, and 154 seconds, respectively.

5.1.2 Cybersickness Classification. We summarize the accuracy, precision, recall, and the F-1 score of cybersickness
severity classi�cation using the super learner model in Tables 1 and 2. For the integrated sensors, bio-physiological,
and gameplay datasets, our super learner model achieves 95%, 98%, and 82% accuracy, respectively. From Table 1, we
can observe that the overall performance of the super learner model for the bio-physiological dataset is signi�cantly
better than the gameplay dataset in terms of precision, recall, and F1-score for cybersickness severity classi�cation.
For example, the physiological dataset obtains a precision value of 95%, 96%, and 95% for the none, medium, and high
cybersickness classes. On the other hand, the gameplay dataset obtains the precision value of 91%, 70%, 56%, and 75%
for the none, low, medium, and high cybersickness classes. As mentioned in section 4.1.2, the bio-physiological dataset
contains only 3 cybersickness classes, namely none, medium, and high. Therefore, there are no results obtained for the
low cybersickness class. In addition, Figure 3 presents the AUC-ROC curves for the integrated sensor, physiological, and
gameplay datasets using the super-learner model. From Figures 3b and 3c, we observe that the bio-physiological dataset
possesses a higher AUC score of 0.994; however, the gameplay dataset has a comparatively lower AUC score of 0.906. In
addition, the proposed super-learner model achieves a higher AUC score for all of the datasets in comparison to other
baseline models. For instance, the super-learner has an AUC score of 0.994 whereas SVC has an AUC score of 0.932 for
the bio-physiological dataset. It is observed that the super-learner performs better than other baseline models except
for the XGB classi�er model for both bio-physiological and gameplay datasets. This is due to the fact that ensemble
methods approximate complex functional relationships of data by combining a set of individual learning algorithms
using a meta-learning algorithm [81]. This provides depth insight into the feature and hence, leads to high classi�cation
accuracy. Likewise, the accuracy of our proposed super learner model outperforms the DL-based convolutional LSTM
model for the bio-physiological dataset [31]. Even though we obtain a great accuracy for the gameplay dataset, but we
are unable to compare with symbolic ML-based methods [73]. The reason is that they performed binary classi�cation
while we classify the severity of the cybersickness (multiclass classi�cation).

To demonstrate the performance of our proposed model, and compare our work to the state-of-the-art DL model-
based cybersickness detection in [33], we use three fusing modalities (head tracking, eye tracking, and head + eye
tracking) as shown in Table 2 from the integrated sensors dataset. The proposed super learner model achieves an
accuracy of 67%, 93%, and 95% for head tracking, eye tracking, and head + eye tracking fusing modalities, respectively.
This outperforms the previously developed deep fusion model proposed in [33] both in terms of eye tracking and head +
eye tracking fusing modalities with accuracies of 80.7% and 87.7%. Likewise, Figure 3a shows the AUC-ROC curves for
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Fig. 5. Overall feature importance using global explanation using SHAP for (a) integrated sensor dataset (b) bio-physiological dataset
(c) gameplay dataset.
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Fig. 6. Overall feature importance using for MSA-based global explanation for: (a) integrated sensor dataset (b) bio-physiological
dataset (c) gameplay dataset.

the integrated sensor datasets using only the head + eye tracking fusing modality due to its good accuracy. It is observed
that the integrated sensor obtains an AUC score of 0.980, which is higher than other single classi�ers except for the
XGB classi�er model. For instance, the super-learner possesses a higher AUC score of 0.980; however, the baseline
model SVC has a comparatively lower AUC score of 0.908.

5.1.3 Cybersickness Regression. Table 3a and 3b summarizes the MAE, R2, RMSE, and PLCC values for the cybersickness
regression using the super learner model on the integrated sensors, bio-physiological, and gameplay datasets. The
MAE, R2, RMSE, and PLCC values for the bio-physiological and gameplay datasets are 0.01,0.99,0.02, 0.99 and 0.11, 0.57,
021, 0.75, respectively. Similar to the classi�cation, the regression also uses three fusing modalities (head tracking, eye
tracking, and head + eye tracking) as shown in Table 3b for the integrated sensors dataset.

The proposed super learner model outperforms the previously reported results [33] in cybersickness regression. For
instance, the deep fusion model regression results showed a R2 score value of 0.18, 0.56, and 0.67, while the results from
the proposed super learner model show a R2 score value of 0.49, 0.92, and 0.92 for head tracking, eye tracking, and
head + eye tracking fusing modalities, respectively. It is worth mentioning that the high '2 value indicates that the
regression model performs well in regressing the ongoing cybersickness. The reason behind the good performance of
the super learner model is the fact that the super learner model is built on the ensemble technique, which signi�cantly
improves the model performance.
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Fig. 7. PDP-based local explanation of cybersickness classification for: (a) Integrated sensors dataset. (b) Gameplay dataset. (c)
Bio-physiological dataset.

5.2 Model reduction using XAI-based cybersickness explanation

In this section, we apply the post-hoc explanation methods, namely SHAP, Morris sensitivity analysis, LIME, and PDP,
to explain the super learner model outcome. These explanations, speci�cally the global explanation from the SHAP
and MSA, are then used to identify the dominating features to reduce the super learner-based cybersickness detection
model.

5.2.1 Cybersickness Global Explanation. The overall feature importance for cybersickness severity classi�cation using
the super learner model with all features for the bio-physiological, gameplay, and integrated sensors datasets are
presented in Figure 5 based on SHAP explanation. A shapely value calculates the ranking of the most important features
contributing to the cybersickness severity classi�cation, with important features at the top and the least important ones
at the bottom. From Figure 5a, we observe that features such as NrmRightEyeOriginY, corresponding to the normalized
right eye origin in the Y axis measurement, GazeOriginWrldSpc_Y, corresponding to the gaze origin in the world space
in the Y axis, and NrmRightEyeOriginZ, corresponding to the normalized right eye origin in the Z axis, etc., are the
most dominant features in cybersickness severity classi�cation for the integrated sensor dataset. It is worth mentioning
that the eye-tracking features have a much stronger in�uence than the head-tracking features on the cybersickness
severity classi�cation. Because eye tracking features contain insightful information such as the type of blink of the
user, gaze behavior, and the position of the pupil to track the user’s activity [33, 34, 37]. Similarly, from Figure 5 b, it is
observed that features such as PC_GSR corresponding to the percentage of galvanic skin responses (GSR) measurement,
PC_BR corresponding to the percentage change of breathing rate (BR) measurement and PC_HRV corresponding
to the percentage change of heart rate variability (HRV) measurement, etc., have a much stronger in�uence in the
cybersickness classi�cation for the bio-physiological dataset. Likewise, it is observed that the features such as Player
Position Z, user glasses use, and user gender, etc., are the most important features in cybersickness classi�cation for the
gameplay dataset (Figure 5c). Figure 6 presents the overall feature importance in the cybersickness classi�cation using
the Morris sensitivity analysis for the integrated sensor, bio-physiological, and gameplay datasets. Mean absolute score
(MAS) is used to calculate the ranking of the most important features contributing to the cybersickness classi�cation.
From Figure 6a, we observe that for the integrated sensor dataset, most of the features contributing to cybersickness
classi�cation are again eye-tracking features, i.e., GazeOriginWrldSpc_Y, corresponding to the gaze origin in the world
space in the Y axis measurement NrmLeftEyeOriginZ, corresponding to the normalized left eye origin in the Z axis
measurement NrmRightEyeOriginZ, corresponding to the normalized right eye origin in the Z axis measurement, etc.,
Similarly, From Figure 6b and c, it is observed that the most predictive features of cybersickness severity classi�cation
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Fig. 8. LIME-based local explanation of cybersickness classification for the integrated dataset (a) explanation for high cybersickness
severity, (b) explanation for low cybersickness severity.
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Fig. 9. LIME-based local explanation of cybersickness classification for the bio-physiological dataset (a) explanation for high
cybersickness severity, (b) explanation for low cybersickness severity.

for the bio-physiological dataset are PC_GSR, PC_HR, PC_BR, etc., and player Position Z, user glasses use, user genere,
etc., for the gameplay dataset, respectively.

5.2.2 Cybersickness Local Explanation. The results of the local explanation utilizing LIME for the integrated sensor
dataset are shown in Figure 8. Figure 8a shows the high cybersickness severity classi�cation, in which the yellow
and black colored bars denote cybersickness probabilities MAS for that individual outcome. The G-axis represents the
model’s output MAS value are log odds (the probabilities of feature importance in prediction), and the ~-axis lists the
model’s features. Most features contribute to the negative impact indicated as yellow bars; hence, an accurate decision
is made for the high cybersickness severity class. It is observed that the eye tracking feature GazeOriginWrldSpc_Y,
corresponding to the gaze origin from world space in the Y axis measurement, is the most in�uential feature for high
cybersickness severity classi�cation, which has the highest MAS value, nearly 0.4. For example, in Figure 8b, none
cybersickness severity classi�cation has the negative MAS value for most of the features, which indicates that most of
the features contribute to the positive impact. Most of the features except EDA corresponding to electrodermal activity
measurement belong to eye tracking features; thus, an appropriate decision is established for none cybersickness severity
classi�cation. Similarly, the local explanation of the classi�ed cybersickness for the bio-physiological dataset is shown
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in Figure 9. In Figure 9a and Figure 9b, we observe that most features contribute to a high cybersickness severity class
corresponding to the features PC_GSR corresponding to the percentage of GSR measurement, PC_HRV corresponding
to the percentage of HRV measurement, etc., and for none cybersickness severity class, the dominating features are,
i.e., HRV_MIN corresponding to the minimum HRV measurement, HRV_MAX corresponding to the maximum HRV
measurement, etc., Likewise, the local explanation of the classi�ed cybersickness for the gameplay dataset is shown in
Figure 10. From Figure 10a, it is observed that the most in�uential features for the high cybersickness severity class
belong to eye-tracking features such as user genere, user age, etc. Consequently, Figure 10b shows that most of the
features that in�uence the positive outcome (none cybersickness severity class) are player position Z, user age, static
frame, user vision problems, etc., The cybersickness classi�cation for the gameplay dataset has low accuracy, as discussed
in Section 5.1.2. So, there is a wrong explanation of the features such as user age, player position Y in both positive and
negative outcomes. Such local explanation of features provides insights into the classi�cation/misclassi�cation results
and thus builds trust in the model outcome to make appropriate decisions.
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Fig. 10. LIME based-local explanation of cybersickness classification for the gameplay dataset (a) explanation for high cybersickness
severity, (b) explanation for low cybersickness severity.

We analyze the relation between top features and the model output utilizing a PDP-based local explanation to provide
a deeper insight into the cybersickness severity classi�cation explanation. Figure 7 presents the PDP results of the
top feature for the integrated sensor, bio-physiological, and gameplay datasets. PDP explanation aims to identify the
partial relationship between a set of given features and the corresponding predicted value. Figure 7a shows that the eye
tracking feature NrmRightEyeOriginZ, corresponding to the normalized right eye origin in the Z axis measurement,
has a positive relationship with the cybersickness classi�cation (the higher the value, the higher the probability of
cybersickness). Similarly, Figure 7b and c shows the feature player position on the z axis for the gameplay and PC_GSR
for the bio-physiological dataset have a positive relationship with the cybersickness classi�cation.

This section presents feature selection, cybersickness model reduction, and deployment in an embedded platform.

5.2.3 Model reduction for deployment. Using the MSA and SHAP-based (global) explanation results described in the
previous section, we �rst identify the top 1/3 of the features and retrain the super learner-based ensemble model. We
obtained the ratio of 1/3 by the trial and error method for our super learner model and datasets. For instance, we
took the top 15 features out of 43 from the integrated sensors dataset, the top 4 features out of 13 features from the
bio-physiological dataset, and the top 10 features out of 20 features from the gameplay datasets. Table 6 shows the
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Table 5. Inference time from Super learner deployment: beofre reduction (all features) vs. a�er reduction (reduced features)

Sample size Inference Time in seconds
Before feature reduction After feature reduction

1 0.15 0.07
10 1.2 0.72
100 11.8 7.6
500 54.7 38.04

Table 6. List of selected features for retraining the super learner model through global explanation

Dataset Selected Features from SHAP and MSA -based Global Fxplanation

Integrated sensor

NrmRightEyeOriginZ; NrmLeftEyeOriginY; NrmRightEyeOriginX;
NrmRightEyeOriginY; NrmLeftEyeOriginZ; NrmLeftEyeOriginX;

NrmSRLeftEyeGazeDirX; NrmSRLeftEyeGazeDirY; NrmSRRightEyeGazeDirY;
GazeOriginWrldSpc_Y; GazeOriginWrldSpc_Z; RightPupilDiameter;

HeadQRotationW; HeadQRotationY; HeadEulX

Gameplay PlayerPositionZ; UserGlassesUse; UserGenere; UserAge; PlayerSpeed; UserVisionProblems;
UserExperience; PlayerPositionX; StaticFrame; CameraRotationY

Bio-physiological PC_GSR; PC_BR; GSR_MIN; PC_HRV

Table 7. Performance of 10-Fold Cross Validation on Cybersickness Severity Classification using the reduced super learner model
(reduced features)

Dataset Feature Count % Acc. % Precision % Recall %F1 Score
Original Reduced None Low Medium High None Low Medium High None Low Medium High

Gameplay 22 10 81 88 81 79 94 95 89 75 80 91 79 78 80
Integrated Sensors 43 15 96 99 95 91 95 98 98 97 95 99 96 89 94
Bio-Physiological 14 4 98 99 - 97 99 99 - 98 96 99 - 98 99

selected features through SHAP and MSA-based global explanation for retraining the proposed super-learner-based
ensemble model. Likewise, Table 4 shows the list of hyperparameters for the retrained super learner model.

5.2.4 Performance of reduced Super learner model. The total size of the deployed model in the Samsung A52 5G device
is 133, 609 KB for the non-reduced and 90, 917 KB for the reduced super learner models. Figure 4 shows the improvement
in training time using the reduced super learner model for the reduced bio-physiological, gameplay, and integrated
sensor datasets. It is observed that the training time is improved signi�cantly for the reduced super learner model by
1.53X, 1.46X, and 1.91X for the bio-physiological, gameplay, and integrated sensors datasets, respectively. The deployed
reduced and non-reduced super learner models’ inference times are shown in Table 5. For instance, inference on the
deployed non-reduced super learner model requires 0.15, 1.2, 11.8, and 54.7 seconds for the 1, 10, 100, and 500 samples,
respectively. On the other hand, the reduced super learner model requires only 0.07, 0.72, 7.6, and 38.04 for the 1, 10,
100, and 500 samples which are 2.15X, 1.67X, 1.58X, and 1.44X faster than the non-reduced super learner model.
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Table 8. Cybersickness regression using reduced super learner model (with reduced features) for bio-physiological, integrated sensor,
and gameplay datasets

Dataset MAE '2 RMSE PLCC
Bio-physiological 0.03 0.95 0.06 0.97
Integrated Sensors 0.02 0.95 0.03 0.97

Gameplay 0.12 0.49 0.22 0.70

5.2.5 Cybersickness classification for the reduced super learner model. As mentioned earlier, we deploy the super learner
model in embedded hardware for classifying the integrated sensor dataset. Then, we simulate the super learner model
for the rest of the dataset to evaluate their performance.

Table 7 summarizes the accuracy, precision, recall, and F-1 scores of cybersickness classi�cation using the reduced
order super learner model for integrated sensors, bio-physiological, and gameplay datasets. For instance, cybersickness
classi�cation for the integrated sensor dataset using the reduced super learner model exhibits 96% accuracy. In addition,
the cybersickness classi�cation accuracy for the bio-physiological dataset is 98%, which is also slightly higher than
the accuracy of the non-reduced super learner model for the bio-physiological dataset (see Table 1). However, the
cybersickness classi�cation accuracy of the reduced super learner model for the gameplay dataset slightly decreased by
1.2% compared to their non-reduced version. Furthermore, other performance metrics, such as precision, recall, and
F1-score for the none, low, medium, and high cybersickness classes, slightly increased for the reduced super learner
model compared to their non-reduced version for the three datasets. For instance, the precision score for the none, low,
medium, and high cybersickness classes for the reduced super learner model using integrated sensor dataset are 99%,
95%, 91%, and 95%, which is slightly better than the non-reduced super learner model. Likewise, the recall score for
the none, medium, and high cybersickness classes for the reduced super learner model are 99%, 98%, 97%, and 95%, in
which medium class 1.23 higher than the non-reduced model. In addition, for the other datasets, speci�cally for the
bio-physiological dataset, the reduced model improved the precision, recall, and F1 score for all classes.

5.2.6 Cybersickness regression for the reduced super learner model. Table 8 shows the performance of cybersickness
regression using the reduced order super learner model for the integrated sensors, bio-physiological, and gameplay
datasets. For instance, the MAE, ('2), RMSE, and PLCC values for the reduced super learner model with integrated
sensor dataset are 0.02, 0.95, 0.04, and 0.97 and 0.03, 0.95, 0.06, and 0.97 for the bio-physiological dataset, respectively.
This reduced super learner model for integrated and bio-physiological datasets has signi�cantly improved the MAE,
('2), RMSE, and PLCC values. On the other hand, it is observed that for the gameplay dataset MAE, ('2), RMSE, and
PLCC values are 0.12, 0.49, 0.22, and 0.70, which is slightly better than the non-reduced model. This is because the
gameplay data contains the features, mostly categorical features. .

6 DISCUSSION

This section brie�y discusses the results obtained using the VR-LENS framework. The SHAP and MSA-based global
explanation reveal that for the integrated sensor dataset, features such as normal eye origin, gaze origin, pupil diameter,
etc., are the most in�uential features for causing cybersickness. Similarly, for the bio-physiological and gameplay
datasets features such as PC_GSR, PC_BR and PC_HRV, etc., and player Position Z, user glasses use, user genere, etc.,
respectively. On the contrary, the LIME and PDP-based local explanations of speci�c predictions o�ered useful insight
for each sample. Consequently, we ranked the features’ importance from the global explanation using SHAP and MSA,
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and important features were used to retrain the super learner model. Our results suggest that the SHAP and MSA-guided
reduced super learner model result in signi�cantly faster training times. Furthermore, the deployed reduced super
learner model in a Qualcomm Snapdragon 750G processor-based Samsung A52 5G device shows faster inference time
for real-time cybersickness detection without sacri�cing accuracy. For instance, the deployed reduced super learner
cybersickness model, which was trained with only 1/3 of the features compared to its non-reduced version, classi�ed
the cybersickness severity with an accuracy of 96%. Similarly, while regressing to cybersickness, the reduced super
learner obtained an RMSE value of 0.03, which is 25.5% less than its non-reduced version for the integrated sensor
dataset. It is worth mentioning that the reduced super learner performed well for the bio-physiological dataset in both
cybersickness classi�cation and regression. In contrast, the gameplay dataset performed poorly in both cybersickness
classi�cation and regression. The reason is that the gameplay dataset contains features from mostly users’ pro�le data,
which doesn’t provide any useful insight into cybersickness. However, the integrated sensor data, such as eye-blink
rate, pupil diameter, HR, etc., provided more insights into user behavior regarding cybersickness.

The accuracy of our proposed super learner model outperforms several state-of-the-art works in ML and DL-based
cybersickness detection. For instance, Islam et al. [34] used a deep temporal convolutional network (DeepTCN) to
forecast the cybersickness FMS score (on a scale from 0–10) with an RMSE value of 0.49, based on eye tracking, heart rate,
and galvanic skin response data. In contrast, Dennison et al. [14] reported accuracy of 78% and '2 values 75% using the
bio-physiological data. Our super learner model’s classi�cation and regression accuracy outperform these works. There
also exist other works which are relevant to our work. For instance, Qu et al. [75], Kim et al. [46], Garcia-Agundez et
al. [20], and Jeong et al. [39] reported cybersickness detection accuracy of 96.85%, , 89.16%, 82% and 94.02%, respectively,
using bio-physiological and EEG/ECG signals.

Even though there are several works in cybersickness detection methods, to date, only a few studies have been
conducted on identifying the causes of cybersickness [31, 33, 46, 67]. However, to the best of our knowledge, no prior
work exists on applying XAI to explain the cybersickness from black-box ML models, reducing ML model size using XAI,
and deploying them on embedded devices. Indeed, XAI-based explanations can help researchers understand the reasons
behind correct and incorrect cybersickness classi�cation and can be further utilized to develop e�ective cybersickness
reduction methods. Therefore, we believe that the proposed XAI-based cybersickness model reduction and deployed
model can help researchers to automate the cybersickness detection in real-time on standalone VR headsets and improve
the usability of the VR.

7 LIMITATIONS AND FUTUREWORKS

Although our proposed XAI-based super learner model for cybersickness detection, feature reduction, and deployment
method outperformed the state-of-the-art cybersickness detection models, our approach has a few limitations. For
instance, we demonstrated the e�ectiveness of our proposed XAI-based model reduction method with a fast training
and inference time and also deployed the model in a Qualcomm Snapdragon processor-based (state-of-the-art VR HMDs
use Qualcomm Snapdragon processors) Samsung A52 device. However, we did not deploy our models on an actual VR
headset. Therefore, it is hard to explain what type of sensors would perform well in cybersickness detection. However,
based on our proposed XAI-based method, eye-tracking sensors are much more e�cient than a head-tracking sensors
for cybersickness prediction. Consequently, it is worth mentioning that external sensors (e.g., heart rate, galvanic
skin response, electroencephalogram) can limit VR locomotion and 3D-object manipulation during the immersion. In
addition, these sensors often require tethering and a�xing to the users’ hands.
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Furthermore, cybersickness might a�ect di�erent people based on their unique characteristics, VR environment,
and gender [86]. For instance, Females whose Interpupillary distance (IPD) could not be properly �t into the VR
headset often su�ered from high cybersickness and did not fully recover within a short time [28, 86]. Therefore, in the
future, we plan to conduct further research with people from broader demographic backgrounds and of equal gender
representation. Also, this work uses only eye-tracking, head-tracking, bio-physiological signals, and users’ pro�le data
to detect cybersickness. In the future, we plan to investigate the e�ect of stereo images and stereoscopic video data to
detect cybersickness with explainability and deploy it in a realistic VR headset.

8 CONCLUSION

In this work, we proposed the VR-LENS framework, an XAI-based framework for cybersickness detection through a super
learner-based ensemble ML model with explanations and deployment in embedded devices. Speci�cally, we developed
a super learner-based ensemble ML model for cybersickness detection. Then applied, XAI to explain the cybersickness
and reduce the feature space and model size for deploying in the embedded device. We illustrated the e�ectiveness of
our proposed method using three datasets, i.e., the integrated sensor, bio-physiological, and gameplay datasets. Our
global explanation results revealed that eye-tracking features are the most in�uential for causing cybersickness in the
integrated sensor dataset. Consequently, for the bio-physiological dataset, the GSR, HR, and for the gameplay dataset,
the player Position and user glasses of the user are the most in�uential feature in causing cybersickness. Furthermore,
we identi�ed more helpful insight for each sample (misclassi�cation instances) using the local explanation. Finally, based
on the XAI-based feature ranking, we signi�cantly reduced the super learner model size and deployed it on a Qualcomm
Snapdragon processor-based Samsung A52 device system. The deployed super learner model signi�cantly reduced
the training time (up to 1.91X) and inference time (up to 2.46X). For instance, our deployed reduced super learner
model could classify and regress the cybersickness with an accuracy of 96% and RMSE of 0.03 for the integrated sensor
dataset, which outperforms the state-of-art works. To our knowledge, this is the �rst work applying XAI to explain
a super learner-based ensemble model, reduce the model size, and deploy it in an embedded device. We believe this
research will be helpful for future researchers working on cybersickness detection, mitigation, and real-time prediction
of cybersickness in standalone VR headsets.
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