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ABSTRACT
Web data items such as shopping products, classifieds, and job list-
ings are indispensable components of most e-commerce websites.
The information on the data items are typically distributed over
two or more webpages, e.g., a ‘Query-Results’ page showing the
summaries of the items, and ‘Details’ pages containing full infor-
mation about the items. While this organization of data mitigates
information overload and visual cluttering for sighted users, it how-
ever increases the interaction overhead and effort for blind users, as
back-and-forth navigation between webpages using screen reader
assistive technology is tedious and cumbersome. Existing usability-
enhancing solutions are unable to provide adequate support in this
regard as they predominantly focus on enabling efficient content
access within a single webpage, and as such are not tailored for
content distributed across multiple webpages. As an initial step
towards addressing this issue, we developed AutoDesc, a browser
extension that leverages a custom extraction model to automatically
detect and pull out additional item descriptions from the ‘details’
pages, and then proactively inject the extracted information into
the ‘Query-Results’ page, thereby reducing the amount of back-
and-forth screen reader navigation between the two webpages. In
a study with 16 blind users, we observed that within the same time
duration, the participants were able to peruse significantly more
data items on average with AutoDesc, compared to that with their
preferred screen readers as well as with a state-of-the-art solution.
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1 INTRODUCTION
Web browsing inevitably entails interaction with data items such as
shopping products, classified ads, job postings, hotel or car rentals,
and available flights. To facilitate convenient interaction with the
web data items, modern websites typically provide ancillary tools
such as filters and sort options, and furthermore organize the con-
tent of the items into multiple webpages, e.g., a ‘Query-Results’ page
showing the summary of data items and the ‘Details’ pages pre-
senting the full information of the corresponding items (see Figure
1). While sighted users immensely benefit from such organization
of content, thanks largely to the abundant visual cues that enable
them to quickly scan and obtain desired information about any
item, blind users on the other hand have to expend additional time
and effort to obtain the same information, due to their dependence
on screen reader assistive technology that predominantly supports
one-dimensional access of web content [22].

A screen reader, as the name suggests, reads out the content on
the screen, and additionally supports special keyboard shortcuts or
gestures to navigate the content. In the context of web browsing, a
typical screen reader (e.g., JAWS [23], NVDA [46], VoiceOver [4])
enables blind users to traverse a webpage in multiple ways (e.g.,
navigating by headings, paragraphs, or links). However, naviga-
tion is still pretty much one-dimensional – the blind users have
to typically listen to reams of text before reaching the webpage
segment containing the desired information [14, 36, 51], unless the
users are aware of the exact keywords to search for in the webpage
using the browser’s in-built search functionality. As a consequence,
blind screen-reader users typically need significantly more time
and effort (i.e., input actions) to do everyday web browsing tasks
compared to their sighted peers [11, 14].

This usability divide is likely to be higher for interaction concern-
ing web data items, since the relevant content is usually split across
multiple webpages. This is because in such scenarios (e.g., see Figure
1), blind users have to constantly navigate back-and-forth between
the different pages to obtain additional relevant information about
each of the items. The presence of other HTML content (headers,
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Figure 1: AutoDesc illustration. Additional item descriptions are automatically extracted from the ‘Details’ pages and injected
into the corresponding item summaries in the ‘Query-Results’ page, so that users can quickly peek at these item details in-place
without having to navigate to another page.

footers, menu, side panels, etc.) in the ‘Details’ pages further ex-
acerbates the interaction overhead, since the blind users have to
spend additional time listening to and skipping such content to
reach the desired information on the ‘Details’ page; sighted users
on the other hand can rely on visual cues to almost instantly locate
the same desired information. Therefore, it is imperative to bridge
this usability gap between the sighted and blind users, considering
the increased human reliance on the web in recent years to perform
day-to-day activities [32], and that approximately 70% of blind users
regularly use the web [61].

Existing solutions in this regard have primarily focused on ef-
ficient and convenient non-visual content access within a single
webpage [13, 38] and as such are not geared towards content that is
distributed across multiple webpages, as in case of web data items.
Therefore, in this paper, we present AutoDesc, a browser extension
that lets a blind user “peek” into some of the additional description
about any item in the ‘Query-Results’ page itself, without having to
actually navigate to the corresponding ‘Details’ page (see Figure
1), thereby saving the user’s time and effort by reducing the num-
ber of back-and-forth traversals between the ‘Query-Results’ and
‘Details’ pages. To automatically identify and extract the relevant
information about an item from its corresponding ‘Details’ web-
page, AutoDesc leverages a deep learning-based extraction model
(specifically, a Mask R-CNNmodel) that was built using a manually-
annotated dataset comprising 1050 ground-truth examples.

In a user study with 16 blind participants, we observed that
on average, AutoDesc significantly reduced the number of user
accesses to the ‘Details’ pages of items, compared to that with a state-
of-the-art solution (SaIL [8]) as well as their preferred screen reader.
Consequently, we also noticed that the average task times and

the number of key presses of users while doing the representative
study tasks were significantly lower with AutoDesc, compared
to those with SaIL and default screen reader. A majority of the
participants also explicitly stated that with AutoDesc, they felt that
they could peruse more items in the ‘Query-Results’ page by quickly
filtering out undesirable items, than with their screen readers before
interaction fatigue, and therefore enjoy a higher chance of selecting
“better deals”. In sum, our contributions are as follows:

• Design and development of AutoDesc, a web browser ex-
tension that facilitates easy and quick access to additional
description of web data items, in order to significantly reduce
the interaction overhead for screen-reader users.

• An algorithm to automatically identify and extract additional
item description from the ‘Details’ webpages of data items.

• Findings of a user study with 16 blind screen-reader users
evaluating AutoDesc.

2 RELATEDWORK
Our work closely relates to the literature on the following topics: (i)
Usability of web data items; and (ii) Web data extraction algorithms.

2.1 Usability of Web Data Items for People with
Visual Impairments

Plethora of prior research works have addressed various interaction
issues faced by visually impaired users while browsing the web
[7, 14, 40, 43, 56, 67]. While a majority of prior research has focused
primarily on the accessibility of web content for screen reader users
[5, 10, 12, 26, 42, 50, 59, 63], previous works that have explored and
addressed the usability of web content interaction for screen reader
users have been relatively few [5–9, 13, 18, 22, 37, 39, 60].
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A study by Bose et al. [15] aimed to provide recommendations to
the WCAG 2.0 accessibility guidelines for improving screen reader
users’ experience on e-commerce platforms. The study found that
on e-commerce platforms, sighted users could select a data item
and obtain addition information in the ‘Details’ page with ease,
and then quickly come back to the ‘Query-Results’ page to resume
navigation of the items list. However, the screen reader users ex-
perienced multiple usability issues while doing the same tasks: (1)
The ‘Query-Results’ page set was large; (2) Traversing between
multiple pages was tedious and cumbersome; and (3) No shortcuts
were available to access detailed information on the product di-
rectly without content navigation. Similarly, Prati et al. [49] also
found that addressing accessibility issues in e-commerce websites
for visually impaired users was not sufficient, and hence proposed
certain usability guidelines to improve content navigation. Specifi-
cally, the guidelines suggested organizing content into hierarchies,
placing important content on appropriate pages, and making use of
structured navigation flows to avoid coonfusion and disorientation
within the websites.

To improve web navigation via screen readers, many extant
research works have focused on the use of annotations. For in-
stance, Yesilada et al. [68] developed the “DANTE” system, which
transcoded webpages by reducing significant portions of webpages
into smaller fragments and then annotating semantic information
on each fragment using WAfA ontology[28], thereby significantly
improving orientation and spatial awareness of blind users on web-
pages, and also ensuring ease of navigation whilst using screen
readers. A more recent work by Aydin et al. [8] leveraged deep
neural networks trained on gaze data to identify ‘hot-spots’ of the
webpage and then inject ARIA landmark roles into the correspond-
ing salient sections in the webpage document object model (DOM).
These ARIA landmarks could then be leveraged by a screen reader
user to quickly navigate to the corresponding segments using spe-
cial screen reader shortcuts (e.g., ‘D’ in NVDA).

Other than general non-visual web usability enhancement tech-
niques, there also have been a few prior works directly addressing
the usability of web data items for people with visual disabilities.
For instance, Ferdous et al. [22] focused on providing instantaneous
access support for the various auxiliary webpage segments such as
filters and sort options that are scattered all over the ‘Query-Results’
page, so that blind screen readers could quickly apply filters and
narrow down the search space before perusing data items. In an-
other work by Lee et al. [39], alternative presentation techniques
for data items were explored to facilitate convenient and efficient
interaction for low vision screen magnifier users. Specifically, they
proposed rendering the list of data items as a single table where
the columns corresponded to the various attributes (e.g., price)
of items and the rows corresponded to the different items in the
list. An evaluation with low vision users showed that their system
significantly reduced panning effort for low-vision users. While
all these aforementioned approaches assist blind users in conve-
niently interacting with web data items, their scope is limited to
a single webpage; they are not geared for scenarios where data
is split across multiple webpages, e.g., the item summaries in the
‘Query-Results’ page and descriptions, reviews of items in separate
‘Details’ pages. Therefore, in this paper, we present AutoDesc, a

scalable approach that improves the usability of non-visual inter-
action with web data items, by enabling quick and easy access to
item information distributed over multiple webpages.

2.2 Web Data Extraction
Websites publish large amounts of information on a daily basis to
suit the needs of their users. Therefore, extracting content from
the websites plays a vital role for gathering relevant information
[54]. Plenty of extraction techniques exist in this area to extract
multitude of data from web pages [2, 7, 19, 48], including data
items or records [3, 21, 69, 71]. For instance, Alvarez et al. [3]
observed that all the items present in the DOM had consecutive
sibling subtrees, and all the attributes for each item had the same
path from the root node. Based on this observation, they grouped
similar subtrees in the DOM using a clustering algorithm to detect
data items and then further extracted the item attributes using a
multiple string alignment-based method. Their approach as well
as other similar methodologies work well in practice since the
organization ofweb data items inwebpages usually follows a certain
well-defined structure. For our approach, we leveraged one such
state-of-the-art STEM algorithm [21] to extract the web data items,
due to its robustness and tolerance towards noise in the DOM.

Other than extracting web data items, techniques have also been
proposed to extract other web data such as widgets [43], news arti-
cles [35], and auxiliary segments [22]. For instance, a recent work
by Ferdous et al. [22] presented machine learning-based algorithms
to identify and extract support segments such as filter options, sort
options, search form, and multi-page links in webpages. Similarly,
Melnyk et al. [43] built machine learning models based on hand-
crafted features to extract an assortment of web widgets such as
calendars, popup menus, and chat boxes. However, to the best of
our knowledge, none of the extant web data extraction algorithms
have focused on item descriptions in ‘Details’ pages of websites.
We therefore, built our own Mask R-CNN [30] based extraction
model in AutoDesc for extracting item descriptions.

3 AUTODESC DESIGN
Figure 2 presents an architectural schematic illustrating the work-
flow of AutoDesc. When the ‘Query-Results’ webpage is loaded in
the browser, AutoDesc leverages the STEM algorithm [21] to iden-
tify and extract all web data items and their respective attributes
(e.g., title, price, rating). The AutoDesc extension then injects a
‘Get details’ button into each data item summary as shown in Fig-
ure 2. When a user presses this button for an item, AutoDesc first
leverages a custom-built Mask R-CNN [30] model to automatically
identify the region in the ‘Details’ page that corresponds to the
description of the item. From this region, AutoDesc extracts the
text using the Tesseract OCR engine [55] and then post-corrects
the text using pre-trained BERT model [20]. Finally, AutoDesc dis-
plays the text right below the activated ‘Get Details’ button on
the ‘Query-Results’ page as shown in Figure 2. Given this quick
access to the item descriptions, blind users can potentially save
a significant amount of time and effort by avoiding unnecessary
back-and-forth navigation between the ‘Query-Results’ page and
the ‘Details’ pages.
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Figure 2: AutoDesc architectural workflow.

3.1 Extracting Data Items
As mentioned earlier, we leveraged the STEM (suffix tree-based
extraction method) algorithm [21] given its state-of-the-art perfor-
mance as well as its application in prior usability solutions [37, 39].
The core idea of STEM is to extract all the HTML tag paths (i.e.,
<body>, <ul>, <li>) from all nodes in the DOM of the given web
page and then assign a unique integer value called HTML tag path
identifier (HTPI) to the respective HTML tag paths also known as
web page sequence (e.g., 1,2,3,4,2,3). Then a suffix tree [58] is con-
structed on this web page based on the web page sequence of the
webpage. Once a robust tree is constructed, four custom refining
filters (i.e., frequency filter, tree filter, gap filter, repetition filter) are
used to identify the most optimal node sequence from repeating
node sequences in the tree structure. To validate a data item, we
computed the Rate Validation Rate (RVR), i.e., the proportion rate
of a sub-sequence and a candidate sequence. A greater RVR value
for a candidate sequence indicates a higher level of validation for
the data item. Corresponding HTML paths are then extracted for all
the attributes of each data item, which then is used by the AutoDesc
extension to inject the ‘Get Details’ button and also the extracted
description into the ‘Query-Results’ page.

3.2 Extracting Item Descriptions
As mentioned earlier, to automatically extract item descriptions,
we built a custom Mask R-CNN model [65] that can identify the
region of the screen belonging to item descriptions in the ‘Details’
pages of websites. From these regions, we extracted the text using
Tesseract OCR engine [55] and then post-processed the text using
pre-trained BERT model [44].

Dataset. To train our Mask R-CNN model, we constructed a
custom dataset (Github1), as no prior datasets regarding the same
1https://github.com/accessodu/dataset_repository

are publicly available. Webpages for creating the dataset were ran-
domly sampled from a diverse set of websites spanning different
domains such as Business and Finance, Home and Garden, Shop-
ping, Style and Fashion, Technology and Computing2. Overall, the
dataset consisted of 750 images for training and 300 images for val-
idation. Once the dataset was curated, ground truth for the dataset
was created by masking relevant information (i.e., item description)
on the webpage image. To create respective masks, we made use of
the publicly available GIMP [57] software. The original images and
masked images were scaled to a standard size of 640x360. Following
this, mask definitions were provided to co-relate images with their
respective masks. Data information definitions were also created
to describe basic features of the dataset (name, URL, creator, etc.)
along with licenses associated with respective websites used to
build the dataset. Finally, images, mask annotations, and defini-
tions were used to create data instances. (Note: All the images were
manually extracted; no synthetic images were generated via data
augmentation techniques).

Training. The hardware configuration used was Nvidia V100
GPU with 128GB memory per node. The model was trained for 10
epochs with 500 steps per epoch and validation steps were set to
5. The entire training process was accomplished on 1 GPU with
1 image per GPU. We trained the model in 2 phases. In the first
phase, we trained only the head layers of Mask R-CNN model while
freezing all the backbone layers. In this phase, the learning rate was
set to 0.001. In the second phase, we fine-tuned the entire model
by training all the layers with the learning rate set to 0.0001. These
parameter values were chosen after optimizing for accuracy using
the validation dataset.

We trained Mask R-CNN [1] with ResNet-101 [31] and Feature
Pyramid Network (FPN) [41] as the backbone network. FPN uses

2The full list of web pages is also available in the above GitHub link
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a top-down architecture along with lateral connections, whereas
ResNet-FPN backbone improves the overall speed and accuracy
of the model. The backbone network extracts feature maps, from
which the Region Proposal Network (RPN) [70] generates appro-
priate webpage object proposals. Following this, Region of Interest
Align (RoIAlign) [30] extracts accurate and precise feature maps.
Finally, masked branch fully convolution layers are used to create
appropriate masks along with existing parallel convolution layers
for classification and bounding box regression. The final step is to
overlap the identified bounded object with the generated masks as
seen in Figure 2 (the red rectangular shaded region within the Key
Content Extractor). We monitored the total loss which is the sum
of all the losses (loss mask, loss classifier, and loss box regression).
Overall, our model on the dataset reported a total loss of 0.5805.

Evaluation. For testing purposes, 20 unseen websites were
picked at random, and Average Precision (AP) was calculated for ev-
ery value of Intersection over Union (IoU). IoU signifies the amount
of overlap between the predicted and ground truth bounding box.
Precision and recall values were calculated for every IoU following
which the precision-recall curve was plotted. The area under the
precision-recall curve is defined as AP. As for our results, for an
IoU of 50%, the AP was 94.45%, and for a higher IoU of 75%, the AP
was as 89.69%.

Post processing. After identifying the regions corresponding
to the item descriptions using the custom Mask R-CNN model, we
leveraged the Tesseract OCR service [55] to extract all the text
in these regions. Note that before using Tesseract, we also pre-
processed the images using Otsu’s adaptive threshold method [45]
to improve image quality. It is well-known that even though OCR
has an accuracy of 98 percent at character level, it incorrectly pre-
dicts words 10-20 percent of the time [33]. Therefore, we used
post-processing mechanisms in two phases [44]. In the first phase,
we split the input into tokens [64] and then generated GloVe word
embeddings [47] for these tokens. We then fed these embeddings to
the pre-trained BERT language model [20] to perform token-level
classification for identifying valid and invalid tokens. In the second
phase, we used neural machine translation at character level [34],
to rectify invalid tokens.

3.3 User Interface
The AutoDesc’s user interface design was largely influenced by
the findings of Prati et al. [49], who observed in their study that
there existed a lack of awareness and shared design guidelines for
the visually impaired in the e-commerce community. They then
proposed three design principles: i) Uniformity and coherence;
ii) Navigation clarity; and iii) Logical provisions after performing
expert analysis on current user experience and guidelines. The
first principle stated that consistency was very important across
web pages and that users should always interact with the same
schema on the webpage, for example, the arrangement of web
data items and all their corresponding details should be such that
the user would not have to search for required information every
time. The second and third principles addressed systematic design
and navigation flow to avoid the user from getting disoriented
within web pages. Following their suggestions, we designed our

interface such that the ‘Get Details’ button and the extracted item
descriptions were injected right below each web data item summary
in the ‘Query-Results’ page itself. When the user presses the ‘Get
Details’ button for a particular data item using the screen reader
shortcut key ‘ENTER’, the description associated with the data
item is presented right below the button. After the user navigated
through the description, the user could press the ‘X’ shortcut key
to close the description, and the screen reader would automatically
refocus the cursor to the beginning of the next data item in the list.
Thus, with only a few basic shortcut keys, a blind user can quickly
access item descriptions using AutoDesc.

3.4 Implementation Details
We implemented AutoDesc as a Chrome browser extension based
on the development guidelines publicly available on the Google
website3. When the extension was enabled, AutoDesc leveraged
the browser’s in-built JavaScript (JS) functions to extract the entire
HTML DOM tree of the webpage containing data items, and then
forwarded the DOM content as a POST request to the Item Extractor
module running in the back-end server as shown in Figure 2. To
extract the data items, we implemented the STEM algorithm [21]
ourselves in Python, as there was no publicly available code for
the same. Once the data items were identified, AutoDesc extension
again used the browser’s in-built JS functions to inject two child
nodes into each data item’s DOM subtree – a visible ‘Get Details’
button and an invisible ‘<div>’ container for future on-demand
display of additional item description extracted from the ‘Details’
page of the item.

To build the Mask R-CNN model for extracting the item descrip-
tion from the ‘Details’ page, we leveraged the publicly available
Matterport project onGitHub4. For generating the input to theMask
R-CNN model, we used the Selenium driver [25] that supported
the necessary feature to take a snapshot of the entire ‘Details’ page.
As explained earlier in this section, post-processing of the Mask
R-CNN output was done using the Tesseract OCR engine [55] and
the pre-trained BERT model [20]. After the item description was
extracted from the ‘Details’ page, AutoDesc used built-in browser
functions to inject it into the ‘<div>’ container of the correspond-
ing item. For establishing a communication channel between the
extension JavaScript modules and the back-end server modules, we
used the Flask rest API [52]. All the code associated with AutoDesc
is available on GitHub5.

4 EVALUATION
We conducted an IRB-approved user study with blind screen-reader
users to assess the efficacy of AutoDesc and compare it with the
status-quo screen readers as well as a state-of-the-art web usability-
enhancing solution.

4.1 Participants
We recruited 16 blind participants through email lists and word-
of-mouth (See Table 1). The inclusion criteria was: (i) familiarity

3https://developer.chrome.com/docs/extensions/mv3/architecture-overview/
4https://github.com/matterport/Mask_RCNN
5https://github.com/accessodu/code_repository
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ID
Age/
Gender

Age of
Vision Loss

Screen
Reader Proficiency

Computer
Type Typical Online Activities

P1 34/M Age 5 JAWS Expert Desktop Shopping, Email, Social networking, News, Banking
P2 46/F Since birth VoiceOver Intermediate Desktop Shopping, Email, Social networking, Classifieds
P3 55/F Don’t know JAWS Beginner Laptop Shopping, Social networking, News
P4 28/F Age 18 NVDA Intermediate Laptop Shopping, Email, News

P5 25/M Since birth VoiceOver Expert Laptop Shopping, Email, Social networking, News, Document
editing

P6 39/M Since birth JAWS Expert Laptop Shopping, Email, News, Video streaming
P7 40/F Age 6 JAWS Intermediate Laptop Shopping, Email, News
P8 56/F Don’t know JAWS Beginner Desktop Shopping, Email, Social networking
P9 64/M Don’t know JAWS Beginner Laptop Shopping, Social networking
P10 66/M Age 43 JAWS Beginner Desktop Shopping, Email, News
P11 51/M Since birth NVDA Intermediate Desktop Shopping, Email

P12 27/M Age 16 NVDA Expert Laptop Shopping, Email, Social networking, Stock trading, Doc-
ument editing, Video streaming

P13 21/F Age 3 VoiceOver Expert Laptop Shopping, Email, Social networking, News
P14 33/M Don’t know NVDA Intermediate Laptop Shopping, Email, Social networking
P15 36/M Don’t know VoiceOver Expert Desktop Shopping, Email, Social networking
P16 44/F Age 8 VoiceOver Intermediate Laptop Shopping, Email, Social networking, News

Table 1: Participant demographics. All information is self-reported by the participants. ‘Proficiency’ indicates the participants’
self-assessed proficiency in using screen readers, and ‘Computer Type’ represents the computer types used in the user study.

with web browsing using a screen reader on desktop/laptop envi-
ronment; (ii) familiarity with the Chrome web browser; and (iii)
ability to communicate in English. The gender representation was
approximately equal (7 female, 9 male), and the average age of the
participants was 41.56 (Median = 39.5, Min = 21, Max = 66). All
participants stated that they relied exclusively on screen readers
for interaction with websites, and that they browsed the web on
a daily basis. Typical web activities as stated by the participants
included shopping, social media, video streaming, classifieds, news
reading, and booking. All participants mentioned that they owned
a computer – either a desktop or a laptop. Regarding screen reader
proficiency, 6 participants considered themselves to be experts, 6
participants self-assessed to have intermediate proficiency, and 4
participants felt like they were still beginners. No participant re-
ported having other difficulties (e.g., hearing, motor control) that
could possibly affect their ability to perform the study tasks. Table 1
presents the participants’ demographic information.

4.2 Design
In a within-subject experimental setup, we asked the participants
to perform representative tasks under 3 conditions:

• Screen Reader – The participants do the tasks on webpages
that have not been externally enhanced for usability.

• SaIL – The participants do the tasks on webpages that have
special ARIA landmarks injected by a state-of-the-artmethod,
namely SaIL [8]. SaIL uses a visual saliency model to deter-
mine the important segments of a webpage and then injects
landmarks at the beginning of these segments, so that the
users can quickly navigate to these segments using special
screen reader shortcut (e.g., ‘R’ with the JAWS).

• AutoDesc – The participants do the tasks on webpages that
have additional pre-fetched item descriptions injected into
them by our AutoDesc browser extension.

In each of these conditions, the participants performed the task
of perusing a list of products on a shopping website and selecting a
product that best matches their personal preferences. We selected
the task to mimic realistic scenarios where people usually go over
a list of items, compare their attributes, and finally select one of the
items that they like the most in the list. To mitigate learning effect,
we did not use the same website more than once while doing the
task in different conditions. Specifically, we selected the following
three different shopping websites: GAP, Best Buy, and Macy’s. Also,
the SaIL and AutoDesc algorithms did not exhibit any errors on
these selected websites, thereby avoiding any confounding effect
of algorithm accuracy on final performance values. Furthermore,
we used three similar queries for the task - ‘television’, ‘shirts’,
and ‘furniture’. An illustration of one of the study tasks has been
provided in Appendix A. The assignment of websites to conditions
and the ordering of tasks and conditions were counterbalanced
using the Latin square method [16].

4.3 Apparatus
The study was conducted remotely via Zoom or Skype (depending
on the participants’ preferences), and the participants used their
own computers and preferred screen readers to do the study tasks.
All the webpages corresponding to the tasks were pre-processed,
cached, and hosted on a secure web server. At pre-processing, the
landmarks or the AutoDesc descriptions were apriori determined
and injected into the task webpages before caching them onto
the web server. This way, the apparatus allowed us to evaluate
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Figure 3: Time and shortcut statistics for all the study conditions. The box plots shows the average time spent per item and the
average number of shortcut presses per item across all study participants.

AutoDesc against SaIL and default screen reader without having to
actually share and install the corresponding browser extensions on
the participants’ computers. Specifically, we just emailed the URLs
of the webpages to the participants who then opened these pages
in their browsers to do the corresponding tasks.

4.4 Procedure
The experimenter started the study by obtaining the participant’s
formal consent and then briefly explaining to the participant the
study purpose. The experimenter then introduced the SaIL land-
marks and the AutoDesc descriptions to the participant and con-
ducted a practice session to let the participant become familiar and
comfortable with SaIL and AutoDesc. After the practice session, the
experimenter shared the URLs of all the cached task webpages to
the participant, and asked the participant to complete all the tasks
one-by-one according to the predetermined counterbalanced order.
The experimenter allowed the participant to spend a maximum of
20 minutes to complete each task; note however that the experi-
menter did not explicitly convey this time limit to the participants
in advance, in order to not affect their natural interaction behavior
with the data items.

After the participant finished doing all the study tasks, the ex-
perimenter administered the System Usability Scale (SUS) [17] and
NASA Task Load Index (NASA-TLX) [29] subjective questionnaires
for measuring perceived usability and interaction effort respec-
tively for each of the study conditions. In the exit interview, the
experimenter engaged in an open-ended discussion with the par-
ticipant to obtain qualitative feedback including feature requests
and suggestions for improvement. With the participant’s permis-
sion, screen-sharing and recording features were active throughout
the study to capture all interaction activities for post study analy-
ses. All conversations were in English, and the participants were
compensated with an Amazon gift card.

4.5 Measures
From the study data, we computed the following metrics for each
participant: (i) Average time spent per item; (ii) Number of items cov-
ered while doing a task; (iii) Average number of shortcuts pressed
per item (including navigating the details page) while doing a task;
(iv) Number of back-and-forth navigation between the results and
the details pages in each task; (v) SUS usability scores; and (vi)
NASA-TLX workload scores. We then used these metrics to com-
pare the different study conditions, and determine if there was a
significant positive impact of AutoDesc on the overall user experi-
ence of the participants with web data items.

4.6 Results
4.6.1 Average time spent per item. The average time spent on an
item by a participant during a task was computed by dividing
the total time the participant spent doing the task (regardless of
completion) by the number of distinct items visited during the task.
Figure 3a shows the box plots for the average time spent per item
for all three study conditions. Overall, participants spent an average
of 5.29 minutes (Median = 5.00, Min = 4.00, Max = 7.51) with screen
readers, 3.68 minutes (Median = 3.37, Min = 2.47, Max = 5.19) with
SaIL, and 2.57 minutes (Median = 2.68, Min = 1.45, Max = 3.71) with
AutoDesc. A Kruskal-Wallis test revealed that the difference in time
spent per item between the three study conditions was statistically
significant (𝐻 = 29.57, 𝑝 < 0.001). A post-hoc Dunn’s test showed
that AutoDesc significantly outperformed both the screen reader
(𝑍 = 5.43, 𝑝 < 0.01) and the SaIL (𝑍 = 2.69, 𝑝 = 0.007) conditions.

A deeper analysis of the study data showed that in the Screen
Reader condition, the following two interaction activities signifi-
cantly contributed to the average time per item: (i) Searching for
item description and other relevant information (e.g., reviews) in the
‘Details’ page via one-dimensional shortcut-based content naviga-
tion; and (ii) Moving screen reader focus back to the item summary
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Figure 4: Box plots for the average number of distinct items visited and the average number of back-and-forth navigation
between ‘Query-Results’ and ‘Details’ pages in all three study conditions.

in the ‘Query-Results’ page after navigating back from the ‘Details’
page of the item. While the participants also performed these two
activities in the SaIL condition, their contribution to the time spent
per item was considerably lower, presumably due to the presence
of SaIL-injected ARIA landmarks that enabled the participants to
skip through large portions of irrelevant content during navigation.
Nonetheless, the participants still had to go through quite a few
webpage segments that were also deemed as salient by the SaIL
algorithm, before reaching the item descriptions and other rele-
vant segments such as reviews in the ‘Details’ page. Similarly, after
going back to the ‘Query-Results’ page from a ‘Details’ page, the
participants had to first navigate through other salient segments
such as search form, filters, and sort options, before reaching the list
of items. Moreover, 4 participants forgot their screen reader short-
cut for navigating ARIA landmarks in the middle of the task, so
they could not fully exploit the benefits of SaIL. In such a scenario,
these 4 participants reverted to their status-quo one-dimensional
screen reader interaction, which increased the time spent per item.
The effect of the above two activities on the time spent per item
was much lower in the AutoDesc condition, as the participants in-
creasingly leveraged the Get Details button in the item summaries
to obtain desired information “inline” in the ‘Query-Results’ page
itself, instead of navigating to the corresponding ‘Details’ pages.
However, for a very few items (mostly television and shirts), the
participants did navigate to the corresponding ‘Details’ pages even
if the description was accurately extracted and made available on
the the ‘Query-Results’ page. The reason for this behavior was that
the participants wanted to access other desired information such
as customer reviews and product comparisons in the ‘Details’ pages.

4.6.2 Average number of shortcut presses per item. Like the avg.
time spent per item metric, the average number of shortcuts per
item pressed by a participant in a task was computed by dividing
the total number of shortcuts the participant pressed during the

task (regardless of completion) by the number of distinct items vis-
ited during the task. Figure 3b shows the box plots for the average
number of shortcuts per item for all three study conditions. Over-
all, participants pressed an average of 264.63 shortcuts (Median
= 257.37, Min = 200.4, Max = 349.0) with screen readers, 172.49
shortcuts (Median = 153.0, Min = 97.8, Max = 260.33) with SaIL,
and 105.82 shortcuts (Median = 104.8, Min = 37, Max = 155.5) with
AutoDesc. A Kruskal-Wallis test revealed that the difference in
shortcuts pressed per item between the three study conditions was
statistically significant (𝐻 = 32.04, 𝑝 < 0.001). A post-hoc Dunn’s
test further showed that AutoDesc significantly outperformed both
the screen reader (𝑍 = 5.65, 𝑝 < 0.001) and the SaIL (𝑍 = 2.63,
𝑝 = 0.008) study conditions. As in case of the average time per item
metric, the average number of shortcuts per item was influenced by
the amount of navigational effort expended by the participants in:
(i) locating the item descriptions in ‘Details’ page, and (ii) navigat-
ing back to the corresponding item summary in the ‘Query-Results’
page after returning from the ‘Details’ page. This navigational effort
was the highest in the Screen Reader study condition and lowest in
the AutoDesc condition.

4.6.3 Number of items covered during task. The metric captured
the number of distinct items that a participant explored while doing
a task. All revisits to previously explored items were not included
in the final count. Figure 4a presents the results for this metric
across all three study conditions. Overall, the participants visited
an average of 3.37 items (Median = 3, Min = 2, Max = 5) with screen
reader, 4.62 items (Median = 5, Min = 3, Max = 7) with SaIL, and
7.06 items (Median = 6, Min = 5, Max = 12) with AutoDesc. The
differences in the number of items covered across the three study
conditions was statistically significant based on a Kruskal-Wallis
test (𝐻 = 27.5, 𝑝 < 0.001). As in case of previous metrics, a post-hoc
Dunn’s test further showed that AutoDesc significantly outper-
formed both the screen reader (𝑍 = 5.21, 𝑝 < 0.001) and the SaIL
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(𝑍 = 3.08, 𝑝 = 0.002) study conditions. As the participants spent
significantly more time navigating irrelevant content in the Screen
Reader and SaIL conditions, they couldn’t cover many distinct data
items in the ‘Query-Results’ page before either interaction fatigue
set in or allotted time for the task expired.

4.6.4 Number of back-and-forth navigation between webpages. This
metric was computed by dividing the total number of visits to ‘De-
tails’ pages (recall that the participant starts a task in the corre-
sponding ‘Query-Results’ page) by the total number of distinct
items visited while doing the task. Figure 4b presents the results
for this metric across all three study conditions. Overall, the partic-
ipants navigated back-and-forth between ‘Query-Results’ page and
‘Details’ pages an average of 1.38 times (Median = 1.22, Min = 0.6,
Max = 2.5) per item under the screen reader condition, 0.86 times
(Median = 0.81, Min = 0.4, Max = 1.33) under the SaIL condition,
and only 0.38 times (Median = 0.36, Min = 0.2, Max = 0.6) under the
AutoDesc condition. The difference in the metric values between
the three study conditions was found to statistically significant
(Kruskal-Wallis test, 𝐻 = 31.96, 𝑝 < 0.001). A post-hoc Dunn’s
test further showed that AutoDesc significantly outperformed both
the screen reader (𝑍 = 5.58, 𝑝 < 0.001) and the SaIL (𝑍 = 3.56,
𝑝 < 0.001) study conditions.

This result shows that providing instant access to just the de-
scriptions of items can significantly reduce the number of visits
to the ‘Details’ pages, and therefore decrease the time and short-
cuts needed per item. As observable in Figure 4, for a majority of
items in the AutoDesc condition, the participants did not access
the corresponding ‘Details’ pages after listening to the extracted
descriptions in the ‘Query-Results’ page itself, which indicates that
these descriptions enabled the participants to quickly filter out
items that did not match their preferences. Only for a few select
items that matched their preferences, the participants visited the
‘Details’ page to access other relevant information such as customer
reviews. In the Screen Reader and SaIL conditions, however, such
instantaneous access to item descriptions was not available, so the
participants had to spend additional time and effort navigating
the ‘Details’ pages themselves to find out more information about
the corresponding items and decide if these items matched their
personal preferences.

4.6.5 System Usability Scale (SUS). We used the standard SUS ques-
tionnaire to assess usability [17]. The SUS questionnaire asks par-
ticipants to rate alternating positive and negative Likert items on
a scale of 1 to 5, where 1 being strongly disagree, 3 being neutral,
and 5 being strongly agree. The responses are then combined into a
single score between 0 and 100, with higher scores indicating better
usability evaluations. Figure 5 presents the SUS statistics for the
three study conditions. Overall, the SUS ratings for the AutoDesc
condition (Average = 84.53, Median = 83.75, Min = 65, Max = 97.5)
were higher than those for both the screen reader (Average = 55.31,
Median = 53.75, Min = 30, Max = 77.5) and SaIL (Average = 70.15,
Median = 71.25, Min = 37.5, Max = 85) conditions. This difference
in SUS scores was statistically significant, according to a Kruskal-
Wallis ANOVA test (𝐻 = 27.79, 𝑝 < 0.001). Pairwise comparisons
between conditions using post-hoc Dunn’s test showed that Au-
toDesc had significantly better SUS scores than both the screen
reader (𝑍 = 5.27, 𝑝 < 0.001) and the SaIL (𝑍 = 2.56, 𝑝 = 0.01)

study conditions. In the exit interviews, almost all (15) participants
attributed their high usability ratings to the instant access of item
description feature of AutoDesc that saved them a lot of time and
key presses that would have been otherwise necessary to navigate
between and within ‘Query-Results’ and ‘Details’ webpages. Nearly
two-thirds (10) of the participants also mentioned that they did not
have to learn anything new to leverage AutoDesc, which prompted
them to give positive usability feedback for AutoDesc.

4.6.6 Perceived interaction workload. We administered the stan-
dard NASA-TLX questionnaire [29] to gauge the workload expe-
rienced by the participants while they did the assigned tasks in
different study conditions. Like SUS, NASA-TLX also generates
a score between 0 and 100 to estimate perceived task workload,
however unlike SUS, lower TLX values indicate lesser workloads
and hence better performance. Overall, we observed that the study
conditions had a significant impact on NASA-TLX scores (Kruskal-
Wallis ANOVA, 𝐻 = 28.67, 𝑝 < 0.001). The TLX scores for the
AutoDesc (Average = 41.93, Median = 43.66, Min = 23, Max = 58.66)
condition were significantly lower than those for the SaIL (Average
= 56.4, Median = 56, Min = 30.66, Max = 79.66) and screen reader
(Average = 71.60, Median = 73.5, Min = 48.66, Max = 84) conditions
(post-hoc Dunn’s test, 𝑍 = 5.35, 𝑝 < 0.001 for Screen Reader vs.
AutoDesc, and 𝑍 = 2.73, 𝑝 = 0.006 for SaIL vs AutoDesc). A closer
inspection of the responses to individual subscales of the TLX ques-
tionnaire revealed that the Mental Demand, Effort, and Frustration
subscales contributed more towards the higher workload scores in
the Screen Reader and SaIL conditions, i.e., the ratings for these sub-
scales were significantly higher than those for the other subscales
(Temporal Demand, Physical Demand, and Overall Performance). For
the SaIL condition, Mental Demand and Effort were the discrim-
inating subscales that received significantly higher ratings than
the other subscales. The ratings for AutoDesc however were much
lower and uniform across all six subscales.

4.6.7 Qualitative feedback. We also collected subjective feedback
from the participants in their exit interviews. Some of the notable
observations that were common across multiple participants are
briefly described next.
Tiring to explore data items with a screen reader. Almost
all (14) participants stated that they found it tiring and frustrating
to interact with web data records. The reasons provided by these
participants to explain this fatigue included “too much listening”,
“don’t know where to go for information”, and “need to remember a
lot”. To Quote P4: “ There is simply too much stuff on these websites
and they are scattered all over the place. It is frustrating to go here
and there looking for stuff.” Five participants also expressed that
they would like to obtain “all information in one place”.
Selection typically made after exploring only the first few
items. Amajority (11) of the participants stated that they typically
peruse only a few initial items in the available items list before
deciding to purchase one of the items. The underlying reasons
specified by these participants were mainly “lack of time” and
“fatigue”. Four of these 11 participants further mentioned that they
often missed out on “good bargains”, since some of the preferred
items were buried deep in the list, and they simply did not have
the time or patience to explore the items list up to that depth. To
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Figure 5: Perceived usability (SUS) and task workload (NASA-TLX) for all three study conditions.

counter this issue, these 4 participants also stated they often relied
on filters in the ‘Query-Results’ page to bring desirable items to the
top of the list, however they mentioned that even with this strategy,
they often missed out on great deals.
Multiple revisits to item summaries and ‘Details’ pages due
to content overload. Three-fourths (12) of the participants men-
tioned that they often forgot some key information about items they
had previously visited, so they had to revisit these item summaries
and sometimes even their ‘Details’ pages to refresh their memories.
These participants attributed this forgetfulness to the heavy content
load on e-commerce websites where they had to listen to reams
of content while perusing data items, and also remember a lot of
details about multiple items to make comparisons. Half of these
12 participants expressed that AutoDesc would help them counter
this issue, by enabling them to quickly access the desired details
without having to revisit the ‘Details’ pages.
AutoDesc helps quickly filter out undesired items. Over half
(9) of the participants mentioned that AutoDesc served as a “ filter”
that enabled them to quickly weed out items that didn’t match their
preferences from final consideration. These participants further
explained that the instantly available descriptions helped them in
deciding whether it was worth exploring the item more (e.g., read
the customer reviews), and therefore spend the extra time and effort
only if necessary.
Instant access to other item information is also desirable.
A few (4) participants expressed a desire for AutoDesc to include
support for instantly accessing other item-related information such
as user reviews, multiple item comparisons, shipping details, similar
item recommendations, etc. However, 2 of these participants further
mentioned that only summaries of other item-related information
would be beneficial given the risk of content overload (e.g., customer
reviews can be lengthy with thousands of reviews).

5 DISCUSSION
The user study findings clearly demonstrate the effectiveness of
AutoDesc in substantially improving the perusal efficiency and us-
ability for blind screen reader users while interacting with web data
items. However, the study also illuminated some of the shortcom-
ings of our approach and therefore exposed some of the avenues
for future research. A few important ones are discussed next.
Limitations. One of the limitations of our approach is that in
our evaluation study, we selected websites where both SaIL and
AutoDesc algorithms were able to accurately identify the item de-
scription in the ‘Details’ webpages. Although this experimental
setup helped us avoid confounding effect of algorithm accuracy
on performance values, it prevented us from understanding how
algorithmic errors would have impacted the interaction experience
of blind participants and how the participants would have coped
with such inaccuracies. Understanding how AutoDesc’s extraction
algorithm accuracy affects the usability of data item interaction is
the scope of our future work. Another limitation is that AutoDesc
only pre-fetches item descriptions. As mentioned by some partici-
pants in the exit interviews, users also preferred instant access to
other item-related information such as reviews, similar item sug-
gestions, multiple item comparisons, etc., if such information was
present in the website. We therefore plan to expand the repertoire
of extraction algorithms to include support for these additional
item-related details.

Also, the training and testing examples for our extraction algo-
rithm only included webpages in English, and therefore it is unclear
how the algorithm will fare on webpages in other languages. An-
other limitation of our work is that the current AutoDesc only
functions within the Chrome web browser. Although Chrome is
currently the most popular browser within the blind user commu-
nity, there are still significant number of blind people using other
browsers such as Firefox and Internet Explorer [62]. In future, we
will extend AutoDesc support for other browsers as well. Lastly, our
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AutoDesc system is presently available only for the desktop/laptop
environment; it currently does not support efficient perusal of web
data records onmobile devices such as smartphones. Given the ubiq-
uity of smartphones and the increasing reliance on smartphone
web browsing for conducting e-commerce transactions, support
for efficient non-visual interaction with web data items is vital to
ensure equality of access for people of all abilities. Recognizing this
emerging need, we will explore porting AutoDesc to smartphone
browsers as part of future work.
Instant access to all item-related information. Providing in-
stant access to all item-related information such as reviews, product
comparisons, and shipping details, as requested by some of the
participants in the study, involves the following challenges. First,
unlike descriptions, user reviews and product comparisons can be
extremely long, and can therefore cause content overload in the
‘Query-Results’ page. Second, new extraction algorithms have to
be developed for each of the item-related information (e.g., reviews,
comparisons), as one algorithm is unlikely to work for different
types of item-related information due to differences in their ren-
dering and markup. To address the content overload issue, we will
explore summarization techniques [24], so that only short snippets
of information are provided to the users in the ‘Query-Results’ page.
The user will then be able instantly access these snippets and decide
whether it is worth accessing the full information. For the second
challenge, we will explore both vision-based Mask R-CNN models
and hybrid (vision + HTML markup) transformer models [66] to
determine the best model for accurately identifying different types
of item-related information.
Automatically filtering data items. Given that blind users typi-
cally explore only a few initial data items before making a decision,
automatic approaches that can predict and filter out undesirable
items in real-time as the users peruse the list of items, can po-
tentially assist the users in finding the item that best match their
preferences. For example, if a user is ignoring shirt items from a
brand ‘B’ present at the top of the list, then removing all other shirts
belonging to that brand from the list will push the shirt items from
other brands (which may be more preferred by the user) higher
up in the list. To build such a prediction and filtering model, we
plan to explore contextual embedding [53] and similarity analysis
methods [27], that will help us represent and compare items with
each other.
Societal impact. In addition to web accessibility, usability of web
interaction is also equally important for ensuring equal access to
digital content for people with severe visual disabilities. However,
most websites are primarily tailored for sighted users, so blind users
typically need to put in significantly more time and effort to do the
same web activities that sighted users can accomplish in a matter of
few minutes [7]. It is this usability divide that prevents blind users
for enjoying the benefits of web to the same extent as their sighted
peers. In this paper, we seek to bridge this divide for an important
web activity – interaction with web data items. By facilitating more
efficient and usable interaction with the contents of web data items,
we envision that blind users too will be able to explore more data
items in short duration with lesser effort, and score better deals like
their sighted peers.

6 CONCLUSION
Web data items are essential components of most modern web-
sites and interaction with them is inevitable during web browsing.
However, the present distributed organization and visualization of
content in data items across multiple webpages mostly favor sighted
users; blind users on the other hand have to endure a tedious and
frustrating process of navigating back-and-forth between multiple
webpages, and also listening to reams of irrelevant content while
perusing web data items. As a first step towards bridging this usabil-
ity divide, in this paper, we presented AutoDesc, a novel browser
extension that automatically extracts additional item descriptions
from the ‘Details’ pages of items, and then proactively injects the
extracted information into the corresponding item summaries on
the ‘Query-Results’ page, thereby reducing the need for the blind
user to explicitly visit the ‘Details’ pages. Evaluation of AutoDesc
in the user study with 16 blind participants showed that AutoDesc
significantly reduced the average time and shortcuts spent on ex-
ploring an item in the query-results list, when compared with a
state-of-the-art solution and also the participants’ preferred screen
readers. The study also revealed promising future research direc-
tions that included efficient and convenient access to user reviews
and item comparisons.
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A USER STUDY TASK EXAMPLE
Figure 6 illustrates a study task that required the blind participants
to peruse a list of television data items on the Macy’s website and
then select one of the items best matching their preferences. Based
on the predetermined counterbalanced order, the participants did
this task in one of the three study conditions: Screen Reader, SaIL,
and AutoDesc. Figure 6 specifically presents the AutoDesc con-
dition, where the participants could leverage the additional “Get
Details” buttons to quickly access descriptions of corresponding
items. These buttons were not available in other study conditions,
and the participants therefore had to access the descriptions by
navigating to separate ‘Details’ pages.
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Figure 6: Illustration of one of the tasks blind participants did in the user study.
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