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ABSTRACT
The proliferation of in-the-wild videos has greatly expanded the

Video Quality Assessment (VQA) problem. Unlike early definitions

that usually focus on limited distortion types, VQA on in-the-wild

videos is especially challenging as it could be affected by compli-

cated factors, including various distortions and diverse contents.

Though subjective studies have collected overall quality scores for

these videos, how the abstract quality scores relate with specific

factors is still obscure, hindering VQA methods from more concrete

quality evaluations (e.g. sharpness of a video). To solve this problem,

we collect over two million opinions on 4,543 in-the-wild videos on

13 dimensions of quality-related factors, including in-capture au-

thentic distortions (e.g. motion blur, noise, flicker), errors introduced
by compression and transmission, and higher-level experiences on

semantic contents and aesthetic issues (e.g. composition, camera
trajectory), to establish the multi-dimensionalMaxwell database.
Specifically, we ask the subjects to label among a positive, a negative,

and a neutral choice for each dimension. These explanation-level

opinions allow us to measure the relationships between specific

quality factors and abstract subjective quality ratings, and to bench-

mark different categories of VQA algorithms on each dimension, so

as tomore comprehensively analyze their strengths andweaknesses.

Furthermore, we propose theMaxVQA, a language-prompted VQA

approach that modifies vision-language foundation model CLIP to

better capture important quality issues as observed in our analyses.

The MaxVQA can jointly evaluate various specific quality factors

and final quality scores with state-of-the-art accuracy on all dimen-

sions, and superb generalization ability on existing datasets. Code

and data available at https://github.com/VQAssessment/MaxVQA.

CCS CONCEPTS
• Computing methodologies → Computer vision tasks.

∗
This study is supported under the RIE2020 Industry Alignment Fund – Indus-

try Collaboration Projects (IAF-ICP) Funding Initiative, as well as cash and in-kind

contribution from the industry partner(s). Both authors contribute equally.

This work is licensed under a Creative Commons Attribution

International 4.0 License.

MM ’23, October 29-November 3, 2023, Ottawa, ON, Canada
© 2023 Copyright held by the owner/author(s).

ACM ISBN 979-8-4007-0108-5/23/10.

https://doi.org/10.1145/3581783.3611737

KEYWORDS
Dataset, Video Quality Assessment, Explainable, Vision-Language

ACM Reference Format:
Haoning Wu, Erli Zhang, Liang Liao, Chaofeng Chen, Jingwen Hou, Annan

Wang, Wenxiu Sun, Qiong Yan, andWeisi Lin. 2023. Towards Explainable In-

the-Wild Video Quality Assessment: A Database and a Language-Prompted

Approach. In Proceedings of the 31st ACM International Conference on Multi-
media (MM ’23), October 29-November 3, 2023, Ottawa, ON, Canada. ACM,

New York, NY, USA, 10 pages. https://doi.org/10.1145/3581783.3611737

1 INTRODUCTION
Rapid advances in technology have democratized the video pro-

duction process, allowing more ordinary users to create and up-

load videos with smartphone cameras and public online platforms.

Henceforth, Video Quality Assessment (VQA) on these prevalent

in-the-wild videos is increasingly important for automatically rec-

ommending high-quality videos and improving low-quality ones.

Unlike traditional VQA [40, 48] that focuses on specific types

of distortions from pristine reference videos, VQA on in-the-wild

videos is challenging as it is affected by authentic and commonly

intermixed distortions; moreover, the contents of in-the-wild videos

diverse and may also affect their quality. Although plenty of sub-

jective studies [12, 36, 41, 64] have collected enormous quality

scores on in-the-wild videos, how specific quality-related factors

(e.g. sharpness, exposure, fluency, noise) affect or relate with the qual-

ity of a given video is still obscure. Consequently, existing objective

VQA approaches [22, 28, 45, 56] learnt from these scores are not

able to evaluate these explainable concrete factors, thereby limiting

their ability to provide targeted suggestions for video restoration

or recommendation. Furthermore, the reliance on overall quality

scores as the sole benchmark metric of VQA approaches makes

it difficult to comprehensively analyze their ability on identifying

specific quality issues, so as to apply them to appropriate scenarios.

To solve these challenges, we conduct a large-scale compre-

hensive subjective study to collect human opinions on specific

quality factors, and explore how they affect the abstract qual-

ity scores. Specifically, we collect over two million annotations

on 13 dimensions, each associated with a commonly-observed

quality-related factor. These factors include in-capture authen-

tic distortions [10, 36] (e.g. blur, noise, poor exposure), compres-

sion/transmission distortions [40, 48], and higher-level semantic-

related (aesthetic) issues [28, 59] (e.g. contents, color, composition),
as illustrated in Fig. 1. To better collect subjective opinions on
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Figure 1: Quality for in-the-wild videos is influenced by complicated factors.
For the first time, the proposedMaxwell database studies these specific quality-
related factors, and explore their impacts on the abstract overall quality scores.

these dimensions, our study has several specific designs: First, we
notice that different factors can simultaneously affect the quality

(such as Fig. 1, which is fuzzy and with strong artifacts). To cap-

ture all factors that impact the quality of a given video, we prompt

subjects to label all factors [8] for each video instead of choosing

one major influencing factor [13, 69]. Second, in non-reference set-

tings [31, 73], each specific factor (take sharpness as an example) can
pose either positive (while sharp) or negative (while fuzzy) impact

to video quality, while it may also have no significant effects for

some videos. Thus, we define a forcefully positive-neutral-negative

ternary choice for each specific factor, which ensures that subjects

neither miss a factor for each video, nor face the dilemma of having

to choose between good or bad when there are no significant effects.

Moreover, to ensure the reliability of labels, we trained all partici-

pating subjects for each dimension before the annotation process

and each axis in each video is annotated by 35 subjects following [1].

Correspondingly, we construct the Multi-Axis VQA Database with

Explanation-level Labels (Maxwell). The multi-dimensional opin-

ions in the Maxwell database effectively bridge the gap between

quality scores and specific quality factors, allowing for automatic

and targeted repairment or enhancement on in-the-wild videos.

We further conduct an extensive analysis on the subjective opin-

ions collected in the Maxwell database. Firstly, we find that the

quality of in-the-wild videos is commonly affected by multiple fac-

tors, with an average of six factors affecting the quality of each

video, which justifies our decision to label all factors. Secondly, we

receive slightly more positive opinions than negative opinions, with

a ratio of approximately 3:2. This suggests that it is appropriate to

consider positive effects besides negative impacts for each quality

factor. Thirdly, each factor affects the quality of at least 37% of

videos, justifying the validity of the selected specific factors. Fur-

thermore, our study revealed that human visual system is especially

sensitive to temporal quality (Flicker and Fluency), emphasizing the

importance of effective temporal modeling in VQA. The analysis on

Maxwell helps us to better explain subjective VQA on in-the-wild

videos, and further develop more effective objective approaches.

Inspired by the analysis, we propose the Multi-Axis Video Qual-

ity Assessor (MaxVQA), a language-prompted VQA approach that

learns from comprehensive opinions in the Maxwell to jointly pre-

dict specific quality factors and overall quality, via integrating the

vision-language foundation model CLIP [38] with FAST-VQA [56],

the recent state-of-the-art VQAmodel for in-the-wild videos. Specif-

ically, the MaxVQA first fuses CLIP visual features with FAST-VQA

features to enhance the perception on low-level textures and tempo-

ral variations. It then compares the cosine similarity between the vi-

sual features and the textual features of a pair of dimension-specific

prompts, so as to predict quality score for each dimension. Unlike

existing strategies [8, 13] that requires separate regressors for multi-

objective quality evaluation, the MaxVQA unifies multiple dimen-

sions with different text prompts. The proposed MaxVQA proves

state-of-the-art accuracy not only on all dimensions in Maxwell,

but also on overall quality assessment for existing VQA datasets.

MaxVQA trained on Maxwell also shows well generalization ability

on existing VQA datasets, suggesting its superb robustness.

Our contributions can be summarized as three-fold:

(1) We construct theMaxwell database, a comprehensive sub-

jective study to collect over two million human opinions

for 13 distinct specific quality factors on 4,543 in-the-wild

videos. Our database allows for objective VQA methods to

provide specific quality evaluations (e.g. fluency of videos).

(2) Based on Maxwell, we analyze the characteristics of different

factors, and their relations with overall quality scores for

in-the-wild videos. Moreover, we provide the first multi-

dimensional benchmark for objective VQA approaches to

analyze their ability on capturing specific quality concerns.

(3) We design theMaxVQA, a vision-language-based VQAmodel

that can jointly predict specific quality factors and final qual-

ity scores, by enhancing CLIP with low-level-sensitive FAST-

VQA features. MaxVQA proves state-of-the-art performance

and excellent generalization ability.

2 RELATEDWORK
2.1 Subjective Studies for In-the-Wild VQA
Unlike traditional settings [40, 48] that mainly focus on compres-

sion [2, 71] or transmission-related distortions, subjective studies

for in-the-wild VQA [12, 41, 52, 64] directly collect human qual-

ity opinions on real-world videos. Thus, they face more complex

quality-related issues [6, 10, 24, 36] and much extended content

diversity [27, 53, 62]. Therefore, these quality scores collected on

in-the-wild videos can be affected by complicated reasons, and it is

difficult to ground the effect of a given specific factor (e.g. sharpness
or fluency of a video). To investigate the relations between overall

quality perception on in-the-wild videos and specific quality-related

factors, we construct theMaxwell database that collects large-scale
opinions for a wide range of specific quality factors together (distor-
tions, content-related) on in-the-wild videos, and associated analysis

that better explains subjective VQA for in-the-wild videos.

2.2 Objective VQA Methods
Recent years have witnessed rapid progresses of objective VQA

methods [4, 5, 22, 26, 28, 29, 42, 45, 56, 62], which can be roughly

categorized into two types: First, classical methods, represented by

TLVQM [22] and VIDEVAL [45], which design handcraft kernels to

extract the low-level patterns of various common distortions that

happen on in-the-wild videos. Second, deep-learning-basedmethods.

Pioneered by VSFA [28], these methods typically extract features
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from pre-trained deep neural networks, and regress them with

overall quality opinions, such as recent BVQA-Li [26]. Most recently,

FAST-VQA [56], is proposed to learn quality scores end-to-end from

pre-processed videos, and reaches superior accuracy with high

efficiency. Although achieving higher accuracy, existing objective

methods especially deep methods can hardly reason why their

performance boost, nor predict the mechanism behind the quality

scores. In recent years, vision-language foundation models [19, 35,

38, 54, 66], such as CLIP [38] and ALIGN [19] canmeasure similarity

between text sentences and images, while several studies [15, 21, 51,

61, 69, 70] have attempted vision-language modeling in VQA. With

the constructed Maxwell, we integrate CLIP with FAST-VQA, and

propose the language-promptedMaxVQA that can jointly evaluate

multiple specific quality factors and overall quality scores. The

MaxVQA can analyze video quality in a more explainable way.

3 THE MAXWELL DATABASE
In this section, we elaborate on the designs and processes of the

subjective study for the Maxwell database (Sec. 3.1). The subjective

study is conducted in-lab with 35 participants [1] annotating for

4,543 videos on 16 dimensions, including 13 specific quality factors

and 3 abstract quality ratings, as listed in Table 1. Afterwards, we

conduct extensive analyses on the collected subjective opinions, as

discussed in Sec. 3.2. The well-designed subjective study in Maxwell

as well as the extensive analyses help us to better investigate the

effects of different specific factors on VQA for in-the-wild videos.

3.1 Design of the Subjective Study
3.1.1 Choice of Quality-related Factors. In general, we conduct

the study from two perspectives, the distortion-related technical

perspective, and the semantic-related aesthetic perspective [59]. We

collect the general quality opinions from the two perspectives and

choose several specific factors from these perspectives, as follows.

1) Factors in distortion-related technical perspective.We

collect opinions on common specific distortions (e.g. flicker, compres-
sion artifacts) that happen in real-world videos. In general, the di-

mensions related to these factors have clear standards, that stronger

distortion relates to worse quality [13, 65]. Specifically, based on the

technical origin of the distortions, they can be further grouped into

in-capture authentic distortions [10, 36], and post-capture distortions
from compression or transmission [2, 50, 71]. Specifically, we study

six common [8, 10] in-capture authentic distortions
1
:

(T-1) Low Sharpness: The video does not have clear textures.

(T-2) Out of Focus: The salient target in video (e.g. human in a
portrait video) is not in-focus and looks Gaussian-blurred.

(T-3) Noise: Random pixel-wise brightness or color variation.

(T-4) Motion Blur: Blurriness that happens during and is caused

by motions of camera or subjects in the video.

[T-5] Flicker: Non-smooth variation between adjacent frames.

(T-6) Poor Exposure: Unrecognizable regions of frames due to

extremely low (high) brightness.

and two common errors induced by compression or transmission:

(T-7) Compression artifacts: Block-like or moire-like artifacts

introduced by compression algorithms [49, 55].

1
To distinguish, we denote all temporal-related factors with brackets, e.g. [T-5]

Flicker. Other spatial factors (i.e. can be detected within a frame) are in parenthesis.

Table 1: The codes and respective positive/negative descriptions during sub-
jective study for different dimensions in the Maxwell database.

Code Dimension Names Positive Description Negative Description
T-1 Sharpness Sharp Fuzzy
T-2 Focus In-Focus Out-of-Focus
T-3 Noise Noiseless Noisy
T-4 Motion Blur Clear-Motion Blurry-Motion
[T-5] Flicker Stable Shaky
T-6 Exposure Well-exposed Poorly-exposed
T-7 Compression Artifacts Original Compressed
[T-8] Fluency Fluent Choppy
*T-all Technical Perspective *Not Degraded *Severely Degraded

A-1 Contents Good Bad
A-2 Composition Organized Chaotic
A-3 Color Vibrant Faded
A-4 Lighting Contrastive Gloomy
[A-5] (Camera) Trajectory Consistent Incoherent
*A-all Aesthetic Perspective *Good Aesthetics *Bad Aesthetics

*O Overall Quality score *High Quality *Low Quality

[T-8] Low Fluency: Missing frames during a moving sequence.

With specific distortions identified, we can employ existing re-

spective algorithms to restore the video. For instance, if we detect

low sharpness in a video, we can apply super-resolution [3] to

repair it; denoising [43], deblurring [37] and stablization [25] can

restore the video when noises, motion blurs or flickers are detected;

frame interpolation [17] can alleviate low fluency caused due to

missing frames. These factor-level specific quality evaluations can

assist automated video quality enhancement systems in the future.

2) Factors in semantic-related aesthetic perspective. Many

studies have suggested that visual quality is affected by semantic-

related factors beyond technical distortions [13, 28, 59, 68]. Un-

like technical distortions, these higher-level factors are relatively

under-studied in existing VQA researches. To better choose these

semantic-related factors, we ask the subjects to score their feeling

on videos based on four dimensions commonly concerned by ex-

isting image aesthetic assessment (IAA) studies [14, 16, 34, 63, 67],

with an additional dimension for [temporal] aesthetics on videos:

(A-1) Contents: Are the contents in the video appealing?

(A-2) Composition: Do the video has organized and balanced

composition of objects and scenes?

(A-3) Color: Does the video has vibrant, pleasant color?

(A-4) Lighting: Does the video has contrastive lighting?

[A-5] Trajectory: Does the camera moves in a consistent [tempo-

ral] trajectory that aligns with the scene?

3.1.2 Design of the Study. After introducing the factors to study,

we discuss the concrete form for the subjective study as follows.

1) Evaluate the Impact of Each Factor.Many existing stud-

ies [22, 56] have suggested that different quality issues can concur-

rently exist and affect the quality of an in-the-wild video. Therefore,

to conduct the study more comprehensively, instead of classifying

one main factor that affect quality most significantly [13, 69], we

ask subjects to evaluate the impact of each factor on video quality.

2) Good/neutral/bad: a ternary choice. Though each factor

will affect quality of certain videos, it is unlikely for all 13 factors to

jointly significantly impact the quality of any one video. Therefore,

we allow for a neutral choice for each dimension denoting that the

corresponding factor does not notably impact perceptual quality

of the video. Moreover, considering that each specific factor can

pose either positive or negative impact to video quality, we design
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Average of Technical: 0.465

Average of Aesthetic: 0.320

Figure 2: The tendency between negative (red) and positive (green) opinions
for each dimension. The overall average of positive-to-negative ratio is 1.44:1.

Figure 3: The correlation (Pearson Linear, PLCC) map among various quality
factors and overall quality scores. See Table 1 for full names for codes.

a ternary choice question for each dimension, including the neutral

choice and a pair of antonyms to describe the positive and negative

choices. The annotation form in our study is exemplified as follows:

(T-1) Sharpness: Fuzzy < ----neutral---- > Sharp
(Please choose) [ ] [ ] [ ]

Descriptions for positive and negative choices are listed in Table 1.

3.1.3 Collection of Videos. To ensure the diversity of annotated

videos, we collect them from large video databases [20, 44] and

finally sub-sample 4,543 videos [47] that aligns with the distribution

of the candidate set for annotation. The resolution of these videos

ranges from 240P to 1080P, with an average duration 9s.

3.1.4 Training, Testing, and Annotation. To ensure that the subjects
have clear and common understanding on all factor dimensions, we

conduct the subjective studies in-lab. Moreover, before annotation,

we collect three examples each for the positive (e.g. stable for Flicker
axis), negative (e.g. shaky for Flicker axis), and neutral cases for all

dimensions to train the participants. Moreover, similar as existing

efforts [12, 64], we also derive a testing process and reject the

subjects that do not pass the testing. After rejection, every video has

annotations from at least 31 accepted subjects. Denote the negative,

neutral and positive opinions as [−1, 0, 1], the mean factor opinion

score (MOS𝑎,𝑖 ) for factor 𝑎 of video 𝑖 are obtained by averaging the

raw opinions OS
𝑘
𝑎,𝑖

|𝐾
𝑘=0

from 𝐾 accepted subjects.

3.2 Analyses on the Subjective Opinions
3.2.1 Proportions of Different Opinions. First, we examine the pro-

portion of non-neutral opinions in each dimension, which ranges

from [0.37,0.56] with an average of 0.45. This means that the quality

of an average video is affected by on-average 5.83 factors among

the 13 factors, where each factor impacts the quality of at least
37% of videos, proving the rationality of selecting these factors and

labeling impact of each one. Moreover, we measure the tendency

between positive and negative opinions through relative propor-

tions after removing the neutral opinions, as shown in Fig. 2. The

tendency for is balanced for technical distortions but significantly

biased towards positive opinions for aesthetic factors. This result

supports our design of the positive choices and suggests that human

visual system may not only perceive quality in a negative way.

3.2.2 Correlation among Dimensions. Next, we visualize the corre-
lation map of opinions among all dimensions (factors and abstract

quality scores) in Fig. 3, fromwhich we notice several interesting ob-

servations. First, all factors are highly relevant to, but also notably

different from overall quality (O), with PLCC ranging in [0.67,0.81].

Second, some distortions tend to happen together in real-world

videos. For example, Sharpness (T-1) most strongly associates with

Noise (T-3), which might be because low-definition video captur-

ing devices may also be worse on dealing with noises. Third, we
observe a general low relevance between effects of aesthetic and

technical factors (average PLCC about 0.5). For example, the correla-

tion between Color (A-3) and Flicker (T-5)) is very low (0.37). This

observation suggests that they usually have different influence to

overall quality assessment on in-the-wild videos, supporting our

design to divide these factors into two different perspectives during

the subjective study. Fourth, the inter-relation between spatial

and temporal distortions is also low, suggesting the importance of

specific temporal modeling in VQA. These observations provide

valuable guidance on improving future objective VQA models.

3.2.3 Absolute Responses of Factors. In addition to correlation

maps, we would also like to discover human sensitivity on different

specific factors. Thus, we visualize the absolute mean responses

(AMR𝑎) in Fig. 5 as the database-wise average of absoluteMOS𝑎

for each factor 𝑎 in Maxwell, formulated as AMR𝑎 =

∑𝑁
𝑖=1 |MOS𝑎,𝑖 |

𝑁
,

whereMOS𝑎,𝑖 is the mean factor opinion score of axis 𝑎 for video 𝑖 ,

and𝑁 = 4, 543 is the number of videos inMaxwell. Furthermore, we

visualize the proportion of non-neutral opinions in each dimension

as absolute raw responses (ARR𝑎) (gray bars in Fig. 5). From both

responses, we observe the especial sensitivity on the two temporal

distortions (Flicker ([T-5]) and Fluency ([T-8]), demonstrating that

temporal modeling is important for real-world VQA. Moreover,

Content (A-1) and Sharpness (T-1) are ranked next under both

response metrics, suggesting that they are also important quality

concerns to be considered for in-the-wild videos.

3.2.4 Qualitative Studies on Specific Factors. In Fig. 4, we further

illustrate extreme examples in each dimension, to better qualita-

tively understand the quality concerns of different dimensions.

From these examples, we validate that technical distortions are usu-

ally intermixed in real-world videos. Moreover, the semantic-related

aesthetic dimensions are also highly associated with overall quality

perception, such as Composition, Color, and Lighting (where the

good and bad cases are with obvious higher and lower quality). In

summary, different dimensions represent diverged quality concerns
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Figure 4: Qualitative studies on different specific factors, with a good video (>0.6) and a bad video (<-0.6) in each dimension of Maxwell; [A-5] Trajectory, [T-5]
Flicker, and [T-8] Fluency are focusing on temporal variations and example videos for them are appended in supplementary package. Zoom in for details.
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Contents
Sharpness

(Gray Bars: Absolute Raw Responses)

Figure 5: The absolute mean responses (AMR, colored) and absolute raw re-
sponses (ARR, gray) on diverse quality factors, where higher absolute response
means subjects are more sensitive to the respective quality concerns.

which align with conventional definitions about them, providing

reliable supervisions for objective specific quality evaluation.

4 OUR APPROACH: THE MAXVQA
4.1 Overview: Language-Prompted VQA
4.1.1 Unifying Dimensions via Language Prompts. With large-scale

multi-dimensional human opinions collected in the Maxwell data-

base, we would like to design an objective approach that can learn

from these opinions and then jointly predict specific quality factors

and overall quality scores for in-the-wild videos. Unlike traditional

multi-task strategies [8, 13] that regress each training objective

independently, we propose to unify these inter-related dimensions

via a language-prompted paradigm. Specifically, it is based on CLIP

(Contrastive Language Image Pre-training) [38], which is composed

of a textual encoder (CLIP-Textual, E𝑡 ) and a visual encoder (CLIP-
Visual, E𝑣 ). Given any text prompt 𝑃 and videoV = {𝑉𝑡 |𝑁−1

𝑡=0
} as

inputs, CLIP can encode them into the same representation space:

𝑓𝑉 ,𝑡 = E𝑣 (𝑉𝑡 ) |𝑁−1
𝑡=0 ; 𝑓𝑃 = E𝑡 (𝑃) (1)

Then, we can calculate the similarity between prompt 𝑃 and 𝑉𝑡 :

Sim(𝑃,𝑉𝑡 ) =
𝑓𝑉𝑡 · 𝑓𝑃

∥ 𝑓𝑉𝑡 ∥∥ 𝑓𝑃 ∥
(2)

which allows us to unify quality evaluation on different dimensions

by setting different text prompts 𝑃 . Details are discussed in Sec. 4.4.

4.1.2 Modifying CLIP for in-the-wild VQA. ThoughCLIP can jointly
encode videos and various natural language text prompts, it still

has several problems in both its visual and textual parts hindering

it from modeling VQA more effectively. 1) For the visual part,
due to downsampling and global pooling operations, CLIP-visual

has reduced sensitivity to low-level detail-related factors such as

noise, sharpness, artifacts, which are most correlated with overall

quality scores. Moreover, CLIP-visual does not have any tempo-

ral modeling, which neglects the temporal distortions as proved

important in our analysis. To solve the problems, we propose to

utilize the local CLIP visual features by modifying its attention

pooling outputs (Sec. 4.2.1); more importantly, we fuse the CLIP-

visual features with detail-aware and temporal-aware FAST-VQA

features (Sec. 4.2.2). 2) For the textual part, previous attempts

have shown that unlike general prompts (e.g. good/bad) that can
effectively match overall quality scores, the prompts for specific

factors are poorly aligned with human perception (see Table 5).

Therefore, we adopt the learnable contextual prompts to optimize

the textual inputs (Sec. 4.3). With these designs, we propose the

Multi-axis Video Quality Assessor (MaxVQA), discussed as follows.

4.2 Low-level Enhanced Visual Backbone
In this section, we introduce the enhanced visual backbone in

MaxVQA (Fig. 6(b)), which extracts the local CLIP features after

attention pooling, and further fuses them with FAST-VQA features

to enhance CLIP-visual on low-level and temporal distortions.

4.2.1 Local Features from CLIP. For the original CLIP, the visual
backbone encodes the global embedding 𝑓𝑉𝑡 for each frame through

the attention pooling layer. Denote the feature before the specific

attention pooling layer in CLIP-ResNet-50 backbone as 𝑓 Pre-Pool
𝑉𝑡

,
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Positive Learnable Prompt  

“A  sharp photo.”

P+T1
[Ctx]
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“A  fuzzy photo.”
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(a) (Language) Learnable Prompt Pairs

(b) (Vision) Low-level Enhanced Backbone

(c) Vision-Language Quality Evaluator

. .

Here is an example for Sharpness (T-1). The process is similar for other attributes.
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Figure 6: The structure of the proposed Multi-axis Video Quality Assessor (MaxVQA), including (a) Learnable Contrastive Language Prompts to encode text inputs,
(b) Low-level Enhanced Visual Backbone to encode videos, (c) and the final Vision-Language Quality Evaluator to output multi-axis quality scores.

this final attention pooling is achieved by a single-layer multi-head

self-attention (MHSA) on these features, as follows:

[𝑓𝑉𝑡 , 𝑓
Local

𝑉𝑡
] = MHSA( [𝑓 Pre-Pool

𝑉𝑡
, 𝑓 Pre-Pool
𝑉𝑡

]) (3)

while only 𝑓𝑉𝑡 is used in naive CLIP, we notice that the output local

features 𝑓 Local
𝑉𝑡

could also be useful as most quality factors as studied

in the Maxwell can be localized. Moreover, existing study [39]

proves that these local features are more sensitive to object-level

recognition (detection, segmentation), which are also associated

with aesthetic-related dimensions [14, 16]. Thus, we take the 𝑓 Local
𝑉𝑡

instead of 𝑓𝑉𝑡 as output features of CLIP-visual.

4.2.2 Fusion with FAST-VQA Features. Many existing works [23,

45, 46, 56] have pointed out that directly using fixed features from

high-level pre-trained deep neural networks [7, 11] may have com-

promised sensitivity on several texture-related factors (e.g. noises,
artifacts and sharpness) due to downsampling of visual inputs. To

enhance these important low-level perceptual factors and compli-

ment the lack of temporal modeling in CLIP, we fuse the CLIP

feature with the FAST-VQA [56, 57] features, the state-of-the-art

VQA-specific features which proved excellent performance on sev-

eral VQA datasets and well distinction on temporal distortions. To

get these features, the videos are passed through the fragment sam-

pling (crop multiple original resolution patches and splice them
together, see in Fig. 6(b)), and then fed into a modified Video Swin

Transformer [32]. Denote the fragment sampling as F, the FAST-
VQA features 𝐹 FASTV of V = {𝑉𝑡 |𝑁−1

𝑡=0
} are extracted as follows:

𝐹 FASTV = Swin( [{F(𝑉𝑡 ) |𝑁−1
𝑡=0 }]) (4)

where Swin denotes the modified Video Swin Transformer Tiny,

that takes temporally-aligned fragments (concatenated as videos)

as inputs. More details for fragment sampling are in supplementary.
Finally, the FAST-VQA features are fused with local CLIP-Visual

features through a residual multi-layer perceptron (MLP):

𝑓 Final𝑉𝑡
= MLP( [𝑓 Local𝑉𝑡

, (𝑓 FASTV )𝑡 ]) + 𝑓 Local𝑉𝑡
(5)

where (𝑓 FASTV )𝑡 denotes 𝑡-th feature frame of 𝑓 FASTV ; 𝑡 ∈ [0, 𝑁 ).

4.3 Learnable Language Prompts
To distinguish diverse dimensions, we initialize the text prompts

differently for each axis with their respective positive and negative

descriptions in Maxwell (see Table 1). Denote positive and negative

descriptions for 𝑎 as 𝐷𝑃𝑜𝑠𝑎 and 𝐷
𝑁𝑒𝑔
𝑎 , the initial positive 𝑃+𝑎 and

negative 𝑃−𝑎 prompts for a technical factor 𝑎 (T-x) are defined as:

𝑃+𝑎 = 𝐷𝑃𝑜𝑠𝑎 + “ photo.”; 𝑃−𝑎 = 𝐷
𝑁𝑒𝑔
𝑎 + “ photo.” (6)

For the semantic-related aesthetic factors, the prompts are initial-

ized with their dimension name (denoted as Name𝑎 , e.g. Contents
for A-1, Color for A-3) for more targeted and accurate modeling:

𝑃+𝑎 = 𝐷𝑃𝑜𝑠𝑎 +Name𝑎+“ photo.”; 𝑃−𝑎 = 𝐷
𝑁𝑒𝑔
𝑎 +Name𝑎+“ photo.” (7)

Though some more abstract initial prompt pairs (e.g. good/bad)
have proved good performance [51, 60, 69] on overall quality per-

ception, both existing studies and our experiments (Table 5, row
1) suggest that the more specific prompts are poorly aligned with

respective human perception. Therefore, we choose the simple and

efficient contextual prompt [72] to optimize these initial prompts,

by inserting a single context token before the initial prompts:

𝑃 = “A ” + Ctx + 𝑃 (8)

where Ctx is the context token, initialized as “X" and optimized

during training, and 𝑃 is an overall denotion of 𝑃+𝑎 and 𝑃−𝑎 . Tokens
except Ctx and weights of the language encoder are keep frozen.

4.4 Unified Vision-Language Quality Evaluator
To finally evaluate quality, the proposed MaxVQA calculates the

positive similarity (𝑆+𝑎 ) and negative similarity (𝑆−𝑎 ) in dimension 𝑎

from its specific positive 𝑃+𝑎 and negative 𝑃−𝑎 prompts,

𝑆+𝑎 =

𝑁−1∑︁
𝑡=0

Sim(𝑃+𝑎 , 𝑓 Final𝑉𝑡
)

𝑁
; 𝑆−𝑎 =

𝑁−1∑︁
𝑡=0

Sim(𝑃−𝑎 , 𝑓 Final𝑉𝑡
)

𝑁
(9)

and perform softmax pooling to obtain the respective quality scores:

𝑄𝑎 =
𝑒𝑆

+
𝑎

𝑒𝑆
+
𝑎 + 𝑒𝑆−𝑎

(10)
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Table 2: Multi-Axis benchmark comparison of existing approaches and the proposed MaxVQA on Maxwell. [Temporal] dimensions are labeled in brackets.
Dimensions (in codes) A-1 A-2 A-3 A-4 [A-5] A-all T-1 T-2 T-3 T-4 [T-5] T-6 T-7 [T-8] T-all O
Methods PLCC PLCC PLCC PLCC PLCC PLCC PLCC PLCC PLCC PLCC PLCC PLCC PLCC PLCC PLCC PLCC

Zero-shot Methods: (not fine-tuned on any dimensions)

(c, spatial) NIQE [33] 0.317 0.281 0.329 0.321 0.211 0.338 0.189 0.255 0.174 0.217 0.136 0.199 0.156 0.178 0.255 0.301

(c, temporal) TPQI [30] 0.246 0.293 0.210 0.225 0.360 0.319 0.223 0.293 0.239 0.374 0.463 0.225 0.244 0.410 0.363 0.361

(CLIP-based) SAQI [60] 0.388 0.410 0.453 0.504 0.393 0.515 0.560 0.500 0.524 0.509 0.344 0.482 0.497 0.311 0.554 0.559
Supervised Methods: (for existing approaches, we adopt naive multi-task training on all dimensions)

(classical) TLVQM[22] 0.477 0.523 0.437 0.471 0.601 0.590 0.537 0.571 0.538 0.606 0.664 0.503 0.539 0.530 0.653 0.652

(classical) VIDEVAL[45] 0.469 0.533 0.501 0.513 0.533 0.564 0.578 0.534 0.548 0.557 0.664 0.467 0.543 0.393 0.595 0.601

(c+d) RAPIQUE[46] 0.490 0.538 0.520 0.559 0.560 0.651 0.610 0.618 0.588 0.621 0.563 0.568 0.566 0.406 0.695 0.708

(deep) VSFA[28] 0.512 0.556 0.611 0.634 0.515 0.624 0.719 0.625 0.642 0.612 0.555 0.645 0.643 0.406 0.672 0.678

(deep) BVQA-Li[26] 0.553 0.607 0.659 0.668 0.678 0.671 0.746 0.686 0.694 0.682 0.781 0.653 0.677 0.659 0.759 0.739

(deep) FAST-VQA[56] 0.614 0.630 0.696 0.709 0.646 0.721 0.800 0.724 0.755 0.731 0.751 0.695 0.736 0.654 0.803 0.782

MaxVQA (Ours) 0.681 0.701 0.757 0.749 0.712 0.775 0.825 0.748 0.776 0.761 0.782 0.748 0.763 0.684 0.827 0.813

Table 3: Evaluation of MaxVQA on existing in-the-wild VQA datasets. All ex-
periments are conducted under 10 train-test splits with mean results reported.
Dataset LIVE-VQC KoNViD-1k YouTube-UGC

Methods SRCC↑ PLCC↑ SRCC↑ PLCC↑ SRCC↑ PLCC↑
TLVQM[22] 0.799 0.803 0.773 0.768 0.669 0.659

VIDEVAL[45] 0.752 0.751 0.783 0.780 0.779 0.773

RAPIQUE[46] 0.755 0.786 0.803 0.817 0.759 0.768

CNN+TLVQM[23] 0.825 0.834 0.816 0.818 0.809 0.802

VSFA[28] 0.773 0.795 0.773 0.775 0.724 0.743

PVQ[64] 0.827 0.837 0.791 0.786 NA NA

CoINVQ[53] NA NA 0.767 0.764 0.816 0.802

BVQA-Li[26] 0.834 0.842 0.834 0.836 0.818 0.826

DisCoVQA[58] 0.820 0.826 0.846 0.849 0.809 0.808

FAST-VQA[56] 0.849 0.862 0.891 0.892 0.855 0.852

MaxVQA (Ours) 0.854 0.873 0.894 0.895 0.894 0.890

5 EXPERIMENTAL ANALYSIS
In this section, we benchmark existing VQA approaches on the

Maxwell database (Sec. 5.2), and evaluate the performance and gen-

eralization ability of the proposed MaxVQA (Sec. 5.2&5.3). We also

conduct ablation studies (Sec. 5.4) and qualitative studies (Sec. 5.5)

to further analyze the effectiveness of the proposed MaxVQA.

5.1 Implementation Details
5.1.1 Experimental Setups. We evaluate the proposed MaxVQA

with frozen visual and textual encoders, and pre-extract the vi-

sual features to reduce computational cost. The only optimizable

parameters are the MLP module for visual feature fusion and the

contextual prompt Ctx, therefore the training requires only 3GB

graphic memory cost at batch size 16. Following original CLIP, the

videos are downsampled to 224 × 224 before fed to E𝑣 . Our code is

based on OpenCLIP [18]. The CLIP-visual backbone is ResNet-50.

5.1.2 Database Settings. Following recent practices [2, 64], we split
the Maxwell database with two parts, the open training set with

3,634 videos, and the reserved test set with 909 videos (We will
maintain a test server for future methods to evaluate on the test set).
Moreover, we evaluate a single-dimension variant for MaxVQA on

three common in-the-wild VQA datasets with only overall qual-

ity scores available: KoNViD-1k (1200 videos), LIVE-VQC (585

videos), YouTube-UGC (1147 videos). Results reported for existing

databases are the mean results of 10 random train-test splits.

5.1.3 Baseline Methods for Benchmark Study. To better increase

the diverse of our benchmark study, we choose representative state-

of-the-art VQA methods with different characteristics:

• TLVQM (2019): Representative handcraft classical method.

• VIDEVAL (2021): Representative handcraft classical method.

• RAPIQUE (2021): Representative method that combines deep
CNN features with handcraft classical features.

• VSFA (2019): The first deep CNN-feature-based method.

• BVQA-Li (2022): An improved deepCNN-feature-basedmethod,

with an additional temporal 3D-CNN backbone.

• FAST-VQA (2022): The first end-to-end deep VQA method.

and several representative zero-shot VQA methods to explore be-

tween these objective metrics and the dimensions in the Maxwell:

• NIQE (2013): NSS-based spatial zero-shot quality evaluator.

• TPQI (2022): State-of-the-art zero-shot temporalVQAmethod.

• SAQI (2023): Zero-shot CLIP-based VQA method with only

abstract (i.e. high/low quality; good/bad) prompt design.

We evaluate all baseline methods with official implementations.

5.2 Benchmarking on the Maxwell
5.2.1 Zero-shot Approaches. We first benchmark representative

zero-shot quality indices on Maxwell. Specifically, we do not fit

the scores with any dimensions, but evaluate how these indices

match specific dimensions. The CLIP-based SAQI shows far better

performance than NSS-based NIQE, proving the potential of CLIP

on VQA. Still, without temporal modeling, it shows notably lower

(-25%) accuracy on two temporal distortions: Flicker ([T-5]) and
Fluency ([T-8]) than the specific temporal VQA index, TPQI. This

suggests that we need to include temporal modeling ability for a

CLIP-based approach to better solve in-the-wild VQA problem.

5.2.2 Existing Supervised Methods, and MaxVQA. We also bench-

mark existing supervised methods with a multi-task training strat-

egy. Classical methods even struggle to surpass zero-shot approaches

on certain dimensions. For deep methods, while FAST-VQA reaches

champions on overall performance and most dimensions, BVQA-Li
is more competitive on temporal-related dimensions (A-5, T-5, T-8).
The Maxwell benchmark can then suggest that an independent tem-

poral backbone may improve temporal modeling in VQA, besides

only concluding that FAST-VQA is more effective. For the proposed

MaxVQA, with CLIP-visual features and language-prompted mod-

eling, it can further notably outperform FAST-VQA especially on

semantic-related dimensions (A-x, +9.4% in-average). The results

suggest that accurately assessing multiple quality factors is a more

challenging task than only predicting overall quality scores.
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Table 4: Prediction of which dimension is closer to subjective quality scores in existing databases? Top-5 dimensions are highlighted with (ranks) in parenthesis.
Dimension A-1 A-2 A-3 A-4 [A-5] A-all T-1 T-2 T-3 T-4 [T-5] T-6 T-7 [T-8] T-all O
Existing Database PLCC PLCC PLCC PLCC PLCC PLCC PLCC PLCC PLCC PLCC PLCC PLCC PLCC PLCC PLCC PLCC

LIVE-VQC 0.681 0.708 0.733 0.747 0.777 0.772 0.767 0.821 (3) 0.767 0.821 (3) 0.700 0.765 0.763 0.816 (5) 0.830 (1) 0.822 (2)

KoNViD-1k 0.751 0.776 0.759 0.778 0.772 0.825 (4) 0.819 (5) 0.859 (2) 0.813 0.824 0.645 0.768 0.800 0.737 0.859 (2) 0.865 (1)

YouTube-UGC 0.681 0.713 0.728 0.756 0.671 0.794 0.819 (4) 0.819 (4) 0.821 (2) 0.793 0.553 0.714 0.814 0.746 0.821 (2) 0.830 (1)

Table 5: Ablation Studies: Effects of Low-level-enhanced Visual Backbone and Contextual Prompts on Maxwell. The metric is PLCC (same as other tables).
Variants / Dimension A-1 A-2 A-3 A-4 [A-5] A-all T-1 T-2 T-3 T-4 [T-5] T-6 T-7 [T-8] T-all O
Baseline A: Zero-shot CLIP 0.143 0.322 0.411 -0.028 0.192 0.153 0.498 0.414 0.058 0.241 0.346 0.254 0.174 0.053 0.218 0.467

A+Ctx 0.551 0.598 0.637 0.662 0.582 0.569 0.746 0.664 0.627 0.662 0.591 0.670 0.634 0.414 0.634 0.670

A+Ctx+MLP (w/o 𝑓 FASTV ) 0.580 0.626 0.606 0.615 0.618 0.683 0.766 0.662 0.675 0.670 0.593 0.636 0.673 0.433 0.722 0.735

Baseline B: FAST-VQA 0.614 0.630 0.696 0.709 0.646 0.721 0.800 0.724 0.755 0.731 0.751 0.695 0.736 0.654 0.803 0.782

B+CLIP visual (w/o textual) 0.644 0.678 0.699 0.723 0.698 0.765 0.815 0.734 0.772 0.748 0.767 0.733 0.743 0.648 0.809 0.802

MaxVQA (all) 0.681 0.701 0.757 0.749 0.712 0.775 0.825 0.748 0.776 0.761 0.782 0.748 0.763 0.684 0.827 0.813

5.3 Evaluation on Existing Databases
5.3.1 Training and Testing on Existing Databases. We also train and

evaluate the proposed language-prompted MaxVQA on existing

VQA databases, with a variant with only single objective on overall

score (O). As compared in Table 3, the proposed MaxVQA can sig-

nificantly outperform baseline methods on all datasets, proving the

robust excellent performance of its visual-language-based design.

5.3.2 Analyzing Existing Databases with Multi-axis Predictions. In
Table 4, we compare between multi-dimensional MaxVQA predic-

tions trained with Maxwell and overall scores in existing datasets.

First, we prove that MaxVQA can generalize well from Maxwell to

existing datasets on overall quality (O) prediction. Furthermore, we

observe that unlike KoNViD-1k and YouTube-UGC, the subjective

scores in LIVE-VQC are more correlated with predictions of the

technical perspective (T-all) than overall quality (O). This result
suggests that subjective studies conducted for different databases

might not follow the same scoring standards implicitly. Among

the specific factors, we notice that Focus (T-2) is important for all

databases, while LIVE-VQC is especially concerned about Motion

Blur (T-4) and Fluency (T-8) as all videos are from hand-held smart-

phones. Moreover, KoNViD-1k is obviously more concerned about

pure aesthetic predictions (A-all) and contents (A-1) than others.

5.4 Ablation Studies
We conduct ablation studies to investigate the effects of proposed

modules in MaxVQA, as listed in Table 5. Zero-shot CLIP generally

performs poorly on specific quality factors, validating our second

claim in Sec. 4.1.2 and the necessity of learnable text prompts.

5.4.1 Effects of Enhanced Visual Backbone. Considering the context-
prompted CLIP as baseline, we discuss the effects of the proposed

enhanced visual backbone. Without the FAST-VQA features, either

the original or adapted [9] CLIP features lead to less accuracy, es-

pecially for temporal distortions ([T-5] Flicker and [T-8] Fluency),

where the FAST-VQA features can improve 58% and 32%, proving
the vitality of including temporal modeling upon baseline CLIP.

5.4.2 Effects of CLIP. From another perspective, we treat the FAST-

VQA as our baseline method, and investigate the effects of pre-

trained CLIP in the MaxVQA. Directly integrating CLIP visual fea-

tures can lead to significant improvements, especially on aesthetic

dimensions. The text-prompted modeling further notably improve

the performance than the naive multi-task variant without textual
modeling, proving the rationality of our multi-modal design.

Overall Overall Overall Overall

Contents Contents Contents Contents

Sharpness Sharpness Sharpness Sharpness

Figure 7: Multi-axis local quality maps for dimensions Overall (O), Contents
(A-1) and Sharpness (T-1) of the proposed MaxVQA, showing their differences.

5.5 Multi-Axis Local Quality Maps
As 𝑓 Final

𝑉𝑡
are localized features, we are able to generate local quality

maps (similar as [56]) from different dimensions, so as to qualita-

tively examine the their quality concerns. As illustrated in Fig. 7,

the proposed MaxVQA can comprehensively detect degraded or

unappealing local areas as worse overall quality (O); moreover, the

Contents (A-1) axis predicts that human-related areas in videos are

with better quality than backgrounds; and the Sharpness (T-1) axis

can well-distinguish fuzzy areas (e.g. backpack in the leftmost video),
suggesting that MaxVQA can distinguish differences among axes.

6 CONCLUSION
Our study significantly expands the scope of in-the-wild VideoQual-

ity Assessment (VQA) by explaining subjective quality scores with

specific factors. A large-scale in-the-wild VQA database, named

Maxwell, is created to gather more than two million human opin-

ions across 13 specific quality-related factors, including technical

distortions e.g. noise, flicker and aesthetic factors e.g. contents. With

the Maxwell database, we investigate the relationships between

various perceptual factors and examine how they influence over-

all quality opinions. Moreover, the Maxwell establishes a novel

multi-dimensional benchmark for objective VQA methods to assess

their strengths and weaknesses in capturing various quality issues,

providing more detailed guidance for future methods. Additionally,

the study introduces the MaxVQA, a language-prompted VQA ap-

proach that can jointly evaluate multiple specific quality factors and

overall perceptual quality scores, achieving state-of-the-art results

with excellent generalization abilities. We hope that our efforts will

bring along new insights and advancements in the VQA field.
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