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ABSTRACT
The objective of the sound source localization task is to enable
machines to detect the location of sound-making objects within
a visual scene. While the audio modality provides spatial cues to
locate the sound source, existing approaches only use audio as an
auxiliary role to compare spatial regions of the visual modality. Hu-
mans, on the other hand, utilize both audio and visual modalities
as spatial cues to locate sound sources. In this paper, we propose
an audio-visual spatial integration network that integrates spatial
cues from both modalities to mimic human behavior when detect-
ing sound-making objects. Additionally, we introduce a recursive
attention network to mimic human behavior of iterative focusing
on objects, resulting in more accurate attention regions. To effec-
tively encode spatial information from both modalities, we propose
audio-visual pair matching loss and spatial region alignment loss.
By utilizing the spatial cues of audio-visual modalities and recur-
sively focusing objects, our method can perform more robust sound
source localization. Comprehensive experimental results on the
Flickr SoundNet and VGG-Sound Source datasets demonstrate the
superiority of our proposed method over existing approaches. Our
code is available at: https://github.com/VisualAIKHU/SIRA-SSL.
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Figure 1: Conceptual comparison between (a) existing meth-
ods (red) and (b) the proposed method (blue). The existing
methods use the spatial information of visual modality as
the primary modality to estimate region of sound-making
objects (M𝑣). We observe that the audio modality itself also
contains spatial information for estimating regions of the
sound-making object (M𝑎). In our work, we try to integrate
the spatial knowledge of the audio-visual modalities (M𝑎𝑣)
for more accurate sound source localization.

1 INTRODUCTION
Sound source localization aims to identify the location of a sounding
object within a visual scene [49]. This task is similar to the innate
ability of humans to find the location by correlating sounds heard
with their ears and scenes seen with their eyes. Because of this
property, sound source localization has a wide range of applications,
such as multimodal robotics [30, 37], sound source separation [8],
and indoor positioning [3].

Since the sound source localization task utilizes multimodal
information (i.e., audio-visual), it is essential to consider how to
effectively combine the different two modal information for more
accurate localization. In addition, while audio-visual data can be
obtained in abundance, manually annotating object locations (e.g.,
bounding boxes or segmentation masks) is time-consuming and
labor-intensive. To address the two issues, several self-supervised
approaches [9, 15, 49, 51, 60, 63] have been proposed. Senocak et al.
[49] proposed the attention mechanism with unsupervised learning
to match the audio-visual information. Chen et al. [9] introduced
a network to explicitly mine the hard negative locations from the
foreground locations by using sound information. Xuan et al. [60]
proposed a proposal-based method that focuses on the region inside
the bounding box of each object based on the given sound. In
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[15], the optical flow information was additionally incorporated to
effectively combine the audio-visual modalities.

However, the above-mentioned methods have in common that,
as shown in Figure 1(a), they utilize the audio modality only as an
auxiliary role (red) in comparing whether each grid region of the
visual modality corresponds to the area of the sounding object. In
fact, humans also have the ability to detect the location of an object
just by hearing the sound. For example, even when our eyes are
closed, we can still perceive the location of a car making a sound
by paying our attention to the corresponding spatial area. This is
because the spatial information can be inferred by relying on cues
such as differences in arrival time, loudness, and spectral content of
the sound [18, 42, 50]. As shown in Figure 1(b), we observe that the
audio modal itself also contains valuable spatial cues for inferring
the sound-making objects.

Moreover, according to [5, 26, 44], when humans receive both
visual and auditory information, they naturally generate a region
of interest (ROI) in each modality. These ROIs are then integrated
to form a region of attention, which is an indicator of where to
focus based on the combined audio-visual information. After fo-
cusing the attention region and eliminating the unnecessary areas,
humans identify the sound-making object by repeatedly engaging
in a recursive recognition process [25, 41]. By doing so, we can
make more accurate predictions. This cognitive process enables hu-
mans to effectively utilize visual and auditory information, leading
to more accurate and comprehensive understanding of the world
around them.

In this paper, based on our aforementioned motivations, we pro-
pose a novel sound source localization framework that mimics the
above-mentioned two cognitive psychological perspectives of hu-
mans (i.e., potential of spatial cues in audio modality and the ability
to recognize sound-making objects in a recursive manner). Our
framework consists of two stages. First, we propose an audio-visual
spatial integration network that integrates spatial knowledge from
both audio-visual modalities to produce an integrated localization
map. The aim of generating the integrated localization map is to
contain rich spatial information about the sound-making objects.
Second, we introduce a recursive attention network to mimic the
human ability to recognize the objects in a recursive manner. Based
on the integrated localization map, the unnecessary regions of the
input image are eliminated and attentive input image is generated.
Consequently, with the attentive input image, more precise local-
ization of the sound-making object is possible in our recursive
attention network. In addition, within the recursive attention net-
work, we devise an audio-visual pair matching loss to guide the
feature representation of each single modality (audio and visual)
to resemble that of the attentive input image. By doing so, the fea-
tures of both modalities can embed more precise spatial knowledge.
Moreover, although the spatial knowledge of the audio modality
contains valuable information, it may be relatively less precise than
those of the visual modality. To address this issue, we introduce a
spatial region alignment loss to guide the spatial representation of
the audio modality to resemble that of the attentive input image.
As a result, the feature representations of the audio modality are
significantly enhanced, leading to a more accurate final localization
map generation.

To sum up, the major contributions of this paper are summarized
as follows:

• We introduce audio-visual spatial integration network that
exploits the spatial knowledge of audio-visual modalities. In
addition, we propose recursive attention network to refine
the localization map in a recursive manner. To the best of
our knowledge, it is the first work that considers the spatial
knowledge of audio modality for sound source localization.

• To guide the feature representation of the single modality,
we propose audio-visual pair matching loss. Also, to enhance
spatial knowledge of the audiomodality, we introduce spatial
region alignment loss to resemble that of the attentive image.

• Comprehensive quantitative and qualitative experimental
results on Flickr-SoundNet and VGG-Sound Source datasets
validate the effectiveness of the proposed framework.

2 RELATEDWORK
2.1 Sound Source Localization
Sound source localization aims to estimate the sound source lo-
cation using visual scenes. It requires an effective combination of
visual and audio data, and various algorithms have been developed
over the years to optimize this multimodal integration for accurate
localization [1, 9, 15, 22, 46, 49, 51, 60, 63].

One such approach is the use of attention mechanisms, which
allow the network to selectively focus on relevant parts of the input
data. In [49], Senocak et al. propose a sound localization network
that incorporates an attention mechanism to focus on relevant
parts of the visual modality and audio modality, resulting in more
accurate sound source localization. In [9], Chen et al. introduce
tri-maps to incorporate background mining techniques for identify-
ing positive correlation region, no correlation region (background),
and ignoring region to avoid uncertain areas in the visual scene.
They utilize audio-visual pairs to create a tri-map highlighting posi-
tive/negative regions. In [60], Xuan et al. adopt the selective search
[57] to utilize the proposal-based paradigm. Since the proposal re-
gion contains information of sound-making objects, finding the
candidate objects firstly rather than the location of the sound can be
superior. In [15], Fedorishin et al., assumed that most of the sound
sources in visual scenes will be moving objects. Therefore, they
adopt the optical flow algorithm in the visual modality to achieve
more effective sound source localization.

In many studies on sound source localization task, the visual
modality is usually considered to be a crucial modality (e.g., selective
search, optical flow, etc.). However, the audio modality is only
utilized as an auxiliary role, primarily being used for similarity
measurements (e.g., cosine similarity) to generate the attention
region of the visual modality. Thus, we claim that the existing
methods tend to give weight to visual modality rather than audio
modality. However, humans use both eyes and ears as important
factors to judge situations in the natural environment. Therefore,
we propose a sound source localization framework that uses audio
modality as well as visual modality for acquire more abundant
spatial knowledge of the audio-visual modalities.
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Figure 2: Network configuration of the proposed sound localization framework. ⊕ and ⊗ indicate element-wise addition and
element-wise multiplication, respectively. Note that final localization map M𝑓 𝑖𝑛𝑎𝑙 is generated by combining M𝑣 , M𝑎 , and M𝑎𝑡𝑡

𝑣 .

2.2 Recursive Deep Learning Framework in
Computer Vision

Recursive deep learning frameworks [2, 24, 29, 35, 52, 54] have
become increasingly popular for their ability to handle complex
dependencies in sequential or structured data. Many works have
adopted a recursive approach and applied it to the various computer
vision tasks to improve their performance, such as object detection
[11, 27, 36] and recognition [6, 7, 53], image super-resolution [28, 56,
58], visual tracking [17, 23], and semantic segmentation [45, 61, 62].

For example, in the object detection, a recursive model with the
multistage framework is proposed [36]. This approach uses an EM-
like group recursive learning technique to iteratively refine object
proposals and improve the spatial configuration of object detection.
Socher et al. [53] proposed a model that combines convolutional
and recursive neural networks to detect object in the RGB-D images.
In addition, for image super-resolution, Kim et al. [28] proposed
the deeply-recursive convolutional network (DRCN) to improve
the feature representation without adding more convolution pa-
rameters. To overcome the challenges of learning a DRCN, they
introduce recursive supervision and skip connection.

In the visual object tracking, Gao et al. [17] utilized recursive
least-squares estimation (LSE) for online learning. By integrating
fully-connected layers with LSE and employing an enhanced mini-
batch stochastic gradient descent algorithm, they enhanced the per-
formance of visual object tracking. For semantic segmentation and
depth estimation tasks, Zhang et al. [62] introduced the Joint Task-
Recursive Learning (TRL) framework. It uses a Task-Attentional
Module (TAM) to recursively refine the results.

For designing our method, we utilize the recursively refining
idea to mimic the behavior of humans that repeatedly focus sound-
making object for more accurate sound source localization. By
recursively refining a model, the proposed method can improve
the attention region of the sound-making object, by eliminating
the unnecessary regions. As a result, our method achieves the
outstanding performance over the state-of-the-art sound source
localization works.

3 PROPOSED METHOD
3.1 Overall Architecture
The overall architecture of our sound source localization framework
is depicted in Figure 2. Our framework consists of two stages: (1)
audio-visual spatial integration network and (2) recursive attention
network. First, in the audio-visual spatial integration network, in-
put image set 𝐼𝑣 ∈ R𝑁×𝑊𝑣×𝐻𝑣×3 (𝑁 indicates the number of batch,
𝑊𝑣 and 𝐻𝑣 denote width and height of 𝐼𝑣 , respectively) and the
corresponding audio spectrogram set 𝐼𝑎 ∈ R𝑁×𝑊𝑎×𝐻𝑎×1 (𝑊𝑎 and
𝐻𝑎 denote width and height of 𝐼𝑎 , respectively) pass through each
modal encoder (i.e., visual encoder and audio encoder) to generate
the spatial features F𝑣 and F𝑎 , respectively. Then, image attentive
localization mapM𝑣 and audio attentive localization mapM𝑎 are
generated based on F𝑣 and F𝑎 through the attention module. M𝑣

andM𝑎 are attention maps that focus on the location of a sound-
ing object based on the spatial features encoded in each modality.
M𝑣 andM𝑎 are integrated to generate the audio-visual integrated
localization map M𝑎𝑣 .
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Second, the recursive attention network takes the resizedM𝑎𝑣

and multiplies it with 𝐼𝑣 to generate attentive input image 𝐼𝑎𝑡𝑡𝑣 . 𝐼𝑎𝑡𝑡𝑣
is passed through the visual encoder to generate visual attention
feature F𝑎𝑡𝑡𝑣 . Note that the weight parameters of the visual encoder
in the audio-visual spatial integration network and recursive at-
tention network are shared. With F𝑎𝑡𝑡𝑣 and 𝐼𝑎 , the localization map
M𝑎𝑡𝑡
𝑣 is generated. More details are in the following subsections.

3.2 Audio-Visual Spatial Integration Network
When humans see a visual scene with their eyes while listening
to a sounding object, they can acquire spatial cue information not
only through vision but also through sound [18, 50]. We mimic the
behaviors of humans for more accurate localizing sound source
objects. To this end, we propose an audio-visual spatial integration
network to exploit the spatial cues of both visual modality and
audio modalities.

As shown in Figure 2, our audio-visual spatial integration net-
work consists of two streams: (1) visual stream and (2) audio stream.
In the visual stream, the visual spatial feature F𝑣 ∈ R𝑁×𝑤×ℎ×𝑐 (𝑤 ,
ℎ, and 𝑐 are the width, height, and channel number) is mainly used
to localize sound-making object. Specifically, the audio spatial fea-
ture F𝑎 ∈ R𝑁×𝑤×ℎ×𝑐 is subject to a global average pooling (GAP)
operation to generate 𝑙𝑎 ∈ R𝑁×𝑐 . Then, F𝑣 and 𝑙𝑎 are compared
using a similarity calculation in the attention module to generate
S𝑣 = {𝑆𝑣𝑖 𝑗 }𝑖=1,...,ℎ,𝑗=1,...,𝑤 ∈ R𝑁×𝑤×ℎ , which is measured as:

𝑆𝑣𝑖 𝑗 =
𝑆𝑖𝑚(F𝑣𝑖 𝑗 , 𝑙𝑎)∑ℎ

𝑖=1
∑𝑤
𝑗=1 𝑆𝑖𝑚(F𝑣𝑖 𝑗 , 𝑙𝑎)

, 𝑆𝑖𝑚(F𝑣𝑖 𝑗 , 𝑙𝑎) =
F𝑣𝑖 𝑗 · 𝑙𝑎

| |F𝑣𝑖 𝑗 | | | |𝑙𝑎 | |
. (1)

Then, S𝑣 is normalized by the softmax to generate the image atten-
tive localization mapM𝑣 ∈ R𝑁×𝑤×ℎ .

In the audio stream, the audio spatial feature F𝑎 ∈ R𝑁×𝑤×ℎ×𝑐 is
mainly used to localize sound-making objects. However, while the
audio modality contains the spatial cues for localizing objects, it
generally lacks the levels of detail compared to the visual modality.
For example, if we hear an object sound with our eyes closed, we
can roughly estimate its location, but it is typically less precise than
if we were to open our eyes and visually locate the object. Thus,
we transfer the spatial knowledge of F𝑣 to F𝑎 while maintaining
the area that F𝑎 focuses on by generating F𝑎𝑣 . F𝑎𝑣 is obtained as:

F𝑎𝑣 = F𝑣 ◦ F̄𝑎, (2)

where F̄𝑎 denotes the normalized version of F𝑎 (min-max normal-
ization is conducted with the value between 0 and 1), and ◦ indicates
the element-wise multiplication.

Next, similar to Eq. (1), the S𝑎𝑣 = {𝑆𝑎𝑣𝑖 𝑗 }𝑖=1,...,ℎ,𝑗=1,...,𝑤 ∈ R𝑁×𝑤×ℎ

is obtained as:

𝑆𝑎𝑣𝑖 𝑗 =
𝑆𝑖𝑚(F𝑎𝑣𝑖 𝑗 , 𝑙𝑎)∑ℎ

𝑖=1
∑𝑤
𝑗=1 𝑆𝑖𝑚(F𝑎𝑣𝑖 𝑗 , 𝑙𝑎)

, 𝑆𝑖𝑚(F𝑎𝑣𝑖 𝑗 , 𝑙𝑎) =
F𝑎𝑣𝑖 𝑗 · 𝑙𝑎

| |F𝑎𝑣𝑖 𝑗 | | | |𝑙𝑎 | |
.

(3)
S𝑎𝑣 is also normalized by the softmax to make the audio attentive
localization map M𝑎 . The two localization maps, M𝑣 and M𝑎 , gen-
erated by the proposed audio-visual spatial integration network,
provide information about the spatial regions in each modality that
are being focused on to localize the sounding objects. Therefore,
we integrate the knowledge of the audio-visual modalities to make

M𝑎𝑣 ∈ R𝑁×𝑤×ℎ , which can be obtained as follows:

M𝑎𝑣 =
M𝑎 +M𝑣

2
. (4)

SinceM𝑎𝑣 contains the spatial information of both audio and visual
modalities, it provides a more precise localization map compared
to using either modality alone. By combining the spatial cues from
both modalities, the proposed method is able to effectively miti-
gate the limitations of each modality and produce a more accurate
localization result.

3.3 Recursive Attention Network
Given the visual and audio modal information, humans can in-
tegrate attention regions across different modalities, such as vi-
sual and auditory information, to concentrate on a specific region
[13, 14, 55, 59]. It is called multisensory integration. By doing so,
humans can concentrate their attention on specific regions of the
environment that correspond to the presented sensory information.
This allows them to more effectively process and respond to stimuli
from both modalities [16, 34, 43].

Therefore, we build the recursive attention network to mimic
the above-mentioned behaviors of humans. The recursive attention
network utilizes the audio-visual integrated localization map M𝑎𝑣

derived from the audio-visual spatial integration network to pro-
duce an attentive input image 𝐼𝑎𝑡𝑡𝑣 . Specifically, M𝑎𝑣 ∈ R𝑁×𝑤×ℎ

is resized to be M𝑟
𝑎𝑣 ∈ R𝑁×𝑊𝑣×𝐻𝑣 . To the next, M𝑟

𝑎𝑣 and 𝐼𝑣 are
conducted element-wise multiplication to focus the attention re-
gion of the image, i.e., 𝐼𝑎𝑡𝑡𝑣 . We feed this attentive input image 𝐼𝑎𝑡𝑡𝑣
into the visual encoder to encode visual attention feature 𝐹𝑎𝑡𝑡𝑣 . The
attention module calculates the similarity between 𝐹𝑎𝑡𝑡𝑣 and 𝑙𝑎 to
generate S𝑎𝑡𝑡𝑣 = {𝑆𝑎𝑡𝑡𝑣𝑖 𝑗 }𝑖=1,...,ℎ,𝑗=1,...,𝑤 ∈ R𝑁×𝑤×ℎ . Note that S𝑎𝑡𝑡𝑣 is
calculated similarly to Eq. (1) and Eq. (3). Also, S𝑎𝑡𝑡𝑣 is normalized
by the softmax to make the localization mapM𝑎𝑡𝑡

𝑣 .
Finally, we combine the M𝑣 , M𝑎 , and M𝑎𝑡𝑡

𝑣 to generate the final
localization map M𝑓 𝑖𝑛𝑎𝑙 , which can be represented as:

M𝑓 𝑖𝑛𝑎𝑙 = 𝑤1M𝑣 +𝑤2M𝑎 +𝑤3M𝑎𝑡𝑡
𝑣 , (5)

where𝑤1,𝑤2, and𝑤3 are the hyper-parameters that indicate the
importance of each modality in contributing to the M𝑓 𝑖𝑛𝑎𝑙 . M𝑎

and M𝑣 contain the spatial cues of each modality (i.e., audio and
visual modalities), andM𝑎𝑡𝑡

𝑣 contains the spatial cues of the more
attentive region from the audio-visual modalities. Therefore, by
combiningM𝑎 andM𝑣 , the spatial cues from both modalities can be
obtained. Additionally, by combiningM𝑎𝑡𝑡

𝑣 , more interested regions
can be obtained. The recursive combination of the localization maps
can utilize abundant spatial information, leading to more accurate
sound source localization.

3.4 Audio-Visual Pair Matching Loss
Humans can make more accurate predictions by removing unnec-
essary areas by focusing attention through their eyes and ears.
Similarly, in our method, the attentive input image 𝐼𝑎𝑡𝑡𝑣 concen-
trates the area that is generated by the audio-visual modality in
the audio-visual spatial integration network. This enables us to
localize the sounding objects more accurately. This is similar to the
fact that the two-stage detectors [19, 31, 32, 38, 48], which first ex-
tract the region of interest (ROI) for more accurate object detection,
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generally outperform the one-stage object detectors [39, 40, 47].
Therefore, compared toM𝑣 ,M𝑎 andM𝑎𝑡𝑡

𝑣 ,M𝑎𝑡𝑡
𝑣 usually contains

more meaningful regions thanM𝑣 andM𝑎 . As a result, we propose
an audio-visual pair matching loss to guide the feature represen-
tations of the visual modality F𝑣 and the audio modality F𝑎 to be
similar to that of the visual attention feature F𝑎𝑡𝑡𝑣 .

To this end, we first conduct global average pooling (GAP) of
F𝑎𝑡𝑡𝑣 , F𝑣 , and F𝑎 and normalize them to generate 𝑙𝑎𝑡𝑡𝑣 , 𝑙𝑣 , and 𝑙𝑎 ,
respectively. Next, we adopt the triplet loss [21] for the audio-visual
pair matching loss L𝑎𝑣𝑝𝑚 , which can be represented as:

𝑇 (𝑙𝑎𝑡𝑡𝑣𝑖 , 𝑙𝑎𝑖 , 𝑙𝑎 𝑗 ) = 𝐷 (𝑙𝑎𝑡𝑡𝑣𝑖 , 𝑙𝑎𝑖 ) +𝑚𝑎𝑥 (𝛿 − 𝐷 (𝑙𝑎𝑡𝑡𝑣𝑖 , 𝑙𝑎 𝑗 ), 0),
𝑇 (𝑙𝑎𝑡𝑡𝑣𝑖 , 𝑙𝑣𝑖 , 𝑙𝑣𝑗 ) = 𝐷 (𝑙𝑎𝑡𝑡𝑣𝑖 , 𝑙𝑣𝑖 ) +𝑚𝑎𝑥 (𝛿 − 𝐷 (𝑙𝑎𝑡𝑡𝑣𝑖 , 𝑙𝑣𝑗 ), 0),

L𝑎𝑣𝑝𝑚 =
1

𝑁 (𝑁 − 1)

𝑁∑︁
𝑖=1

𝑁∑︁
𝑗=1( 𝑗≠𝑖 )

𝑇 (𝑙𝑎𝑡𝑡𝑣𝑖 , 𝑙𝑎𝑖 , 𝑙𝑎 𝑗 ) +𝑇 (𝑙𝑎𝑡𝑡𝑣𝑖 , 𝑙𝑣𝑖 , 𝑙𝑣𝑗 ),

(6)
where 𝐷 (𝛼, 𝛽) = | | (𝛼 − 𝛽)/𝜏 | |22 denotes the L2 norm to calculate
the distance between two features with temperature parameter 𝜏 ,
𝑙𝑎𝑡𝑡𝑣𝑖 , 𝑙𝑎𝑖 , and 𝑙𝑎 𝑗 are the features of anchor, positive, and negative
samples, respectively, and 𝛿 is the margin.

The aim of 𝑇 (𝑙𝑎𝑡𝑡𝑣𝑖 , 𝑙𝑎𝑖 , 𝑙𝑎 𝑗 ) and 𝑇 (𝑙𝑎𝑡𝑡𝑣𝑖 , 𝑙𝑣𝑖 , 𝑙𝑣𝑗 ) is to make the an-
chor (𝑙𝑎𝑡𝑡𝑣𝑖 ) and the positive pair (𝑙𝑎𝑖 , 𝑙𝑣𝑖 ) similar while pushing the
negative pair (𝑙𝑎 𝑗 , 𝑙𝑣𝑗 ) apart. By doing so, L𝑎𝑣𝑝𝑚 can guide the
feature representation of F𝑣 and F𝑎 to be similar that of F𝑎𝑡𝑡𝑣 . As a
result, the feature representation of F𝑣 and F𝑎 improve the perfor-
mance of sound source localization (please see Section 4.5).

3.5 Spatial Region Alignment Loss
Although we can infer spatial information using sound, it is rela-
tively less accurate than visual information. Therefore, we introduce
a spatial region alignment loss in order to guide the spatial regions
that audio feature F𝑎 focus on to be similar to that of the F𝑎𝑡𝑡𝑣 . To
this end, we add all 𝑐 channels of F𝑎 and F𝑎𝑡𝑡𝑣 to normalize them to
generate F̂𝑎 ∈ R𝑁×𝑤×ℎ and F̂𝑎𝑡𝑡𝑣 ∈ R𝑁×𝑤×ℎ . After that, they are
flattened to conduct softmax function to generate Ĝ𝑎 ∈ R𝑁×𝑤ℎ

and Ĝ𝑎𝑡𝑡𝑣 ∈ R𝑁×𝑤ℎ , respectively. Based on the Ĝ𝑎𝑡𝑡𝑣 and Ĝ𝑎 , the
spatial region alignment loss L𝑠𝑟𝑎 is represented as follows:

L𝑠𝑟𝑎 =
1
𝑁

𝑁∑︁
𝑖=1

𝐷𝐾𝐿

(
Ĝ𝑎𝑡𝑡𝑣𝑖 ∥Ĝ𝑎𝑖

)
︸               ︷︷               ︸

audio to attentive visual

, (7)

where 𝐷𝐾𝐿 (·) indicates the Kullback-Leibler (KL) divergence. L𝑠𝑟𝑎
makes the spatial representation of F𝑎 to be similar to that of F𝑎𝑡𝑡𝑣
in the training phase. By doing so, when generating F𝑎 , our method
can effectively estimate the spatial regions by hearing sounds.

3.6 Total Loss Function
To train our method, the total loss function is composed as follows:

L𝑇𝑜𝑡𝑎𝑙 = L𝑆𝑆𝐿 + 𝜆1L𝑎𝑣𝑝𝑚 + 𝜆2L𝑠𝑟𝑎, (8)

where L𝑆𝑆𝐿 is the unsupervised loss function of the sound source
localization that tries to impose the audio-visual feature pairs are
close to each other, following [9], 𝜆1 and 𝜆2 denote the balanc-
ing parameter. Through L𝑇𝑜𝑡𝑎𝑙 , our method can perform effective
sound source localization by leveraging the spatial knowledge of

Table 1: Experimental results on Flickr test set when the
training sets are Flickr10k and Flickr144k, respectively.

Method Training Set cIoU0.5↑ AUC↑
Attention [49] (CVPR’18)

Flickr10k

0.436 0.449
DMC [22] (CVPR’19) 0.414 0.450

CoarseToFine [46] (ECCV’20) 0.522 0.496
AVObject [1] (ECCV’20) 0.546 0.504

LVS [9] (CVPR’21) 0.582 0.525
Zhou et al. [63] (WACV’23) 0.631 0.551
Shi et al. [51] (WACV’22) 0.734 0.576
SSPL [60] (CVPR’22) 0.743 0.587
HTF [15] (WACV’23) 0.860 0.634
Proposed Method 0.876 0.641

Attention [49] (CVPR’18)

Flickr144k

0.660 0.558
DMC [22] (CVPR’19) 0.671 0.568
LVS [9] (CVPR’21) 0.699 0.573
SSPL [60] (CVPR’22) 0.759 0.610
HTF [15] (WACV’23) 0.865 0.639
Proposed Method 0.881 0.652

the audio-visual modality and combining all attention maps in a
recursive manner.

4 EXPERIMENTS
4.1 Datasets and Evaluation Metrics
Flickr-SoundNet. Flickr-SoundNet [4] consists more than 2 mil-
lion videos from Flickr. In the training phase, to enable direct com-
parison with prior research, we train our models with two random
subsets of 10k and 144k image-audio pairs. In the inference phase,
we use Flickr-SoundNet test set. It contains 250 annotated pairs with
labeled bounding box, manually annotated by the annotators [9, 49].

VGG-Sound Source. VGG-Sound dataset [10] consists of 200k
video clips from 300 different sound categories. Following [15], we
use a training dataset with 10k and 144k image-audio pairs. For
evaluation, we use VGG-Sound Source (VGG-SS) dataset [9] with
5,000 annotated image-audio pairs from 220 classes. Compared with
Flickr-SoundNet, which contains 50 audio categories, the VGG-SS
dataset set offers a larger number of sound sources. Therefore, it
contains more challenging scenario for sound source localization.

Evaluation Metrics. To compare our method with the existing
methods, we adopt consensus Intersection over Union (cIoU) [49]
and Area Under Curve (AUC) as evaluation metrics, which are the
widely adopted metrics for sound source localization task [9, 15, 49].
For calculating cIoU, the IoU threshold is fixed to be 0.5 (i.e., cIoU0.5),
following [9, 15, 49]. Note that, in our experiments, we additionally
introduce a mcIoU metric to measure the performance by varying
the IoU threshold to 0.5:0.05:0.95. More details are in Section 4.6.

4.2 Implementation Details
For both datasets, we resize the input image for the visual modality
to be𝑊𝑣 = 224, 𝐻𝑣 = 224. It is extracted from the middle frame of
the 3-seconds video clips. For audio modality input, we resample
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Table 2: Experimental results on VGG-SS test set when the
training sets are VGG-Sound10k and VGG-Sound144k, re-
spectively.

Method Training Set cIoU0.5↑AUC↑
LVS [9] (CVPR’21)

VGG-Sound10k

0.303 0.364
SSPL [60] (CVPR’22) 0.314 0.369

Zhou et al. [63] (WACV’23) 0.350 0.376
HTF [15] (WACV’23) 0.393 0.398
Proposed Method 0.403 0.403
LVS [9] (CVPR’21)

VGG-Sound144k
0.344 0.382

SSPL [60] (CVPR’22) 0.339 0.380
HTF [15] (WACV’23) 0.394 0.400
Proposed Method 0.406 0.405

the 3-seconds raw audio signal to 16kHz and transform it into a log-
scale spectrogram, yielding a final shape𝑊𝑎 = 257 and𝐻𝑎 = 276. At
this time, to enable a direct comparison with visual modal features,
we resize F𝑎 to be 7 × 7 × 512 (𝑤 = 7, ℎ = 7, and 𝑐 = 512) using
bilinear interpolation.

Following [9], we employ ResNet-18 [20] for both the visual and
audio feature backbones to construct our baseline. Since the number
of sound spectrogram channel is 1. we modify the input channel
of ResNet-18 [20] conv1 from 3 to 1. We use the ImageNet [12]
pretrained for the visual encoder.When our baseline is HTF [15], we
additionally consider the optical flow [15] for the attention module
(more details are in Section 4.6). Our sound source localization
framework is trained using the Adam optimizer [33] with a learning
rate of 10−4 and a batch size of 128. Following [15], we train our
model for 100 epochs for Flickr and VGG-Sound datasets. We use
4 synchronized RTX 3090 GPUs. The weights for𝑀𝑓 𝑖𝑛𝑎𝑙 in Eq. (5)
are set as𝑤1 = 𝑤2 = 𝑤3 = 1. Also, we use 𝜆1 = 1, 𝜆2 = 10, 𝜏 = 0.03,
and 𝛿 = 25 for our proposed loss functions (L𝑎𝑣𝑝𝑚 and L𝑠𝑟𝑎).

4.3 Performance Comparison
We conduct the experiments to compare the effectiveness of our
proposedmethodwith the state-of-the-art sound source localization
works [1, 9, 15, 22, 46, 49, 51, 60, 63]. Table 1 shows the performance
of our methodwith the existingmethods on Flickr-SoundNet.When
the training set is Flickr10k, our method achieves 0.876 and 0.641
for cIoU0.5 and AUC, respectively. Specifically, when compared to
the HTF [15] which shows the highest performance among the
existing methods, our method is 1.6% higher for cIoU and 0.7%
higher for AUC metrices. Similar tendency is observed when the
training set is Flickr144k training set. The experimental results on
Table 1 demonstrate that our approach that considering the spatial
knowledge of the audio-visual modalities and recursively refining
the localization map leads to better localization performance.

The experimental results on the VGG-Sound dataset are shown
in Table 2. For the VGG-Sound Source test set, our method achieved
improvements of 1.0% cIoU and 0.5% AUC in the VGG-Sound10k
dataset, and 1.2% cIoU and 0.5% AUC in the VGG-Sound144k dataset
over the HTF [15]. The results validate that ourmethod outperforms
existing methods and achieves a state-of-the-art performance over
the existing sound source localization works.

Table 3: Effect of the proposed audio-visual pair matching
loss L𝑎𝑣𝑝𝑚 and spatial region alignment loss L𝑠𝑟𝑎 on Flickr
test set, where models are trained on the Flickr144k.

Method L𝑎𝑣𝑝𝑚 L𝑠𝑟𝑎 cIoU0.5↑ AUC↑
Baseline - - 0.865 0.642

Proposed
Method

✓ - 0.876 0.643
- ✓ 0.871 0.648
✓ ✓ 0.881 0.652

Table 4: Experimental results on Flickr test set according
to the hyper-parameters𝑤1,𝑤2, and𝑤3 for M𝑓 𝑖𝑛𝑎𝑙 in Eq. (5),
where models are trained on the Flickr144k.

𝑤1 (M𝑣) 𝑤2 (M𝑎) 𝑤3 (M𝑎𝑡𝑡
𝑣 ) cIoU0.5↑ AUC↑

1 1 4 0.866 0.645
1 1 2 0.875 0.649
1 1 1 0.881 0.652
1 2 1 0.871 0.639
2 1 1 0.876 0.650
2 2 1 0.871 0.643

4.4 Ablation Study
We conduct various ablation studies to investigate (1) effect of the
proposed losses (i.e., L𝑎𝑣𝑝𝑚 and L𝑠𝑟𝑎), and (2) variation of the
hyper-parameter𝑤1,𝑤2,𝑤3 for𝑀𝑓 𝑖𝑛𝑎𝑙 . All the ablation studies are
conducted using Flickr144k training set and Flickr test set.

Effect of the Proposed Losses. We measure the performance
by changing two types of the proposed losses L𝑎𝑣𝑝𝑚 and L𝑠𝑟𝑎 .
The results are shown in Table 3. When each loss is considered,
our method shows the improved performance agains the baseline
in which those losses are not considered. When all the proposed
losses are taken into account, we show the highest performance.
By incorporating the proposed losses in the training phase, our
method is able to learn more robust and discriminative features
that are better suited for the sound source localization task.

Variation of w1, w2, w3 We conduct additional ablation study to
investigate the effect of our method to the parameters𝑤1,𝑤2, and
𝑤3 as described in Section 3.3. The results of Table 4 show that
the optimal results are obtained when𝑤1,𝑤2, and𝑤3 are set to 1.
However, it’s important to note that our method still outperforms
existing methods even with different values for these parameters.
These results suggest that the model is robust to parameter changes,
but there may be an optimal combination that maximizes its effec-
tiveness. In our future work, we are planning to build a framework
that considers weight of the localization maps.

4.5 Visualization Results
We compare our method with the current state-of-the-art approach,
HTF [15], by visualizing their sound source localization results on
the Flickr-SoundNet and VGG-SS test set. The results are shown in
Figure 3. Through the visualization results, our method can accu-
rately localize the sound-making objects (GT annotation indicates
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(a) Flickr-Soudnet Test Set (b) VGG-SS Test Set

OursHTF OursGT AnnotationOriginal Image HTFGT AnnotationOriginal Image

Figure 3: Visualization results for both (a) Flickr-SoundNet test set and (b) VGG-SS test set. Each result is obtained from
models trained on the Flickr144k and VGG-Sound144k training sets. For the Flickr-SoundNet test set, annotation is created by
combining bounding boxes from different annotators.

𝑴𝑴𝒇𝒇𝒇𝒇𝒇𝒇𝒇𝒇𝒇𝒇GT Annotation 𝑴𝑴𝒇𝒇 𝑴𝑴𝒗𝒗
𝒇𝒇𝒂𝒂𝒂𝒂Original Image 𝑴𝑴𝒗𝒗

(a)

(b)

Figure 4: Visualization results of M𝑣 , M𝑎 , M𝑎𝑡𝑡
𝑣 , and the final localization map M𝑓 𝑖𝑛𝑎𝑙 of our method on (a) Flickr-SoundNet test

set and (b) VGG-SS test set.

the region of the sound-making objects). Since our method consid-
ers the spatial information of both audio and visual modalities and
recursively updates the localization map, more precise attention
maps are obtained.

Furthermore, Figure 4 shows visualization results of the various
localization maps M𝑣 , M𝑎 , M𝑎𝑡𝑡

𝑣 , and M𝑓 𝑖𝑛𝑎𝑙 of our method. The
visualization results show that considering audio-visual localiza-
tion map and recursively updating them contributes to𝑀𝑓 𝑖𝑛𝑎𝑙 for
concentrating on a more accurate location. By doing so, our method
shows the improving performance.

4.6 Discussions
CrossDataset Evaluation.To show the effectiveness of ourmethod
on the cross dataset environment, we train our model on the VGG-
Sound training set and evaluate it on the Flickr-SoundNet test set.
This cross-dataset evaluation enables us to assess the ability of
model to generalize and to check to new and diverse data sources.
The results of Table 5 show the results when the training sets
are VGG-Sound10k and VGG-Sound144k, respectively. The results
show that the performances of our method are significantly higher
than the existing methods. As a result, our model demonstrates
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Table 5: Experimental results on the cross-dataset evaluation.
Note that we trained the model on the VGG-Sound10k and
VGG-Sound144k and evaluated on the Flickr test set. ‘∗’ de-
notes our faithful reproduction of the method.

Method Training Set cIoU0.5↑AUC↑
LVS [9] (CVPR’21)

VGG-Sound10k

0.618 0.536
SSPL [60] (CVPR’22) 0.763 0.591

Zhou et al. [63] (WACV’23) 0.775 0.596
HTF [15]∗ (WACV’23) 0.842 0.628
Proposed Method 0.875 0.640
LVS [9] (CVPR’21)

VGG-Sound144k
0.719 0.582

SSPL [60] (CVPR’22) 0.767 0.605
HTF [15] (WACV’23) 0.848 0.640
Proposed Method 0.881 0.651

Table 6: Experimental results on Flickr test set with respect
to various sound source localization frameworks.

Method Training Set cIoU0.5↑ AUC↑
LVS [9] (CVPR’21) Flickr144k 0.699 0.573

Proposed Method (LVS) 0.718 0.577
HTF [15] (WACV’23) Flickr144k 0.865 0.639

Proposed Method (HTF) 0.881 0.652

Table 7: Experimental results on Flickr test set using mcIoU
metric.

Method Training Set cIoU0.5↑ mcIoU↑
LVS [9] (CVPR’21) Flickr144k 0.699 0.231

HTF [15] (WACV’23) 0.865 0.363
Proposed Method 0.881 0.381

the potential to demonstrate sufficient generalization capabilities
essential for real-world applications involving diverse data sources.

Generalization Ability of Our Method. In this subsection, we
conduct experiments to see the generalization ability of our method
by varying the baseline. To this end, we adopt the two baselines:
LVS [9] and HTF [15]. The results are shown in Table 6. All the
methods are trained with Flickr144k and evaluated on Flickr test
set. As shown in the table, when our baseline is LVS [9], we achieve
1.19% cIoU and 0.4% AUC improvement compared to the original
LVS. The results on HTF [15] also show a similar tendency. The
results indicate that our method has broader applicability and can
be integrated with various sound source localization frameworks.

Evaluation on the ProposedmcIoUMetric.Note that consensus
intersection over union (cIoU) [49] metric has been widely used for
comparing sound source localization methods. In this subsection,
we additionally introduce a new metric called mcIoU (mean cIoU)
to investigate the performance while varying the IoU threshold.
For calculating mcIoU metric, we take the average cIoU across IoU
threshold 0.5:0.05:0.95. The results are shown in Table 7. Compared
to the existing methods [9, 15], the performances of our method

Table 8: The comparisons of training time, inference time,
and the number of parameters.

Method Training (s) Inference (s) #params(per iter) (per image)
HTF [15] (WACV’23) 0.385 0.039 33.85M
Proposed Method 0.398 0.042 34.50M

consistently improved. The results demonstrate that the effective-
ness of our method considers spatial cues of audio modality and
performs sound source localization in a recursive manner.

Computational Costs. In this section, we compare training time,
inference time, and the number of parameters. It is shown in Table
8. We compare our method with HTF [15] which shows the highest
performance among the existing methods. Since our method adopts
the recursive method, the training time, inference time, and the
number of parameters of our method are slightly increased (3.38%,
7.69% and 1.92% for training, inference, and parameters, respec-
tively). Nevertheless, we claim that the increased times of training
and inference time and the number of parameters are marginal
compared to the HTF [15].

5 CONCLUSION
In this paper, we propose a novel sound source localization frame-
work that considers the inherent spatial information of the audio
modality as well as the visual modality for exploiting more abun-
dant spatial knowledge. To this end, our framework consists of two
stages: (1) audio-visual spatial integration network and (2) recursive
attention network. The audio-visual spatial integration network is
designed to incorporate the spatial information of the audio-visual
modalities. By focusing on the attention region generated by the
audio-visual spatial integration network, the recursive attention
network aims to perform more precise sound source localization.
At this time, we devise audio-visual pair matching loss and spa-
tial region alignment loss to effectively guide the features from
the audio-visual modalities to resemble the features of the atten-
tive information. We believe that our approach, integrating spatial
knowledge of audio-visual modalities and recursively refining the
results leads to more improved accuracy and it can be utilized in
various practical applications.
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Supplementary Material
This manuscript provides the additional results of the proposed

method. Section A shows our additional implementation details,
Section B indicates the additional experimental results to show
the effectiveness of the cross dataset evaluation and proposed two
modules (spatial integration and recursive attention), and Section
C shows the additional visualization results, respectively. Please
note that [PXX] indicates the reference in the main paper.

A ADDITIONAL IMPLEMENTATION DETAILS
As mentioned in the main paper, we adopt the ResNet-18[P20] as
the audio encoder. However, to match the input size, we adjusted
the input channel of the first convolutional network to 1 and the
output channel to 64, employing a kernel size of 7, stride 2, and
padding 3. In addition, we used the Adam optimizer for training,
with parameters (𝛽1, 𝛽2) = (0.9, 0.999), and a learning rate of 0.001.
These are standard values for Adam and provided stable training
dynamics in our experiments.

B ADDITIONAL EXPERIMENTS
Cross Dataset Evaluation (Train: Flickr, Test: VGG-SS). To fur-
ther validate the generalization ability of our method, we conducted
an experiment where we trained our model on the Flickr dataset
[P4] and evaluated it on the VGG-SS dataset [P9]. This is in con-
trast to our main paper, where we trained on the VGG-SS dataset
and evaluated it on the Flickr dataset. As depicted in Table 1, the
results demonstrate that our model still outperforms the HTF [P15],
which shows state-of-the-art performance. These results confirm
the ability of our method to generalize to new and diverse sources,
further supporting the robustness of our approach.

Performance of proposed two modules (spatial integration
and recursive attention). We conduct the additional ablation
study on Flicker144k [P4] and VGG-Sound144k [P9] datasets when
the proposed two modules (spatial integration and recursive atten-
tion) are considered or not. We compare the performances with two
state-of-the-art methods, SSPL [P60] and HTF [P15]. The results
are shown in Table 2. When the spatial integration network and
the recursive attention network are considered individually, our
method already exhibits improved performances compared to the
existing methods. It demonstrates that each module contributes to
the sound source localization task. Moreover, when the twomodules
are considered together, our method obtains further performance
improvement.

C ADDITIONAL VISUALIZATIONS
Sound Source Localization Result Comparisons of HTF [P15]
and Ours. We additionally present a comparison between our
method and HTF [P15] in sound source localization results. We
used the codes provided by the authors to obtain the HTF results,
which are presented in Figure 1. The fourth row of Figure 1(a) and
Figure 1(b) show that the HTF model failed to localize the sound-
making regions while our method was able to focus on them. The
results demonstrate that the proposed method, which considers the
spatial information of the audio-visual modalities and improves the

Table 1: Experimental results on the cross dataset evaluation.
Note that we trained the model on the Flickr10k [P4] and
Flickr144k [P4] and evaluated on the VGG-SS test set [P9]. ‘∗’
denotes our faithful reproduction of the method.

Method Training Set cIoU0.5↑ AUC↑
HTF [P15]∗ (WACV’23) Flickr10k 0.384 0.396
Proposed Method 0.396 0.400

HTF [P15]∗ (WACV’23) Flickr144k 0.385 0.396
Proposed Method 0.399 0.401

Table 2: Experiments result for performance comparison of
two modules. Note that ‘SI’ represents Spatial Integration,
and ‘RA’ represents Recursive Attention.

Method Training Set cIoU0.5↑ AUC↑
SSPL [P60] (CVPR’22)

Flickr144k

0.759 0.610
HTF [P15] (WACV’23) 0.865 0.639
Ours (w/ SI, w/o RA) 0.870 0.645
Ours (w/o SI, w/ RA) 0.870 0.649
Ours (w/ SI, w/ RA) 0.881 0.652
SSPL [P60] (CVPR’22)

VGG-Sound144k

0.339 0.380
HTF [P15] (WACV’23) 0.394 0.400
Ours (w/ SI, w/o RA) 0.403 0.402
Ours (w/o SI, w/ RA) 0.404 0.403
Ours (w/ SI, w/ RA) 0.406 0.405

localization in a recursive manner, outperforms the HTF.

Spatial Information of the Audio Modality. Furthermore, we
provide the sound source localization results with only audio fea-
tures to investigate the effect of the spatial information of the audio
modality. The outcomes are shown in Figure 2, revealing that the
audio modal itself also contains valuable spatial cues for inferring
the sound-making objects.

Video Results of the Proposed Sound Source Localization. In
addition to the visualizations provided in the paper, we include
supplementary video material to show the results of our method.
The video displays the outcomes of our method applied to some
samples from both the Flickr-Soundnet and VGG-SS datasets. Please
see https://github.com/VisualAIKHU/SIRA-SSL.

https://github.com/VisualAIKHU/SIRA-SSL
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(a) Flickr-Soundnet Testset (b) VGG-SS Testset

OursHTF OursGT AnnotationOriginal Image HTFGT AnnotationOriginal Image

Figure 1: Expanded visualization results for both (a) Flickr-SoundNet test set and (b) VGG-SS test set. Each result is obtained
from models trained on the Flickr144k and VGG-Sound144k training sets.

(a) Flickr-Soundnet Test set (b) VGG-SS Test set

Only AudioGT AnnotationOriginal Image GT AnnotationOriginal Image Only Audio

Figure 2: Visualization results for both (a) Flickr-SoundNet test set and (b) VGG-SS test set with only audio. Each result is
obtained from models trained on the Flickr144k and VGG-Sound144k training sets.
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