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ABSTRACT
In this paper, we explore the potential of the Contrastive Language-
Image Pretraining (CLIP) model in scene text recognition (STR),
and establish a novel Symmetrical Linguistic Feature Distillation
framework (named CLIP-OCR) to leverage both visual and lin-
guistic knowledge in CLIP. Different from previous CLIP-based
methods mainly considering feature generalization on visual en-
coding, we propose a symmetrical distillation strategy (SDS) that
further captures the linguistic knowledge in the CLIP text encoder.
By cascading the CLIP image encoder with the reversed CLIP text
encoder, a symmetrical structure is built with an image-to-text
feature flow that covers not only visual but also linguistic infor-
mation for distillation. Benefiting from the natural alignment in
CLIP, such guidance flow provides a progressive optimization objec-
tive from vision to language, which can supervise the STR feature
forwarding process layer-by-layer. Besides, a new Linguistic Con-
sistency Loss (LCL) is proposed to enhance the linguistic capabil-
ity by considering second-order statistics during the optimization.
Overall, CLIP-OCR is the first to design a smooth transition be-
tween image and text for the STR task. Extensive experiments
demonstrate the effectiveness of CLIP-OCR with 93.8% average
accuracy on six popular STR benchmarks. Code will be available at
https://github.com/wzx99/CLIPOCR.

CCS CONCEPTS
• Applied computing→ Optical character recognition.
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1 INTRODUCTION
Scene text recognition (STR) is an important task in Optical Char-
acter Recognition (OCR) which aims at reading the text content
of the given scene image. With the widely used of deep learning
[10, 28, 34], deep neural networks have achieved tremendous im-
provement on STR task. But the severe distraction in the image (e.g.,
noisy background, blurred text, and special text styles) makes it still
challenging for recognition by only utilizing the visual information
from the input image.

Recently, Contrastive Language-Image Pretraining (CLIP) has
shown impressive performance in aligning vision and language
content [32]. By leveraging more than 400 million image-text pairs
for training, features from CLIP have a powerful generalization
property and can be used for few-shot or zero-shot tasks. Intuitively,
since STR involves both visual and language information, CLIP
holds promising potential for enhancing recognition performance
with its multi-modal prior knowledge.

As a large-scale pre-trained model, CLIP has been widely studied
on downstream tasks. Existing CLIP-based works can be divided
into two commonly used methods: fusion [8, 24, 26, 38, 52] and dis-
tillationmethods [5, 33, 51, 57]. On one hand, fusionmethods regard
CLIP as a pre-trained feature extractor and directly employ it for
feature extraction (Fig.1(a)). For example, TCM [52] uses CLIP em-
beddings to query the text regions inside the image, which verifies
the generalizability of CLIP for OCR tasks. CLIPTER [1] introduces
the CLIP image encoder to obtain the global visual context and fuse
it with the feature of the recognition encoder. But inferencing with
such a large-scale model leads to a huge additional computation
cost which is suboptimal for STR task. On the other hand, distil-
lation methods prefer to transfer knowledge inside CLIP to their
model (Fig.1(b)). RegionCLIP [57] distills its image encoder with
the CLIP text encoder to learn generalized visual representations
for open-vocabulary object detection. Ramesh et al [33] design an
auxiliary loss with the CLIP image encoder to constrain the context
of image generation. However, existing methods mainly focus on
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Figure 1: Comparison between previous methods and our
CLIP-OCR in STR task. (a) shows the fusion methods which
combine the pre-trained CLIP model into their framework
to enhance the feature encoder. (b) shows the distillation
methods where only visual generalization is concerned for
optimizing the feature encoder. (c) is our CLIP-OCR where
an SDS flow bridges CLIP encoders together to distill both
visual and linguistic knowledge for the entire recognition
model.

distilling visual generalization for image embedding which lacks
linguistic guidance when applying to the STR task. Moreover, the
knowledge inside the CLIP text encoder is wasted as there is no
text encoding process in STR. Therefore, a distillation framework
for linguistic learning is needed for STR to make full use of the
prior knowledge in CLIP. In contrast to previous works, in this
paper, we further explore the linguistic knowledge in CLIP and pro-
pose a novel Symmetrical Linguistic Feature Distillation framework
(named CLIP-OCR).

Aiming to incorporate linguistic learning, our CLIP-OCR con-
sists of a Symmetrical Distillation Strategy (SDS) to provide detailed
linguistic information and a Linguistic Consistency Loss (LCL) to
transition linguistic knowledge efficiently. Specifically, the SDS com-
bines CLIP image and text encoder together to generate a precise
image-to-text supervision with both visual and linguistic knowl-
edge (Figure 1(c)). To this end, SDS first introduces the CLIP text
encoder and utilizes its linguistic knowledge to guide the recogni-
tion decoder. By exploiting the symmetric input-output relationship
between them, we reverse the direction of the CLIP text encoder to
create a decoding feature flow. This reversed feature flow fills the
blank of CLIP-based decoder distillation, which creates innovative
and seamless linguistic guidance from the text encoder to supervise
the recognition decoder. Second, an image-to-text guidance flow
is built to distill the entire recognition process by cascading the

CLIP image encoder and reversed text encoder (Red dashed line in
Fig.1(c)). Exploiting the well-aligned relations between two CLIP
encoders, SDS conducts a progressive layer-wise supervision from
image to text that leverages both visual and linguistic knowledge
in CLIP.

In addition, a Linguistic Consistency Loss (LCL) is designed to
enhance the transition efficiency of linguistic knowledge. Differ-
ent from the general distillation loss with first-order statistics (e.g.,
point-wise consistency [15, 49, 51]), LCL optimizes the recogni-
tion model by aligning the second-order statistics to emphasize
the learning of inter and intra feature relationship. With the com-
bining of SDS and LCL, linguistic knowledge in CLIP can be fully
transferred to the recognition model to further improve the STR
performance.

Overall, by modifying CLIP to a symmetrical recognition flow
with visual and linguistic information, CLIP-OCR first builds an
instructive and progressive bridge from image to text features in
STR, which provides a novel insight for further exploration of CLIP
models. To verify the effectiveness of the proposed method, we
evaluate our CLIP-OCR on several mainstream STR benchmarks.
Comprehensive experimental results show the effectiveness of our
method with 93.8% average accuracy which outperforms existing
STR methods.

Our main contributions can be summarized as follows:
• A novel distillation framework (CLIP-OCR) is proposed to
provide both visual and linguistic knowledge for STR. By
combining CLIP image and text encoder, CLIP-OCR first con-
ducts a progressive image-to-text flow to guide the recogni-
tion layer-wise.

• We proposed a new Linguistic Consistency Loss (LCL) to
enhance the linguistic knowledge capability, which adopts
second-order statistics to supply guidance on fine-grained
relationships.

• Experimental results on six STR benchmarks verify the effec-
tiveness of our framework which achieves state-of-the-art
performance (93.8% average accuracy).

2 RELATEDWORK
2.1 Scene Text Recognition
Scene text recognition has become a research hotspot with the
development of deep learning. In this section, we divide the exist-
ing methods into two categories due to whether used linguistic
knowledge: language-free methods and language-aware methods.

For language-free methods, they directly predict the text based
on the visual information [3, 23, 36, 41]. CRNN [36] employs VGG
[37] for visual feature extracting and RNN for sequence modeling.
And it introduces Connectionist Temporal Classification (CTC) [12]
for training and prediction. Compared with CTC, using the atten-
tion based head can obtain more accurate performance. TRBA [3]
develops a CRNN framework with thin-plate spline (TPS) trans-
formation and replaces CTC with an attention head. ViTSTR [2]
designs a simple one-stage framework with Vision Transformer
which shows promising results for ViT to apply on STR.

For language-aware methods, they consider the linguistic knowl-
edge inside the word as the auxiliary information to improve the
prediction results [11, 25, 45–47, 54]. ABINet [11] defines a language
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Figure 2: The overall framework of our CLIP-OCR, which consists of a recognition model, CLIP image and text encoder,
Adaptive Alignment Module (AAM), and Global Alignment Module (GAM). During training, we first collect the feature maps of
each stage from the recognition and CLIP model. Then each feature map from the recognition model is matched with a CLIP
feature to calculate the distillation loss La/Lg using AAM/GAM. Finally, the recognition model is optimized by minimizing the
combination of distillation loss and general recognition loss.

model with a transformer to refine the results iteratively. DAN [45]
decouples the alignment and decoding and uses an RNN-based lan-
guage model for auto-regression prediction. Recently, many works
prefer to define an auxiliary task to learn linguistic knowledge. Vi-
sionLAN [46] combines visual and linguistic capability into a single
vision model with the help of weakly-supervised masks. Besides,
MaskOCR [25] presents a pertain method with MIM to boost the
recognition performance. Previous methods mainly focus on intro-
ducing linguistic knowledge by end-to-end auxiliary loss which
lack of fine-grained supervision on feature level. In contrast to
existing works, we propose a feature distillation framework with
CLIP to provide layer-wise visual and linguistic guidance.

2.2 Vision-Language Contrastive Learning
Contrastive Language-Image Pretraining (CLIP) [32] designs a mul-
timodal alignment framework with contrastive learning [22, 29] to
bridge the visual and language information. It contains an image
encoder and a text encoder to measure the content similarity of
the given image and text. Many recent works have transferred it
on multiple downstream tasks, including semantic segmentation
[8, 24], object detection [5], Visual Question Answering [48] and im-
age generation [33]. Many researchers regard CLIP as a pre-trained
feature extractor [8, 24, 26, 38, 52]. [26, 38] directly utilize CLIP as
an image encoder to extract visual context. [8, 24] employ CLIP
to align the image with the target class for open-vocabulary tasks.
[52] uses CLIP embeddings to query the text regions inside the
image, which verifies the generalizability of CLIP for OCR tasks.

2.3 Knowledge Distillation
Knowledge distillation aims to transfer knowledge from a large-
scale model (teacher model) to a lightweight model (student model).

General knowledge distillation methods [16, 21] use the output of
the teacher model to generate soft guidance and force the student
model to predict similar results. With the development of large-
scale pre-trained models, many works utilize pre-trained models
to distill their model. Since there is no decoder head in most pre-
trainedmodels, [49] proposes feature distillation to guide the output
feature map of the student model. To measure the similarity in
feature level, it designs an additional projection head to embed the
features into the same projection space. Some recent works also
combine distillation with CLIP model [5, 33, 51, 57], [51] distills
their backbone with CLIP image encoder and employMasked Image
Modeling (MIM) strategy during training. [5, 33] introduce CLIP as
a teacher model to enhance the generalization ability of their model.
In contrast to them, we enable the encoder to distill the decoder
layer-wise by further analyzing the relationship between the CLIP
text encoder and recognition decoder which expands the scope of
applications for distillation with pre-trained models.

3 METHODOLOGY
3.1 Pipeline
The overall framework of our CLIP-OCR is illustrated in Fig.2. We
follow the teacher-student learning framework [43] and introduce
the CLIPmodel as the teacher to help the optimization of the student
(recognition model). For the given image, we first use the recogni-
tion model to get the predictions and save the recognition feature
list. Meanwhile, the image and its label are also fed into the CLIP
image and text encoder, respectively, to generate visual and lin-
guistic guidance. Especially, since CLIP uses word-level tokenizing
which lacks character-level guidance, we split the word-level label
into the character-level list for tokenizing to obtain fine-grained
feature sequences for feature distillation, e.g., ‘analysis’→ ‘a n a l y
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s i s’ (Section 4.7 has verified the alignment ability for the character-
level input). Following the symmetrical distillation strategy (SDS),
both the encoder and decoder features from the recognition model
can be aligned to the corresponding guidance feature from CLIP.
Then we send the matched feature pairs into the proposed Adaptive
Alignment Module (AAM) and Global Alignment Module (GAM)
to calculate the Linguistic Consistency Loss (LCL). And the final
loss is obtained by the combination of the distillation loss and the
original recognition loss.

3.2 Symmetrical Distillation Strategy
Existing distillation methods assume that the input and output data
between the teacher and student model should be of the same form
for employing consistency supervision. However, the CLIP model
only contains two encoders without the decoder which encounters
the structure mismatching problem on distilling encoder-decoder
models. For most recognition models with encoder-decoder struc-
ture, although distilling features layer-wise allows the CLIP image
encoder to guide the recognition encoder(Fig.1(b)), such a simple
distillation strategy not only lacks supervision on the decoder but
also wastes the linguistic knowledge inside the CLIP text encoder,
which is fatal for STR models.

To address this issue, we propose a symmetrical distillation strat-
egy (SDS) to provide visual as well linguistic knowledge for the
whole recognition process. The key idea of SDS is that we introduce
linguistic information in the CLIP text encoder by leveraging it to
distill the recognition decoder. As the input and output of them
are symmetrically related, we let the deep layers of the recognition
decoder be aligned with the shallow layer of the CLIP text encoder.
This is reasonable as decoding forward is a reconstruction process
that maps from a complex, high-dimensional feature space to a sim-
pler text embedding space. Thus, a decoding stream from feature
to text can be built by reversing the feature flow of the CLIP text
encoder. After cascading with the visual encoding stream in the
CLIP image encoder, as shown in Fig.2, the CLIP encoders produce
a symmetrical image-to-text flow to make full use of their visual
and linguistic knowledge. If we regard such image-to-text flow as
an encoder-decoder stream for recognition, instructive layer-wise
guidance can be created to optimize recognition models seamlessly.

Since directly aligning the student model with the teacher model
may affect the generalization of student feature space [14], we
propose the Adaptive Alignment Module (AAM) and the Global
Alignment Module (GAM) for feature projection. Assuming the

recognition feature 𝑓 with the shape of (𝑁𝑓 , 𝐷 𝑓 ) and CLIP feature
𝐹 with the shape of (𝑁𝐹 , 𝐷𝐹 ). As shown in Fig.3, AAM first uses
a trainable adaptive projection matrix 𝑃 ∈ (𝑁𝐹 , 𝑁𝑓 ) and a linear
layer𝑊1 ∈ (𝐷 𝑓 , 𝐷𝐹 ) to project 𝑓 to the feature space of 𝐹 and
adjust their shapes to be the same. Then, a normalization layer is
used to eliminate the influence of magnitude before calculating the
consistency loss. The distillation loss 𝐿𝑎 of AAM can be formulated
as follows,

𝐿𝑎 (𝑓 , 𝐹 ) = 𝑙 (𝑛𝑜𝑟𝑚(𝑃 × 𝑓 ×𝑊1), 𝑛𝑜𝑟𝑚(𝐹 )), (1)
where 𝑙 is a predefined consistency loss (e.g., L1 loss), × is the
matrix multiplication and 𝑛𝑜𝑟𝑚 denotes normalization. For GAM,
it is designed for bridging the guidances progressively from the
CLIP image encoder to the text encoder by utilizing their alignment
property in the class token. As Eq.2 shows, GAM follows a similar
process as AAM but only selects the class token by the global
projection.

𝐿𝑔 (𝑓 , 𝐹 ) = 𝑙 (𝑛𝑜𝑟𝑚(𝑔(𝑓 𝑐𝑙𝑠 ×𝑊1) ×𝑊2), 𝑛𝑜𝑟𝑚(𝐹𝑐𝑙𝑠 )), (2)

where 𝑓 𝑐𝑙𝑠 and 𝐹𝑐𝑙𝑠 denote the class token from recognition and
CLIP model,𝑊1,𝑊2 denote linear layers, and 𝑔 is the activate layer
(ReLU) .

By applying AAM and GAM on the image-to-text flow, SDS
generates the layer-wise supervision as follows,

𝐿𝑑𝑖𝑠 =

3∑︁
𝑖=1

𝐿𝑎 (𝑓 𝐸𝑖 , 𝐹 𝐼𝑖 ) + 𝐿𝑔 (𝑓 𝐸4 , 𝐹𝑇4 ) +
3∑︁

𝑖=1
𝐿𝑎 (𝑓 𝐷𝑖 , 𝐹𝑇4−𝑖 ), (3)

where, 𝑓 𝐸 , 𝑓 𝐷 are the features from recognition encoder and de-
coder, 𝐹 𝐼 , 𝐹𝑇 are the features from CLIP image and text encoder. 𝑖
is the stage index of the feature sequence where we spilt all parts
of models into 4 stages as shown in Fig.2. In Eq.3, the first and third
terms indicate the learning of visual and linguistic knowledge. Since
there is a strong alignment between CLIP image and text encoder,
the second term of Eq.3 becomes a bridge between the visual to
linguistic knowledge which guide the feature stream progressively.
Overall, both encoders of CLIP are utilized in SDS for supplying
comprehensive visual and linguistic expertise that covers the entire
recognition pipeline.

3.3 Linguistic Consistency Loss
General distillation loss primarily considers the consistency of the
first-order statistics, such as point-wise L1 loss in Eq.4.

𝑙𝐿1 (𝑓 , 𝐹 ) =
1

𝑁𝐷
| |𝑓 − 𝐹 | |1, (4)

where 𝑓 , 𝐹 ∈ (𝑁, 𝐷) are the feature sequences from AAM or GAM.
However, these basic learning objectives can not well transfer the
linguistic knowledge inside the relationship between characters,
which is important for language modeling in the STR task. To en-
hance the efficiency of learning linguistic knowledge from SDS,
we propose a Linguistic Consistency Loss (LCL) to develop lin-
guistic capability by emphasizing the alignment of intra and inter
relationship.

In LCL, the relationship is measured by second-order statistics:
self-attention map and cross-attention map. For intra-relationship
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alignment, wemeasure the character-level similarity by self-attention
map from recognition and CLIP model. And their intra consistency
loss can be formulated as follows,

𝑙𝑖𝑛𝑡𝑟𝑎 (𝑓 , 𝐹 ) =
1
𝑁 2 | |𝑓 × 𝑓 𝑇 − 𝐹 × 𝐹𝑇 | |1, (5)

For inter-relationship alignment, we define a contrastive learn-
ing loss between recognition and CLIP features to enhance the
discrimination of feature sequences and reduce ambiguous linguis-
tic information. As shown in Eq.6, the cross-attention map between
recognition and CLIP features is utilized as their similarity and we
calculate cross entropy loss with a small temperature factor 𝜏 .

𝑙𝑖𝑛𝑡𝑒𝑟 (𝑓 , 𝐹 ) =
1
𝑁
cross_entropy(𝑓 × 𝐹𝑇 /𝜏, 𝐼 ), (6)

where 𝐼 is the diagonal matrix which serves as the label for 𝑙𝑖𝑛𝑡𝑒𝑟 ,
𝜏 is set to 0.03 to highlight the difference between the features.

By combining the 𝑙𝑖𝑛𝑡𝑟𝑎 and 𝑙𝑖𝑛𝑡𝑒𝑟 , the LCL is calculated by the
weighted sum of them,

𝑙𝐿𝐶𝐿 (𝑓 , 𝐹 ) = 𝜆1𝑙𝑖𝑛𝑡𝑟𝑎 (𝑓 , 𝐹 ) + 𝜆2𝑙𝑖𝑛𝑡𝑒𝑟 (𝑓 , 𝐹 ), (7)

where the 𝜆1 and 𝜆2 are the super-parameters determined experi-
mentally.

Finally, we apply our LCL on Eq.1-2 and the total loss function is
formulated in Eq.8. For inference time, we remove the CLIP model,
AAM, and GAM where only original recognition is needed.

𝐿 = 𝐿𝑟𝑒𝑔 + 𝐿𝑑𝑖𝑠 , (8)

where 𝐿𝑟𝑒𝑔 denotes the regular recognition loss (e.g., character-level
cross entropy loss).

4 EXPERIMENTS
4.1 Datasets
Following [6, 11], we use two synthetic datasets (MJ [17] and ST
[13]) for training and evaluate our method on six standard datasets
(IIIT [27], SVT [42], IC13 [19], IC15 [18], SVTP [30], CT [35]). Fol-
lowing [44], we split the benchmarks into regular text benchmarks
(IIIT, SVT, IC13) and irregular text benchmarks (IC15, SVTP, CT).
Moreover, we also introduce five additional challenging datasets
for further evaluation, including ArT [7], COCO-Text (COCO) [39],
Uber-Text (Uber) [56], WordArt [50], and OST [46].

4.2 Implementation Details
For training settings, We use the Adam optimizer with a learning
rate of 1.4e-3. We set the batch size to 320 and train the network
for 5 epochs. Images are resized to 32 × 128. Following [6], the Ran-
dAugment is utilized for data augmentation, including Sharpness,
Invert, GaussianBlur, and PoissonNoise. As for super-parameters
in our method, we experimentally set 𝜏 to 0.03, 𝜆1 to 5, and 𝜆1 to
0.1. The experiments are employed with the PyTorch framework
on 2 NVIDIA RTX 2080ti GPUs.

For the CLIPmodel, we use the CLIP with ViT-B/16 as the teacher
model in distillation. We reduce the number of positional embed-
ding to fit the input size of 32 × 128. All parameters in CLIP are
frozen during the training process. Different from using word-level

Table 1: The effectiveness of SDS. ‘Image’ means using CLIP
image encoder and ‘Text’ means using CLIP text encoder.

Image Text IIIT SVT IC13 IC15 SVTP CT Avg

- - 96.6 95.5 97.5 85.9 88.8 89.6 93.0
✓ - 96.8 94.4 97.8 87.0 90.4 92.1 93.5
- ✓ 97.3 93.8 97.9 86.4 90.7 88.2 93.4
✓ ✓ 97.3 94.7 97.7 87.2 89.9 93.1 93.8

Table 2: The effectiveness of LCL.

𝑙𝑖𝑛𝑡𝑟𝑎 𝑙𝑖𝑛𝑡𝑒𝑟 IIIT SVT IC13 IC15 SVTP CT Avg

- - 97.1 95.1 97.6 86.4 89.6 91.3 93.4
✓ - 97.2 94.9 97.4 87.0 89.9 92.0 93.6
- ✓ 96.9 95.1 97.8 86.9 89.9 91.7 93.5
✓ ✓ 97.3 94.7 97.7 87.2 89.9 93.1 93.8

Table 3: Comparision with other distillation loss.

Method IIIT SVT IC13 IC15 SVTP CT Avg

- 96.0 95.5 97.5 85.9 88.8 89.6 93.0
L1 97.1 95.1 97.6 86.4 89.6 91.3 93.4
cos 96.8 94.3 97.1 87.2 89.0 91.7 93.3
KL 96.9 94.7 97.3 86.6 89.8 90.3 93.3
LCL 97.3 94.7 97.7 87.2 89.9 93.1 93.8

tokenize in the original CLIP, we split the word into a character-
level list before sending it to the text encoder.

For the recognition model, we define a simple transformer-based
model as the baseline. We use the ViT-Small as the encoder which
contains 12 transformer encoder layers. The encoder layers are split
into 4 stages for distillation where each stage contains 3 transformer
encoder layers. And we introduce 4 transformer decoder layers
as the recognition decoder where each decoder layer stands for
a stage for distillation. During the inference stage, we adopt the
autoregressive decoding strategy.

4.3 Evaluation Metric
We set the size of the recognition character set to 36, including a-z
and 0-9. The word accuracy is used as the evaluation metric, where
a correct word means all characters should be matched to the label.
Following [4], we further report the weighted average score (Avg)
based on the sample number in each dataset.

4.4 Ablation Study
The effectiveness of SDS: First, we study the effectiveness of
each component in SDS. As shown in Table 1, our baseline is 93.0%
average accuracy, and distillation with CLIP image encoder can
obtain 93.5%. After adding the CLIP text encoder with SDS, we
further improve the performance to 93.8%. This result demonstrates
that the visual and linguistic knowledge provided by the CLIP image
and text encoder is complementary to each other. When only using
CLIP text encoder to guide the reignition decoder, we also can get
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Table 4: The influence of 𝜏 .

𝜏 0.01 0.03 0.05 1

Avg 93.6 93.8 93.7 93.4

Table 5: The influence of 𝜆1. 𝜆2 is set to 0.1 by default.

𝜆1 1 3 5 7 10

Avg 93.6 93.6 93.8 93.6 93.4

Table 6: The influence of 𝜆2. 𝜆1 is set to 5 by default.

𝜆2 0.01 0.1 0.3 1

Avg 93.6 93.8 93.7 93.1

Table 7: The influence of CLIP model.

Model Token CLIP Avg

ViT-S char CLIP-ViT-B/32 93.6
ViT-S char CLIP-ViT-B/16 93.8
ViT-S word CLIP-ViT-B/16 93.4

CLIP-ViT-B/16 - CLIP-ViT-B/16 81.1

93.4% average accuracy.This again shows that our SDS can utilize
the linguistic knowledge in the CLIP text encoder to enhance the
STR performance.
The effectiveness of LCL: To evaluate the LCL, we compare the
results with 𝑙𝑖𝑛𝑡𝑒𝑟 or 𝑙𝑖𝑛𝑡𝑟𝑎 in Table 2. The first line in Table 2 is
the baseline model distilled with SDS and point-wise L1 loss. It
can be seen that the combining of 𝑙𝑖𝑛𝑡𝑒𝑟 and 𝑙𝑖𝑛𝑡𝑟𝑎 can improve
the performance from 93.4% to 93.8%. When only using 𝑙𝑖𝑛𝑡𝑟𝑎 or
𝑙𝑖𝑛𝑡𝑒𝑟 , we still get 0.2% and 0.1% improvements. This justifies that
our distillation framework can transfer more knowledge from CLIP
to the recognition model. And the 0.4% total improvements from
LCL show the two parts in our loss have well cooperated during
the training process. Compared with 𝑙𝑖𝑛𝑡𝑒𝑟 , 𝑙𝑖𝑛𝑡𝑟𝑎 performs slightly
better which shows the importance of capturing intra-relationship
in STR task. Moreover, Table 3 compares our LCLwith other general
distillation loss, including point-wise L1 loss, cosine similarity, and
KL-divergence loss. Results have shown that our LCL with second-
order statistics outperforms othermethodswith first-order statistics.
This verifies that our method can generate more suitable guidance
for the STR task.
The influence of super-parameters in LCL: Table 4 shows the
influence of 𝜏 in Eq.6, results show that a smaller 𝜏 is necessary
for 𝑙𝑖𝑛𝑡𝑒𝑟 as it needs to emphasize the discrimination of the feature.
When 𝜏 < 0.05, we found that it does not have a large impact on
the final results, and the best performance is captured by setting 𝜏
to 0.03.

Besides, Table 5 and Table 6 illustrate the influence of the 𝜆1 and
𝜆2 in Eq.7. The results show that our method can obtain the best
performance with 𝜆1 = 5 and 𝜆2 = 0.1. And the results is stable for

Table 8: Language Capability on OST dataset.

Method Weak Heavy Avg

RNN 63.9 43.9 53.9
Transformer 68.4 48.0 58.2
VisionLAN 70.3 50.3 60.3
CLIP-OCR 80.5 69.7 75.1

eat
exit

call

board body

crush

part
pact

(a)

(b)

Figure 4: Visualization results on OST. (a) Successfully recog-
nized results. (b) Unsuccessfully recognized results. The first
line is prediction and the second line is label.

𝜆1 ∈ [1, 7] and 𝜆2 ∈ [0.01, 0.3]. But an extremely large value may
affect the optimization with original recognition loss 𝐿𝑟𝑒𝑔 , resulting
in a performance drop.
The influence of CLIP model: We compare our method with
different sizes of CLIP in Table 7. The results show that a larger
CLIP model leads to better performance which is reasonable in
the distillation framework. In the third line, We stop to split the
label into the character-level list and directly use the word-level
tokenizing for CLIP text encoder, which results in 0.4% performance
drop and even lower than only using image encoder in Table 3
(93.5%). This is because word-level tokenizing reduces the length
of the feature sequence to three (the start token, word token, and
end token) for most samples, which fails to provide character-level
guidance for recognition and affects the fine-grained capability
of the decoder. In addition, we also compare our CLIP-OCR with
directly using the CLIP image encoder as the recognition encoder.
Following [58], we freeze the CLIP image encoder and use promote
learning to reduce the trainable parameter size. However, Table
7 shows that simply using the CLIP image encoder as the feature
extractor can not provide sufficient fine-grained information for
recognition. Thus, our CLIP-OCR with AAM and GAM to align
features in the projection space provides a necessary and effective
way for leveraging the knowledge inside CLIP for the STR task.

4.5 Linguistic Capability on Occluded Data
To evaluate the linguistic capability of the proposed CLIP-OCR, we
evaluate our model on the OST dataset [46]. OST dataset contains
4832 manually occluded recognition images which are divided into
weak and heavy sets according to the occluded degree. As shown in
Table 8, we achieve 75.1% accuracy which outperforms the previous
methods. Fig.4 further shows our CLIP-OCR can infer the occluded
characters with its linguistic knowledge. For the extremely occluded
images (the third line in Fig.4(b)), CLIP-OCR still can predict a
reasonable word. The experiment results on OST have shown that
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Table 9: Comparison with SOTA methods on six STR benchmarks. Bold and underlined values denote the 1st and 2nd results in
each column.

Methods Language Regular Text Irregular Text Avg Params(M)IIIT SVT IC13 IC15 SVTP CT

CRNN [36] × 82.9 81.6 91.9 69.4 70.0 65.5 78.6 8.3
TRBA [3] × 87.9 87.5 93.6 77.6 79.2 74.0 84.6 -
DAN [45] × 94.3 89.2 93.9 74.5 80.0 84.4 87.2 -
RobustScanner [53] × 95.3 88.1 94.8 77.1 79.5 90.3 88.4 -
TextScanner [40] × 93.9 90.1 92.9 79.4 84.3 83.3 88.5 -
ViTSTR [2] × 88.4 87.7 93.2 78.5 81.8 81.3 85.6 -
SVTR [9] × 96.0 91.5 97.1 85.2 89.9 91.7 92.3 24.6

SEED [31] ✓ 93.8 89.6 92.8 80.0 81.4 83.6 88.3 -
VisionLAN [46] ✓ 95.8 91.7 95.7 83.7 86.0 88.5 91.2 32.8
ABINet [11] ✓ 96.2 93.5 97.4 86.0 89.3 89.2 92.3 36.7
Parseq𝐴 [6] ✓ 97.0 93.6 97.0 86.5 88.9 92.2 93.3 23.8
MGP [44] ✓ 95.3 93.5 96.4 86.1 87.3 87.9 92.0 52.6

ConCLR [55] ✓ 96.5 94.3 97.7 85.4 89.3 91.3 92.8 37.0
MaskOCR [25] ✓ 95.5 95.7 97.1 87.0 90.1 90.3 92.9 31.0

CLIP-OCR(ours) ✓ 97.3 94.7 97.7 87.2 89.9 93.1 93.8 31.1

Table 10: Comparison with SOTA methods on challenging
datasets.

Method ArT COCO Uber WordArt

CRNN [36] 57.3 49.3 33.1 47.5
ViTSTR [2] 66.1 56.4 37.6 -
TRBA [3] 68.2 61.4 38.0 55.8

ABINet [11] 65.4 57.1 34.9 67.4
PARSeq𝐴 [6] 70.7 64.0 42.0 -

CornerTransformer [50] - - - 70.8
CLIP-OCR 70.5 66.5 42.4 73.9

our CLIP-OCR can leverage linguistic information to enhance the
language modeling ability of the recognition model.

4.6 Comparisons with State-of-the-Arts
We compare our method with multiple recent state-of-the-art recog-
nition methods on 6 benchmarks in Table.9. All methods are trained
in synthetic datasets for comparison. Based on whether use the
linguistic information, we divide the existing method into language-
free methods (CRNN, TRBA, DAN, RobustScanner, RobustScanner,
ViTSTR, SVTR) and language-aware methods (SEED, VisionLAN,
ABINet, Parseq, MGP). Besides, we further compare with some
recent pre-trained methods (ConCLR and MaskOCR).

As shown in Table.9, generally, the language-aware methods
have better performance than language-free methods which demon-
strates the importance of linguistic information. For the average
accuracy, our CLIP-OCR obtains 93.8% which outperforms other
methods. Specifically, our method achieves the 1st performance
on IIIT, IC13, IC15, and CT datasets (with 0.3%, 0.6%, 0.2% , and
0.9% improvements) and the 2nd performance on SVT and SVTP

datasets. Compared with language-aware methods, our CLIP-OCR
obtain over 0.5% improvements in average accuracy. For methods
with additional word-level supervision (SEED and MGP), our CLIP-
OCR surpasses them by over 1.8% under the comparable model size.
These results show that our CLIP-OCR with linguistic distillation
can generate more effective guidance for language modeling to en-
hance recognition performance. Besides, our distillation framework
also outperforms the pre-trained method ConCLR and MaskOCR
with comparable parameters, which shows that our distillation
framework is an effective way to obtain accurate and lightweight
STR models. In Table.10, we further evaluate our method on 4 addi-
tional challenging datasets: ArT, COCO, Uber, andWordArt. Results
show that our method also achieves stat-of-the-art performance
which again verifies the effectiveness of our CLIP-OCR.

4.7 Qualitative Analysis
Character-level alignment ability of CLIP model: Different
from the original input format in CLIP which requires 224×224
image size for the image encoder and world-level texts for the text
encoder, we resize the images to a small size and split the word-level
text label into the character-level list as the input. To verify whether
CLIP is capable enough in our framework, we further visualize the
alignment ability in Fig.5. Specifically, we first choose 3 recognition
images and resize them to 32×128 for the CLIP image encoder. Then
we send their labels to the CLIP text encoder with both word-level
and character-level tokenizing. The results in Fig.5 show that the
CLIP still has strong alignment ability under the 32×128 input size.
And CLIP is also able to align the character-level input with the
corresponding image which provides powerful support for our
CLIP-OCR.
The effectiveness of CLIP-OCR: To verify the effectiveness of
CLIP-OCR qualitatively, Fig.6 collects some recognition results to
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Image
antique bangkok signal

word character word character word character

0.51 0.39 0.00 0.01 0.01 0.08

0.03 0.11 0.37 0.38 0.02 0.08

0.00 0.00 0.00 0.00 0.9 0.09

Figure 5: Character-level alignment ability of CLIP model.
"word" and "character"meansworld-level and character-level
tokenizing, respectively.

(a)

amania
tamania

low
love

use
ose

se
sale

email
empire

1915
2015

liee
lee

childstmas
christmas

balls
ballys

able
table

(b)

(c)

iaad
zajazd

3ddy
body

Figure 6: Recognition results of CLIP-OCR. (a) samples
with specially shaped texts. (b) samples with complex back-
grounds. (c) low-quality samples. The first line is the predic-
tion with the baseline model, and the second line is the result
of our CLIP-OCR.

demonstrate the effect of distilling linguistic knowledge in CLIP-
OCR. Fig.6(a) shows our CLIP-OCR can deal with specially shaped
texts (e.g., the ‘t’ in ‘table’ and the ‘al’ in ‘sale’). Fig.6(b) presents
some cases with a complex background where our CLIP-OCR also
can avoid the distraction with non-text regions (e.g., ‘y’ in ‘ballys’,
‘z’ in ‘zajazd’). And Fig.6(c) further shows the effectiveness of our
method on images with low quality (e.g., ‘o’ in ‘ose’, ‘bo’ in ‘body’).

4.8 Discussion
In this section, we compare our CLIP-OCR with other image-to-text
frameworks, including image caption and VQA. As illustrated in
Fig.7, there are two main superiorities for our CLIP-OCR. First,
our SDS establishes an entirely accurate input-output pair for the
recognition process by directly sending the ground truth to the text
encoder. But image caption and VQA models often generate inaccu-
rate results which may disturb the learning process ("Bangkok" and
"signal" in Fig.7). Second, image caption and text VQA models re-
quire high image size but most recognition training frameworks use
a small image size with a large batch size. For example, BLIP [20]
needs 384 × 384 for image caption and 480 × 480 for VQA, which
results in unacceptable resources cost. If we manually resize the
input to 32 × 128 for distillation (✓for STR size), their performance
will drop severely and can not generate valuable information for
guidance while the CLIP model still can align them together (see

Image STR size Image caption VQA

✖
a blurry photo of a sign that says 

antique
antique

✔
a stamp with an image of a 

woman's face
no words

✖ a blurry photo of a bank sign broadway

✔
a bunch of words that are in the 

shape of a circle
hobbit

✖
a close up of a street sign with 

white letters
spaulding

✔
a person standing in front of a 

white wall
none

Figure 7: Discussion with Image caption and VQA results on
recognition images. Results are predicted by pretrained BLIP
model [20]. STR size means whether resize the input image
to 32× 128. The question for VQA is "Which word is in the
image?"

Fig.5). Therefore, our CLIP-OCR provides the first suitable image-
to-text feature flow for STR. And we believe that regarding CLIP
as a progressive guidance flow brings a novel insight for further
exploring the potential of the CLIP model for downstream tasks.

4.9 Limitations
As we employ feature distillation in the decoding process, for the
model with only one decoder layer, we need to the replicate the
decoder layer by 4 times which may lead to additional computation
costs. However, most methods adopt lightweight decoder which
does not require much computation cost. As shown in Table.9, our
CLIP-OCR only has 31.1M parameters which are comparable with
MGP-Small and MaskOCR-Small.

5 CONCLUSION
In this paper, we focus on exploring the linguistic knowledge in
CLIP and propose a novel Symmetrical Linguistic Feature Distil-
lation (CLIP-OCR) for scene text recognition. Rather than only
using CLIP for visual feature encoding, CLIP-OCR further focus
on leveraging the linguistic knowledge in CLIP by introducing a
symmetrical distillation strategy (SDS) and Linguistic Consistency
Loss (LCL). Firstly, SDS combines CLIP image and text encoder
symmetrically to generate an image-to-text guidance flow with
both visual and linguistic knowledge. Secondly, we design LCL to
improve the learning efficiency of linguistic knowledge by aligning
second-order statistics. Overall, with alignment property in CLIP,
we make a first attempt to bridge the transition from image to text
progressively for recognition which also provides a new insight for
exploring CLIP with a unidirectional feature flow. Extensive exper-
iments on six benchmarks verify the effectiveness of the proposed
CLIP-OCR. And we will further explore the potential of CLIP for
recognition in the future.
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A ADDITIONAL EXPERIMENTS
A.1 Time efficiency of CLIP-OCR
Table 11 shows the time efficiency of our method and other com-
pared methods. The FPS is calculated by averaging the inference
time over 3000 images. All experiments are employed on an NVIDIA
3090 GPU. As a result, our model achieves 20.9 ms/img which is
satisìed for real-time applications. This justyìes that our distilla-
tion framework can benefit from the large vision-language pretrain
model without introducing much computation cost. Compared with
other recognition models, our CLIP-OCR obtains comparable infer-
ence time with higher performance, we believe that the significant
accuracy improvement in our method is worth the sacriìce of such
speed.

A.2 Selection of Distillation Layers
As CLIP-OCR introduces guidance on all stages of the recognition
model. To verify whether introducing guidance on all stages of the
recognition model is redundant, we further evaluate the results

by distilling on fewer stages. In Table 12, only 1,2, or 4 stages in
the recognition decoder are selected for distillation. Results show
that using fewer stages leads to a larger performance drop. This is
reasonable as distillation on more stages can provide more detailed
knowledge and reduce the difficulty of the optimization. Therefore,
distillation on all stages is a straightforward and effective strategy.

A.3 Analysis on Non-linguistic Data
To further evaluate our method on the non-linguistic scene, we
sample 1k texts in the IC15 test set and build a synth-shuffle test
dataset by shuffling the position of characters in each text randomly.
And we also build a synth-random test dataset with 1k samples
where the texts are generated by random characters. As shown in
Table 13, for synth-shuffle, our method still performs better than
the baseline which is benefit from the strong visual feature extrac-
tion ability in CLIP. But for synth-random, our method performs
slightly lower than the baseline. This is because there is not only
no linguistic information, but also the frequency of characters is
completely different from the general words. Though our method
encounters difficulty with random characters, we believe that it is
worth introducing linguistic knowledge since texts in most real-life
applications contain much linguistic information.

Table 11: Time efficiency of CLIP-OCR.

Method Avg Time(ms/img)

RobustScanner 88.4 40.0
VisionLAN 91.2 14.3
ABINet 92.3 38.6
Parseq𝐴 93.3 11.5
CLIP-OCR 93.8 20.9

Table 12: Selection of Distillation Layers.

Distillation layer index Avg

(1) 93.1
(1,3) 93.2

(1,2,3,4) 93.4

Table 13: Results on Non-linguistic dataset.

Method synth-shuffle synth-random

Baseline 87.8 71.4
CLIP-OCR 89.0 70.9
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