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ABSTRACT
Underwater images suffer from light refraction and absorption,
which impairs visibility and interferes the subsequent applications.
Existing underwater image enhancement methods mainly focus
on image quality improvement, ignoring the effect on practice. To
balance the visual quality and application, we propose a heuristic
normalizing flow for detection-driven underwater image enhance-
ment, dubbedWaterFlow. Specifically, we first develop an invertible
mapping to achieve the translation between the degraded image
and its clear counterpart. Considering the differentiability and inter-
pretability, we incorporate the heuristic prior into the data-driven
mapping procedure, where the ambient light and medium trans-
mission coefficient benefit credible generation. Furthermore, we
introduce a detection perception module to transmit the implicit
semantic guidance into the enhancement procedure, where the
enhanced images hold more detection-favorable features and are
able to promote the detection performance. Extensive experiments
prove the superiority of our WaterFlow, against state-of-the-art
methods quantitatively and qualitatively.
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Figure 1: The invertible translation process between under-
water and enhanced images. Heuristic priors are embedded to
enhance the interpretability of the enhanced network. High-
level perceptual information is introduced into the model
by backpropagation to help the enhanced image potentially
contain more semantic information conducive to object de-
tection. We illustrate the k-means clustering results along
with the procedure of the invertible translation.

1 INTRODUCTION
In recent years, there have been significant advances in underwater
robots for exploration in various fields [31, 58]. However, underwa-
ter object detection, a critical component of underwater exploration
tasks, still faces considerable difficulties. The images captured un-
derwater often suffer from severe distortion due to the complex and
variable underwater environment, leading to a significant reduction
in image visibility. The performance of subsequent object detection
applications is also significantly affected.

To mitigate the impact of image distortion on underwater object
detection, existing methods typically employ underwater image
enhancement as a preprocessing step for object detection [5]. They
feed the enhanced underwater images as prospective guidance
into the detection module to achieve better detection accuracy.
Traditional underwater enhancement methods estimate imaging
parameters through the underwater degradation formula to ob-
tain enhanced images. However, fixed imaging parameters may
not fully simulate the diverse and complex nature of real underwa-
ter environments. In recent years, deep learning has been widely
concerned by researchers. They [19, 25] have achieved good restora-
tion effects through the manually crafted network by end-to-end
training. However, image enhancement and object detection are
usually regarded as two parallel independent tasks. Enhancement
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results that solely focus on visual perception are insufficient to fully
capture the scene information required by subsequent detection
algorithms. Moreover, the enhancement network may introduce
uncertain interferences that affect the detection performance.

In this paper, we propose a detection-driven heuristic normal-
izing flow for underwater image enhancement. we first develop a
reversible translation framework based on normalizing flow to facil-
itate domain translation between degraded underwater images and
clear counterpart. Specifically, the reversible translation between
them is established by synchronous optimization with shared pa-
rameters and bilateral constraints of forward and reverse processes.
The forward process aims to map the degraded image to the clear
restored image by learning the nonlinear function 𝐹𝑛 (.), and the
reverse process aims to map the clear image back to the degraded
image through the nonlinear function 𝐹−1𝑛 (.). Then, considering the
differentiability and interpretability, we estimate the underwater
imaging parameters using different modalities of knowledge and
incorporate them as heuristic priors into the data-driven mapping
process. Guided by the underwater imaging physical model, the
proposed method effectively prevents the introduction of the noise
interference and undesirable artifacts, thereby avoiding adverse
impacts on subsequent detection tasks. In order to improve the
adaptability of the enhanced results for subsequent detection tasks,
we further introduce a Detection Perception Module. By propagat-
ing the high-level perceptual features to the enhancement module,
the generated enhanced images can implicitly possess more se-
mantic information beneficial for subsequent detection tasks while
achieving visually pleasing enhancement effects.

In summary, contributions can be concluded as follows:
• We apply the normalizing flow to the underwater image
enhancement task, which realizes the invertible mapping
between the degradation image and its clear counterpart.

• We incorporate the heuristic prior into the data-driven map-
ping process, which can be widely applied in a variety of
real underwater scenes by improving the interpretability of
the whole enhancement framework.

• We propose a Detection Perception Module, which transmits
high-level latent perceptual information to retain and extract
detection-oriented semantic information.

• Qualitative and quantitative results demonstrate that the
proposed WaterFlow recovers the intrinsic scene clearly and
is more conducive to the subsequent detection.

2 RELATEDWORK
2.1 Underwater Image Enhancement
In recent years, numerous underwater image enhancement meth-
ods have been proposed. The early traditional methods often adjust
the pixel distribution of different color channels to weaken the
degradation of natural light underwater. Ghani et al. [13] extended
the histogram of the red channel and the blue channel of the un-
derwater image upward and downward respectively according to
the law of Rayleigh distribution. Li et al. [28] corrected the red
channel according to the Gray-World assumption theory after the
color restoration of the blue-green image through the dark channel.
Although these methods can weaken the fading of light on different
color channels, it is easier to introduce underwater images into

artificial colors due to the lack of guidance from physical models.
Therefore, model-based methods [27, 45, 52, 57] are also widely
used to improve the interpretability of networks by incorporating
domain-specific prior knowledge.

In recent years, many methods based on deep learning have
been proposed: Li et al. [25] introduced the multi-color space into
the transmission-guided network to reduce the influence of color
casts on underwater images. Mu et al. [43] introduced a bi-level
model that hierarchically incorporates various knowledge modali-
ties to enhance the quality of underwater images. Jiang et al. [19]
proposed a perceptual adversarial mechanism and introduced the
global module to narrow the gap between enhanced images and
reference images. Huang et al. [17] proposed a semi-supervised
framework based on the mean-teacher approach to enhance the
generalization ability of the enhance model on real-world data.

2.2 Normalizing Flow
Normalizing flow facilitates the transformation between compli-
cated probability distribution and Gaussian distribution through
bijection functions and differentiable mappings. The normalizing
flow has received far less attention than GANs and VAEs because
it requires a significant quantity of video memory with a fine struc-
tural design to handle a large amount of reversible computing.
Many methods for accelerating the calculation have been proposed
in recent years. Dinh et al. [10] proposed the additive coupling
layer, which makes the flow easier to calculate the determinant of
Jacobian matrix. In order to increase the log-likelihood, Kingma et
al. [24] developed the actnorm to normalize each channel of input
features and 1 × 1 convolution in place of the permutation [10].
Conditional normalizing flow was introduced for increasing the
expressiveness and flexibility of normalizing flows, and has been
widely used in vision tasks [1, 2, 21, 30, 41, 53]. However, there is
little precedent dedicated to adopting flow-based methods to solve
the problem of ill-posed underwater image enhancement tasks.

2.3 Object Detection
In recent years, due to the rapid development of deep learning, the
effect of object detection has also been significantly improved. The
existing methods are generally divided into one-stage method and
two-stage method. The two-stage method [7, 14, 16, 48, 51] first
needs to extract the region of interest proposals area, and then
classify it through the classification of neural network. By contrast,
the classification label and boundary information are often directly
obtained by the one-stage method [12, 23, 47, 55].

The current detectors can achieve good performance when fac-
ing in-air images. However, the problems of scene blur and light
imbalance faced by underwater images will greatly affect the ef-
fectiveness of the detectors. Existing studies [33, 38–40, 42] have
used low-level visual enhancement modules as preprocessing steps
for detection tasks. However, the existing enhanced networks for
the underwater image often do not play a significant role in the de-
tector, which ignores the position and semantic information while
restoring the contrast of the underwater image.
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Figure 2: Workflow of the proposed WaterFlow. The underwater imaging physical model is embedded into the normalizing
flow as a heuristic prior to better simulate the mapping of the underwater image and its clear counterpart. At the same time,
the detection module is combined to improve the detection effect of underwater object detection by transmitting the high-level
latent feature to the enhancement module.

3 THE PROPOSED METHOD
Existing deep learning based underwater image enhancement meth-
ods rely on the enriched training data for a more robust and effec-
tive performance. However, the ignorance of physical priors in the
learning process introduces the noise interference and undesirable
artifacts, degrading the visibility further and undermining the sub-
sequent detection performance. To overcome the above limitations,
we propose a detection-driven heuristic normalizing flow network
for underwater image enhancement. Specifically, to reduce the de-
pendence on training data, we develop a normalizing flow based
reversible translation framework to achieve domain translation
between degraded underwater images and clear counterpart. The
heuristic model constraints incorporated with gradient and depth
information are embedded into the reversible procedure, guiding
the reversible results to be more accurate and reliable. Moreover,
to improve the applicability of the enhanced results for subsequent
object detection task, we propose a Detection Perception Module
that feeds back the performance of the enhanced results in de-
tection tasks, allowing the enhancement module to learn more
detection-favorable implicit features. Next, we provide the detailed
description of each module.

3.1 Hybrid Invertible Block
Hybrid Invertible Block (HIB) was introduced as the main part
of the heuristic normalizing flow. It ensembles the heuristic prior
into the data-driven network to build the invertible mapping rela-
tionship between the underwater image and its clear counterpart.
As illustrated in Fig. 2, the underwater image restoration and the
underwater image degradation process are combined in a invert-
ible mapping manner during the training process. In the forward
process, the underwater image is squeezed and input into multi-
ple invertible blocks to generate enhanced images. In the reverse
process, clear images are inversely input to invertible blocks with
shared parameters to generate degraded images.

The Hybrid Invertible Block consists of the following parts: Act-
norm [24], Conv 1 ×1 [24], Heuristic Prior Injector, Conditional
Affine Coupling [30] and squeeze operation.

Actnorm [24] is a normalizing operation, which can change the
input tensor into the zero mean and unit variance tensors. Conv
1 × 1 [24] can convolve the input tensor of 𝑐 × ℎ ×𝑤 by the weight
matrix of 𝑐 × 𝑐 to make the calculation of Jacobian matrix and
network inversion easier.

Heuristic Prior Injector was designed to better characterize the
underwater imaging model by embedding a heuristic prior, which
will be introduced in detail in section 3.2.

Conditional Affine Coupling was proposed by [30], which real-
izes the mutual conversion with conditional information between
output and input through reversible transformation. We modified
the previous formulation for adjusting the underwater image en-
hancement framework, which is described as:

u1𝑖+1 = u1𝑖 ,

u2𝑖+1 =
(
𝜙𝑖

(
C(u1𝑖 , 𝑓

𝐴
𝑖

(
𝐼𝑢 , 𝐼𝑔, 𝐼𝑑

)
)
))

⊙ u2𝑖

+ 𝜌𝑖

(
C(u1𝑖 , 𝑓

𝐵
𝑖

(
𝐼𝑢 , 𝐼𝑔, 𝐼𝑑

)
)
)
,

(1)

where u𝑖+1 = C(u1
𝑖+1, u

2
𝑖+1), C represents the concatenation op-

eration. 𝜙𝑖 , 𝜌𝑖 , 𝑓 𝐴𝑖 , and 𝑓 𝐵
𝑖

denote convolutional networks. 𝑖 ∈
{1, ..., 𝑛 − 1} represents the 𝑖-th flow steps, 𝐼𝑢 , 𝐼𝑔 and 𝐼𝑑 will be
explained in detail in section 3.2. Squeeze operation can convert the
image of 𝑐×ℎ×𝑤 to 4𝑐× ℎ

2 ×
𝑤
2 . Unsqueeze is the reverse operation

of squeeze. By the combination of these operations, the proposed
architecture can attain accurate mapping between the underwater
image and it clear counterpart while maintaining reversibility.

3.2 Heuristic Prior Injector
The Heuristic Prior guided Injector (HPI) is designed to incorporate
the estimated physical imaging parameters into the invertible block.
According to the underwater image formation model [8, 11], the
enhanced image can be represented as:

𝐽𝑐 (𝑥) = 1
𝑡 (𝑥) 𝐼

𝑐 (𝑥) + 1
𝑡 (𝑥) 𝐵

𝑐 (𝑡 (𝑥) − 1), 𝑐 ∈ {𝑟, 𝑔, 𝑏}, (2)

where 𝐼 and 𝐽 denote the underwater image captured by sensors
and the enhanced image at pixel point 𝑥 respectively. 𝑐 ∈ {𝑟, 𝑔, 𝑏}
represents the corresponding color channels. 𝐵 and 𝑡 indicates the
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ambient light and the medium transmission coefficient. 𝑡 can also
be described as 𝑡 (𝑥) = 𝑒𝛽𝑑 (𝑥 ) with the scene depth 𝑑 (𝑥) and the
attenuation coefficient 𝛽 according to the Beer-Lambert law [4].

Considering that the gradient map provides information about
the edges and contrast in the image, which can be used to estimate
the scatteration of light by the atmosphere and fine impurities in
the water. Furthermore, the depth map provides information about
the attenuation of the light propagation, which is also a key factor
in the Beer-Lambert law. Inspired by [45], we first estimate the
depth map 𝐼𝑑 and the gradient map 𝐼𝑔 as auxiliary information from
the underwater image.

Then, we concatenate them with underwater image as input
to the Heuristic Prior guided Encoder (HPE) H to progressively
estimate the imaging parameters by extracting the depth, gradient
and color information of the underwater image. The equation can
be illustrated as:

𝐵𝑖 ,𝑇𝑖 = S
(
H𝑖

(
C
(
𝐼𝑑 , 𝐼𝑔, 𝐼𝑢

) ) )
, (3)

where 𝐼𝑢 represents underwater images. C and S denote the con-
catenate and split operation respectively. 𝑇 is the reciprocal of 𝑡 .
The detailed architecture of H is in the appendix due to limited
space. After estimating 𝑇 and 𝐵, we insert them into the HIB as
heuristic information. The operation can be formulated as:

u𝑖+1 = 𝑇𝑖 ⊙ u𝑖 + 𝐵𝑖 ⊙ (1 −𝑇𝑖 ),
u𝑖 = (u𝑖+1 − 𝐵𝑖 ⊙ (1 −𝑇𝑖 )) /𝑇𝑖 ,

(4)

where u𝑖 represents the middle feature of the 𝑖-th flow steps, ⊙ de-
notes dot product. By introducing the underwater image formation
model based heuristic prior to the invertible blocks, the proposed
method can generate enhanced images, which are more suitable
for realistic underwater scenes.

3.3 Detection Perception Module
Object detection aims to acquire the location and category of each
object. Hence, the performance of object detection will be improved
if the enhanced image holds a more profound level of semantic fea-
ture and object localization information. Inspired by the perceptual
loss [22], deep neural networks designed for high-level visual tasks
can retain semantic information and own the ability to describe
potential features. Therefore, in order to make the enhanced im-
ages potentially improve the effectiveness of the underwater object
detection, we propose a Detection Perception Module (DPM) to
improve the performance of the enhancement module in preserving
and extracting detection-oriented perceptual features.

In the whole training process, we first use the enhancement mod-
ule as the data preprocessing stage of underwater object detection.
After that, the enhanced image was directly fed into the DPM and
conducted separate detection training. Then, we jointly optimize
the pre-trained DPM and enhancement module through different
benchmarks. Specifically, the underwater image is first input to the
enhancement module to obtain enhanced data. We input it into
the detection module to transmit the high-level implicit perceptual
features extracted from the network to the enhancement module,
so as to guide the visual improvement effect to be more conducive
to subsequent object detection tasks.

3.4 Loss Function
Contrastive learning has been applied to multiple low-level visual
tasks [20, 34, 35, 37]. We introduce contrastive learning to improve
the quality of enhanced images by making them closer to the in-
air images and more isolated from the underwater images. We
have designated the reference image as a positive sample and the
original underwater image as a negative sample. VGG19 [50] was
used to extract the implicit characteristic of enhanced images. The
contrastive loss is expressed as follows:

L𝑐 =

𝑁∑︁
𝑖=1

𝜌𝑖 ·
∥V𝑖 (𝐼𝑟 ) − V𝑖 (𝐺𝐸 (𝐼𝑢 ))∥1
∥V𝑖 (𝐼𝑢 ) − V𝑖 (𝐺𝐸 (𝐼𝑢 ))∥1

, (5)

whereV𝑖 represents the 𝑖-th layer of VGG19 [50], and 𝜌𝑖 denotes
the 𝑖-th weight of each layer. 𝐺𝐸 represents the proposed enhance-
ment network. 𝐼𝑢 and 𝐼𝑟 represent the underwater image and the
reference image respectively.

We additionally incorporate the style loss [9] to make the gener-
ated output closer to the style pattern of the reference image. The
definition of style loss function L𝑠 is described as follows:

L𝑠 =
1
𝑁

𝑁∑︁
𝑖=0

∥𝜇 (V𝑖 (𝐺𝐸 (𝐼𝑢 ))) − 𝜇 (V𝑖 (𝐼𝑟 ))∥2

+ ∥𝜈 (V𝑖 (𝐺𝐸 (𝐼𝑢 ))) − 𝜈 (V𝑖 (𝐼𝑟 ))∥2 ,
(6)

where 𝜇 and 𝜈 represent the mean and variance of the image. 𝑁 is
the number of layers.

Localization loss Lloc and classification loss Lcla are used as
detection-driven loss Ldet, which is illustrated as:

Ldet = Lcla + Lloc , (7)

where classification loss is designed to minimize the discrepancy
between the prediction category and the ground truth category.
The localization loss is adopted to reduce the position difference
between the prediction box and the ground truth box. We employ
Focal loss [32] and GIoU loss [49] as classification loss and localiza-
tion loss respectively.

Ideally, the incorporation of the reverse mapping process could
impose a regular constraint on the degraded image, thereby enhanc-
ing the performance of the forward mapping [15]. Therefore, L1 loss
is used as a bilateral constraint to make the output of the forward
and the reverse process closer to the reference and underwater
image respectively. The formula can be described as:

L1 = ∥𝐺𝐸 (𝐼𝑢 ) − 𝐼𝑟 ∥1 +
𝐺−1

𝐸 (𝐼𝑟 ) − 𝐼𝑢

1 , (8)

where 𝐺−1
𝐸

denotes the reverse transformation of 𝐺𝐸 . Therefore,
the total loss of network training is expressed as follows:

L𝑡𝑜𝑡𝑎𝑙 = 𝜆1L𝑐 + 𝜆2L𝑠 + 𝜆3Ldet + 𝜆4L1 . (9)

4 EXPERIMENTS
In this section, we evaluate the effectiveness of the proposedmethod
through qualitative and quantitative comparison. Specifically, widely
used UIEBD [26], EUVP [18], U45 [29] and UCCS [36] datasets are
used to evaluate the performance of WaterFlow for underwater
image enhancement. Six representative methods Water-Net [26],
DLIFM [6], Ucolor [25], TOPAL [19], TACL [37] and SemiUIR [17] in
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Input Water-Net DLIFM Ucolor TOPAL TACL SemiUIR Ours
Figure 3: Enhancement results on UIEBD dataset. We compared the pixel distribution of the reference images and enhanced
images. Obviously, the distribution of our result is the closest to the distribution of reference image.

Input Water-Net DLIFM Ucolor TOPAL TACL SemiUIR Ours
Figure 4: Enhancement results on EUVP dataset. We calculate the histogram distribution of RGB color space in the dataset. The
x and y axis of the diagram represents the pixel intensity and the probability distribution. It can be found that the distribution
of RGB color space in our results fits to the distribution of in-air images best.

Input Water-Net DLIFM Ucolor TOPAL TACL SemiUIR Ours
Figure 5: Enhancement results on U45 dataset. We calculate the dispersion of RGB color space. The red, green and blue boxs
respectively represent the corresponding color channel. It can be observed that the proposed results solve the problem of
varying degrees of light decay underwater.

Input Water-Net DLIFM Ucolor TOPAL TACL SemiUIR Ours
Figure 6: Enhancement results on UCCS dataset. Our method is obviously superior to other methods in correcting color
attenuation and enhancing contrast, especially in the regions of red and green frames.
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Table 1: Quantitative comparison for underwater image enhancement in terms of UCIQE(↑), UIQM(↑) ,UICM(↑) ,PSNR(↑) and
SSIM(↑). ↑ denotes that large values mean better results. The best and second results are marked in bold and underline.

Method
UIEBD EUVP U45 UCCS

UCIQE UIQM UICM PSNR SSIM UCIQE UIQM UICM UCIQE UIQM UICM UCIQE UIQM UICM
Water-Net 0.5856 1.8681 -37.9812 18.8156 0.8257 0.5836 4.4419 -17.2934 0.5680 4.3612 -23.7057 0.5559 3.5007 -14.0720
DLIFM 0.6095 1.9553 -38.0444 20.0894 0.8565 0.6205 4.1051 -26.4611 0.5880 4.2763 -25.4130 0.5200 2.9137 -25.6534
Ucolor 0.5542 1.6799 -40.9628 19.7202 0.8273 0.5846 4.3043 -19.4697 0.5641 4.3708 -21.6621 0.5201 3.4145 -34.9304
TOPAL 0.5646 2.2013 -48.1846 19.1631 0.8043 0.6010 4.2689 -21.6535 0.5524 3.9625 -32.6012 0.4801 3.7760 -23.3429
TACL 0.6128 2.2848 -39.8192 21.4864 0.8398 0.5842 3.6547 -42.8193 0.6223 4.4013 -20.0128 0.5935 3.6249 -18.3285
SemiUIR 0.6202 1.9916 -40.0554 21.6818 0.8753 0.6175 4.4360 -15.3805 0.6110 4.5201 -18.7781 0.5538 3.7847 -5.0835
Ours 0.6157 2.5968 -35.1569 21.7420 0.8584 0.6397 4.4400 -12.6861 0.6229 4.4129 -13.6104 0.5569 3.9842 -4.1614

Ground Truth Water-Net DLIFM Ucolor

TOPAL TACL SemiUIR Ours
Figure 7: Evaluation of object detection on UCCS dataset.
It can find that the proposed method achieves good perfor-
mance in both accuracy and quantity.

recent years are compared for evaluating the performance. Both sub-
jective and objective results are adopted for analysis. Underwater
Color Image Quality Evaluation (UCIQE) [56], Underwater Image
Quality Measurement (UIQM) [44] and Underwater Image Contrast
Measure (UICM) [44] are used as non-reference evaluation metrics.
A higher UCIQE, UIQM or UICM score indicates a better human
visual perception. Peak Signal to Noise Ratio (PSNR) and Structural
Similarity (SSIM) [54] are adopted as the fully reference evaluations.
Higher values of these metrics indicate a better similarity between
the resulting image and the reference image in terms of both con-
tent and structure. Furthermore, UCCS [36] and Aquarium [46]
datasets are used to evaluate the ability of the proposed method to
adapt to subsequent detection tasks. The commonly utilized Aver-
age Precision (AP) is adopted as the detection-driven evaluation
metric, which is positive for the performance of underwater object
detection.

4.1 Implement Details
Our network is implemented by the pytorch and trained on NVIDIA
RTX 3090 GPU. We first randomly crop the UIEBD [26] dataset into
the size of 384 × 384 and use the cropped dataset as the training
dataset for underwater image enhancement. UCCS [36] and Aquar-
ium [46] datasets are used as the training dataset for underwater
object detection. We first train the heuristic normalizing flow and
Detection Perception Module separately for 5 × 𝑒5 iterations. Then,
we jointly train the pre-trained modules for 3 × 𝑒5 iterations. Dur-
ing the training process, Adam was used as our optimizer with the

uniform learning rate of 1e-6 and the batch size of 2. 𝜆1, 𝜆2, 𝜆3, 𝜆4
are set to 1, 100, 0.1, 1.

4.2 Qualitative Results
For visual comparison, Fig. 3 shows the enhancement results of all
methods on UIEBD dataset. Water-Net and Ucolor not only fail to
recover the original reflection, but also suffer from low contrast and
saturation. DLIFM, TOPAL, TACL and SemiUIR have limited effects
on underwater image enhancement, which still remain conspicuous
color deviation at close scenes. Compared with the other methods,
the proposed method recovers the degradation of light and rectifies
the unexpected coloration. In addition, we demonstrate the pixel
distribution similarity diagram of a particular region between the
corresponding enhanced and reference images. The red line and
the blue line in the diagram indicate the pixel distribution of the
reference image and the enhanced image respectively. Notably, the
proposed method yields enhanced results closest to the reference
image.

The comparison on the EUVP dataset is shown in Fig. 4. Ucolor
and TOPAL introduce artifacts and unnatural colors. Water-Net,
TACL and SemiUIR fail to alleviate the scattering of light under-
water. Although DLIFM produces pleasing images, the instructive
details of the image have not been recovered well. Compared with
the other methods, the proposed method not only effectively cor-
rects the color deviation, but also restores the scene radiance and
contrast of the image. Fig. 4 also shows the distribution of RGB color
space for the images obtained by different methods. In general, the
proposed method more effectively addresses the swift attenuation
of red wavelengths underwater, with its color space distribution
closely approximating that of in-air images.

The qualitative comparison on the U45 datasets is shown in
Fig. 5. It is obvious that the red light and blue light decay signif-
icantly more than the green light underwater in this acquisition
environment. However, the other comparedmethods exhibit limited
effectiveness in restoring the decay of blue light. The boxplot for the
intensity distribution of the RGB color channels is set below each
image, with the horizontal axis representing pixel intensity. Ad-
ditionally, semi-transparent rectangles are introduced to expound
the relationship between distinct color spaces more lucidly, with
the gray rectangle signifying the region where outliers emerged.
In comparison with the proposed method, the other methods not
only have a noticeably inferior ability to revive the attenuation of
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Ground Truth Water-Net DLIFM Ucolor TOPAL TACL SemiUIR Ours
Figure 8: Evaluation of object detection on Aquarium dataset with different enhancement methods. It can find that the proposed
method is most suitable for underwater object detection.

Figure 9: Detection accuracy onUCCS (a) andAquarium (b) datasetswith the enhanced images generating from the representative
methods. The x-axis represents the category of the object.

Input w/o L1 w/o L𝑠 w/o L𝑐 Ours
Figure 10: Ablation study of loss function. L1, L𝑠 and L𝑐

denote L1 loss, style loss, and contrasive loss.

blue light but also introduce certain aberrant outliers, adversely
impacting the efficacy of the enhanced images.

The visual comparison on the UCCS datasets is shown in Fig. 6.
TOPAL fails to restore the color deviation of the image, which
suffers from low saturation. Unreasonable color artifacts are intro-
duced by Water-Net, TACL and SemiUIR. Informative details are
ignored by DLIFM and Ucolor, resulting in obscure reflections and
low contrast. Compared with other methods, our method signifi-
cantly restores the brightness and contrast of underwater scenes
without the interference introduction.

We utilize the same comparison methods to assess whether the
proposed enhancement results implicitly contain more semantic
features that are applicable to subsequent detection tasks. The vi-
sual comparison of UCCS dataset is shown in Fig. 7. The proposed
method achieves a higher detection confidence than other methods
with more detected trepangs and urchins. The qualitative compari-
son of the Aquarium dataset is shown in Fig. 8, which clearly shows
the remarkable advantages of the proposed method in adapting to
subsequent detection tasks.

4.3 Quantitative Results
The quantitative results of representative methods for underwa-
ter image enhancement are shown in Tab. 1. It can be observed
that the proposed method exceeds all other methods in UICM, and
achieves competitive results in UCIQE and UIQM. However, as
noted by [3, 17], although both UCIQE and UIQM metrics can rep-
resent the degree of restoration of underwater images, they are
somewhat heuristic and have limited applicability on evaluating
the performance of underwater image enhancement. We further
compared fully-reference evaluation on the UIEBD dataset which
contains reference images. The proposed method achieves a sig-
nificant advantage on PSNR and is only lower than SemiUIR on
SSIM. However, as noted by [25], the reference images of UIEBD
are synthetic by multiple enhancement methods, which indicates
that some unreliable samples may affect the evaluation of the per-
formance. Combining with NR-IQA and full-reference benchmarks,
our method still achieves great advantages in underwater image
enhancement, consistent with the qualitative results. The quantita-
tive comparison for underwater object detection is shown in Fig. 9.
It can be observed that the proposed method outperforms the other
competitive methods in terms of detection accuracy in both UCCS
and Aquarium datasets. It can be proven that the proposed results
can not only achieve good visual enhancement effects, but also po-
tentially contain more perceptual information which is beneficial
for subsequent detection tasks.

4.4 Ablation Study
4.4.1 Study on Loss Function. We discuss the effectiveness of dif-
ferent loss functions. The visual results are shown in Fig. 10. w/o
L1 and w/o L𝑐 make the images deviate from their intrinsic colors
and introduce unpleasant artifacts. w/o L𝑠 still suffers from low
contrast and clarity although it has improved the color balance of
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Figure 11: Quantitative results of the ablation experiment. (a) denotes the evaluation on the loss function. (b) represents the
evaluation for the input of Heuristic Prior guided Encoder. (c) represents the evaluation for the number of Hybrid Invertible
Blocks. (d) denotes the Precision-Recall curve of ablation study for underwater object detection, the x and y axis respectively
represent recall and precision. (e) denotes the F1-confidence curve, the x and y axis represent the confidence and F1 score.

Input w/o Color w/o Grad w/o Depth Ours
Figure 12: Visualization for ablation study on the input of
Heuristic Prior guided Encoder.

Input 𝑁 = 1 𝑁 = 2

𝑁 = 3 𝑁 = 4 𝑁 = 5
Figure 13: Visualization for ablation study on the number of
Hybrid Invertible Blocks.

the image to a certain extent. Combined with quantitative com-
parison in (a) of Fig. 11, the proposed method achieves the best
enhancement effect, which verifies the effectiveness of all functions.

4.4.2 Study on Heuristic Prior guided Encoder. We conduct ablation
experiments on the input of HPE to verify the effectiveness of each
input to the proposed method. The qualitative comparison is shown
in Fig. 12. In the first example, when the color image or depth map is
not adopted as input, unpleasant shadows are introduced. The effect
of image enhancement is obviously limited when the gradient map
is not used. In the second example, the proposed method achieved
the best enhancement effect, which not only restore the color of the
ground but also significantly improved the clarity of the content in
the red and green frames. The quantitative comparison is shown in
(b) of Fig. 11, which shows that the proposed method achieves the
best results on all benchmarks. Any input removed significantly
attenuates the enhanced image.

4.4.3 Study on Number of Hybrid Invertible Blocks. We conduct
ablation experiments on the number of Hybrid Invertible Blocks

𝑁 . The visual comparison is illustrated in Fig. 13. It is obvious that
when the number of blocks is less than 3, the enhanced image suffers
from local over enhancement and the image artifacts introduction.
Quantitative comparison is shown in (c) of Fig. 11. Considering
the limitations of network parameters and computational costs, we
finally employ 𝑁 as 3 in our framework.

4.4.4 Study on underwater object detection. In order to verify the
effectiveness of the proposed method for underwater object de-
tection. We directly train the existing detection network without
enhancement on underwater images to verify the effect of enhanced
data on underwater object detection. At the same time, the enhance-
ment module and the Detection Perception Module are not trained
jointly, so as to test whether DPM can make the enhanced data
more conducive to subsequent detection tasks. Quantitative com-
parison is shown in (d) and (e) of Fig. 11. w/o Enhancement and
w/o Joint respectively indicate that the enhanced image is not used
as a preprocessing stage and the latent features are not transmitted
to the enhancement module from the DPM. Evidently, the proposed
method achieves the highest detection performance, which proves
the effectiveness of the DPM.

5 CONCLUSION
In this paper, we propose a detection-driven heuristic normalizing
flow underwater image enhancement. We first adopt the underwa-
ter image restoration process into the normalizing flow to establish
the invertible mapping of the degraded image and the its clear coun-
terpart through bilateral constraints. Then we further introduce
the heuristic prior guided injector to improve the representation
ability of the enhancement network by progressively estimating
the underwater imaging parameters. At last, we introduce the de-
tection perception module, which propagates high-level perceptual
features into the enhancement model as gradient information to
help generate the detection-driven enhanced image. Extensive ex-
periments on multiple benchmarks show that the proposed method
not only achieves good visual enhancement effects, but is also more
suitable for subsequent detection tasks.
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