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ABSTRACT ACM Reference Format:

In scenarios with long-tailed distributions, the model’s ability to
identify tail classes is limited due to the under-representation of tail
samples. Class rebalancing, information augmentation, and other
techniques have been proposed to facilitate models to learn the
potential distribution of tail classes. The disadvantage is that these
methods generally pursue models with balanced class accuracy on
the data manifold, while ignoring the ability of the model to resist
interference. By constructing noisy data manifold, we found that
the robustness of models trained on unbalanced data has a long-tail
phenomenon. That is, even if the class accuracy is balanced on the
data domain, it still has bias on the noisy data manifold. However,
existing methods cannot effectively mitigate the above phenome-
non, which makes the model vulnerable in long-tailed scenarios. In
this work, we propose an Orthogonal Uncertainty Representation
(OUR) of feature embedding and an end-to-end training strategy
to improve the long-tail phenomenon of model robustness. As a
general enhancement tool, OUR has excellent compatibility with
other methods and does not require additional data generation,
ensuring fast and efficient training. Comprehensive evaluations on
long-tailed datasets show that our method significantly improves
the long-tail phenomenon of robustness, bringing consistent per-
formance gains to other long-tailed learning methods.

CCS CONCEPTS

» Computing methodologies — Computer vision; Image repre-
sentations; Supervised learning by classification.
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1 INTRODUCTION

Long-tailed recognition is an important challenge in computer
vision, manifested by models trained on long-tailed data that tend
to perform poorly for classes with few samples. Previous research
has attributed this phenomenon to the fact that the few samples
in the tail classes do not well represent their true distribution,
resulting in a shift between the test and training domains [4, 31,
40]. Numerous methods have been proposed to mitigate model
bias. Class rebalancing [2, 3, 7, 14, 17, 18, 20, 23, 26, 28, 33, 34, 37,
39, 41, 42, 45], for example, aims to boost the weight of losses
arising from tail classes, thereby pushing the decision boundary
away from the tail class and improving the probability of correctly
classifying the underlying distribution. Information augmentation
[4, 8, 12, 15, 19, 21, 22, 24, 25, 32, 36, 38, 39, 43], on the other hand,
expands the observed distribution of the tail classes by introducing
prior knowledge to facilitate the model learning of the underlying
distribution. It is important to note that these methods default to
the model being able to learn adequately and fairly at least for
the samples in the training domain. However, we find that even
if a model has balanced class accuracy over the training domain,
its robustness still exhibits a long-tailed distribution, and existing
methods do not improve the phenomenon well.

Recent study [10] indicates that moving in the direction orthog-
onal to the data manifold produces a series of noisy data mani-
folds, and the samples on these noisy data manifolds are noisy
versions of the real samples. We construct the noisy data manifold
corresponding to the training samples (i.e. the data manifold) on
sample-balanced MNIST and CIFAR-10. It is found that ResNet-18
trained on the data manifold can correctly recognize noisy samples
from all classes with high confidence (Fig.1A, even images that are
meaningless to the human eye) and that the class accuracy on the
noisy data manifold is balanced (Fig.1B). The same experiments
are then performed on the CIFAR-10-LT. Unexpectedly, we find
that although ResNet-18 performs well and fairly for each class on
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Figure 1: A: Moving in the orthogonal direction along the data manifold produces a series of images where the level of noise
increases with distance. Moving on the data manifold corresponds to successive changes in the different classes of samples. A
trained deep neural network can predict samples on noisy data stream shapes with a high confidence level. B: The network
trained on the balanced dataset has excellent robustness. ResNet-18 was trained on CIFAR-10 and MNIST respectively and then

tested for its performance on noisy data manifolds.

the CIFAR-10-LT training set, the accuracy of the model for the
tail class decreases rapidly as the distance between the noisy data
manifold and the data manifold increases, leading to a long-tailed
distribution of model robustness (Fig.3A). This suggests that the
decision surface is not only biased towards the tail class in terms
of data manifold, but that the degree of bias towards the tail class
increases with increasing distance between the noisy data manifold
and the data manifold (Fig.3B).

The long-tailed phenomenon of robustness makes the model
more vulnerable in test scenarios. To alleviate this phenomenon,
we propose the orthogonal uncertainty representation of tail classes
in the feature space. It is well-compatible with existing methods
to improve the performance of the model on both the underlying
distribution and the noisy data manifold. The main contributions
of this work are summarised as follows.

1) We discover and define the long-tailed phenomenon of model
robustness on unbalanced datasets and propose a corresponding
measure of unbalance, RIF. (Section 2)

2) We propose the orthogonal uncertainty representation (OUR) of
feature embedding. OUR is simple and efficient, plug and-play,
and does not affect the speed of inference. (Section 3.1)

3) We solve the problem that calculating the orthogonal direction

of feature manifolds interrupts training and consumes time and

video memory, enabling end-to-end and low-cost applications

OUR. (Section 3.2)

Comprehensive experiments show that our method has ex-

cellent compatibility and generality, demonstrating superior

performance on multiple long-tailed datasets and effectively
improving the long-tailed phenomenon of model robustness.

4)
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2 MOTIVATION: THE LONE-TAILED
PHENOMENON OF MODEL ROBUSTNESS

In this section, we first introduce the method of constructing noisy
data manifolds, and then discover and define the long-tail phenom-
enon of model robustness and the measure of imbalance factor.
Finally, we analyze the factors that affect the performance of the
tail class, thus pointing out the directions and goals of the research.

2.1 Data manifold and noise data manifold

2.1.1  Constructing noisy data manifold. The manifold distribution
law [16] considers that natural images distribute around a low-
dimensional manifold in a high-dimensional space, called a data
manifold. As shown in Fig.1A, [10] found that moving the sam-
ple points (i.e., images) along the direction orthogonal to the data
manifold, the noise of the images continues to increase, and these
sample points in the orthogonal direction constitute the noisy data
manifold. The following describes how to generate the noisy data
manifold.

Given an image dataset with the number of samples N, assume
that the size of the image is [ Xw X h = d and all samples are denoted
as X = [x1,...,xN] € RI*N 1n the d-dimensional sample space,
each image is considered a point, and the set of points corresponding
to all images constitutes the data manifold. The intrinsic dimension
of a data manifold is usually smaller than the dimension d of the
linear space, so a direction vector U € R4 orthogonal to the data
manifold can be found to construct the noisy data manifold. If U is
strictly orthogonal to the data manifold, then its inner product with
any vector (x; —c) € Rd,i =1,...,Nis 0, where ¢ = ﬁzg\il Xi.
Therefore, we solve for U by optimizing the following objective.

N
minZ((xi -oTu)2. (1)
i=1

Let y; = x; — ¢ € R¥, then the optimization objective is transformed
into

N N N
min Z:(yiTU)2 = min Z UTyiyiTU = min(UT(Z yiyiT)U). (2)
i=1

i=1 i=1

Let Y= [y1,...,yn] € RPN and >N y,-yiT =YYT € R?*4 The
optimization objective can be equivalent to
min(UTYYTU),
. ®)
stU'U=1
Construct the Lagrangian function L(U, A) = UTYYTU-A(UTU-
1), where A is a coefficient. By making aLg[]]’A) d aL(;/{’A) equal
to 0, respectively, we get
YYTU = U,
. @
U'U=1.

Obviously, YYT is the covariance matrix of X and U is the eigen-
vector of YYT . Further, from (YYTU,U) = (AU, U) we can get

r=Yluuy=vTyyhHTu =vTyy'u. (5)

Therefore, in combination with equation (3), the optimization
objective is ultimately equivalent to ming (4). The above results
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show that U can take the eigenvector corresponding to the smallest
eigenvalue of YYT.

0 0.005 « max{eig} 0.01+max{eig} 0.015+max{eig} 0.02+max{eig} 0.025+ max{eig}
L

Figure 2: The above two rows show the variation process of
the samples in the MNIST dataset moving along U. The lower
two rows show the variation process of the airplane and bird
images in CIFAR-10 moving along U. max{eig} denotes the
maximum eigenvalue of YY”. It can be observed that when
L = 0.02 X max{eig}, it is already difficult for the human eye
to distinguish these images.

As shown in Fig.1A, the data manifold formed by the sample
set X = [x1,...,xn] € RN ig shifted by a distance L along the
direction U to obtain the sample set X’ = X + LU, and X’ forms a
noise data manifold. The farther the noisy data manifold is from
the data manifold, the noisier the image in X’ is. We correlate
the value of L with the maximum eigenvalue of YY7 . Studies on
MNIST and CIFAR-10 show that images on noisy data manifold are
almost unrecognizable by the human eye when L is about 2% of the
maximum eigenvalue of YY7 (Fig.2). In the following, L defaults to
2% of the largest eigenvalue of the sample covariance matrix if not
otherwise specified.

2.1.2 Why the orthogonal direction? Moving a sample in a non-
orthogonal direction may imply changes in the main features of
that sample, resulting in a conflict between the moved sample
and the label. For example, in Fig.1A, moving from the orange
sample to the green sample on the data manifold corresponds to
a gradual change in the image from the number 5 to the number
3, while the label of the orange sample is kept constant. Of course,
shifts in non-orthogonal directions may be a potential method for
generating adversarial samples, which we do not discuss in depth
in this work. Since the direction of random noise is uncontrollable,
it cannot be used to produce the noisy data manifold. In Section 4
we compare noise-based data augmentation with our method.

2.2 Equity in model robustness on balanced data

Surprisingly, Fig.1A shows that ResNet-18 trained on MNIST can
correctly classify samples on noisy data manifolds with high confi-
dence even in the face of heavily noisy images that are meaningless
to the human eye. ResNet-18 has the same setup as ResNet-32 in
section 4.1.
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Figure 3: A: Long-tailed phenomenon for robustness of ResNet-18 trained on CIFAR-10-LT. The RIF increases as L increases. B:
When the test sample is outside the observed domain, the model may predict incorrectly. Combined with the trend in RIF, we
speculate that as L increases, the decision surface on the noisy data manifold becomes more biased towards the tail class.

We explore and find that the above phenomenon also exists in
the feature space. First, ResNet-18 is trained on sample-balanced
MNIST and CIFAR-10 respectively, and extracts the features of all
samples, which constitute the feature data manifolds (referred to
as feature manifolds below). We test the classification accuracy of
ResNet-18 on the feature manifolds as well as the noisy feature
manifolds respectively, and the experimental results are shown
in Fig.1B. ResNet-18 has excellent generalization performance for
each class on noisy feature manifolds, and the overall test accuracy
on noisy feature manifolds for CIFAR-10 and MNIST is only 1.04%
and 0.49% lower than the overall test accuracy on feature manifolds,
respectively.

The above experiments combined show that a model trained on a
sample-balanced data manifold, whether in image space or feature
space, typically has fair and well robustness on noisy data manifolds,
and is far superior to humans. What makes us curious is whether
the above phenomenon also exists in long-tailed data. From the
sample level, the noise generalization ability of the model trained
on the balanced dataset is relatively balanced for each sample. Does
the same phenomenon exist in the long-tailed data?

2.3 Inequities in model robustness on
long-tailed data

First think about a question: when training a classification model
on a long-tailed dataset, without considering the performance of

the model outside the training domain, does the model learn equally
well on the training set for both head and tail class samples? We
trained ResNet-18 on CIFAR-10-LT (imbalance factor = 200) and
show the training accuracy of ResNet-18 on all classes in Fig.3A. As
can be seen, ResNet-18 can recognize training samples for both head
and tail classes with high accuracy, which indicates that ResNet-18
adequately fits the distribution of the training domain. However, is
this sufficient to prove that the model learns fairly for each class
over the training domain?

We further explore the ability of the model to generalize over
noisy data manifolds in the feature space. First, training ResNet-18
on CIFAR-10-LT and extracting the features of all training sam-
ples, the maximum eigenvalue of the sample covariance matrix
is denoted as max{eig}. Then the shift distance was gradually in-
creased along the orthogonal direction of the feature manifold until
L = 0.05 x max{eig}, and multiple noisy feature manifolds were
generated in this process. Testing the classification performance of
ResNet-18 on each noisy feature manifold, the experimental results
are shown in Fig.3A. We find that the performance of the tail classes
decreases earlier and faster than the head classes as the distance L
increases, resulting in class accuracies on the noisy feature manifold
that exhibit increasingly extreme long-tailed distributions. This
suggests that the robustness of models trained on long-tailed
datasets to classes also exhibits a long-tailed distribution. Not
only is the decision surface skewed toward the tail class on the
feature manifold, but it is also skewed even more heavily toward
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the tail class in the noisy feature manifold (see Fig.3B). In the fol-
lowing, we formally define the long-tailed phenomenon of model
robustness and its imbalance metric.

Definition 2.1 (The long-tailed phenomenon of model robust-
ness). Given a dataset containing C classes (data manifold) and
training a classification model on it, test the class accuracy Ay, ..., Ac
of the model on the data manifold. Then construct a noisy data
manifold and test the class accuracy A’, . .. ,A'C of the classification
model on it. The difference in class accuracy, A; — A;, i=1,...,C,
reflects the robustness of the model to the classes. The long-tailed
phenomenon of model robustness arises when the difference in the
accuracy of the classes is unbalanced.

Definition 2.2 (Imbalance factor for model robustness). The
imbalance factor for model robustness is defined as

RIF = max{A; - A}} —min{4; - A;}(i=1,...,C).

A larger RIF indicates that the model is more imbalanced in its
robustness to the class. When the robustness is balanced, RIF = 0.

Even when fully fitting the training domain, the model is not
as robust to the tail classes as the head classes, and this unfair
performance may be even worse on the test set. The above results
lead us to consider more comprehensively the reasons affecting the
performance of the tail class.

2.4 Rethinking the factors affecting tail class
performance in long-tailed recognition

First, we define the meaning of two concepts. For a class, the ob-
served distribution is the distribution consisting of the available
samples, and the underlying distribution is the true distribution in
addition to the observed distribution. Combining with the discover-
ies in Section 2.3, we believe that the reasons for the performance
limitations of the tail class are as follows.

1) As shown in Fig.3B, the few samples of the tail classes do
not well represent its true distribution, so the performance
of the model is limited outside the training domain [4, 31].
How to recover the underlying distribution of the tail classes
is the key to the study.

2) The robustness of the model to the classes shows a long-
tailed distribution. As illustrated in Fig.3B, the decision bound-
ary of the model trained on long-tailed data is not only biased
towards the tail class in the data manifold but also biased
more severely in the noisy data manifold. This limits the
noise invariance of the model on tail classes.

Previous studies have not taken into account the second cause of
damage to the tail class, and simply expanding the data on the data
manifold is not sufficient to mitigate the severe bias of the decision
surface on the noisy data manifold. In this work, we propose a
simple and efficient method with good compatibility to compensate
for the shortcomings of existing methods.

3 ROBUST DEEP LONG-TAILED LEARNING

Consistent with [1, 12, 16, 19], we are interested in ways to en-
hance tail classes in the feature space. In the following, the data
manifold in the feature space is called the feature manifold, and
the corresponding noisy data manifold is called the noisy feature
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manifold. To mitigate the long tail phenomenon of model robust-
ness, we propose the orthogonal uncertainty representation (OUR)
of features in Section 3.1. In Section 3.2, we propose an end-to-
end training scheme that substantially reduces the time cost and
memory consumption of applying OUR.

3.1 Orthogonal uncertainty representation

The orthogonal uncertainty representation aims to augment the tail
class samples along the orthogonal direction of the feature manifold.
Given a long-tailed dataset X containing C classes and a deep neu-
ral network Model = {f(x,01),9(z, 62)}, where f(x, 6;) denotes
a feature sub-network with parameter 6; and g(z, 62) denotes a
classifier with parameter 0. The feature embedding corresponding
to X is assumed to be Z = f(X, 61)=[z1,...,2N] eRPXN where
N = Ziclei, p is the sample dimension and N; denotes the sample
number of class i. Z forms a feature manifold and calculates the
sample covariance matrix 3z=-ZZTe RP*P. The maximum and
minimum eigenvalues of X are denoted by Amax and Apin, respec-
tively. The orthogonal direction U € R? of the feature manifold is
the eigenvector corresponding to Apin.

Suppose a batch of samples is encoded by f(Xp,01) as Zp €
RP*bS and bs as the batch size, where the feature embedding be-
longing to tail class t is Zg; = [z}, .. .,z?’] € RPX"t 'We model
the uncertainty representation of features by applying perturba-
tions along the direction U for Zp;, thereby enhancing the noise
invariance of the model to the tail class ¢ on noisy data manifolds.
The specific form can be formulated as

Orthogonal Uncertainty Representation of Zp,

OUR(Zpy) = Zp,t + tAmeanle1U. ..., en, U] € REX™ (6)
e ~N(0,1),i=1,...,n.

€1,...,¢én, all follow a standard Gaussian distribution and are
independent of each other, they increase the uncertainty of each
feature embedding in Zp ;. Amean denotes the average of the top 10
eigenvalues. Our study in Section 2 shows that images on noisy fea-
ture manifolds are no longer recognizable to the human eye when
the distance to the feature manifold is 0.024,,,4x. To improve the sta-
bility of OUR, we use Amean instead of Ay 45 to perturb the features.
The piAmean term therefore guarantees a reasonable range of pertur-
bations and the reasonable choice of y will be discussed in Section
4.2. However, an additional consideration is that calculating the
orthogonal direction U of the feature manifold interrupts training.
We detail the difficulties faced in practice in the next subsection.

3.2 End-to-end training with OUR

The parameters of the model change continuously with training,
resulting in an offset between features extracted from the same
sample at different periods. Therefore, when applying the orthog-
onal uncertainty representation (OUR) in the feature space, the
orthogonal direction of the feature manifold needs to be continu-
ously updated. However, calculating the orthogonal direction of
the feature manifold requires re-extracting features from the entire
dataset, which significantly increases the time cost and interrupts
the training, complicating the training process.
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Figure 4: End-to-end training process with OUR. When applying OUR in the k-th training epoch, the covariance matrix
corresponding to each batch feature needs to be calculated and saved in the k — 1-th epoch. At the end of the k — 1-th epoch, the
saved N/bs covariance matrices are used to calculate the corresponding feature covariance matrix of the entire dataset, which
further yields the orthogonal direction U of the feature manifold and is utilized in the k-th epoch.

The feature slow shift phenomenon [39] indicates that as the
training epoch increases, the shift between the historical and lat-
est features of the same sample decreases to the point where the
historical features can be used to approximate the latest features.
Assume that OUR is applied from the k-th epoch. Given that the en-
tire dataset can be traversed in a single training epoch, the intuitive
solution is to save all batches of features from the k — 1-th training
epoch in place of the latest features Z for the entire dataset. Before
the k-th epoch, the covariance matrix is calculated with the saved
features, and then the orthogonal direction U of the feature mani-
fold is further obtained. And so on, the historical features saved in
the k-th epoch will be used to calculate the orthogonal direction
used in the k + 1-th epoch. [6, 39, 40] shows that in the training of
classification models, only 5 epochs are usually needed to make the
shift of features small enough. And k is significantly larger than
5, so there is no need to be concerned about the feature shift not
being small enough.

Although the above approach avoids extracting features from
the entire dataset, additional storage space is still required to hold
all the features generated in an epoch. To further reduce memory
consumption, we propose to calculate and save the covariance

. T
matrix X; = Lzl 7] J=1,..., % for each batch of features

bs“B™B .
in the k-th epoch, where Zé € RP*bs denotes the j-th batch of
features. The sum of X1, ..., 2 n is then used to approximate the

bs
covariance matrix of all features from the dataset. Specifically, when
the k-th epoch ends, the feature covariance matrix of the entire
dataset can be approximated as

N
bs & bs 1 4 1T
Zzzﬁzzjzﬁ(b_sZBZB + .-+

=
T bs
1, N N 13 T
ZEZE )= > 2z eRPY
j=

Calculate the orthogonal direction U of the feature manifold
based on Xz and apply it to the next training epoch. Fig.4 illus-
trates the process of applying OUR end-to-end. At the cost of neg-
ligible memory consumption (only bﬂ covariance matrices need
to be stored), we solve the problem of interrupted training and
time consumption when calculating the orthogonal direction of the
feature manifold.

Since OUR is dedicated to mitigating the long-tailed phenomenon
of robustness found for the first time, it has good compatibility and
generality as it does not overlap with the research aims of other
methods. Our experiments also show that existing methods are not
effective in mitigating the long-tailed phenomenon of robustness
(Fig.6). Listing 1 demonstrates a simple implementation of OUR that
can easily be combined with existing methods. Fig.1A illustrates
the two steps in enhancing the tail classes. We hope to co-train to
improve the model’s performance on both underlying distribution
and noisy data manifold.

Listing 1: End-to-end training with OUR

1 for epoch in range(M):

2 Q = np.empty([N/bs, p, pl) # bs is batch size
3 # X_B: data, y_B: labels

4 for X_B, y_B, j in loder(N/bs):

5 Z_B = f(X_B, theta_1)

6 if epoch == k-1:

7 Sigma = np.matmul(Z_B, Z_B.T)

8 Q[j1 = sigma

9 elif epoch >= k:

10 Sigma = np.matmul(Z_B, Z_B.T)

11 Q[j] = Sigma

12 for i in range(C):

13 # Execute OUR on the tail category
14 if Z_B_i is a tail category:
15 Z_B_i = OUR(Z_B_i, U, mu)
16 y* = g(Z_B, theta_2)

17 loss = loss function(y_B, y*)

18 loss.backward ()

19 optimizer.step()

20 Sigma_Z = np.sum(Q, axis = 0)/N

21 vals, vecs = np.linalg.eig(Sigma_Z)

22 U = vecs[:, p-1]

23 labmda_mean = np.mean(vecs[:, 0:10])

4 EXPERIMENTS
4.1 Datasets and Experimental Setting

Datasets. We evaluated our method on four long-tail benchmark
datasets CIFAR-10-LT, CIFAR-100 LT [7], ImageNet-LT [27], and
iNaturalist 2018 [30]. Long-tailed CIFAR is the artificially produced
imbalance dataset using its balanced version. We chose three long-
tailed versions with imbalance factors (IF) of 10, 50, and 100 for
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training. ImageNet-LT contains a total of 1000 classes with an
imbalance factor of 256. iNaturalist 2018 is a large-scale species
classification dataset with a long-tailed distribution and imbalance
factor of 500. In this work, the official training and testing splits of
all datasets are used for a fair comparison.

Experimental Setting. In accordance with the previous setup
[5, 25, 27], we adopt ResNet-32 [11] as the backbone network on
the CIFAR-10/100-LT and adopt an SGD optimizer with momentum
0.9 for all experiments. The batch size is set to 128, the initial
learning rate is 0.1, and a total of 200 epochs are trained. Linear
warm-up of the learning rate is used in the first five epochs, with
the learning rate decaying by 0.1 times at 160 and 180 epochs
respectively. We employ ResNeXt-50 [35] on ImageNet-LT and
ResNet-50 on iNaturalist 2018 as the backbone network, training
200 epochs. In all experiments, the batch size is set to 256 (for
ImageNet-LT) / 512 (for iNaturalist 2018), the initial learning rate
is 0.1 (linear LR decay), and the SGD optimizer with a momentum
0f 0.9 is used to train all models.

4.2 Effect of hyper-parameter y

1 determines the degree of uncertainty of the feature embedding,
and when p = 0, OUR does not perform a transformation on the
feature embedding. Since we observe that the human eye can barely
recognize samples on noisy data manifolds when y = 0.02. There-
fore, we explore the effect of  on OUR in the interval [0, 0.1]. Exper-
imental results on CIFAR-10-LT, CIFAR-100-LT and ImageNet-LT
are shown in Fig.5. It can be seen that the performance of the model
increases and then decreases as y increases. When i is too small,
the perturbation of the feature embedding is weak and the model
does not learn sufficiently from the noise. Due to the scarcity of tail
class samples, the model’s learning of the original feature distri-
bution is easily disturbed when y is too large. Specifically, optimal
performance is achieved on CIFAR-10/100-LT when y is taken as
0.02 and 0.03 and on ImageNet when p is taken as 0.01 and 0.02 for
OUR.
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Figure 5: Ablation on CIFAR-10-LT (IF=100), CIFAR-100-LT
(IF=100), and ImageNet-LT for select hyperparameter p.

4.3 Evaluation on CIFAR-10/100-LT

Table 1 shows the experimental results on CIFAR-10/100-LT. The

show improvements to the cross-entropy loss as well
as cost-sensitive learning methods, and the blue rows show im-
provements to the information augmentation methods. It can be
observed that our proposed OUR significantly improves the existing
methods on all datasets. In particular, it also shows effectiveness on
several state-of-the-art methods (RIDE+CMO, GCL, ResLT), which
indicates that existing methods lack attention to the long-tailed
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Table 1: Comparison on CIFAR-10-LT and CIFAR-100-LT. The
accuracy (%) of Top-1 is reported. The best and second-best
results are shown in underlined bold and bold, respectively.

Dataset CIFAR-10-LT CIFAR-100-LT
Backbone Net ResNet-32

Imbalance Factor 100 50 10 100 50 10
BBN [44] 79.8 82.1 88.3 42.5 47.0 59.1
De-c-TDE [29] 80.6 83.6 88.5 44.1 50.3 59.6
Cross Entropy 70.3 74.8 86.3 38.2 43.8 55.7
+ OUR 72.1 76.1 87.5 39.7 45.2 56.8
CB-Focal [7] 74.5 79.2 87.4 39.6 45.3 57.9
+ OUR 75.9 80.1 88.2 40.8 46.5 58.6
LDAM-DRW [3] 77.0 81.0 88.2 42.0 46.6 58.7
+ OUR 78.1 81.8 88.9 42.8 47.4 59.3
MIiSLAS [43] 82.1 85.7 90.0 47.0 52.3 63.2
+ OUR 834 867 90.8 481 531 639
RIDE + CMO [25] - - - 50.0 53.0 60.2
+ OUR - = - 508 539 607
GCL [18] 82.7 85.5 - 48.7 53.6 -
+ OPeN [38] 83.1 85.8 - 49.2 53.9 =
+ OUR 83.7 86.3 - 498  54.5 -
ResLT [5] 80.4 83.5 89.1 45.3 50.0 60.8
+ OPeN [38] 80.8 83.8 89.6 45.8 50.4 61.2
+ OUR 81.6 84.3 90.0 46.5 50.9 61.7

phenomenon of robustness. It is important to note that CE is not
designed for long-tailed classification, but our approach improves
the performance of CE by 1.8% and 1.5% on CIFAR-10-LT (IF =
100) and CIFAR-100-LT (IF = 100) by improving the long-tailed
phenomenon of model robustness alone. This further indicates that
the long-tailed distribution of robustness in the long-tailed scenario
limits the performance of the classification model. OUR performs
better on datasets with larger IF, which is in line with our expecta-
tion since the long tail of model robustness becomes more severe
when the data are more unbalanced. For example, on the CIFAR-
10-LT (IF = 100, 50, 10) and CIFAR-100-LT (IF = 100, 50, 10), OUR
achieved performance gains of 1.4%, 0.9%, 0.8%, 1.2%, 1.2% and 0.7%
for CB-Focal.

We also compare OUR with the latest noise-based augmentation
method OPEN [38], and it can be observed that OPeN provides
very weak improvements on GCL and ResLT. Random noise may
cause changes in the main features of the samples, resulting in
the ambiguity between samples and labels (refer to the analysis in
Section 2.1.2). Compared with OPeN, our method not only does not
add additional training samples but also has better performance.

4.4 Evaluation on ImageNet-LT and iNat 2018

We report in Table 2 not only the overall performance of OUR but
also add the evaluation results of OUR on three subsets (Head, Mid-
dle, Tail) of the two datasets. It can be observed that OUR improves
the overall performance of the other methods by at least about 1%
on both datasets. For the ImageNets dataset, OUR performs superi-
orly, delivering performance gains of 1.6%, 1.4%, 1.2% and 1.5% for
CE, Focal, LADE and OFA, respectively. For the iNaturalist dataset,
OUR improves the overall performance of CE, Focal and OFA by
1.5%, 1.4% and 1.3%, respectively. OUR also maintains consistent
superiority in the face of the latest state-of-the-art methods. OUR
improves the overall performance of RIDE+CMO by 1% and 0.9% on
the two datasets and improves the overall performance of ResLT by
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Table 2: Comparison on ImageNet-LT and iNaturalist2018.
The Top-1 Acc (%) is reported. The best and the second-best
results are shown in underline bold and bold, respectively.

iNaturalist 2018
ResNet-50

ImageNet-LT
ResNext-50

Methods

H M T Overal H M T Overall
DisAlign [10] 59.9 499 31.8 52.9 68.0 713 694 70.2
MiSLAS [1] 65.3 50.6 33.0 534 73.2 724 704 71.6
DiVE [11] 64.0 504 314 53.1 70.6 70.0 67.5 69.1
PaCo [12] 63.2 51.6 39.2 544 69.5 723 731 72.3
RIDE (3%) [12] 66.2 51.7 349 54.9 70.2 72.2 72.7 72.2
GCL [8] - - - 549 - - - 720
CE 659 37.5 7.70 444  67.2 63.0 56.2 61.7
+ OUR 65.0 384 145 46.0 67.3 63.9 60.5 63.2
Focal Loss [3] 67.0 41.0 13.1 47.2 - - - 61.1
+ OUR 67.2 425 19.7 48.6 68.6 634 57.8 62.5
LDAM [2] 60.0 49.2 31.9 51.1 - - - 64.6
+ OUR 60.6 50.0 33.5 52.2 69.0 669 62.1 65.5
LADE [13] 62.3 493 31.2 51.9 - - - 69.7
+ OUR 62.4 50.5 344 53.1 72.2 70.6 65.9 70.7
OFA [9] 47.3 31.6 14.7 35.2 - - - 65.9
+ OUR 47.2 32.8 18.6 36.7 69.7 68.2 64.8 67.2
RIDE + CMO [7] 66.4 549 35.8 56.2 70.7 72.6 734 72.8
+ OPeN 667 55.1 370 56.8 704 734 741 73.2
+CR 665 55.7 37.9 57.2 705 73.9 748 73.7
ResLT [14] 63.0 50.5 35.5 53.0 68.5 699 704 70.2
+ OPeN 63.3 51.3 36.2 53.6 68.6 70.5 71.2 70.7
+ OUR 63.5 51.7 37.3 54.3 68.8 71.1 72.0 71.3

RIDE (3*) denotes the RIDE model with 3 experts. RIDE in RIDE+CMO comes with
3 experts. H, M, and T denote the Head (more than 100 images), Middle (20-100
images), and Tail (less than 20 images) subsets of the dataset, respectively.

1.3% and 1.1% on the two datasets, respectively. It should be noted
that CMO already expands the richness of tail classes by pasting
the foreground of tail classes into the background of head classes,
so the samples are balanced. Even in such a case, OUR still improves
the performance of RIDE+CMO, which is a solid indication that
OUR has excellent compatibility and does not conflict with the goals
pursued by existing methods.

OUR delivers the most significant improvement for the tail sub-
set. On ImageNet-LT, OUR improves the performance of CE, Fo-
cal, and OFA on the tail subset by 7.5%, 6.6%, and 4.6%, respec-
tively. Compared to OPeN, our method results in better perfor-
mance of RIDE+CMO and ResLT on both datasets. Specifically,
RIDE+CMO+OUR outperforms RIDE+CMO with OPeN by 0.9%
and 0.7%, respectively, on the tail subset of both datasets, and
ResLT+OUR outperforms ResLT+OPeN by 1.1% and 0.8%, respec-
tively. Comprehensive experiments on CIFAR-10/100-LT, ImageNet-
LT, and iNaturalist 2018 show that our method is stable and excel-
lent, outperforming the recently advanced noise-based augmen-
tation method OPEN. The experiments and analysis in Section A
further demonstrate the performance gap between OPEN and OUR.

4.5 Evaluation with multiple backbones

To fully evaluate the generality of OUR, we adopt different back-
bone networks on ImageNet-LT to demonstrate the effective im-
provement of OUR for other methods. The experimental results are
shown in Table 3, with the cyan rows illustrating the method with
ResNet-18 as the backbone network and the violet rows illustrating
the method with ResNeXt-101-32x4d as the backbone network.
OUR brings about a 1% performance gain in overall accuracy for all
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Table 3: Top-1 Accuracy (%) with Various ResNet Backbones.

Methods Backbone Net Head Middle Tail Overall
CE ResNet-10 59.7 29.4 5.7 37.3
+OUR ResNet-10 60.0 30.3 8.1(+2.4)  38.5(+1.2)
cRT ResNet-10 53.8 41.3 254 43.2
+OUR ResNet-10 540 422 267(+1.3) 44.0(+0.8)
LWS ResNet-10 51.8 42.2 28.1 434
+OUR ResNet-10 524 425 29.2(+1.1)  44.1(+0.7)
ResLT ResNet-10 52.3 41.6 27.6 43.0
+OUR ResNet-10 527 425  29.0(+1.4)  43.9(+0.9)
CE ResNeXt-101 69.6 44.6 15.6 49.6
+OUR ResNeXt-101 69.9 45.7 17.1(+1.5)  50.6(+1.0)
cRT ResNeXt-101 66.2 50.4 30.8 53.3
+OUR  ResNeXt-101 664 517  32.6(+18) 54.4(+1.1)
LWS ResNeXt-101 65.7 514 34.7 54.0
+OUR ResNeXt-101 66,0  52.0  36.3(+1.6) 54.8(+0.8)
ResLT ResNeXt-101 63.3 53.3 40.3 55.1
+OUR ResNeXt-101 638 541  417(+1.4) 56.0(+0.9)

methods, with CE+OUR outperforming CE by 1.2% overall when
ResNet-18 is used as the backbone network. Consistent with Table 2,
OUR has the most significant performance in tail classes. For exam-
ple, when ResNet-10 is used as the backbone, CE+OUR outperforms
CE by 2.4% on the tail subset. When ResNeXt-101-32x4d is adopted
as the backbone, cRT+OUR outperforms cRT by 1.8% on the tail
subset. The evaluation of various backbones solidly demonstrates
that our method can work in a wide range of scenarios.

4.6 CONCLUSION

This work finds and defines the long-tail phenomenon of model ro-
bustness in data imbalance scenarios and proposes a corresponding
calculation of the imbalance factor (i.e., RIF). Then, we propose the
orthogonal uncertainty representation (OUR) of features to mitigate
the model bias on data manifolds and noisy data manifolds. Also,
an end-to-end training scheme is proposed for efficient and fast
application of OUR. Although our approach strongly mitigates the
degree of imbalance in model robustness, it still needs to be im-
proved. In the future, we hope more work will focus on the long-tail
phenomenon of model robustness to make the model more robust
in data imbalance scenarios.
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Figure 6: OUR alleviates the imbalance of model robustness.

L denotes the distance between the noisy data manifold and
the data manifold.
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A OUR MITIGATES THE LONG TAIL OF
MODEL ROBUSTNESS

To visualize the improvement effect of OUR on the long-tailed
phenomenon of robustness, we constructed multiple noisy data
manifolds corresponding to the training data of CIFAR-10-LT (IF
= 100), and then calculate the values of RIF (Definition 2) before
and after using OUR for CE, LDAM-DRW, GCL, and ResLT. Ex-
perimental results are illustrated in Fig.6. The imbalance degree
RIF of model robustness is significantly reduced by adopting OUR
to improve multiple methods, and the ability of OPeN to mitigate
the long tailed phenomenon of robustness is between the original
method and OUR. When L is small, the improvement effect of OPeN
on RIF is close to OUR, but as L increases, the effect of OPeN be-
comes weak. This may be due to the fact that OPEN is based on
pure noise and its randomness of direction leads to the inability
to generate noisy data manifolds stably at long distances, which
limits the performance.
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