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ABSTRACT
Video shakiness is an unpleasant distortion of User Generated
Content (UGC) videos, which is usually caused by the unstable
hold of cameras. In recent years, many video stabilization algo-
rithms have been proposed, yet no specific and accurate metric
enables comprehensively evaluating the stability of videos. Indeed,
most existing quality assessment models evaluate video quality as
a whole without specifically taking the subjective experience of
video stability into consideration. Therefore, these models cannot
measure the video stability explicitly and precisely when severe
shakes are present. In addition, there is no large-scale video data-
base in public that includes various degrees of shaky videos with
the corresponding subjective scores available, which hinders the
development of Video Quality Assessment for Stability (VQA-S). To
this end, we build a new database named StableDB that contains
1, 952 diversely-shaky UGC videos, where each video has a Mean
Opinion Score (MOS) on the degree of video stability rated by 34
subjects. Moreover, we elaborately design a novel VQA-S model
named StableVQA, which consists of three feature extractors to
acquire the optical flow, semantic, and blur features respectively,
and a regression layer to predict the final stability score. Extensive
experiments demonstrate that the StableVQA achieves a higher cor-
relation with subjective opinions than the existing VQA-S models
and generic VQA models. The database and codes are available at
https://github.com/QMME/StableVQA.
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1 INTRODUCTION
With the development of streaming media such as YouTube, Tik-
Tok, etc., people receive a huge amount of User Generated Content
(UGC) videos daily. UGC videos generally suffer from significant dis-
tortions such as blurring, low light, and shakiness, which decreases
the Quality of Experience (QoE) of viewers. In these distortion cat-
egories, shakiness is the most unpleasant one that may dizzy the
viewers, which is caused by the unstable hold of cameras. In the
temporal dimension, the unstable movement of cameras forms a
shaky pixel trajectory as shown in Fig. 1. However, although plenty
of video stabilization algorithms are proposed to remove shakiness
in recent years [2, 9, 15, 36, 42], to the best of our knowledge, there
is no specific and accurate metric to evaluate video stability.

Evaluating video stability is one of the essential factors in Video
Quality Assessment (VQA), yet has not received extensive atten-
tion. According to the provided amount of pristine video infor-
mation, VQA models can be categorized as No-Reference (NR),
Reduced-Reference (RR), and Full-Reference (FR) models [23]. Since
the acquisition of stable reference videos relies on the support of
stabilizers and synchronous shooting, making the FR Video Qual-
ity Assessment for Stability (VQA-S) is still impractical. Therefore,
most existing VQA-S models focus on NR quality assessment.
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Figure 1: Trajectory of a sample video on x and y axes, whose
stability score [15] is 84.2 while subjective MOS is 44.6 (range
0 to 100 from unstable to stable).

Among all VQA-S models, Stability Score [15] is widely used to
evaluate the performance of video stabilization algorithms. Stability
Score follows the principle that the more energy contained in the
low-frequency parts, the more stable a video is. However, experi-
mental results demonstrate that the Stability Score may not reflect
the subjective experience in video stability. Specifically, it estimates
the camera movement by using feature point matching to compute
the homography between adjacent frames. When the feature points
are located in moving objects whose trajectory is not consistent
with the camera, even though the camera is stable, it still regards
the video as being shaky. In addition, when the video suffers from
severe shakiness, the caused motion blur would impede the point
matching. Figure 1 gives an example of when the Stability Score
fails to predict correctly.

In recent years, a variety of VQA databases have been proposed.
Benefiting from them, the VQA models based on Deep Neural Net-
works (DNN) have emerged. However, the tailored quality assess-
ment database for video stability is still lacking, which hinders
the development of effective VQA-S models. To this end, we build
StableDB, a database with 1,952 diversely-shaky videos in various
in-the-wild scenes, and conduct a subjective study on 34 subjects
to obtain the corresponding MOS. To the best of our knowledge,
this is the largest video database which contains different shake
degrees to support the accurate assessment of video stability. We
anticipate the StableDB would benefit the training and testing of
subsequent models.

On the base of StableDB, we propose StableVQA, a novel DNN-
based VQA-S model that integrates three tailored features to better
assess the shake degrees in videos. The proposed StableVQA con-
sists of feature extraction, feature fusion, and quality regression
modules. Concretely, we extract features from optical flow, seman-
tic domain, and blur domain respectively. The optical flow explicitly
describes pixel movement between frames. A 3D-CNN is used to im-
plicitly analyze the camera movement within optical flows, which

is significant for the assessment of video stability. A Swin Trans-
former [31] backbone is used for extraction of semantic features
to help with eliminating effects from moving objects whose tra-
jectories are inconsistent with the camera movement. Besides, a
blur encoder is designed to detect the blur effect caused by the
high-speed movement of the camera within frames. We train and
test StableVQA as well as other VQA models on StableDB and other
public databases. Experimental results show the StableVQA out-
performs the existing VQA-S models and the state-of-the-art VQA
model, validating its effectiveness in measuring video stability.

We summarize our contributions as follows:
(1) We build the first large-scale subjective video database con-

taining videos of various shake degrees, named StableDB.
The database includes 1,952 video sequences and correspond-
ing MOSs on video stability gained from 34 subjects.

(2) We propose the first DNN-based model to predict degrees of
video stability, named StableVQA.We creatively extract three
tailored features in optical flow, semantic domain, and blur
domain to benefit the evaluation of video stability. With the
following feature fusion and quality regression modules, the
model is able to predict video stability with high consistency
to subjective opinions.

(3) The proposed StableVQA outperforms existing VQA-S mod-
els and the state-of-the-art VQA model on StableDB and
public databases, indicating the effectiveness of StableVQA.
Qualitative experiments show StableVQA can benefit in mea-
suring the performance of video stabilization algorithms,
giving it practical application prospects.

2 RELATEDWORKS
2.1 Unstable Video databases
Several unstable video databases have been proposed for evalu-
ating video stabilization algorithms, including NUS [15], Deep-
Stab [28], Selfie [35], etc. However, the aforementioned unstable
video databases are neither in abundance in amount nor with cor-
responding subjective opinion scores on stability. A large-scale
subjective unstable video database is urged for the convenience of
deep learning training.

There are also several UGC video databases for genetic VQA
tasks, including KoNViD-1k [8], V3C1 [22], LIVE-Qualcomm [5],
YouTube UGC [29], VDPVE [4], etc. Though the above large-scale
UGC databases have been proposed, they may not be suitable for
measuring stability. For one reason, partial UGC videos suffer from
severe distortions from other dimensions such as blur, low light,
high contrast, etc. It could affect the QoE of viewers in that they
cannot focus on the stability of videos. On the other hand, common
UGC videos from online platforms have transitions, which may
lead to ambiguous definitions of stability.

Moreover, there exists an absence of subjective study for mea-
suring the degree of video shakiness specifically. Relative compre-
hensive studies are mostly designed for the comparison of video
stabilization algorithms. In [30], subjects were asked to rate a score
from 0 to 100 based on video stability. However, the experiment
was only conducted on 10 sets of videos with one shaky video and
three stabilized videos using different stabilization models in one
set. In [10, 15, 32, 37], the original shaky video was displayed along
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Table 1: Summary of StableDB and the utilized databases.

Name Total Videos Sampled Videos Resolution Time Duration Video Format

UGC databases

KoNViD-1k [8] 1200 854 540p 8s MP4
V3C1 [22] 7475 700 176p-4K 3-60min MP4

LIVE-Qualcomm [5] 208 54 1080p 15s YUV
YouTube UGC [29] 1500 39 360p-4K 20s YUV, MP4

Unstable databases
NUS [15] 174 105 360p, 720p 10-60s AVI

DeepStab [28] 122 108 720p 6-75s AVI
Selfie [35] 33 22 480p 4-13s MP4

Proposed StableDB 1952 - 720p 8s MP4

with the corresponding stabilized video. Subjects were required to
choose the better results. Hence we propose a large-scale unstable
video database with corresponding Mean Opinion Scores (MOS) to
eliminate the gap in scale and subjective study.

2.2 No-reference VQA
Since it is impractical to obtain stable reference video pairing with
a target unstable video, a no-reference quality assessment model is
necessary for measuring video stability. A few VQA-S metrics have
been proposed. In [1], Interframe Transformation Fidelity (ITF) was
used for assessing stability. It was calculated by averaging PSNR
between adjacent frames. In [15], Liu et al. proposed to measure
overall video stability by extracting the low-frequency component
from camera movement. It was believed that the more energy con-
tained in the low-frequency part, the more stable a video was. Both
models fail to predict accurately when facing severe shaky motions.
In recent years, Zhang et al. [38] proposed to mathematically an-
alyze the intrinsic smoothness of the motion path. However, all
the above models only consider one aspect of video stability while
ignoring the subjective experience [7].

Most VQA models consider videos’ overall quality but do not
specifically focus on stability. [18, 20, 24, 33] utilize NR Image Qual-
ity Assessment (IQA) models on frames of videos and pool the
results as the video quality score, while [11, 19, 27] utilize tailored
handcrafted features for assessing video quality.

With the thriving of deep learning, numerous neural network-
based VQA models have been proposed. VSFA [14] extracted se-
mantic features from a pre-trained CNN model while using a gated
recurrent unit network to model the temporal-memory effects. Li
et al. [12] proposed to transfer knowledge from IQA databases
by extracting spatial features using a pre-trained model. Sun et
al. [23] trained a spatial feature extractor with the help of motion
features extracted from pre-trained CNN. Zhang et al. [41] proposed
MD-VQA, to measure the visual quality of UGC live videos from
semantic, distortion, and motion aspects respectively. Wu et al. [31]
proposed a new sample strategy called “fragment” in FAST-VQA.
It considered local quality and global quality with mini-patches
sampled in uniform grids. Dong et al. [3] proposed Light-VQA for
the assessment of low-light video enhancement algorithms. Re-
cently, there are several models aiming to evaluate a specific type
of content, such as Artificial Intelligence Generated Content (AIGC)
image [13, 39], 4K content [17] and digital human [40]. However,

the aforementioned models are not able to accurately assess video
stability specifically, as they only consider stability as a factor in
the overall video quality.

3 DATABASE PREPARATION AND
SUBJECTIVE STUDY

The existing unstable video databases, such as NUS [15], Deep-
Stab [28], and Selfie [35], contain relatively few numbers of videos
as shown in Table 1, which cannot satisfy the training of DNN-based
model. In addition, video shakiness is a common phenomenon in
UGC videos and small-scale databases cannot represent the compli-
cated scenes of UGC videos. Consequently, we propose a large-scale
video database, named StableDB, including 1,952 UGC videos with
various shaky degrees. Furthermore, we conduct a subjective study
on 34 subjects to obtain the mean opinion score (MOS) of each
video. In this section, we will describe the construction of StableDB
and the subjective experiment conducted on it.

3.1 Data Acquisition
Data Sources: Sources of StableDB include: (1) videos from existing
video databases, (2) videos shot by ourselves. Videos in the existing
unstable video databases are naturally suitable for StableDB. To
enlarge the scale of StableDB, we turn to utilize the existing UGC
video databases for VQA task, including KoNViD-1k [8], V3C1 [22],
LIVE-Qualcomm [5], and YouTube UGC [29]. However, in addition
to video shakiness, various other kinds of distortions are discovered
in part of these videos, such as blur, low light, and high contrast.
To reduce the influence of these irrelevant distortions, we manu-
ally select videos with broadly similar levels of other distortions
but various shaky effects. In addition to these existing videos, we
capture 70 video sequences using Apple iPhone 11.

Data Preparation:We set each video sequence with duration
of 8𝑠 and resize to the resolution of 720p. To avoid an ambiguous
degree of motion shakiness, the video sequence should only contain
a single shot without changing shooting scenes. Finally, we obtain
1,952 videos with detailed numbers listed in Table 1.

3.2 Subjective Study Design
To obtain the actual situation of videos’ stability in StableDB, we
conduct a subjective study where subjects are required to rate on
the degree of shakiness in videos based on subjective experience.
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Figure 2: Sample video frames from StableDB.
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Figure 3: (a): Distribution of subjects’ SROCC with golden
videos and RMSE between repeated videos. SROCC refers
to the left y-axis, and RMSE refers to the right. (b): SROCC
between split groups.

The subjective study consists of a pilot study and the formal study.
In the pilot study, we invite 8 volunteers to score 100 videos to
have a general understanding of the data situation. In the formal
study, we invite 34 volunteers to score the degree of shakiness of
1,952 videos, and finally obtain 66,368 ratings. Subjects are first
shown an interface with the introduction of overall study settings.
Following is the training session, where subjects get familiar with
study settings and operations by scoring 5 videos with a wide range
of stability. Afterward, subjects enter the testing session and rate
each video of StableDB. All subjects are crowd-sourced. We provide
the detailed overall study workflow in Appendix B.

3.3 Quality Control
When conducting the subjective study, quality control is necessary
to obtain reliable results. Following [34], we conduct quality control
from two aspects:

Golden Videos: Using “golden videos” for quality control is
a common strategy in subjective studies. The golden videos are
selected to have the most consistent scores in the pilot study. We
compute the Spearman RankOrder Correlation Coefficient (SROCC)
between the subject’s scores on golden videos in testing and the
MOSs in the pilot study. SROCC close to 1 means high reliability of
the subject’s scores.

Repeated Videos: 5 randomly selected videos are repeated in
both sessions during testing. We calculate the Root Mean Square

Error (RMSE) between the subject’s first and second ratings. A
lower RMSE means a higher intra-subject consistency.

The results of golden videos and repeated videos are shown in
Figure 3(a). The average SROCC is 0.8806 with a standard devia-
tion of 0.1002, while the average RMSE is 7.8940 with a standard
deviation of 3.8523. Together they guarantee the reliability and
effectiveness of the subjective study.

Besides, to further prove the reliability of the subjective study,
we conduct an experiment where we randomly select 2𝑛 subjects
and equally split them into 2 groups. After having the MOSs in each
group, we calculate the SROCC between the two groups to evaluate
the consistency. A higher SROCC means higher consistency in the
two groups and reflects the reliability of the subjective experiment.
We have in total 34 subjects, so the number of subjects in each group
𝑛 increases from 1 to 17. For each 𝑛, the procedure is repeated for
100 times, and we take the average SROCC. The results are shown
in Figure 3(b). It can be observed that the gain in SROCC becomes
minimal as the number increases, indicating reliable ground truth
can be obtained at the current subjective study scale.

4 PROPOSED MODEL
Based on StableDB, we propose a novel no-reference DNN-based
model to evaluate video stability, named StableVQA. Figure 4 gives
an overview of StableVQA. The framework consists of three mod-
ules: feature extraction, feature fusion, and quality regression. We
first randomly sample 𝑁 frames with time interval 𝜏 as a video clip.
The optical flows between adjacent frames in the clip are estimated
and are taken as input to a 3D Convolutional Neural Network (CNN)
to implicitly analyze the camera movement as the flow feature. Be-
sides, we use a Swin Transformer [16] for the extraction of semantic
features. Last but not least, we analyze the motion blur effect within
frames as the blur feature. Features from these three dimensions
are fused and regressed to give the final prediction stability score.
The following introduces the detailed design of StableVQA.

4.1 Preparation
Jitter effects in video originate from the rough trajectory of the
shooting equipment, which can be reflected by pixel motion in
frames at the temporal dimension. Optical flow estimates the in-
stantaneous velocity of moving objects at the pixel level. It finds
the corresponding relationship between the previous frame and the
current frame by using the changes of pixels in the time domain
and the correlation between adjacent frames, so as to calculate
the motion information of objects between adjacent frames. The
analysis in optical flow will directly benefit the assessment of video
stability. Given a video clip with 𝑁 frames, denoted 𝑖 = {𝑖𝑛}𝑁𝑛=1.
we estimate the optical flows between adjacent frames in 𝑖 as the
optical field, denoted as 𝑜 = {𝑜𝑛}𝑁−1

𝑛=1 , where

𝑜𝑛 = 𝑂𝑃𝑇𝐼𝐶𝐴𝐿(𝑖𝑛, 𝑖𝑛+1) . (1)

4.2 Feature Extraction
Here we describe the details of the flow feature, semantic feature,
and blur feature extraction respectively. We denote𝐶 ,𝑇 , 𝐻 , and𝑊
as the channel number, temporal length, spatial height, and spatial
width of the feature map.
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Figure 4: The overview of StableVQA. Features are extracted from optical flow, semantic domain, and blur domain. After fusion,
A two-layer MLP is utilized to regress the concatenated feature to the predicted stability score.

4.2.1 Flow Feature. The optical field explicitly demonstrates frames-
wise motion at the pixel level. Hence a 3D CNN is trained for the
extraction of the implicit feature. Compared with 2D CNN, 3D CNN
has the advantage of analyzing temporal information in videos.
Given the optical field 𝑜 ∈ R2×(𝑁−1)×𝐻×𝑊 , the extracted flow fea-
ture is noted as 𝑓𝑜 (𝑜) ∈ R𝐶𝑜×𝑇𝑜×𝐻𝑜×𝑊𝑜 . The trainable CNN model
is noted as 𝑓𝑜 (·). We use 𝑓𝑜 in replacement of 𝑓𝑜 (𝑜) for simplicity.

4.2.2 Semantic Feature. As the flow feature gives a video’s char-
acteristics in the temporal domain, we also analyze the video’s
semantic feature in the image field. Since moving objects in video
scenes, like humans, vehicles, etc, often have trajectories inconsis-
tent with the camera movement, semantic analysis will benefit in
eliminating the impact of moving objects. Swin transformer [16]
has proved its efficiency in multiple vision tasks. It consists of
four hierarchical self-attention layers with a shifted windowing
scheme. Self-attention computations are done in non-overlapping
local windows while the shifted windowing scheme guarantees the
cross-window connection. Here we utilize Swin-T as the backbone
of the semantic extraction model, denoted as 𝑆𝑊 𝐼𝑁 (·). Given the
video clip 𝑖 = {𝑖𝑛}𝑁𝑛=1, the semantic feature is given by:

𝑓𝑠 (𝑖) = 𝑐𝑎𝑡 ({𝑆𝑊 𝐼𝑁 (𝑖𝑛)}𝑁𝑛=1), (2)
where 𝑐𝑎𝑡 denotes concatenation, as we concatenate frame-wise fea-
tures in channel dimension. Given the image field 𝑖 ∈ R𝑁×3×𝐻×𝑊

of a video, we have semantic feature 𝑓𝑠 ∈ R(𝑁×𝐶𝑠 )×𝐻𝑠×𝑊𝑠 .

4.2.3 Blur Feature. In the process of capturing in-the-wild videos,
exposure time is a necessary factor to take into consideration. Ex-
posure time stands for the certain time required to sensitize a pho-
tographic plate. If the shooting equipment suffers from severe shak-
iness, objects in scenes are still with great motion in one exposure
time, resulting in motion blur in videos. The degree of motion blur
reflects the video’s stability from another perspective. Therefore, we

utilize a pre-trained encoder in a typical image deblurring network,
as it is designed for analyzing the blurring effect within images.
Given the video clip 𝑖 = {𝑖𝑛}𝑁𝑛=1, we sample 𝑁𝑏 frames with time
interval 𝜏𝑏 for blur detection, denoted as 𝑖𝑏 = {𝑖𝑛 ·𝜏𝑏 }

𝑁𝑏

𝑛=1, where
𝑁𝑏 = 𝑁 /𝜏𝑏 . The blur feature is given by:

𝑓𝑏 (𝑖𝑏 ) = 𝑐𝑎𝑡 ({𝐵𝐿𝑈𝑅(𝑖𝑏𝑛)}
𝑁𝑏

𝑛=1), (3)
where 𝐵𝐿𝑈𝑅(·) denotes the encoder of the utilized deblurring net-
work. Similar to semantic features, we concatenate frame-wise
features in channel dimension. Given 𝑖𝑏 ∈ R𝑁𝑏×3×𝐻×𝑊 , we have
the blur feature 𝑓𝑏 ∈ R(𝑁𝑏×𝐶𝑏 )×𝐻𝑏×𝑊𝑏 .

4.3 Feature Fusion
After feature extraction, we propose a feature fusion module to ob-
tain an overall feature of the video. Firstly, adaptive average pooling
is deployed for all three branches to unify features in the channel
dimension. Then the overall feature is obtained by a concatenation:

𝑓 = 𝑐𝑎𝑡 (𝑎𝑣𝑔_𝑝𝑜𝑜𝑙 (𝑓𝑜 , 𝑓𝑠 , 𝑓𝑏 )), (4)
where 𝑓 ∈ R(𝐶𝑜+𝑁×𝐶𝑠+𝑁𝑏×𝐶𝑏 )×1. It is worth noting that a vari-
ety of fusion strategies can be leveraged for feature fusion, e.g.,
attention-based. However, they are beyond the scope of this paper.

4.4 Quality Regression
Given the fused feature of the source video, a regression module is
needed to map the feature representation to the quality score. Here
we utilize a two-layer multi-layer perception (MLP) module for
quality scores regression. The MLP consists of two fully connected
layers and there are 128 and 1 neuron in each layer respectively.
The predicted stability score is given by:

𝑠𝑝𝑟𝑒𝑑 = 𝐹𝐶 (𝑓 ), (5)
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Table 2: Performance of the SOTA models and StableVQA on StableDB. The best-performing model is highlighted in each
column. [Keys: of: flow feature; bf: blur feature]

Type models
Validation Testing

SROCC ↑ PLCC ↑ KRCC ↑ RMSE ↓ SROCC ↑ PLCC ↑ KRCC ↑ RMSE ↓

VQA-S
ITF [1] 0.6148 0.5937 0.4366 15.3144 0.6138 0.5985 0.4353 15.2121

Stability Score [15] 0.2365 0.2783 0.1587 20.4064 0.2217 0.2818 0.1489 20.363

VQA

VSFA [14] 0.6516 0.6712 0.4726 13.2789 0.6166 0.6565 0.4465 13.6174
SimpleVQA [23] 0.6368 0.6667 0.4599 12.7832 0.6285 0.6418 0.4753 12.8383

BVQA [12] 0.8734 0.8774 0.7014 8.0137 0.8715 0.8767 0.6934 8.1371
FAST-VQA [31] 0.8886 0.8908 0.7153 8.0055 0.8816 0.8873 0.7079 8.1594
FAST-VQA + of 0.8883 0.8867 0.7050 8.3924 0.8857 0.8833 0.7091 8.1254
FAST-VQA + bf 0.8892 0.882 0.7169 8.4943 0.8787 0.887 0.6988 7.9932

VQA-S StableVQA 0.9102 0.9161 0.7431 7.0188 0.9118 0.9187 0.7441 6.9364

where 𝐹𝐶 (·) denotes the function of the two fully connected layers.

5 EXPERIMENTS AND RESULTS
5.1 Implement Details
5.1.1 Train-test Splitting. All experiments are conducted on Sta-
bleDB. We follow the common practice of database splitting by
leaving out 60% for training, 20% for validation, and 20% for testing.
As one split may cause bias when training a deep-learning-based
model, we randomly split it ten times, and use the average results
for performance comparison.

5.1.2 Training Protocol. We utilize RAFT [25] for optical flow esti-
mation in preparation, as it is considered the SOTAmodel in optical
estimation. For the flow feature branch in the feature extraction
module, we utilize 3D ResNet-18 as the backbone for efficiency. For
the blur feature branch, we use the encoder module and 6 Intra-SA
and Inter-SA blocks in Stripformer [26]. The Intra-SA and Inter-SA
blocks leverage horizontal and vertical strip-wise features to extract
blurred patterns with different orientations and magnitudes based
on attention mechanisms. Before training, we load the pre-trained
checkpoint of Stripformer trained on the RealBlur database [21].
The weights of the blur feature extractor are fixed during training.
For the semantic feature extractor, we initialize the weights by
loading the checkpoint of Swin-T pre-trained on the ImageNet-1K
database. Weights of Swin-T are later fine-tuned on StableDB. Other
parts of StableVQA are randomly initialized.

During training, we randomly sample a clip containing 𝑁 = 32
frames with the time interval 𝜏 = 2 from one video sequence.
During validation and testing, we sample 4 clips under the same
strategy and predict stability scores separately. The final score
is obtained by averaging. All input video frames are resized into
224× 224 for all training, validation, and testing. Following [31], we
use Adam optimizer initialized by learning rate 0.0001 for the Swin-
T backbone and 0.001 for the rest of the model. The learning rate
decays under a cosine scheduler from 1 to 0. We train StableVQA
for 30 epochs under a batch size of 4 on a server with one NVIDIA
GeForce RTX 3090.

Table 3: Performance comparison on stabilization subset in
LIVE-Qualcomm database.

model
LIVE-Qualcomm [5]

(stabilization)
SROCC ↑ PLCC ↑ KRCC ↑ RMSE ↓

ITF [1] -0.1969 -0.2267 -0.1229 17.2062
Stability Score [15] 0.1789 0.1606 0.1266 14.233

VSFA [14] 0.3936 0.3639 0.3109 26.7559
SimpleVQA [23] 0.049 0.164 0.042 10.7756
FAST-VQA [31] 0.5661 0.5842 0.4454 9.9619
StableVQA 0.5815 0.6519 0.4219 9.1148

5.1.3 Loss Function. We use differentiable Pearson Linear Corre-
lation Coefficient (PLCC) [31] and rank loss [23] as loss function.
PLCC is a common criterion used for evaluating the correlation
between sequences, while the rank loss is introduced to help the
model distinguish the relative quality of videos better. The differen-
tiable PLCC loss is defined by:

𝐿 = 𝐿𝑝𝑙𝑐𝑐 + 𝜆 · 𝐿𝑟𝑎𝑛𝑘 , (6)

where 𝜆 is a hyper-parameter for balancing, and is set to 0.3 during
training.

5.1.4 Evaluation Metrics. Besides PLCC, we include Spearman’s
rank-order correlation coefficient (SROCC), Kendall’s rank-order
correlation coefficient (KRCC), and root mean square error (RMSE)
as performance criteria. Better models should have larger SROCC,
KRCC, PLCC and smaller RMSE. Before calculating the PLCC, we
follow the same procedure in [6] to map the objective score to the
subject score using a four-parameter logistic function.

5.2 Performance Comparison
5.2.1 Reference Algorithms. We compare StableVQA with the fol-
lowing no-reference VQA-S and VQA algorithms:
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Figure 5: Scatter plots of the predicted scores vs. MOSs. The curves are obtained by a four-order polynomial nonlinear fitting.
Scatter points are distinguished by intensity using colors from dark to bright.

• VQA-S: ITF [1], Stability Score [15].
• VQA: VSFA [14], SimpleVQA [23], BVQA [12], FAST-VQA [31],
FAST-VQA + flow feature, FAST-VQA + blur feature.

For both VQA-S and VQA models, we calculate metrics between
the predicted stability scores and MOSs on ten splits of StableDB
and average to get final results.

5.2.2 Camprison with SOTA models. Table 2 shows the perfor-
mance comparison between StableVQA and reference algorithms,
all trained on StableDB. Experimental results show that the pro-
posed model has the best performance as it obtains higher correla-
tion and lower error with subjective MOS. Figure 5 further shows
the distribution of part models, where the data in the 10th test split
is used. The horizontal axis in figure 5 represents the predicted
scores, while the vertical axis represents the MOSs.

ITF, VSFA, and SimpleVQA have similar performances on the
proposed database, indicating they can generally reflect stability in
videos. The Stability Score has the poorest performance. It is mainly
caused by the following reasons: 1) Stability score uses the ratio
between energy in low frequency against energy in total frequency.
However, the demarcation of low frequency is manually set, which
leads to uncertainty. 2) Trajectory estimation in stability score is
based on feature point matching between adjacent frames, which
always fails when facing severe shaking scenarios.

FAST-VQA is considered the SOTA model in the VQA field. It
gains effectiveness from the “fragment” sampling strategy and Swin
Transformer backbone. Since video stabilization mainly focuses on
temporal characteristics, “fragment” sampling’s function becomes

limited. Compared to FAST-VQA, the StableVQA adds the flow
feature and blur feature branches to the Swin-T backbone, where
the optical branch helps analyze camera movement in the temporal
domain, while the blur branch detects blur effect in the spatial
domain. These lead to an overall improvement in all four metrics.
Besides, to investigate the effect of flow and blur features on existing
models, we add the two types of features to FAST-VQA separately
and test for their performance. Results show that they have slightly
improve FAST-VQA’s performance, but still fail to beat StableVQA.

5.2.3 Qualitative Analysis. To further illustrate the effectiveness
of StableVQA, we conduct a qualitative analysis by comparing
predictions of the original unstable videos and the stable videos
processed through stabilization algorithms. We use one software
stabilization algorithm: the Warp Stabilizer in Adobe Premiere Pro
2022, and one deep-learning-based algorithm: GlobalFlowNet [9]
for video stabilization. In figure 6, we demonstrate three examples
with their trajectories in the vertical dimension. The blue curves
show the unstable video trajectories, while the orange curves show
the stabilized trajectories processed by Adobe Premiere Pro and
the green for trajectories processed by GlobalFlowNet. We use
StableVQA trained on the 10th split for stability prediction. The
predicted scores for each unstable video are 27.9, 20.0, and 23.5
respectively. Corresponding Adobe-stabilized videos get 59.2, 62.7,
and 66.1 respectively. GlobalFlowNet-stabilized videos get 60.3, 57.3,
and 69.1 respectively. Qualitative analysis shows StableVQA is able
to distinguish different degrees of video stability. Furthermore, the
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(c) Origin: 23.5; Pr: 66.1; GlobalFlowNet: 69.1

Figure 6: Trajectories of unstable and stabilized videos in
vertical dimension. Predictions of StableVQA are shown in
subtitles.

results give StableVQA the potential of evaluating the performance
of video stabilization algorithms, improving its application value.

5.2.4 Cross-Database Validation. To prove the generalization of
StableVQA, a cross-database validation is needed. However, few
databases have been proposed specifically focusing on the subjec-
tive experience of video stability. To the best of our knowledge,
LIVE-Qualcomm [5] is the only one that has a subset of 35 videos
with correspondingMOSs to measure video stability. We use the sta-
bilization subset of the LIVE-Qualcomm database for cross-database
validation. Since StableDB includes part of the videos in the LIVE-
Qualcomm database, we remove those videos to avoid repeatability,
leaving 26 videos for validation. Table 3 further shows performance
comparison over different models. All deep-learning-based mod-
els are trained on StableDB and tested on the LIVE-Qualcomm
database.

The testing results over LIVE-Qualcomm show consistency in
the results on StableDB, as the proposed model achieves the best
performance. Noticed that there is a distinct performance decrease
on LIVE-Qualcomm compared with StableDB. The reason is that
LIVE-Qualcomm includes several repeated scenes shot by different
mobile devices. The stability within these videos is similar, but
the MOSs can be various due to other types of distortions. Since
the MOSs in StableDB are only considering video stability, the
models trained on StableDB cannot distinguish differences in other
distortion dimensions well.

Table 4: The results of ablation studies. [Keys: of: flow feature;
sf: semantic feature; bf: blur feature]

model
Validation Testing

SROCC ↑ PLCC ↑ SROCC ↑ PLCC ↑
of 0.8899 0.8999 0.8857 0.8979
sf 0.9067 0.9143 0.9041 0.9132
bf 0.3137 0.3125 0.2535 0.2386

of+sf 0.9097 0.9145 0.9105 0.9176
bf+sf 0.9047 0.9155 0.8978 0.9139
of+bf 0.8756 0.8840 0.8810 0.8887

of+sf+bf 0.9102 0.9161 0.9118 0.9187

6 ABLATION STUDY
To investigate the effectiveness of flow, semantic, and blur features
extracted in StableVQA, we thoroughly conduct the ablation studies
of our StableVQA. First, we evaluate model performance using one
type of feature separately. Afterward, we combine features in pairs.
Finally, the StableVQA concatenates all features. All experiments
are conducted on the StableDB. Table 4 shows the detailed results.

When using only one branch of features, the semantic feature
performs the best, while the blur feature is the worst. The reason
why video stability cannot be assessed with the blur feature is that
video stability is decided by camera movement in the temporal
domain. Since the blur feature only analyzes the blur effect in
video frames in the spatial domain, it is difficult to analyze video
characteristics temporally. The flow feature is obtained by analyzing
optical flows in the temporal domain. As a result, it has relatively
high scores. When using two branches of features, the flow and
semantic features combination performs best. And adding blur and
flow features to semantic feature has a similar performance. Finally,
using all three branches of features achieves the best performance,
indicating the effectiveness of all types of features.

7 CONCLUSION
In this paper, we focus on giving an accurate evaluation of the stabil-
ity of in-the-wild videos. For that purpose, we build a deep-learning-
based model for video stability assessment, named StableVQA. For
training such a model, we further propose StableDB, a large-scale
unstable video database, including 1952 in-the-wild videos with
corresponding subjective MOSs on the degree of video stability.
Experimental results show StableVQA can better predict video sta-
bility under subjective judgment by beating former VQA-S and
generic VQA models. Qualitative experiments also show StableVQA
can benefit the performance evaluation of video stabilization algo-
rithms, which improves its application value.
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A DETAILS IN DATABASE ESTABLISHMENT
The proposed StableDB includes 1,952 diversely-shaky videos sourc-
ing from KoNViD-1k [8], V3C1 [22], LIVE-Qualcomm [5], YouTube
UGC [29], NUS [15], DeepStab [28], Selfie [35], and our own shoot-
ing. However, since the aforementioned public databases were de-
signed for general Video Quality Assessment (VQA) tasks , the
videos may not be suitable for the Video Quality Assessment for
Stability (VQA-S) task. In KoNViD-1k, videos have diverse degrees
of distortions such as blur, stall, high contrast, low light, etc. Severe
distortions in these dimensions will affect user judgment when
scoring the stability of videos in the later subjective study. In V3C1,
videos originate from online stream platforms. These videos nor-
mally have several transitions, which may lead to an ambiguous
definition of stability. Besides, videos in V3C1 have various ranges
of resolutions, from 176p-4K. Since we later uniformly resize video
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Figure 7: Distribution of MOSs on the stability of videos in
StableDB.

resolution to 720p, those videos with rather small resolution or
with an aspect ratio other than 16 : 9 need to be removed. In
LIVE-Qualcomm, videos are captured using different mobile de-
vices synchronized by a rig consisting of four phone holders and
a metal rod. Such a strategy results in repeated scenes and sim-
ilar stability in videos. As a result, we retain one video for each
scenario. Videos in YouTube UGC have similar characteristics to
videos in V3C1 since they originate from online platforms as well.
Additionally, part of the videos in YouTube UGC is synthetic, which
mismatches our target to evaluate stability in in-the-wild videos.
A manual selection is conducted to remove the aforementioned
problematic videos.

B DETAILS IN SUBJECTIVE STUDY
Here we thoroughly introduce the workflow in the subjective study.

Pilot Study: As few studies have been conducted on subjective
opinions of video shakiness, we conduct a pilot study to grasp a
general understanding of stability distribution in StableDB. In the
pilot study, 8 subjects are required to score 100 videos. 5 videos with
the least range of ratings are selected as “golden videos” for quality
control, as they are considered to have the highest consistency
among all subjects. We also select 5 videos with a wide range of
MOSs for training.

Introduction: At the beginning, each subject will read a brief
description of the overall settings and operations in the study. Sub-
jects are told to focus on the shakiness of videos and ignore other
types of distortions like blur, low light, high contrast, etc. Rating is
required to be done after the video is fully played.

Training: In the training session, users are required to score on
5 videos with a diverse range of stability. Basically, there are five
reference grades: bad, poor, fair, good, and excellent, representing
from most unstable to most stable. The score ranges from 0 to 100
continuously, representing from bad to excellent.

Testing: In the testing session, the whole database is randomly
divided into two sessions. It takes roughly 3 hours to score each
session. After the scoring, a data cleaning is conducted. For each

video, we calculate the mean score and standard deviation. For each
user, given a particular video, if the score from a user exceeds two
standard deviations from the mean score of the video, we consider
the score from this user as an outlier. If a user has outliers more
than 5% of the total number of videos, the user will be considered
unreliable and his/her scores will be rejected. The remaining scores
are averaged as the Mean Opinion Score (MOS) of each video. Fig-
ure 7 shows the distribution of MOSs on the stability of videos in
StableDB.

C LIMITATIONS AND FUTUREWORK
In this section, we analyze the circumstances where the StableVQA
fails to accurately predict the stability of videos. Figure 8 and figure 9
give two examples that are most representative in the 10th split
test set. In figure 8, the video has a MOS of 88.3, indicating it has a
relatively smooth camera movement. However, StableVQA gives
a much lower prediction. In addition, trajectories in figure 8 show
that the video has a fast and uniform motion in the x direction,
with severe shaking in the y direction. However, the real camera
movement in the video is close to stationary. This deviation is
because the scene in the video is about water waves and swimming
ducks. Both water waves and ducks have relative motion with the
camera, causing ambiguity for the model to make it believe the
camera is moving rather than the objects in the scene.

Frame Number

dy
dx

Figure 8: Trajectory of a sample video on x and y axes, whose
subjective MOS is 88.3 (range 0 to 100 from unstable to stable)
while the prediction stability score from StableVQA is 61.9.

For the example video in figure 9, the MOS is 21.4, indicating the
video has a rough camera trajectory. However, StableVQA predicts
the stability score as 44.5. The camera in the video is on a rotating
amusement facility, resulting in a quick rotation in the horizontal
direction. Further, figure 9 shows the trajectory in the x-axis is
relatively smooth. However, from the subjective perspective of the
viewer, rotation under high velocity tends to amplify the jitter effect,
making it has a relatively low MOS.

To conclude, StableVQA easily fails to predict accurately under
the following circumstances: 1) scene in the video contains objects
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Figure 9: Trajectory of another sample video on x and y axes,
whose subjective MOS is 21.4 while the prediction stability
score from StableVQA is 44.5.

with similar characteristics performing relative motion that is in-
consistent with the camera. 2) Mathematical trajectory smoothness
is inconsistent with the subjective experience of stability, e.g., quick
rotation. Both scenarios cause ambiguities in the model. FAST-
VQA [31] has a similar performance under these circumstances,
where it predicts the stability of the video in figure 8 with 55.5,
and the video in figure 9 with 49.7. Other models have even worse
performances.

The future work lies in the reduction of computational com-
plexity. A well-designed video stability model can be used for
self-supervision in video stabilization algorithms. Besides, an in-
terpretable algorithm is promising. With the proposed database,
we hope to encourage the progress of research in video quality
assessment and video stabilization fields.
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