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ABSTRACT
Brain-inspired Spiking Neural Networks (SNNs) have the character-
istics of event-driven and high energy-efficient, which are different
from traditional Artificial Neural Networks (ANNs) when deployed
on edge devices such as neuromorphic chips. Most previous work
focuses on SNNs training strategies to improve model performance
and brings larger and deeper network architectures. It’s difficult to
deploy these complex networks on resource-limited edge devices di-
rectly. Tomeet such demand, people compress SNNs very cautiously
to balance the performance and the computation efficiency. Existing
compression methods either iteratively pruned SNNs using weights
norm magnitude or formulated the problem as a sparse learning op-
timization. We propose an improved end-to-end Minimax optimiza-
tion method for this sparse learning problem to better balance the
model performance and the computation efficiency. We also demon-
strate that jointly applying compression and finetuning on SNNs
is better than sequentially, especially for extreme compression ra-
tios. The compressed SNN models achieved state-of-the-art (SOTA)
performance on various benchmark datasets and architectures.
Our code is available at https://github.com/chenjallen/Resource-
Constrained-Compression-on-SNN .
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1 INTRODUCTION
As the third generation of neural networks [54], Spiking Neural
Networks (SNNs) has been widely concerned in recent years. SNNs
are the core of brain heuristic intelligence research, which have
high biological interpretability and strong Spatio-temporal infor-
mation processing ability [82]. In addition, due to the inherent
asynchrony and sparsity of spiking training, these types of net-
works can maintain relatively good performance as well as low
power consumption, especially when combined with neuromor-
phic chips [20, 62]. With the development of efficient deep SNN
training strategies, some useful network architectures are built,
such as Spiking ResNet [32, 42, 85] and SEW ResNet [17] to im-
prove the performance of SNNs. The parameters and computational
energy of SNN models rapidly increase, while the computational re-
sources of edge devices are usually limited. For example, SpiNNaker
demonstrated to run networks with up to 250,000 neurons and 80
million synapses on a 48-chip board [22], which is still unable to
run those more advanced SNNs. Thus, it is of great significance
to compress SNNs before deploying them in real scenarios, which
reduces computing costs, saves storage resources, and helps re-
searchers exploit more benefits from high energy savings. Model
compression was proposed to reduce the model size and improve
the inference efficiency of the DNNs [25]. Weights pruning [26] is
one of the widely used techniques for compressing the model size
by zeroing out the individual weight of the convolutional kernel
or fully connected weights matrix. Filter pruning [44, 51, 75] is an-
other kind of pruning technique that prunes entire filters (or nodes
for fully connected layers) and their corresponding weights. In this
way, the entire filters can be removed and the original DNN can be
transformed to be a thinner network, thus achieving speedup on
general hardware.

Recently, researchers have carried out several works on SNNs
pruning methods and made considerable progress. In GPSNN [15],
a two-stage growing-pruning algorithm was used to compress fully
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Figure 1: Our whole pipeline. The resource-constrained Min-
imax Optimization method can compress SNNs into a light-
weight model with different sparsity levels.

connected SNN so that the network could achieve better perfor-
mance. In [61], the non-critical synapses of SNNs were regularly
pruned during Spike Timing Dependent Plasticity (STDP) training
process based on a preset threshold. A soft pruning method has
been considered to reduce the number of SNN weight updating dur-
ing network training [64]. Recently, ADMM optimization combined
with Spatio-temporal backpropagation (STBP) training was used to
compress SNNs [10]. An attention-guided compression technique
presented in [39], used two steps to generate compressed deep
SNN that could reduce spiking activity. Recent work [9] performs
pruning on the temporal dimension of SNNs to reduce time steps
for inference. Grad Rewiring [6] is a joint learning algorithm of
SNN connection and weight, which can strengthen the exploration
of network structures. Most existing SNNs pruning work has ei-
ther focused on shallow structures or has only attempted to prune
networks at low sparsity. Besides, A very recent work proposed
a dynamic pruning framework to prune SNNs based on temporal
lottery ticket hyperthesis [49], which handles the weights pruning
of the deep SNN structures.

In this paper, we present an end-to-end framework of weights
pruning to compress the SNNs with a given resource budget. Unlike
most resource-constrained compression methods which treat the
resource consumption function as a black box [28], we directly use
the resource consumption to formulate a constrained optimization.
The key idea is to use learnable parameters to control the lower
bound of the sparsities. This introduces a sparsity constraint so that
the resource constraint will only depend on the sparsity parame-
ters. The constrained problem can be transformed into a Minimax
optimization. Since the sparsity and resource constraints are not
differentiable, the Minimax problem cannot be directly solved by
gradient-based methods. In this work, we use the difference of con-
vex function (DC) [68] sparsity reformulation and straight-through
estimator (STE) [2] to build a gradient-based algorithm to effectively
optimize the compression problem.

We summarize the contributions as below:
• We propose an end-to-end Minimax optimization method to
successfully compress the SNNs, as shown in Figure 1. DC
sparsity reformulation [68] and STE [2] are key components
in this Minimax reformulation. Our compression procedure
is end-to-end joint training of compression and fine-tuning
on SNNs.

• We formulate the resource-constrained SNNs compression
problem into a constrained optimization problem where the

SNNs weights and resource consumption are linked with
learnable sparsity parameters.

• The algorithm is gradient-based and easy to train. Evalua-
tions of SNNs pruning on the public benchmark tasks show
that our method is effective to compress SNNs and achieves
state-of-the-art (SOTA) performance.

2 RELATEDWORK
We review the related work from three aspects: the set of work in
SNNs; the set of work in model compression and the specific model
compression for SNNs.

2.1 Spiking Neural Networks
Different from ANNs, SNNs have a temporal dimension inherently,
which uses sparse binary spike event sequences to represent in-
formation. Therefore, they contribute to more energy savings in
specialized neuromorphic hardware [20]. The information is trans-
mitted among neurons via synapses. When the membrane potential
exceeds a certain threshold caused by accumulating received spikes,
the neuron fires a spike to the next layer. In this study, we employed
the Leaky Integrate-and-Fire (LIF) neuron [23], which is one of the
most widely used neurons due to its effectiveness. The most com-
mon form of the LIF neuron is described as:

𝜏𝑚
d𝑉𝑚 (𝑡)

d𝑡
= − (𝑉𝑚 (𝑡) −𝑉rest) + 𝑋𝑡 (1)

where 𝑉𝑚 (𝑡) represents the membrane potential of the neuron at
time 𝑡 , 𝑋𝑡 represents the input from the presynaptic neuron. 𝜏𝑚
is the membrane time as a constant value, that controls the decay
and 𝑉rest is the resting potential after firing. A spike will fire if
𝑉𝑡 exceeds the threshold 𝑉th. As claimed in previous works [71]
and [6], We convert the above continuous differential equation into
a discrete version:

𝐻𝑡+1 = 𝑉𝑡 +
1
𝜏𝑚

(− (𝑉𝑡 −𝑉rest) + 𝑋𝑡 ) (2)

𝑆𝑡+1 = Θ (𝑚𝑡+1 −𝑉th) (3)
𝑉𝑡+1 = 𝑆𝑡+1𝑉rest + (1 − 𝑆𝑡+1)𝐻𝑡+1 (4)

where 𝐻𝑡 and𝑉𝑡 denote the value of membrane potential after neu-
ral dynamics and after generating a spike at time step 𝑡 , respectively.
𝑆𝑡 denotes the spike output at time step 𝑡 . Θ(·) is the Heaviside step
function which is defined as Θ(𝑥) = 1 for 𝑥 >= 0 and Θ(𝑥) = 0 for
𝑥 < 0.

As we can see, the integration and firing behavior of neurons will
result in the non-differentiability of the transfer function. So it is
difficult to apply standard backpropagation in the training phase [3].
To obtain a high-performance SNN, researchers have proposed
various trainingmethods [5, 13, 33, 43, 46, 55]. Recently, someworks
focus on supervised learning based on backpropagation algorithms,
where they use a surrogate gradient function to approximate the
gradient of non-differentiable spike activity [11, 19, 41, 48, 59, 69].
These surrogate gradient methods provide an effective solution for
training SNNs with deeper architecture [84], such as VGGNet [65]
and ResNet [27] families. Therefore, we adopt a backpropagation
algorithm based on surrogate gradient [69] as the basic method for
our SNNs training.
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Figure 2: The dynamics of LIF neurons, as similarly described
in [87]. When the membrane potential exceeds a threshold
value, the neuron will fire a spike to the next layer and resets.

2.2 Model Compression
There are different techniques for model compression, such as
pruning [26, 30, 31, 45, 56, 83, 86], quantization [4, 25, 36], low-rank
factorization [40, 47], etc. Pruning utilizes the sparsity of weights
tensors to achieve model compression. Weights pruning [26, 72] is
effective to remove the single elements by zeroing out the individual
weight. Moreover, structured pruning [14, 24, 34, 44, 80] prunes the
weights according to specific structures to achieve more speedup on
general hardware. Filter pruning [51, 58, 76, 88] is the most broadly
used structured pruning, which prunes all the weights associated
with certain filters. Most filter pruning works prune the channels
with low magnitude weights [21, 29], or estimate the importance
of channels for pruning [50, 57, 78]. Yang et al. [75] pre-compute
a lookup table to estimate the latency of a convolution layer with
different input/output channels, and use a greedy search strategy
to gradually reduce the number of filters until the given resource
budget is achieved. He et al. [28] adopt reinforcement learning to
search the number of pruned filters for each layer. The classification
accuracy is used as the reward, and the number of pruned filters is
taken as the action. Recently, more approaches [28, 52, 75] consider
the model compression as a constrained problem [24, 63, 74, 79].
Furthermore, resource consumption is used to restrict the action
space. These methods are successfully applied to fully supervised
tasks such as image classification and object detection. In this paper,
we proposed an end-to-end optimizationmethod to solve a resource-
constrained compression problem on SNNs, we demonstrate the
problem formulation from the unstructured weights pruning per-
spective.

2.3 Model Compression for SNN
To reduce the energy consumption of SNNs, some approaches focus
on the compression of SNN models recently, such as connection
pruning [6, 10, 38] and model quantization [10, 53, 66, 73]. Deng et
al. [10] defined the connection pruning and weight quantization
as a constrained optimization problem and used Spatio-temporal
backpropagation (STBP) and alternating direction method of multi-
pliers (ADMM) to solve it. Chen et al. [6] formulated the gradient
rewiring (Grad R) algorithm which redefines the gradient of SNNs
to a new synaptic parameter and joint learning SNNs connection
and weight. In addition, Kim et al. [38] performed the connection
pruning toward deeper SNNs ( ≥ 16 layers) and combined the Iter-
ative Magnitude Pruning [21] and Early-Bird [77] tickets to obtain

smaller SNNs. Chen et al. [8] proposed a dynamic pruning algorithm
based on nonlinear reparameterization mapping from spine size to
SNN weights. To compare with these unstructured weights pruning
works for SNNs, we adopt the Minimax optimization method to
jointly optimize the global sparsity of SNNs and weights parame-
ters. We handle all layers’ weights parameters globally with one
sparsity parameter to solve the unstructured pruning problem.

3 FORMULATION
3.1 Resource-Constrained Optimization
The ideal scenario of SNN compression is that given a resource
budget 𝑅budget (based on a certain metric, e.g., Parameters, Flops, la-
tency, or energy), the compression method can return a compressed
model which satisfies the given budget and maintains the accu-
racy as well as possible. The whole process should be automatic,
i.e., there is no need to manually set the sparsity of each layer. In
this paper, we directly formulate such a compression scheme for a
constrained optimization problem:

min
W,s

L(W) (5a)

s. t. 𝑅(𝑠) ≤ 𝑅budget, (5b)∑︁
𝑖

I(W𝑖 = 0) ≥ 𝑠 (5c)

where 𝑅(𝑠) evaluates a general resource consumption (e.g., Flops or
latency) based on the number of (nonzero) weights for each layer. It
does not need to be differentiable. For example, when representing
latency, it can be computed by a latency table as in Yang et al. [75].
L is the standard training loss.

I(·) is the indicator function that returns 1 if the argument is
satisfied and 0 otherwise. s is a learnable scalar variable to control
the lower bound of the sparsity of weight parameters vector W of
the whole network. This formulation holds because the resource
function 𝑅 monotonically decreases with respect to the increas-
ing sparsities, i.e., the more weights are pruned, the smaller the
resource consumption we have. Note that we mainly focus on the
unstructured pruning (or called weights sparsification) for SNN
in the main text, thus W𝑖 in the above equation stands for each
element of weight parameters vector W of the whole network.

4 OPTIMIZATION
In the previous section, we have already formulated the resource-
constrained pruning as a constrained optimization (5). In this sec-
tion, we first do some reformulation to make it more convenient
to solve. Then we propose a gradient-based algorithm to solve the
resource-constrained pruning in an end-to-end way.

4.1 Minimax Reformulation
The sparsity constraint (5c) is non-convex and the non-continuous
indicator function makes it more difficult. Common approaches
to deal with this constraint include ℓ1-norm relaxation [67] and
ℓ0-norm projection [81]. The ideas of ℓ1-norm relaxation have been
applied in DNN compression [35, 51, 76]. However, the ℓ1-norm
can only approximate the sparsity constraint, so it is not equivalent
to the sparsity constraint and there is no guarantee to bound the
real sparsity by restricting the ℓ1-norm.
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Figure 3: The reformulated minimax problem. It consists of
three loss terms which are training loss, sparsity loss, and
resource loss. The sparsity loss and resource loss are used to
restrict the SNN resource consumption.

Let ∥u∥𝑠,2 be the bottom-(𝑠 , 2) “norm”, which denotes the ℓ2-
norm of the sub vector composed of bottom-𝑠 elements in magni-
tude. Then we have an equivalent reformulation for the sparsity
constraint (5c):

∥W∥𝑠,2 = 0 ⇔
∑︁
𝑖

I(W𝑖 = 0) ≥ 𝑠, (6)

Equation (6) is proved by Tono et al. [68], where the left-hand side
is called DC (difference of convex functions) representation of the ℓ0-
constraint. By this transformation, the sparsity constraint becomes
an equality constraint of a continuous function. Compared to the
original ℓ0-norm constraint, it can be written as a “soft” constraint
and avoid being stuck in the bad local optimum of the constraint
set.

By introducing dual variables 𝑦 and 𝑧, we derive the minimax
reformulation of problem (5):

min
W,𝑠

max
𝑦,𝑧≥0

L(W) + 𝑦 ∥W∥2
⌈𝑠⌉,2︸        ︷︷        ︸

sparsity loss: S(𝑦,𝑠,W)

+𝑧 (𝑅 (𝑠 ) − 𝑅budget ) .︸                  ︷︷                  ︸
resource loss

(7)

Where we introduce the sparsity loss S(𝑦, 𝑠,W) := 𝑦∥W∥2
⌈𝑠 ⌉,2,

and resource loss 𝑧 (𝑅(𝑠) − 𝑅budget) to substitute the original con-
straints. Figure 3 shows an illustration of the reformulated mini-
max problem. It is easy to verify that (7)→ ∞ if ∥W∥2

⌈𝑠 ⌉,2 ≠ 0 or
𝑅(𝑠) − 𝑅budget > 0, and (7)= (5a) if both constrains (5b) and (5c)
are satisfied. With the fact (6), we can see that (7) is an equivalent
reformulation of the original problem (5).

4.2 Gradient-based Algorithm
In deep learning, gradient-based algorithms (e.g. SGD) are widely
used to optimize the DNNs. Gradient descent ascent (GDA), is
widely used as a gradient-based method to solve minimax prob-
lems [37]. The basic idea is iteratively doing gradient descent on the
minimization variables and gradient ascent on the maximization
variables.

In problem (7), the functions ∥v∥2
𝑠,2 and 𝑅(s) are not differen-

tiable to 𝑠 and s, so the GDA method cannot be directly applied.
Straight-through estimator (STE) [2] is an effective workaround for
using the gradient-based algorithm to optimize non-differentiable

functions. The basic idea is using some simple proxy as the deriva-
tive of the non-differentiable part, thus the back-propagation can
be used as in the differentiable objective. In our case, both ∥v∥2

𝑠,2
and 𝑅(s) are not complicated although they are non-differentiable.
For ∥v∥2

𝑠,2, we use the numerical differentiation ∥v∥2
𝑠+1,2 − ∥v∥2

𝑠,2
as the proxy derivative of ∥v∥2

𝑠,2 with respect to 𝑠:

𝜕∥v∥2
𝑠,2

𝜕𝑠
= v2

least-min(Dim(v), 𝑠 + 1) (8)

where v2 is the element-wise square of v, Dim(v) is the dimension-
ality of v, and v2

least-𝑗 is the 𝑗-th least element in vector v2.

Algorithm 1: Gradient-based algorithm to solve (7).
Input: Resource budget 𝑅budget, learning rates 𝜂1, 𝜂2, 𝜂3, 𝜂4,

number of total iterations 𝜏 .
Result: SNN weightsW∗

1 Initialize 𝑡 = 1;
2 InitializeW1 (randomly or from a pre-trained model);
3 while 𝑡 ≤ 𝜏 do
4 W𝑡+1 = Prox𝜂1S(𝑦𝑡 ,𝑠𝑡 ,W) (W𝑡 − 𝜂1∇̂WL(W𝑡 ));

// Proximal-SGD

5 𝑠𝑡+1 = 𝑠𝑡−𝜂2 (∇̃sS(𝑦𝑡 , 𝑠𝑡 ,W𝑡+1)+∇̃𝑠𝑧𝑡 (𝑅(𝑠𝑡 )−𝑅budget));
// Gradient (STE) Descent

6 𝑦𝑡+1 = 𝑦𝑡 + 𝜂3∥W𝑡+1∥2
⌈𝑠𝑡+1 ⌉,2; // Gradient Ascent

7 𝑧𝑡+1 =𝑚𝑎𝑥 (0, 𝑧𝑡 + 𝜂4 (𝑅(𝑠𝑡+1) − 𝑅budget)); // Gradient

Ascent

8 end
9 W∗ = W.

With these derivative estimators, we utilize a gradient-based
algorithm to optimize (7). The detailed steps are shown inAlgorithm
1. We use proximal-SGD [60] to updateW. Specifically, first take
gradient-descent to update W to obtain W̄, then the proximal
operator Prox𝜂1S(𝑦𝑡 ,𝑠𝑡 ,W) (W̄) for W̄ is defined as:

arg min
W

1
2
∥W − W̄∥2 + 𝜂1S(𝑦𝑡 , 𝑠𝑡 ,W) (9)

which has a closed-form solutionW′:

W
′
𝑖 =

{
W̄𝑖 , if W̄2

𝑖
> W̄2

least-⌈𝑠𝑡 ⌉
1

1+2𝜂1𝑦𝑡
W̄𝑖 , otherwise.

(10)

Our formulation gradually decays W̄𝑖 by a factor 1
1+2𝜂1𝑦𝑡

, whose
value is smaller than 1, instead of directly projecting the W̄𝑖 into
zero to meet with traditional ℓ0-constraint. We use gradient descent
(STE) to update 𝑠 and gradient ascent to update 𝑦, 𝑧, as described in
the Algorithm 1.

5 EXPERIMENTS AND RESULTS
We evaluate our end-to-end compression method for various SNN
models on benchmark datasets. Our compressed SNNmodels achieved
state-of-the-art (SOTA) performance against the previous best-
performing SNNs compression methods in all cases. We put ad-
ditional compression results and visualization plots in the Supple-
mentary Materials.
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Table 1: Performance comparison between our method and previous works on MNIST and CIFAR10 datasets.

Pruning Method Dataset Arch. Top-1 Acc. (%) Acc. Loss (%) Sparsity (%)

ADMM-based [10] MNIST LeNet-5 like 99.07
+0.03 50.00
-0.43 60.00
-2.23 75.00

Deep R [1] MNIST 2 FC 98.92

-0.36 62.86
-0.56 86.70
-2.47 95.82
-9.67 98.90

Grad R [6] MNIST 2 FC 98.92

-0.33 74.29
-0.43 82.06
-2.02 94.37
-3.55 96.94
-8.08 98.62

Ours MNIST 2 FC 98.91

-0.06 75.00
-0.16 85.00
-1.23 95.00
-2.70 97.00
-7.34 98.70

ADMM-based [10] CIFAR10 7 Conv, 2 FC 89.53
-0.38 50.00
-2.16 75.00
-3.85 90.00

Deep R [1] CIFAR10 6 Conv, 2 FC 92.84
-1.98 94.76
-2.56 98.05
-3.53 98.96

Grad R [6] CIFAR10 6 Conv, 2 FC 92.84

-0.30 71.59
-0.34 87.96
-0.81 94.92
-1.47 97.65
-3.52 99.27

STDS [8] CIFAR10 6 Conv, 2 FC 92.84 -0.35 97.77
-2.63 99.25

Ours CIFAR10 6 Conv, 2 FC 92.88

+0.84 75.00
+0.52 88.04
+0.41 95.07
-0.13 97.71
-1.38 98.84
-2.56 99.31

5.1 Implementation details
In our works, we validate the compression method on six SNN
models, including the shallow SNNs (e.g. 2 FC, 6 Conv and 2 FC) and
the deep SNNs (e.g. VGG16 [65], ResNet19 [27], SEW ResNet18 [17],
VGGSNN [11]). We compare the performance of our method with
previous SNN compression methods on static MNIST, CIFAR10,
CIFAR100, ImageNet1K datasets and neuromorphic CIFAR10-DVS
dataset which is converted from the static image dataset by using a
DVS camera. Experiments are conducted on NVIDIA V100 GPUs
and we use SpikingJelly [16] framework to implement SNNs.

Similar to the previous SNNwork [6], we use a shallow SNNwith
2 FC layers on the MINST dataset, and a model with 6 convolution
layers and 2 FC layers for the CIFAR10 dataset. These two shallow
SNNs are trained with Adam optimizer with a learning rate 1e-4.
The timestep is set to 8. Other hyperparameters of baseline are
the same as [6](e.g. batch size, learning rate). What’s more, we use
deep SNNs, VGG16, ResNet19, and VGGSNN. The training method
follows the previous SNN work [11]. We train deep SNNs by SGD
optimizer with momentum 0.9 and weight decay 5e-4. The learning
rate is set to 0.05 for baseline training and cosine decay to 0. The
timestep is set to 5 and the batch size is set to 32. The default number

of epochs is set to 300. As for training SEW ResNet18 on ImageNet,
we follow all the training setting of SEW ResNet [17]. The base
learning is 0.1 with cosine annealing scheduler. The number of
epochs is 320, the batch size is set to 32, and the timestep is set
to 4. In all datasets, the learning rate of 𝑦 is set to 0.1, while the
default learning rate of 𝑧 is set to 105. We count the number of zero
and nonzero values of the whole weights in SNN and compute the
percentage of zero values to be the sparsity.

Training methodology. According to previous SNNs work set-
tings respectively, we first train SNNs models to get pre-trained
baseline models. Then our compression training stage starts with
pre-trained models. Before pruning the SNN models, we set a bud-
get list which values are some compression ratios from 0.5 to 0.005
(e.g. [0.25, 0.1, 0.05, 0.01, 0.005]). Furthermore, the value of the bud-
get list can be connectivity, parameter size, latency times, FLOPs,
and so on. For connection pruning, the values in the budget list are
connectivity ratios. For structure pruning, the values in the budget
list are FLOPs ratios in our work. During our compression training,
if the model connectivity meets the current target compression
ratio, we pause the pruning and then fine-tune the snapshot at this
ratio until achieving the maximum fine-tuning epochs. After the
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Table 2: Performance comparison between our method and previous works on larger models.

Pruning Method Dataset Arch. Top-1 Acc. (%) Acc. (%) Sparsity (%)

IMP [38] CIFAR10 VGG16 -

92.66 68.30
92.54 89.91
92.38 95.69
91.81 98.13

Ours CIFAR10 VGG16 93.25

93.27 69.02
93.26 90.09
92.76 95.70
92.00 98.13

Grad R [6] CIFAR10 ResNet19 93.22
92.68 76.90
91.91 94.25
91.12 97.56

IMP [38] CIFAR10 ResNet19 93.22
93.50 76.20
93.46 94.29
93.18 97.54

Ours CIFAR10 ResNet19 94.85
94.84 80.05
94.36 95.07
93.81 97.07

Grad R [6] CIFAR100 ResNet19 71.34
69.36 77.03
67.47 94.92
67.31 97.65

IMP [38] CIFAR100 ResNet19 71.34
71.45 76.20
71.00 94.29
69.05 97.54

Ours CIFAR100 ResNet19 74.71
75.05 79.99
72.67 95.19
70.80 97.31

Grad R [6] ImageNet SEW ResNet18 63.22 60.05 50.94
24.62 53.65

ADMM [10] ImageNet SEW ResNet18 63.22 59.48 82.58
55.85 88.84

STDS [8] ImageNet SEW ResNet18 63.22

61.30 82.58
59.93 88.84
58.06 93.24
56.28 95.30

Ours ImageNet SEW ResNet18 63.25

61.42 82.50
60.51 88.84
58.12 93.20
56.46 94.39

fine-tuning process at the current compression rate finishes, our
method removes the current ratio from the budget list and then
continues the compression training automatically to achieve the
next compression ratio. Compression and fine-tuning are jointly
performed in the one-stage training process of SNNs. The num-
ber of epochs in fine-tuning phase for 𝑖𝑡ℎ compression ratio in the
budget list is set to the same value or scheduled as 1

𝑆𝑖
𝑇epoch −𝐶epoch∑𝑁

𝑗=𝑖
1
𝑆 𝑗

.

where, 𝑆𝑖 is the 𝑖𝑡ℎ compression ratio. 𝑇epoch is the total number
of epochs, 𝐶epoch is the number of already used epochs.

5.2 Quantitative Experiments
Connection pruning and fine-tuning jointly. We use the connec-

tion of the SNNs model as the budget compression ratios for our
Minimax optimization method. During compression training, the
connection pruning and fine-tuning are trained jointly. Our joint
compression method not only reduces the training time and simpli-
fies the tedious fine-tuning process for different compression ratio,
but also help the model under smaller ratios get better performance.

Table 3: Performance of our method and previous work IMP
on CIFAR10-DVS dataset.

Method Arch. Top-1 Acc. (%) Acc. (%) Sparsity (%)

IMP [38] VGGSNN 82.80

81.10 76.20
81.50 86.57
80.10 89.91
78.60 94.28

Ours VGGSNN 82.80

82.40 85.18
81.90 90.14
81.20 93.14
80.10 95.16

Therefore, for one SNN model, we can achieve state-of-the-art
(SOTA) performance of different ratios in one compression training
process, which is different from previous work, since they only
can get one compression ratio per training process [38]. As shown
in Table 1 and 2, we summed up the results of our compression
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experiments which were obtained by jointly pruning connection
and fine-tuning the model.

Comparisons to previous work. We compare our method with
previous works in Table 1, 2 and 3. The results of two shallow SNN
models on MINST and CIFAR10 are shown in Table 1. We compare
our connection pruning and fine-tuning jointly training method
with previous research, including ADMM-based [10], Deep R [1],
Grad R [6], and STDS [8]. It is observed that our approach outper-
forms previous pruning methods in terms of connection sparsity
and accuracy on the two benchmark datasets. Furthermore, we
have smaller ΔAcc degradations under all comparable compression
ratios.

We present the comparisons of deep SNN models, VGG16 [65],
ResNet19 [27] and SEW ResNet18 [17] in Table 2. We reproduce
the baseline based on the previous work [38], and the performance
is much higher than the reported result in [38]: 1.63% higher on
CIFAR10 and 3.37% higher on CIFAR100 for ResNet19 [27] SNN
model, therefore, we compare absolute values of accuracy on deep
SNNs. As shown in Table 2, our method is comparable to other
approaches. For the VGG16 model, our methods have the highest
accuracy at all connection sparsity ratios compared with Grad R [6]
and IMP [38]. For ResNet19 [27], when the connection sparsity
ratio is less than 97%, our method significantly outperforms other
methods. When the connection sparsity is higher than 97%, we
still achieve better accuracy compared with other works, but the
connection sparsity is slightly smaller than Grad R [6] and IMP [38].
It is worth mentioning that the accuracy of our method can even be
further improved compared to the baseline on all datasets when the
sparsity is nearly 80%. Even on the large-scale dataset like ImageNet,
our pruning method has also achieved competitive performance
compared with the state-of-the-art.

We also validated on neuromorphic datasets that have been less
involved in previous work. To the best of our knowledge, our work
is the first work to compress SNNs on the temporal CIFAR10-DVS
dataset. Under the same structure and settings, we implemented the
IMP method [21] and conducted our experiments on the CIFAR10-
DVS dataset. As shown in Table 3, our method significantly im-
proves the accuracy of VGGSNN [11] model with different sparsity
ratios. In summary, experiments have shown that our compression
optimization method can theoretically handle any type of SNN
model.

Table 4: Performance comparison of 6 Conv, 2 FC SNNmodel
with different setting on CIFAR10 dataset.

a.Sequentially
w/o cos scheduler

b.Jointly
w/o cos scheduler

c.Jointly
w/ cos scheduler

Sparsity(%) Acc.(%) Sparsity(%) Acc.(%) Sparsity(%) Acc.(%)

88.04
94.99
97.67
99.30

92.72
91.95
90.35
80.9

88.05
95.01
97.67
99.36

92.61
92.24
91.47
89.62

88.04
95.07
97.71
99.31

93.40
93.29
92.75
90.32

6 ABLATION STUDIES
Comparison with sequential method. We compare our end-to-end

Minimax optimization method on both sequentially and jointly
training, for pruning and fine-tuning on the CIFAR10 dataset. For
the sequential compressionmethod, we first prune the SNNsmodels
and save the pruned model snapshots during pruning training. We
then fine-tune each of these snapshots for another 256 epochs for 6
Conv, 2 FC SNNmodels, whichmeans need to fine-tune extra𝑛× 256
epochs, the𝑛 is the length of the budget list. As shown in Table 4, the
compression ratios (column b) in which pruning and fine-tuning are
trained jointly have better accuracy when compression ratios are
smaller than 5%. Sequentially trained compression ratios (column a)
which connect 11.95% have a slight advantage because trained more
epochs than joint ratios with a similar connection. However, as the
connection turn smaller, the joint method achieves better results
and even obtains an 8.72% accuracy advantage at a 0.64 connection
ratio. What’s more, the joint method in Table 4 was trained 700
epochs in total, which is far less than the train epochs numbers of
the sequential method.

Comparison of fine-tuning options. We compare the final accu-
racy between applying with a cosine annealing scheduler and with-
out any learning rate scheduler when fine-tuning on the CIFAR10
dataset. For using a cosine annealing scheduler, in each stage of
achieving the new compression ratio in the resource budget list,
the number of the fine-tuning epoch is reset to 300 and the initial
learning rate is changed to 0.001. As shown in Table 4, the accuracy
significantly increased when we use the cosine annealing scheduler
in the fine-tuning phase.

Table 5: Model accuracy after pruning with different values
of the learning rate 𝑧𝑙𝑟 on MNIST dataset.

Sparsity(%) Accuracy(%)

𝑧𝑙𝑟 = 103 𝑧𝑙𝑟 = 105 𝑧𝑙𝑟 = 108

75.00 98.85 98.79 98.80

85.00 98.75 98.69 98.66

95.00 97.68 97.39 97.16

97.00 96.21 95.97 95.60

98.70 91.57 91.40 90.71

Influence of the learning rate 𝑧𝑙𝑟 . We evaluate the influence of
the learning rate 𝑧𝑙𝑟 for dual variables 𝑧. We use gradient ascent
to update 𝑧 as described in the Algorithm. Therefore, the value of
the learning rate 𝑧𝑙𝑟 for dual variables 𝑧 influences the speed of
pruning and the final performance. In Table 5, we show the accuracy
of several compression ratios with different values of 𝑧𝑙𝑟 on the
MNIST dataset. Because our compression method jointly optimizes
the connectivity sparsity and model weights, a smaller 𝑧𝑙𝑟 makes
the compression process slower and has a better balance between
sparsity and performance. In Table 5 we can see that the pruned
model with smaller 𝑧𝑙𝑟 has higher accuracy.
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Figure 4: The values of 𝑠 of ResNet19 on CIFAR10 and CI-
FAR100 datasets.

Training trend plots. We plot the changing trend of sparsity value
𝑠 in Figure 4, which demonstrates that our Minimax optimization
algorithm can converge well gradually.

Per-layer Sparsity vs. Global Sparsity. We compare the differ-
ence between pruning using per-layer sparsity and our pruning
using global sparsity. Our optimization is based on global sparsity 𝑠 ,
which sorts the weight values of tensors of all layers together dur-
ing pruning and coordinates the total sparsity of the whole model
during optimization. On the contrary, the method using per-layer
sparsity sorts the weights on each layer separately, each with a
sparsity variable to control. For both the per-layer sparsity method
and global sparsity method, our compression target is the layers
whose connectivity is more than 1𝑒4. Figure 5 shows the difference
in connectivity sparsity between the per-layer sparsity method
and our global sparsity method on 6 Conv, 2 FC SNN model, the 6
source convolution layers have the same connectivity in the base-
line model. In Figure 5, we can see the connectivity after pruning
using the global sparsity method show more obvious diversities
between these 6 convolution layers. However, the per-layer sparsity
method results in almost the same pruned connectivity for these 6
convolution layers. In Table 6, we can see that our global sparsity
method has better pruning performance at each connectivity level.

Table 6: Performance comparisons of per-layer sparsity con-
trol and global sparsity control on CIFAR10.

Setting Per-layer Global

CIFAR10
6 Conv, 2 FC

Connectivity (%) Acc. (%) Connectivity (%) Acc. (%)

25.14
12.93
5.01

91.47
92.08
92.00

24.987
11.95
4.99

92.84
92.61
92.24

7 PERFORMANCE OF STRUCTURE PRUNING
Aside from connection pruning, we extend our Minimax optimiza-
tion method to structured pruning of the SNNs. Specifically, instead

Figure 5: Connectivity comparison of per-layer sparsity and
global sparsity on CIFAR10.

of using each weight value of tensors to participate in the sorting
step in our algorithm, we use the reduced norm of each column
from the tensor matrix to participate in the sorting. The weights of
each column are updated simultaneously during the optimization.
In Table 7, we show the performance of structured pruning on 6
Conv, 2 FC SNN model on the CIFAR10 dataset.

Table 7: Performance of structured pruning on 6 Conv, 2 FC
model.

Compression Ratios Acc. (%)
FLOPs Parameters

0.504 0.680 92.77

0.356 0.549 92.61

0.199 0.365 92.17

0.098 0.247 91.16

0.051 0.163 89.23

8 CONCLUSION
In this paper, we present an end-to-end solution for the SNN com-
pression method. We formulate the resource-constrained SNNs
compression problem into a constrained optimization problem and
jointly learn the connection sparsity and weights of SNN models.
Our method effectively shrinks the model to meet the given bud-
get list, which values can be connectivity, parameter size, FLOPs,
and so on. Experiments demonstrate that our end-to-end Minimax
optimization method can balance the performance and the com-
putation efficiency of SNN models, and achieve state-of-the-art
(SOTA) performance on different SNN models. In the future, we
want to explore the efficiency and performance of SNN networks
with neural architecture search (NAS) and other methods and con-
sider the characteristics of the SNN models, such as SNN fire rate
and time steps.
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APPENDIX
To better support the claims in the main text, we provide more
related results and analysis in this supplementary material. We first
present the surrogate gradient method used in the backward process
during SNN training. Then we analyze the effect of compression
from scratch, instead of pre-trained models. Thirdly, we show the
memory and time cost for whole pruning phase on VGG16 and
ResNet19. Finally, we plot the performance comparisons to better
visualize the superiority of our method.

A SURROGATE-GRADIENT BASED LEARNING
Unlike in ANNs, it is difficult to apply standard gradient based
backpropagation in SNNs. Recently, methods based on surrogate
gradient have provided an effective solution. To train deep SNNs,
we use surrogate-gradient based Spatio-Temporal Backpropagation
(STBP) [70]. With 𝐿 representing the loss function, the gradients
𝜕𝐿/𝜕𝑜𝑡,𝑛

𝑖
and 𝜕𝐿/𝜕𝑢𝑡,𝑛

𝑖
can be computed as follows:
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Where 𝑡 denotes the time step 𝑡 , 𝑛 denotes the 𝑛𝑡ℎ layer and 𝑙 (𝑛)
denotes the number of neurons in the 𝑛𝑡ℎ layer. 𝑜𝑖 and 𝑢𝑖 are the
output and neuronal potential of the 𝑖𝑡ℎ neuron, respectively. Due
to the non-differentiable property of the binary spike activities,
𝜕𝑜𝑘/𝜕𝑢𝑘 cannot be derived. We utilize shifted ArcTan function ℎ(𝑢)
to approximate the derivative of spike activity following previous
works [7, 12, 18], which is defined by

ℎ(𝑢) = 1
𝜋

arctan(𝜋𝑢) + 1
2

(13)

B EFFECT OF COMPRESSION FROM SCRATCH
A key component in successful extreme compression of SNNs is
proper initialization of weights. As mentioned in the main manu-
script, we use the pre-trained SNN model for compression, which
contains redundant parameters and structures. Another approach
is pruning from randomly initialized weights. Here, we select shal-
low network 2 FC and deep network VGG16 to show the effect of
compression from pre-trained model and scratch in Table 8. As can
be seen, the performance on compression from scratch is worse
than compression from pre-trained.

C MEMORY USAGE AND TRAINING TIME
To provide the reference on resource consumption and compres-
sion time measured in the main manuscript, we take VGG16 and
ResNet19 as examples to provide our method’s GPU memory usage
and total training time (feedforward + backward) in Table 9. We use
SpikingJelly framework which implements optimized SNN neuron
and the training is conducted on one Nvidia V100 GPU with batch
size 32. As we can see, ResNet19 requires more execution time and
GPU memory than VGG16.

D MORE RESULTS ON NEUROMORPHIC
DATASETS

We have shown the results on the DVS-CIFAR10 dataset in Table 3
of our original manuscript, in which we have achieved SOTA perfor-
mance. Here, we perform more comparative experiments on differ-
ent neuromorphic datasets such as DVS128 Gesture and N-Caltech
101. For DVS128 Gesture, the network architecture is (2 Conv, 2
FC) MP4-64C3-LIF-AP2-128C3-LIF-AP2-0.5DP-300FC-LIF-11FC-LIF.
The time step is 20 and the batch size is 32. For N-Caltech 101,
the network architecture is (4 Conv, 2 FC) 32C3-LIF-MP2-64C3-LIF-
MP2-128C3-LIF-MP2-128C3-LIF-MP4-0.8DP-1024FC-LIF-101FC-LIF.
The time step is 14 and the batch size is 16. Where 𝑥C𝑦 denotes the
Conv2D layer with output channels = 𝑥 and kernel size = 𝑦, MP𝑦
denotes the MaxPooling layer with kernel size = 𝑦, AP𝑦 denotes the
AvgPooling layer with kernel size = 𝑦, 𝑛FC denotes the Fully Con-
nected layer with output feature = 𝑛,𝑚DP is the spiking DroPout
layer with dropout ratio𝑚. For both of architectures, the learning
rate is 0.001, the loss function is MSE and the optimizer is Adam.

In order to compare with other SOTA SNN compression methods,
we apply the SOTA method IMP [21] and STDS [8] on the above
two network architectures with these two datasets respectively. As
shown in the Table 10, it is evident that our method outperforms
existing SOTA approaches on different neuromorphic datasets at
different levels of sparsities by a large margin. This also means that
our optimization framework performs very well in handling the
data with spatial features, as well as the data with spatiotemporal
features.

Table 8: Compression performance from pre-training and
scratch.

Arch. Dataset Acc. (%) Sparsity
(%)Pre-trained Scratch

2 FC MNIST

98.85 98.35 75.00
98.75 97.93 85.00
97.68 96.92 95.00
96.21 96.09 97.00
91.57 91.35 98.70

VGG16 CIFAR10
93.26 90.78 90.09
92.76 89.89 95.70
92.00 90.37 98.13

Table 9: Resource consumption and training time of our
method.

Arch. Dataset Time (d) Memory (M)

VGG16 CIFAR10 0.5 2452
VGG16 CIFAR100 0.7 2454
ResNet19 CIFAR10 3.8 6502
ResNet19 CIFAR100 4.5 6506
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Table 10: Performance comparison between our method and previous works on DVS128 Gesture and N-Caltech 101 datasets.

Pruning Method Dataset Arch. Top-1 Acc. (%) Acc. (%) Sparsity (%)

IMP [21] DVS128 Gesture 2 Conv, 2 FC 93.75

92.71 75
92.71 85
92.36 90
91.32 93
89.58 95

STDS [8] DVS128 Gesture 2 Conv, 2 FC 93.75

90.28 75
88.19 85
89.58 90
91.32 93
88.54 95

Ours DVS128 Gesture 2 Conv, 2 FC 93.75

93.75 75
93.40 85
93.06 90
93.06 93
92.71 95

IMP [21] N-Caltech 101 4 Conv, 2 FC 78.86

75.21 75
68.65 85
63.06 90
58.69 93
50.30 95

STDS [8] N-Caltech 101 4 Conv, 2 FC 78.86

74.32 75
74.97 85
72.78 90
69.14 93
66.59 95

Ours N-Caltech 101 4 Conv, 2 FC 78.86

76.55 75
75.58 85
75.33 90
74.61 93
68.89 95

E VISUALIZATION OF PERFORMANCE
COMPARISONS

For SNN models on MNIST, CIFAR10 and CIFAR100 datasets, we
plot the figure of absolute accuracy versus sparsity and the figure of

relative accuracy drop versus sparsity. Since previous methods did
not have exact sparsity levels with ours. The plots can better vi-
sualize our method’s superiority. As shown in Figure 6, Figure 7,
Figure 8, and Figure 9, our method outperforms other methods by
a clear margin.
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Figure 6: Performance comparisons between our method and previous work on 2 FC.
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Figure 7: Performance comparisons between our method and previous work on 6 Conv, 2 FC.
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Figure 8: Performance comparisons between our method and previous work on ResNet19.
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Figure 9: Performance comparisons between our method and previous work on VGG16.
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