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Active CT Reconstruction
with a Learned Sampling Policy
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Abstract—Computed tomography (CT) is a widely-used imaging technology that assists clinical decision-making with high-quality
human body representations. To reduce the radiation dose posed by CT, sparse-view and limited-angle CT are developed with
preserved image quality. However, these methods are still stuck with a fixed or uniform sampling strategy, which inhibits the possibility
of acquiring a better image with an even reduced dose. In this paper, we explore this possibility via learning an active sampling policy
that optimizes the sampling positions for patient-specific, high-quality reconstruction. To this end, we design an intelligent agent for
active recommendation of sampling positions based on on-the-fly reconstruction with obtained sinograms in a progressive fashion.
With such a design, we achieve better performances on the NIH-AAPM dataset over popular uniform sampling, especially when the
number of views is small. Finally, such a design also enables RoI-aware reconstruction with improved reconstruction quality within
regions of interest (RoI’s) that are clinically important. Experiments on the VerSe dataset demonstrate this ability of our sampling policy,
which is difficult to achieve based on uniform sampling.

Index Terms—CT reconstruction, patient-adaptiveness, active acquisition.

F

1 INTRODUCTION

COMPUTED tomography (CT), a widely-used imaging
technology, is able to reconstruct highly-detailed, cross-

sectional maps of an object. Clinical diagnosis depends on
the quality of the CT image, which shows the interior com-
position of the object. Note that the technology works by
measuring the intensity decay of photons emitted from an
X-Ray tube along a set of predefined rays that traverse the
object. Normally, the higher the CT dose, the clearer the image.
Unfortunately, the carcinogenic nature of ionizing radiation
means one needs to reduce the radiation dose that the pa-
tient is exposed to in a CT scan, which raises safety concerns
for patients. In contrast, the lower dose means noisier data
and, therefore, a more challenging imaging problem. To
balance the demand of two aspects, sparse-view (SV) and
limited-angle (LA) imaging technologies are developed [1],
[2], which acquire sinograms using a limited number of
angles and within a limited angle range, respectively.

Traditional methods that reconstruct an image from lim-
ited acquisition focus on iterative methods with representa-
tive knowledge-based priors, such as Total Variation based
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methods [3], [4], Non-local based method [5], Sparsity-
based method [6], and Low-Rank-based methods [7], [8],
[9]. However, these knowledge-based approaches typically
introduce an iterative reconstruction process that is com-
putationally expensive. Recently, the deep learning (DL)
based approaches, such as FBPConvNet [10] and CasRed-
SCAN [11], have been proposed and achieved satisfactory
performances with less time consumption, which directly
learn a mapping function between the low-quality FBP
reconstruction and clean high-quality images via paired
training. Such a training procedure introduces a risk of
falling into the local minima of training distribution, thereby
unable to generalize to unseen signals, especially when
there is a low number of training images. Compared to
natural images, medical images (e.g. CT images) are sparser.
To improve the generalizablity, a series of deep-unfolding
frameworks are proposed [12], [13], [14], [15], [16], [17], [18],
[19] by further combining the iterative algorithms with DL,
which inherits both the generalizability of knowledge-based
methods and the high-performances of DL-based methods
and hence boosts the reconstruction performances of SV/LA
CT by a large margin.

Despite the success achieved by the above methods,
CT imaging technology still undergoes development. In-
dividual factors, such as weight, age, and sex, make body
representation different. Such differences are not considered
in the uniform trajectory, making the sampling non-adaptive
to patients [20]. Nevertheless, few works study the sinogram
sampling process, which seems helpful in MRI reconstruc-
tion [21], [22], [23]. UF-AEC [20] marks the first attempt
that simultaneously learns the trajectory with PD-Net [14]
in CT imaging. They simultaneously optimize the radiation
dose of each X-Ray signal and the sampling trajectory, and
return higher rewards when the selected sinogram brings
the most improved peak signal-to-noise ratio (PSNR). While
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such a design simultaneously learns the trajectory and tunes
the dose distributed along with each X-Ray signal, we hy-
pothesize that further by taking into account patient-specific
diagnosis requirements, CT reconstruction should provide
better visual quality in corresponding clinically concerned
regions. For instance, clinical diagnosis of patients with
spinal diseases needs better image quality in the spine
region; whereas COVID-19 examination necessitates more
details in lung reconstruction. Although the commonly-used
uniform trajectory provides overall better reconstructions,
they fail to present the required image quality granularity
in Region of Interest (RoI) across different patients or from
specific diagnosis requirements, making the uniform trajec-
tory clinically ineffective for personalized clinical decision
making. Note that a physically developed method [24], [25]
for CT imaging is using a controllable beam filter to impose
a high radiation dose only in the RoI, resulting in a better
RoI reconstruction. However, the dose distributed inside
and outside RoI needs to be carefully balanced for different
demands. Till now, to the best of our knowledge, there are
few works considering this problem from an algorithmic
perspective.

In this paper, we incorporate active sinogram sampling
into our reconstruction framework and learn to jointly ac-
quire projections and reconstruct the image, which adapts to
the patient-specific diagnosis requirements. Specifically, we
separately learn the two subtasks with two corresponding
modules, one for learning the sampling trajectory, named
Intelligent Agent (A), and the other for the reconstruction,
named Reconstructor (R). Facing no ground truth for A, we
pretrain the module A to be capable of ranking sinograms
in terms of the contribution to CT reconstructions via metric
learning. Then, the pretrained module A is incorporated
to recommend the most reconstruction-benefiting sinogram
sampling position. Next, we design an iterative reconstruc-
tion process to gradually (i) rank all projected sinograms of
the current reconstruction with A and select the candidates
with higher scores; and (ii) reconstruct with sinograms
composed of the previous stages and the selected candidates
in (i). To compensate for the optimization shift between
learning better ranking with A and better reconstruction
with R, we employ an alternating optimization design. Via
sufficient training, our method learns to actively obtain sino-
grams benefiting high-quality reconstructions and is able to
go beyond what can be done by doing either separately.

In sum, our contributions are as follows:

• Towards the optimal sampling for an active recon-
struction, we design an iterative reconstruction pro-
cess between the R and A modules, one for recon-
structing images and the other for recommending
the sampling trajectory, respectively. To alleviate the
different optimization directions of these two mod-
ules, we propose an alternative pipeline to gradually
adopt the actively learned sampling trajectory in
training.

• In order to make the learned sampling trajectory
controllable and matching with real scenarios, we
introduce multiple hyperparameters in our itera-
tive reconstruction. For allowing more variations in
training, we relax the searching space of hyperpa-

rameters. Then, taking into account the difference
across patients and different clinical requirements,
we tighten the space during inference for better
performances.

• Empirical experiments on NIH-AAPM [26] and
VerSe [27], [28] benchmark datasets demonstrate that
our proposed learning-based policy achieves better
reconstruction on both the whole image and the pre-
defined RoI. The visualization of learned sampling
mask verifies the adaptiveness and its effectiveness
on the RoI information.

2 MOTIVATION

CT reconstruction aims to reconstruct structural represen-
tations of external/internal tissues of the human body
u ∈ RHW (H and W are the image height and width) from
the corresponding sinogram yf ∈ RTD (T is the sampling
times, and D is the number of detector photons), which is
formulated as

yf = Afu+ n,

where the fully-forward projection matrix Af ∈ RTD×HW
represents the full-sampling Radon transform and n denotes
the imaging photon noise. In SV/LA CT, the sampling times
M is much less than T , such that we define an additional
sub-sampling matrix P ∈ RMD×TD, composed of {0, 1}
elements to choose suitable subvectors from yf . Thus we
have the down-sampled observation y = Pyf .

In iterative methods, DL methods, or deep-unrolling
methods, the sampling matrix P is pre-defined and the
included trajectory is uniformly distributed around the pa-
tient (usually limited in 180◦ since the penetrability of X-Ray
leads to repetitive information). This evenly-acquired sino-
gram collects global body representation and brings overall
satisfactory reconstruction. However, such predefined sino-

X-Ray source
Detector
Angle Range
Region of Interest (RoI)

Region of Cross (RoC)
(a) (b)

Fig. 1. We visualize a CT image with a Region of Interest (RoI) labeled
in red that covers the spine, say for diagnosing spinal diseases. With
the commonly-used uniform sampling, the Region of Cross (RoC) by
acquired sinograms mismatches with RoI as in (a), which is not clinically
expected. Then, with rearrangement of sampling trajectories as in (b),
the RoC overlaps better with RoI, leading to a possibly better RoI
reconstruction.

gram sampling trajectories do not consider patient-specific
or task-specific characteristics. Taking spine checking as a
motivating example in Fig. 1, we here only consider three
partial sinograms within a fixed angle range (labeled with
curves) to simplify the problem. With the uniform trajectory
(three sinograms distributed equally within the fixed angle
range) as in Fig. 1 (a), the Region of Cross (RoC) formed by
acquired sinograms does not bear a significant overlap with
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the RoI. Indeed, this is not expected for the shown CT image
with the RoI (spine parts) deviating a lot from the center,
resulting in the reconstruction that seems overall clear but
with degraded quality in the RoI. The phenomena makes the
deployed uniform sampling trajectories less effective when
clinicians requires to examine the patient’s spinal region. To
avoid such undesirable properties in uniform trajectory, additional
optimization of the sampling matrix P results in a dynamic ar-
rangement of sampling trajectory, providing a potential to achieve
a personalized and clinically effective imaging process.

Fig. 2. The iterative process of simultaneous sampling and reconstruc-
tion.

Whereas, with a rearrangement of the sampling posi-
tions as in Fig. 1 (b), the resulted RoC highly overlaps with
the RoI. Motivated by the insignificant overlap between RoC
and RoI in uniform sampling and the RoC changes with
rearrangement, we explore the option of designing an active
sampling policy to gradually learn the sampling matrix P
and reconstruction simultaneously in an iterative process as
the workflow depicted in Fig. 2.

Till now, only Shen et al. [20] use reinforcement learning
to design a novel dynamically sampling policy based on the
assumption of a random access to any sampling angle at any
time, which is therefore too radical for practical deployment
since dynamically tuning the radiation dose and sampling
positions is physically impractical in CT machine per their
discussion. Note that both the sinogram trajectory and the
tuned radiation dose gradually contribute to the reconstruction
performance until the total number of sinograms reaches the
pre-defined upper bound. Besides, considering each selected
sinogram, dynamically changing the suitable position and
tuning the accompanying radiation dose both change the
accumulated dose distribution around the patient.

As technology advances, dynamically moving the ra-
dioactive source is realizable. Thus, further optimizing P
for a better reconstruction has recently become attractive
yet still challenging. Targeting this issue, in this paper, we
present a design with a controllable sampling trajectory, and
learn the optimal matrix P simultaneously with reconstruc-
tion to impose the positive interaction, which better aligns
with real scenarios.
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Fig. 3. We visualize the down-sampling process of an example, where
we represent P with a block matrix with identity submatrices and all-
zero submatrices. The optimization of P is equivalent to selecting the
sampling positions for identity submatrices.

3 METHODOLOGY

To this end, we reformulate the reconstruction problem as
follows:

min
u,P

1

2
‖PAf u− y‖2 +R1(u) +R2(P ), (1)

whereR1(u) andR2(P ) are the regularization terms used to
impose the prior information. Traditionally, the minimiza-
tion problem (1) can be efficiently solved via the splitting
method. The variables u and P in the above are split into
two blocks:


P k+1 = argmin

P

1

2
‖P kAf uk − y‖2 +R2(P ),

uk+1 = argmin
u

1

2
‖P k+1Af u

k − y‖2 +R1(u).
(2)

Rethinking the above-introduced P as in Fig. 3, P is
a very high-dimensional and sparse matrix. More specif-
ically, it is composed of M × T submatrices, which are
either an identity matrix or an all-zero matrix. Due to its
special form, direct optimization of P in (2) is difficult
and computationally expensive. To speed up the iterative
reconstruction, recall the physical significance of P . For the
fixed fully sampled sinogram yf ∈ RTD, P adopts M -times
(with M � T ) sampling on the temporal dimension, which
is represented by the identity matrix in Fig. 3, and each
time a projection yf,k ∈ RD(1 ≤ k ≤ T ) is returned. In
practice, yf,k represents one imaging line on the detector
(i.e., the D-element subvector in Fig. 3). With such analysis,
we simplify the optimization of P to the iterative selection
of M -times choice of identity matrix in our framework,
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Fig. 4. The framework of our active sampling and reconstruction process. With initialized k0 sinograms, denoted as y0, we then use a reconstructor
(R) (realized with U-Net here) to reconstruct the corresponding CT image. The following intelligent agent (A) recommends the next k sinogram
acquisition positions, which are optimal for the currently observed reconstruction. The iterative process continues until kmax sinograms are sampled.

that is, adding one more imaging line per iteration. In
other words, it becomes a discrete selection rather than a
continuous optimization problem.

For this purpose, we use the neural networks to learn
the solutions of Eq. (2) in each iteration, which gives{

P k+1 = Aψ(u
k, P k),

uk+1 = uk + Rθ(uk, P k+1),
(3)

where Rθ and Aψ are parameterized sub-networks to it-
eratively compute the intermediate estimations. In this
way, we have decoupled the optimization problem (1)
into the acquisition step and reconstruction step, where
the alternating direction method is employed to solve a
multi-variable optimization problem. The overall active
acquisition↔reconstruction process is depicted in Fig. 4.
The complete process is alternatively between the opti-
mization of Reconstructor (R) and Intelligent Agent (A).
Especially, we first pre-define k0 initial sinogram-sampling
positions (we empirically set initial positions uniformly in
experiments) to give a suitable initialization of u0 and P 0.
According to the current image quality, the module A is
then utilized to recommend the next k acquisition positions
within a certain angle range in the acquisition step. The
proposed iterative process outputs a series of iterates:

(P 1, u1), (P 2, u2), (P 3, u3), . . .

and continues until the total number of acquired sinograms
equals kmax. Next, we introduce the modules R, A, and the
training paradigm in detail.

3.1 Reconstructor
From the perspective of active learning, the obtained k0+nk
sinograms after n-time iterations provide partial and low-
quality representation, which can be utilized to suggest the
next sinogram acquisition positions. To ensure the power
of the latter sampling policy design, we realize R with
the commonly-used backbone U-Net, which can also be
replaced with other structures as in our later experiments. In
the iterative sampling and reconstruction process, R is used
to transit estimations from different acquisition scenarios,
and the following A would evaluate the correlation between
each candidate and the final reconstruction performance.
Specifically, in the n-th iteration, the reconstructor R receives
k0 +nk acquired sinograms yn, and outputs the reconstruc-
tion ûn. Towards an efficient computation, we employ the

same parameters among each iteration, which also renders
better robustness of our reconstructor. In this way, the final
loss function for R is defined as follows:

LR = ‖û− ugt‖2, (4)

where û and ugt are the final estimation and the correspond-
ing ground-truth CT image, respectively.

3.2 Intelligent agent

Given an estimated reconstruction, an experienced clinician
is capable of deciding which part of the reconstruction is
sufficient for diagnosis, and therefore suggests a coarse
sampling range to enhance the reconstruction. Nevertheless,
such expert-dominated sampling suggestion is expensive
because of the scarcity of clinicians. A desirable substitu-
tion is an Intelligent Agent (A) able to seek out the most
reconstruction-benefited sampling positions with the cur-
rent estimated ûn. But this is an extremely difficult problem
since the image domain information cannot directly guide
the sinogram position searching. To solve the problem, we
propose a two-stage projection-image domain correlation
sampling policy, denoted by A, as in Fig. 4. Specifically,
with the current estimation, we first transform ûn into
the Radon domain with Af . Obtaining the current full-
projections Af (ûn), we next use a fully-connected network
to output a confidence score for each sinogram, which tells
the system how each obtained projection correlates with
the final reconstruction. With the score, we finally select
the highest k candidates in a limited angle range (αp, αq),
where αp and αq are the pre-defined minimal and maximal
distances, respectively, between these candidates and the
last chosen sinogram position. The procedure provides two
benefits:

• Flexibility. The design is flexible to be plugged in the
current CT machines, just replacing the used recon-
struction algorithm with ours and sample projections
on the actively learned positions instead of fixed
ones;

• Adaptiveness. The optimal selection for the intro-
duced angle-range (αp, αq) allows more freedom
for the algorithm to adaptively reconstruct images
according to the current image domain information
of ûn.
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Algorithm 1: Training Strategy
Input: The ground truth CT image u, the involved

αmax, k0, k, kmax, αp, αq , the number of
epochs T , batch size b = 1, learning rate lr,
the network parameters θ of R, ψ of A, and
β1, β2 of Adam.

Output: The optimized parameters θ̂, ψ̂.
1 for t = 1 : T do
2 Sample initial k0 sinograms y0;
3 for n = 0 : N (N = (kmax − k0)/k) do
4 Reconstruct image Rθ(yn);
5 Evaluate Rθ(yn) with Aψ ;
6 Recommend k sampling positions in (αp, αq);
7 Sample the k sinograms, denoted as the set

Kn;
8 Update yn+1 = yn

⋃
Kn;

9 if t%2 = 0 then
10 Update reconstructor parameters θ:

gradθ = ∇LRθ
θ = Adam(gradθ, θ, lr , β1 , β2 )

11 else
12 Compute Ard,i;
13 Update evaluator parameters ψ:

gradψ = ∇LAψ
ψ = Adam(gradψ, ψ, lr , β1 , β2 )

In such a way, the key point is to evaluate the correla-
tion between each projection {Af (ûn)i}kmaxi=1 of the current
reconstruction and the final reconstruction, and we have de-
signed a self-supervised strategy for the position sampling
process since there are no ground-truth sampling positions for
each CT image in practical reconstruction. Firstly, we compute
the reliability of the current projection position with the
following metric:

Ard,i = exp(−‖Af (ûn)i −Af (ugt)i‖2), (5)

where Af is the fully-sampled transform matrix, ûn is the
current reconstruction with currently-sampled sinograms,
and ugt is the correspond ground-truth CT image. The
metric indeed softly evaluates how the current sinograms
match with ground-truth sinograms, and would assign→ 1
to the most approximate one and→ 0 to the fakest one. With
the computed Ard,i as the supervision of A, our A learns
to select sinograms closest to ground-truth ones, which
benefits the reconstruction mostly. The final loss function
for the evaluator is as follows:

LA = ‖
∑
i

A(ûn)i −Ard,i‖2. (6)

The design, in fact, explores the intrinsic information from
each image ûn itself.

3.3 Training strategy
As described above, the included R and A modules target
different functions: one for reconstruction and the other
for selecting reliable sinograms. Simultaneously optimizing
them together makes it confusing for the whole system.
Motivated by the optimization procedure in GANs [29],

Algorithm 2: Active Sampling and Reconstruction

Input: The optimized paramenters θ̂, ψ̂, and the
involved α

′

max, k
′

0, k
′
, k

′

max, α
′

p, α
′

q .
Output: The reconstruction û.

1 Sample initial k
′

0 sinograms y
′

0;
2 for n = 0 : N (N = (k

′

max − k
′

0)/k
′
) do

3 Reconstruct image Rθ̂(y
′

n);
4 Evaluate Rθ̂(y

′

n) with Aψ̂ ;
5 Recommend k

′
sampling positions in (α

′

p, α
′

q);
6 Sample the k

′
sinograms, denoted as the set K′

n;
7 Update y

′

n+1 = y
′

n

⋃
K′

n;

8 Reconstruct the final CT image û with y
′

N−1.

[30], [31], we propose to optimize them in an alternative
fashion as depicted in Algorithm 1 to compensate for the
optimization direction shift. Concretely, we first train R for 2
epochs with fixed A since the training of such reconstruction
is much easier than A. Then, with fixed R, we optimize A to
search for a better sampling trajectory that is most suitable
for the current R. With sufficient training, the two modules
would cooperate, targeting a better reconstruction.

3.4 Active sampling and reconstruction

With the well-trained R and A, the testing phase utilizes
them to simultaneously sample a suitable trajectory and
output a better reconstruction. As in Algorithm 2, the hy-
perparameters are denoted with a superscript to distinguish
them from training ones. Specifically, with pre-defined α

′

max

and k
′

max according to the physical setting, we need to
additionally tune hyperparameters k

′

0, k
′
, α

′

p and α
′

q to
strive for the best one. Note that we would make these
hyperparameters different in training and testing settings
since (i) we release more searching freedom to the algorithm
when training to help the model face with more cases; and
(ii) we tighten the searching space in testing to eliminate
poor ones with empirical experience.

3.5 RoI-aware reconstruction

Except for the above-mentioned benefits from the active
sampling process, it also renders a potential to reconstruct
CT images targeting the diagonal requirements. This is es-
pecially true for a constrained radiation budget: the Region
of Cross (RoC) constructed by the limited sample positions
is more likely to match with the RoI.

Specifically, given a clinical task, the coarse Region of
Interest (RoI) can be pre-defined as a 0-1 mask M similar to
the segmentation masks. In such a way, we highlight the RoI
reconstruction importance and Eq. (4) becomes:

LRRoI = ‖(I +M)� (û− ugt)‖2, (7)

where I is the identity matrix and � is the Hadamard
product. Then, with the additional guidance of M , the
interaction between R and A results in images that pays
more attention to RoI reconstruction quality with the help
of rearrangement of sinogram positions.
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TABLE 1
Quantitative comparison of our SAS and GDS policies with RS and US. Reconstructor performance with our policy achieves significant

improvement with p < 0.001 in terms of PSNR when 15 < kmax < 60. For kmax = 90, where sampling freedom is very limited, our policy
achieves significant improvement with p < 0.05 in terms of PSNR. The best performance in each column highlighted in bold and the second best

is underlined.

NIH-AAPM kmax = 15 kmax = 30 kmax = 60 kmax = 90
PSNR(dB) SSIM RMSE PSNR(dB) SSIM RMSE PSNR(dB) SSIM RMSE PSNR(dB) SSIM RMSE

RS 23.17±1.14 .795±.029 .070±.010 25.85±1.16 .836±.015 .053±.008 28.44±1.10 .859±.015 .035±.006 29.40±0.99 .873±.014 .034±.005

US 24.98±0.59 .813±.017 .057±.004 27.87±0.59 .845±.017 .041±.003 29.75±1.48 .866±.029 .033±.007 31.06±1.57 .885±.017 .029±.006

SAS (ours) 26.16±0.80 .828±.017 .049±.005 28.69±0.57 .855±.017 .037±.003 30.02±0.78 .873±.016 .032±.003 31.28±0.57 .888±.016 .028±.002

GDS (ours) 26.59±0.71 .829±.018 .047±.004 28.47±0.66 .851±.019 .038±.003 29.84±0.53 .871±.017 .032±.002 31.00±0.68 .884±.018 .028±.002

Noise Level L1
RS 23.30±1.12 .796±.024 .069±.009 25.84±1.11 .835±.015 .052±.007 28.41±1.13 .858±.014 .038±.006 29.37±1.01 .872±.014 .034±.005

US 24.88±0.59 .809±.017 .057±.004 27.84±0.60 .845±.017 .041±.003 29.71±1.48 .865±.029 .033±.007 30.98±1.56 .884±.018 .029±.006

SAS (ours) 26.13±0.75 .827±.017 .050±.004 28.65±0.59 .854±.017 .037±.003 29.96±0.78 .872±.016 .032±.003 31.19±0.59 .887±.016 .028±.002

GDS (ours) 26.60±0.73 .829±.019 .047±.004 28.42±0.66 .849±.019 .038±.003 29.78±0.54 .870±.018 .032±.002 30.92±0.67 .882±.018 .029±.002

Noise Level L2
RS 23.39±1.16 .797±.026 .068±.009 25.88±1.10 .835±.015 .051±.007 28.38±1.08 .856±.014 .039±.006 29.27±1.00 .871±.014 .035±.005

US 24.73±0.60 .804±.017 .058±.004 27.79±0.61 .844±.017 .041±.003 29.66±1.47 .863±.029 .033±.007 30.88±1.55 .882±.018 .029±.006

SAS (ours) 26.12±0.74 .826±.016 .050±.004 28.59±0.61 .853±.017 .037±.003 29.91±0.76 .870±.016 .032±.003 31.12±0.62 .885±.017 .028±.002

GDS (ours) 26.58±0.72 .828±.018 .047±.004 28.37±0.65 .848±.019 .038±.003 29.75±0.56 .868±.018 .033±.002 30.82±0.66 .880±.019 .029±.002

4 EXPERIMENTAL RESULTS

Dataset. The “2016 NIH-AAPM-Mayo Clinic Low Dose CT
Grand Challenge” (AAPM) [26] dataset and VerSe [27],
[28] dataset are included in our experiments. The former
is used for patient-specific active reconstruction and the
latter is used for RoI-aware reconstruction. For the AAPM
dataset, we follow the original data partition with three
anatomies, including brain, chest, and abdomen. We first
conduct overall experiments on chest data as in Section 4.1
and analyze the reconstruction stability of our method, fol-
lowed by ablation experiments on the other two anatomies
in Section 4.5 to verify the robustness of our method. To
further demonstrate the deployment flexibility of the frame-
work with known clinical tasks, we experiment with several
VerSe volumes, which cover the whole spine of patients,
to further reconstruct and optimize sampling positions for
better recovery within the RoI.
Implementation details. Our models are implemented
using the PyTorch framework. We use the Adam opti-
mizer [32] with default (β1, β2) = (0.9, 0.999) to train these
models. The learning rate starts from 0.0001 for the R and
0.0002 for the A. Models are all trained on a NVIDIA 3090
GPU card for 50 epochs with a batch size of 1.
Evaluation metrics. Reconstructed CT images are quantita-
tively measured by the multi-scale SSIM [33], [34], PSNR,
and RMSE (Root Mean Square Error), and we compute the
RMSE on normalized images.
Comparison methods. To verify the effectiveness of our
learning-based sampling process, we compare with the Uni-
form Sampling (US) and Random Sampling (RS). For RS, we
make inference with the trained models five times and take
the average to eliminate the randomness. For our method,
we have proposed two policies with a different design
on α

′

p and α
′

q , called Sequential Active Sampling (SAS)
and Global-then-Detail Sampling (GDS). The SAS keeps the
angle selection range (α

′

p, α
′

q) fixed in the whole sampling
process, and the GDS firstly reconstructs the overall image
with (α

′

p,g , α
′

q,g), followed by different angle selection range
(α

′

p,d, α
′

q,d).

4.1 Patient-specific active reconstruction

Quantitative comparison. In this experiment, we quantita-
tively evaluate the effectiveness of our proposed SAS and
GDS policies. The quantitative results of our two policies, as
well as US and RS, are reported in Table 1. Reconstructions
with SAS and GDS achieve better performances across dif-
ferent settings except when kmax=90, where GDS policy is
a little worse or comparable with the US since the restricted
searching space limits its various hyperparameter selection
(i.e., the performances). Especially, the improvements over
the US, which is commonly used in various algorithms,
become enlarged when decreasing sinograms. This is caused
by the increasing “sinogram choosing freedom”. In other
words, when decreasing kmax from 90 to 15, the whole
selection range (0, αmax) is fixed and the selection rate is
reduced to 1/6. Therefore, we have more candidate angle
positions in each selection. This highlights the advantage
of the trajectory optimization of SAS and GDS in such ex-
tremely sparse scenarios. As clinical setup is different across
hospitals, the model robustness to the involved photo noises
is therefore important, and we test these policies with noise
levels L1 (Poisson noise level 5e5) and L2 (Poisson noise
level 1e5). Across all these noise levels, our SAS and GDS
achieve consistently better reconstructions, which confirms
its feasibility in practical deployment.
Qualitative comparison. To further understand the inter-
action between the adaptiveness of learning-based policies
and the final reconstruction, we visualize the reconstruc-
tions of RS, US, and SAS in Fig. 5. The first three rows are
the difference images, reconstructed images, and zoom-in
images when kmax = 30, respectively; the last three rows
are when kmax = 15. In accord with the above quan-
titative results, the reconstructed images with SAS show
better performances in both intrathoracic tissues and bones.
With such extremely sparse views, projection information is
limited, and the details in intrathoracic parts are difficult to
be recovered with both RS and US as shown in bottom right
part of Fig. 5. While simultaneously optimizing sampling
trajectories provides a potential to focus on the projections
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Fig. 5. We visualize the reconstructions based on RS, US, and learning-based SAS in the 2nd and 5th rows, where kmax= 30 and 15 respectively.
The corresponding difference images are shown in the 1st and 4th rows. The corresponding zoom-in images are shown in the 3rd and 6th rows.
With the same radiation dose, obviously, the reconstructions with sinograms recommended by SAS achieve better results, where the reconstruction
details are clearer than the others. Besides, we show the learned sampling trajectories of SAS across different cases and the dynamic sinogram
selection results, which indeed contributes positive improvement to the final reconstruction. The display window is set to [-1000, 1000] in all cases.

that are the most important for the final reconstructions. Be-
sides, comparing the four images representing very different
tissue distributions, the dynamically chosen sinograms are
indeed patient-specific, caused by the different interactions
between the reconstruction and each sampling sinogram. As
the quantitative and qualitative performances are competi-
tive, we only experiment with SAS policy later for simplicity.

4.2 Active sampling process analysis

Then, we further visualize the whole sampling process
when kmax = 15, 30 in Fig. 6 As shown with the red
and blue lines, the reconstruction performance is improved
faster in the beginning, while suffering instability across
samples. Then, with sufficient sampled views, the improve-
ment slows down when sampling the last 13.5% views,
while model deviation on samples is smaller in this stage.

Besides, we mark the US as the baseline with green dot-
ted lines. With such comparison, we observe that our SAS
achieves comparable performances when n = 13, 26 in the

TABLE 2
We test the trained model when kmax = 30 on other scenarios, and

show several quantitative results. Across different cases when
15 < kmax < 60, our SAS policy exhibits better results than the US

policy.

NIH-AAPM US SAS (ours)
PSNR(dB) SSIM RMSE PSNR(dB) SSIM RMSE

kmax = 15 17.97±1.11 .715±.025 .127±.014 20.29±1.49 .760±.026 .098±.012

kmax = 30 27.87±0.59 .845±.017 .041±.003 28.69±0.57 .855±.017 .037±.003

kmax = 45 26.24±1.53 .850±.015 .050±.011 27.20±1.56 .858±.015 .045±.011

kmax = 60 24.50±1.47 .850±.015 .061±.013 25.03±1.44 .852±.015 .057±.012

two scenarios, respectively. This means that the sampling
trajectory optimization of SAS reduces about 13.3% views,
i.e., 13.3% radiation dose. The characteristic is especially
important for protecting patient safety, and ensures that
dynamically changing sampling trajectories according to the
patient body representation is necessary. Next, we show



JOURNAL OF LATEX CLASS FILES, VOL. XX, NO. X, XX XX 8

TABLE 3
We test the robustness of our SAS on training data scales, and SAS shows comparable stability with US policy before decreasing data to 20%.

With limited 20% training data, the SAS policy still shows the best performances.

NIH-AAPM RS US SAS (ours)
PSNR(dB) SSIM RMSE PSNR(dB) SSIM RMSE PSNR(dB) SSIM RMSE

20% Training Data 20.52±1.59 .753±.041 .096±.018 24.23±1.57 .783±.043 .063±.012 24.77±1.12 .804±.041 .058±.008

40% Training Data 23.62±1.17 .807±.025 .067±.010 26.52±1.53 .841±.021 .048±.012 27.10±1.30 .845±.015 .045±.008

60% Training Data 24.44±1.04 .816±.018 .060±.008 27.75±1.55 .856±.012 .042±.011 28.24±0.84 .852±.015 .039±.004

80% Training Data 25.08±1.42 .826±.033 .056±.012 27.61±1.17 .846±.015 .042±.007 28.44±0.78 .854±.015 .038±.004

100% Training Data 25.85±1.16 .836±.015 .053±.008 27.87±0.59 .845±.017 .041±.003 28.69±0.57 .855±.017 .037±.003

TABLE 4
Testing results on different anatomies, including chest, brain, and abdomen, when kmax = 30. Our SAS policy achieves consistently better

performances on all the anatomies, implying the robustness of the proposed sampling policy.

NIH-AAPM Chest Brain Abdomen
PSNR(dB) SSIM RMSE PSNR(dB) SSIM RMSE PSNR(dB) SSIM RMSE

RS 25.85±1.16 .836±.015 .053±.008 29.03±2.10 .908±.032 .036±.009 29.67±2.29 .947±.016 .034±.011

US 27.87±0.59 .845±.017 .041±.003 33.33±2.89 .942±.025 .023±.008 31.69±1.67 .952±.011 .027±.006

SAS (ours) 28.69±0.57 .855±.017 .037±.003 33.74±1.89 .954±.010 .021±.005 33.12±1.70 .955±.012 .022±.005

SAS Trajectory

Li
ne

 O
rd

er

SAS Trajectory SAS Trajectory

GT
16.11 28.3127.4321.94

PSNR(dB)

Fig. 6. We visualize the sampling process and intermediate recon-
structed images of SAS when n = 10, 20, 26 (marked by ‘*’ symbols
on the SAS curve), and their corresponding learned trajectories.

three reconstructed images when n = 10, 20, 26, and their
corresponding learned trajectories. The dynamical process
shows that the sampling sparsity is still important as in
the US, which helps cover body information as much as
possible. Then, the adaptively-changing trajectories guide

the model to focus on the parts which contribute most to
the final reconstruction.

4.3 Generalization over unseen kmax
With the trained model, a practically deployed reconstruc-
tion model needs to be capable of dealing with unobserved
settings, i.e., different kmax. Thus, we test our SAS trained
with kmax = 30 on other settings. As in Table 2, the
performances across scenarios when kmax = 15, 45, 60 show
better stability, compared with US. The improved stability
is benefited from the modeling between sinograms and the
final reconstruction. Especially, after training with the self-
supervision of Eq. (6), our A module can discriminate how
the current candidate sinograms correlate with the image
quality.

4.4 Robustness on training data scale
In medical image analysis, the limited data scale inhibits
the research progress. Recently proposed Transformer-based
methods [35] in particular need large scale training data
for good performances. Therefore, we test whether SAS
suffers the problem, and compare results in Table 3. The
three sampling policies all show stable performances with
over 20% training data, and our SAS keeps the similar
improvement over RS and US. Then, with further decreasing
training data to 20%, all the three policies drops, which
is caused by the too-limited training data, and the large
distribution gap between training and testing data makes
it hard to keep satisfactory performance. In such extremely
difficult cases, our SAS still keeps a similar improvement,
which probably benefits from the pretraining of A module.

4.5 Robustness on anatomical structures
As CT-based clinical decision making concerns multiple
anatomical structures, such as the brain and abdomen, we
conduct experiment based on these two structures in NIH-
AAPM dataset to verify the robustness of our SAS policy.
Specifically, we select 10 patients with abdomen CT images
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GT RS US SAS GT RS US SAS

PSNR(dB) 32.16 30.97 35.39

31.9731.7328.34PSNR(dB)

32.7131.2530.22PSNR(dB)

33.2131.6328.69PSNR(dB)

SAS Trajectory

SAS Trajectory

SAS Trajectory
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Fig. 7. We visualize the reconstructions of different anatomies when kmax = 30 in the 1st and 3rd rows, corresponding to abdomen and brain,
respectively. The 2nd and 4th rows show the zoom-in images of the clinical RoI, and the learned trajectories are shown in the last column. Obviously,
with the same radiation dose, learning-based SAS outputs better results, where the reconstruction details are clearer than the others. Besides, we
exhibit the learned sampling trajectories across the four cases to show the dynamic sinogram selection results, which indeed contribute positive
improvement to the final reconstruction.

TABLE 5
Testing performance comparison on different backbones (kmax = 30).

Results show that our SAS policy is superior on both CNN and
Transformer backbones

NIH-AAPM US SAS
PSNR(dB) SSIM RMSE PSNR(dB) SSIM RMSE

CNN 27.87±.59 .845±.017 .041±.003 28.69±.57 .855±.017 .037±.003

Transformer 28.10±.81 .850±.018 .039±.004 28.29±.63 .853±.018 .039±.003

and 12 patients with brain CT images for training and
use additional 4 patients with abdomen CT images and 3
patients with brain CT images for testing. The kmax is set
to 30 and the results are shown in Table. 4. We observe
a consistent improvement of our SAS policy over RS and
US. Especially, for the abdomen images, our policy obtains
the 1.43 dB improvement over the US. For considerable
analysis, we also visualize the images in Fig. 7, where our
SAS reconstructions provide better clinical RoI recovery in
zoom-in images. The accompanying learned trajectories are
shown in the last column.

4.6 Robustness on different backbones

As a general framework for simultaneously sampling and
reconstruction, we next substitute R with recently pro-
posed Transformer-based reconstruction architecture [36],
and compare the performances with previous CNN-based
performances. As shown in Table 5, compared with uniform
sampling, our SAS achieves better performance, regardless
of the network architecture. However, the performance im-
provement of SAS over US is bigger when the CNN back-

(a) Ablation on k
′

0

(c) Ablation on α
′

p

(b) Ablation on k
′

(d) Ablation on α
′

q

Fig. 8. The conducted ablation experiments on the hyperparameters
when reconstructing with SAS.

ground is utilized than when the Transformer is used, which
indicates that SAS better matches with CNN-based architec-
ture. In future, we will further explore a better combination
of our SAS and other reconstruction frameworks, such as
Transformer-based and deep-unfolding-based methods.
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TABLE 6
Testing performance comparison on the VerSe datasets (kmax = 30). The additional weighted loss indeed improves SAS policy performance with

a larger margin over the US policy, verifying the impact of the loss on the view choice of SAS policy.

VerSe-Spine Whole Image Region of Interest (RoI)
PSNR(dB) SSIM RMSE PSNR(dB) SSIM RMSE

US 28.75±2.15 .911±.009 .038±.010 26.13±2.36 .893±.019 .051±.015

US RoI 28.82±1.29 .904±.015 .037±.006 26.47±1.74 .894±.022 .047±.010

SAS (ours) 29.24±1.01 .919±.009 .035±.004 27.83±1.93 .917±.017 .042±.009

SAS RoI (ours) 29.91±1.00 .913±.009 .032±.004 28.86±1.41 .916±.016 .037±.006

4.7 Ablation on hyperparameters choices
We then discuss the choice of contained hyperparameters in
terms of chest CT image reconstruction when kmax = 30.
The conducted ablation experiments of four hyperparame-
ters {k′

0, k
′
, α

′

p, α
′

q} used in testing is exhibited in Fig. 8. In
subfigure (a), when we fix the other hyperparameters and
gradually increase k

′

0 from 1 to 10, the reconstruction perfor-
mance decreases step by step. Note that when increasing k

′

0,
the searching freedom is gradually tightened which limits
the final reconstructions. Then we fix other hyperparameters
and explore the choice of k

′
as in subfigure (b). The best

performance is achieved when k
′

equals 1. When increasing
k

′
to 2 and 3, reconstruction performance decreases 0.98

and 2.24 dB since we set k as 1 in training. When further
increasing k in training, the decrease is alleviated. However,
a larger k comes with larger selection freedom and hence
raises the training difficulty; thus we set k and k

′
to 1 in all

our previous experiments. Next, with a similar procedure,
we test the choice of α

′

p and α
′

q and show the results in
subfigures (c) and (d). In such way, we obtain optimal
choice when α

′

p and α
′

q equal to 5 and 10, respectively.
With the above described manner, we have achieved the
best reconstruction performance as Table 1 reports.

4.8 RoI-aware reconstruction
With the active sampling procedure, a direct potential ap-
plication is a combination with downstream tasks since
they provide a prior clinically-concerned RoI. Targeting the
exploration of the interaction between the additional weight
loss introduced in Eq. (7) and our SAS policy, we investi-
gate RoI-aware reconstruction and conduct experiments on
VerSe [27] covering the spine. Specifically, we employ partial
slices of seven patients covering spines, of which five are for
training and the others for testing. To verify the influence,
we equip the weighted loss for both US and SAS policies,
named US RoI and SAS RoI, and report the quantitative
results in Table 6. Comparing US and SAS, our policy
achieves better reconstruction of both the whole image and
RoI. Further, when additionally employing Eq. (7), SAS RoI
increases about 1dB on the region containing spines, even
if the SAS has achieved 27.83 dB. The improvements on
the RoI ensure that the active sampling process is guided
by the weighted reconstruction loss. Besides, we visualize
the RoI image in Fig. 9, including three cases with different
spine parts. Coinciding with the quantitative results, the US
is almost not affected by the weighted RoI loss. In contrast,
reconstructions of SAS RoI provide clearer recovery on the
clinical concerned region, which is valuable for practical
diagnosis.
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29.42
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26.66

24.60 27.89

30.46 29.26

Fig. 9. We visualize the RoI(spine in our experiments) reconstructions of
US, US RoI, SAS, and SAS RoI. Results across different slices show
that SAS RoI with the weighted loss provides the best recovery, even if
the SAS has recovered most details. The display window is set to [-1000,
1000].

5 DISCUSSIONS

Comparisons with greedy sampling. To further explore the
upper bound of our learning-based sampling policies, we
test a training-free greedy sampling method. Assuming that
the sampled sinogram positions are in a set S . Specifically,
we initialize S= {0◦} with US, and the left positions set
S = {1◦,2◦,. . . ,359◦} are candidates for the next sampling.
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TABLE 7
Comparisons with training-free reconstruction-benefited greedy

sampling (GS) method when kmax = 15, 30.

NIH-AAPM kmax = 15 kmax = 30
PSNR(dB) SSIM RMSE PSNR(dB) SSIM RMSE

US 24.98±.59 .813±.017 .057±.004 27.87±.59 .845±.017 .041±.003

GS 26.41±.74 .826±.016 .044±.004 28.57±.64 .850±.018 .037±.003

SAS (ours) 26.16±.80 .828±.017 .049±.005 28.69±.57 .855±.017 .037±.003

TABLE 8
Comparisons of PSNR and computation time among US, GS and SAS

methods when kmax = 15, 30.

NIH-AAPM kmax = 15 kmax = 30
PSNR(dB) Time (s) PSNR(dB) Time (s)

US 24.98 0.33 27.87 0.23
GS 26.41 586.70 28.57 1187.55
SAS (ours) 26.16 2.42 28.69 4.34

Then, we reconstruct with S + s, where s ∈ S. Choosing
the s providing the largest reconstruction improvement,
based on PSNR, over the reconstruction with S only, and
denote it as s′. We next update S=S

⋃
s′. The sampling

process continues till |S|= kmax. To be fair, we use our
trained reconstructor here since our reconstructor is more
robust to kmax than the US-trained model. We name such
training-free greedy sampling as GS and compare it with
SAS and US in Table. 7. Since the greedy choosing process
is too computationally expensive, we conduct only two
cases when kmax = 15 and 30. The obvious improvement is
achieved compared with the US in both cases. However, our
SAS still achieves improvement when kmax = 30 over GS,
which is because of the training benefit. Such comparisons
verify that our method indeed closely approximates such a
completely greedy sampling method.
Time comparison Considering the real-time practical de-
ployment, we compare the performance improvement ver-
sus computation time in Table 8. Our SAS achieves sim-
ilar results with GS, while the US performance is much
lower, especially when kmax is smaller. Simultaneously, the
inference time of SAS is much shorter than that of GS,
while about 7 and 19 times slower than the predefined US
when kmax equals 15 and 30. Balancing the performance
improvement versus additionally introduced computation,
SAS is practically feasible. Besides, when decreasing kmax
with the fixed αmax, the accompanying larger sampling
searching space brings larger improvement with our SAS.
Furthermore, the smaller kmax decreases the active search
time, which enlarges the advantage of our SAS in extremely
sparse scenarios. In contrast, the iterative computation time
monotonically increases when increasing kmax. The smaller
searching space also limits the performance of SAS and
the completely greedy GS. With such comparison, we hy-
pothesize that the sparser and larger sampling searching
space would be beneficial to such learning-based sampling
policies, and vice versa.
Comparisons with the dynamically collimator-based RoI
reconstruction. Targeting different clinical tasks, the CT
images need to focus on task-specific regions, i.e. RoI,
providing enough information for clinicians in diagnosis.

This also helps reduce quite a lot of radiation imposed on
other diagnosis-irrelevant anatomies. For this purpose, a
commonly practical used RoI CT reconstruction method is
the dynamically collimated X-Ray beam [25], which utilizes
the dynamic collimator to limit the exposure. This practical
solution considers the RoI from the physical perspective and
requires that the collimator velocity matches with the X-
Ray source to exactly locate the RoI. While our SAS-based
RoI reconstruction is from the algorithmic perspective, and
the ideal A is capable to sample task-relevant sinograms. In
this way, our algorithm is more suitable for before-diagnosis
imaging, and the dynamically collimated X-Ray beam RoI
reconstruction is more suitable for after-diagnosis imaging.
Further combination of both methods. Although SAS-based RoI
reconstruction differs from the collimator-based solution,
the two methods don’t conflict with each other since they
are from two parallel viewpoints. Further combining the
algorithmic perspective of SAS and the physics-motivated
collimator is a potentially clinical design.

6 CONCLUSIONS

In this work, we break through the limitation of uniform
sampling in CT by proposing a novel framework of actively
sampling sinograms that are adaptive to a patient for CT
reconstruction with a reduced radiation dose. It is done
by the specifically-designed A module for selecting the
sinograms to acquire and R module for reconstructing CT
images. In this way, the whole sampling trajectory takes
into account the individual factors, and the later sampled
sinogram position is determined by the pre-sampled ones.
With such a design, we propose two sampling policies,
called SAS and GDS, both achieving better reconstruction
performances with the same reconstructor. Furthermore,
when fusing the RoI information of clinically-concerned
anatomy, the active sampling policy achieves even better
reconstruction, especially in the RoI. However, the com-
putational efficiency heavily depends on the introduced
hyperparameter k, which we would explore to raise recon-
struction efficiency in future.
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[14] J. Adler and O. Öktem, “Learned primal-dual reconstruction,”
IEEE transactions on medical imaging, vol. 37, no. 6, pp. 1322–1332,
2018.

[15] C. Wang, H. Zhang, Q. Li, K. Shang, Y. Lyu, B. Dong, and
S. K. Zhou, “Improving generalizability in limited-angle ct recon-
struction with sinogram extrapolation,” in International Conference
on Medical Image Computing and Computer-Assisted Intervention.
Springer, 2021, pp. 86–96.

[16] H. Zhang, B. Liu, H. Yu, and B. Dong, “Metainv-net: Meta in-
version network for sparse view ct image reconstruction,” IEEE
Transactions on Medical Imaging, vol. 40, no. 2, pp. 621–634, 2020.

[17] H. Chen, Y. Zhang, Y. Chen, J. Zhang, W. Zhang, H. Sun,
Y. Lv, P. Liao, J. Zhou, and G. Wang, “Learn: Learned experts’
assessment-based reconstruction network for sparse-data ct,” IEEE
transactions on medical imaging, vol. 37, no. 6, pp. 1333–1347, 2018.

[18] W. Wu, D. Hu, C. Niu, H. Yu, V. Vardhanabhuti, and G. Wang,
“DRONE: dual-domain residual-based optimization network for
sparse-view CT reconstruction,” IEEE Transactions on Medical Imag-
ing, vol. 40, no. 11, pp. 3002–3014, 2021.

[19] W. Cheng, Y. Wang, H. Li, and Y. Duan, “Learned full-sampling
reconstruction from incomplete data,” IEEE Transactions on Com-
putational Imaging, vol. 6, pp. 945–957, 2020.

[20] Z. Shen, Y. Wang, D. Wu, X. Yang, and B. Dong, “Learning to scan:
a deep reinforcement learning approach for personalized scanning
in ct imaging,” arXiv preprint arXiv:2006.02420, 2020.

[21] Z. Zhang, A. Romero, M. J. Muckley, P. Vincent, L. Yang, and
M. Drozdzal, “Reducing uncertainty in undersampled MRI recon-
struction with active acquisition,” in Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, 2019, pp.
2049–2058.

[22] L. Pineda, S. Basu, A. Romero, R. Calandra, and M. Drozdzal,
“Active mr k-space sampling with reinforcement learning,” in
International Conference on Medical Image Computing and Computer-
Assisted Intervention. Springer, 2020, pp. 23–33.

[23] K. H. Jin, M. Unser, and K. M. Yi, “Self-supervised deep active
accelerated mri,” arXiv preprint arXiv:1901.04547, 2019.

[24] R. N. Chityala, K. R. Hoffmann, D. R. Bednarek, and S. Rudin, “Re-
gion of interest (ROI) computed tomography,” in Medical Imaging
2004: Physics of Medical Imaging, vol. 5368. SPIE, 2004, pp. 534–541.

[25] D. J. Heuscher and F. Noo, “Ct dose reduction using dynamic
collimation,” in 2011 IEEE Nuclear Science Symposium Conference
Record. IEEE, 2011, pp. 3470–3473.

[26] C. McCollough, “Tu-fg-207a-04: Overview of the low dose CT
grand challenge,” Medical physics, vol. 43, no. 6Part35, pp. 3759–
3760, 2016.

[27] A. Sekuboyina, M. E. Husseini, A. Bayat, M. Löffler, H. Liebl,
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