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ABSTRACT
Zero-shot skeleton-based action recognition aims to recognize ac-
tions of unseen categories after training on data of seen categories.
The key is to build the connection between visual and semantic
space from seen to unseen classes. Previous studies have primar-
ily focused on encoding sequences into a singular feature vector,
with subsequent mapping the features to an identical anchor point
within the embedded space. Their performance is hindered by 1)
the ignorance of the global visual/semantic distribution alignment,
which results in a limitation to capture the true interdependence
between the two spaces. 2) the negligence of temporal information
since the frame-wise features with rich action clues are directly
pooled into a single feature vector. We propose a new zero-shot
skeleton-based action recognition method via mutual information
(MI) estimation and maximization. Specifically, 1) we maximize the
MI between visual and semantic space for distribution alignment;
2) we leverage the temporal information for estimating the MI by
encouraging MI to increase as more frames are observed. Extensive
experiments on three large-scale skeleton action datasets confirm
the effectiveness of our method.

CCS CONCEPTS
• Computing methodologies → Activity recognition and under-
standing.
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Figure 1: The core of the zero-shot learning lies in construct-
ing a connection model 𝑇 between visual features 𝑣 and se-
mantic features 𝑎 during the training phase. At test time, the
learned model 𝑇 is utilized to predict the most compatible
semantic attribute for a given unseen-class visual feature.
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1 INTRODUCTION
Human action recognition becomes an essential component in
many real-world applications, including but not limited to security
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and human-robot interaction. It is not hard to acquire skeleton data
due to the development of pose estimation [13] and sensors [45].
To this end, human skeleton data has emerged as a promising
alternative to traditional RGB video data due to its robustness to
variations in appearance and background, as well as its ability to
provide an unbiased representation of individuals.

Many researchers explore fully supervised methods for this task,
which requires large amounts of labeled training samples. However,
it is not economical to handle numerous action classes in real-world
scenarios since the samples of many actions are time-consuming
and expensive to collect. Thus, zero-shot learning [18, 29] is used to
recognize new classes if there are no training samples but only some
semantic information such as the names, attributes, or descriptions
of new classes is available. Annotating and labeling 3D skeleton ac-
tion data presents increased difficulty due to the inclusion of depth
information and the complexity of human action semantics. Hence,
zero-shot skeleton-based action recognition is highly desirable in
practical applications because it can significantly reduce the need
for collecting and annotating new actions.

In Fig. 1, Given pre-extracted visual and semantic features, the
core of zero-shot learning is to establish a connection model be-
tween visual and semantic spaces in the seen classes. During the test
phase, the learned model is used to facilitate the knowledge transfer
from the seen to the unseen classes. To address the transfer learning
problem, zero-shot action recognition relies on the external knowl-
edge base, i.e., the semantic embeddings of each class label from
pre-trained large-scale language model such as Sentence-Bert [28]
or CLIP [27]. The effective utilization of semantic information is
important for bridging the gap between two different modalities.

There are a few studies on zero-shot skeleton-based action recog-
nition. Existing methods [9, 14] embed action sequences into visual
features. To establish the connection model of visual and semantic
space, a compatible projection function [14] or a deep metric [6] is
learned based on the data of seen classes in the training phase. Then
in the testing phase, the similarities between the visual feature of
a test action sequence and the sentence embeddings [14] or part-
of-speech tagged words [41] of the unseen classes are measured
either in the projected common space or by the learned metrics.
However, the projection operation merely maps the visual or se-
mantic features to a common anchor point in the embedding space,
overlooking the global alignment between the distributions of vi-
sual and semantic features. Furthermore, the learned projections or
metrics inadequately utilize semantic information to capture the
associations between the two modalities. Their attempt to perform
cross-modal reconstruction without aligning the distributions is
challenging due to the significant difference between the visual and
semantic spaces, ultimately resulting in the difficulty of generalizing
to novel classes with diverse distributions.

Secondly, The information loss becomes severe in the zero-shot
action recognition task scenario since some semantic classes re-
quire dynamics information to differentiate from each other. For
example, "walking" and "skipping" differ only in local parts since the
initial frames for these two action sequences are similar; "Skipping"
cannot be identified until a human-rising procedure is observed.
Thus, for a human action, utilizing the inherent temporal dynamics
information also plays a role in the generalization ability of the
zero-shot connection model.

In this paper, we propose a Skeleton-based Mutual Information
Estimation andmaximization framework for zero-shot action recog-
nition (SMIE). To better capture the dependencies between visual
and semantic spaces, our approach avoids direct mapping and in-
stead aligns the distributions of these two spaces using a global
alignment module. This module utilizes mutual information as a
measure of similarity and applies an estimator based on Jensen-
Shannon divergence (JSD) to maximize the mutual information
between paired visual and semantic features while minimizing mu-
tual information between unpaired visual and semantic features. A
neural network is employed as the connecting model to estimate
the similarity score in the JSD estimator, which is used during the
test phase on unseen classes. Then considering the inherent tem-
poral information of actions, SMIE proposes a temporal constraint
module to encourages the mutual information between visual and
semantic features to increase when more parts of the action are
executed. Specifically, the JSD estimator applies contrastive learn-
ing to estimate the global mutual information. The paired visual
and semantic features form positive samples, while unpaired ones
form negative samples. To perceive keyframes that contain more
discriminative information in the action sequence, the temporal
constraint module computes the motion attention of each sequence
and masks the keyframes with higher attention to generate extra
positive samples, which contain partial temporal information loss.
During training, the temporal-constrained mutual information is
computed with the same negative samples and is kept smaller than
the global mutual information.

The major contributions of this paper are three-fold:
• We propose a skeleton-based mutual information estimation
and maximization framework (SMIE), a new zero-shot ap-
proach to skeleton-based action recognition based on mutual
information maximization, which can capture the complex
statistical correlations between the distributions of the visual
space and the text semantic space.

• A novel temporal constraint module is proposed to compute
the temporal-constrainedmutual information and a temporal
rank loss is applied to help the connection model capture
the inherent temporal information of actions.

• Extensive experiments and analyses demonstrate the effec-
tiveness of the proposed method, which outperforms the
baseline methods by a large margin.

2 RELATEDWORK
Zero-shot Action Recognition. Most of the existing zero-shot
video classification methods aim to build the connection between
the visual and semantic spaces using feature projections, which
mainly focuses on the visual space [10, 17, 40], the semantic space [1,
47], and the intermediate space [7, 42]. Specifically, The visual
features are first extracted from videos using a pre-trained network
such as Convolutional 3D Network (C3D) [36], ResNet [11], and
Inflated 3D Network(I3D) [3]. And then they map the visual or
semantic features to the fixed anchor points in the embedding space.
Different from these works, we focus on zero-shot skeleton-based
action recognition, where the visual features for skeleton-based
action sequences greatly differ from those for RGB videos. We use
mutual information instead of projections to associate the skeleton-
based visual and semantic features.
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Skeleton-based Action Recognition.With the development of
highly accurate depth sensors such as Kinect cameras and pose
estimation algorithms [2, 32], skeleton-based action recognition
has attracted increasing attention recently. Human skeleton-based
representation [8, 19] is robust to variations of appearance and
background environment, where each skeleton contains different
types of joints, and each joint records its 3D position.

Specifically, skeletons are organized as pseudo-images [15, 16] or
a sequence of long-term contextual information [5] and feed it into
CNNs/RNNs. Later, ST-GCN [43] constructs a predefined spatial
graph based on the natural connections of joints in the human
body and utilizes GCN to integrate the skeleton joint information.
In terms of consecutive frames, ST-GCN constructs the temporal
edges between corresponding joints. After that, many variants
of ST-GCN are proposed [4, 31, 39, 44], which contain more data
streams or add attention mechanisms. In this paper, we employ
ST-GCN [43] and Shift-GCN [4] as the backbone to extract visual
features. To explore the temporal relationship of skeleton data, we
retain the pre-trained GCN model and acquire the partial visual
feature by inputting frames with different indices in the skeleton
sequences.

Zero-shot Skeleton-Based Action Recognition. Fewer works
have been devoted to zero-shot skeleton-based action recognition
though it is of great importance. DeViSE [6] and RelationNet [14]
are extended to tackle this problem by extracting visual features
from skeleton sequences with ST-GCN and semantic embeddings
with Word2Vec [23] or Sentence-Bert [28]. DeViSE uses a simple
learnable linear projection between the visual and semantic feature
spaces. Based on it, RelationNet utilizes an attribute network and a
relation network to achieve the same goal. In the above works, a
projection operation is needed to build the visual-semantic embed-
ding, they map the visual or semantic features to the fixed anchor
points in the embedding space, which does not consider the global
distribution of the semantic features. Recently, SynSE [9] uses a
generative multi-modal alignment module to align the visual fea-
tures with parts of speech-tagged words. It works but needs extra
PoS syntactic information to divide labels into verbs and nouns.
Our method differs from these works in two aspects: We maxi-
mize the mutual information between the two modalities, and the
distribution between visual and semantic features can be aligned.
The global information of the semantic distribution can be utilized,
which can help to guide the knowledge transfer from seen domain
to the unseen domain. Second, to exploit the temporal information
of the skeleton sequence, a temporal constraint module is used to
encourage the mutual information between visual and semantic
features to increase with the number of observed frames.

Mutual Information for Zero-shot Learning. Recently, the mu-
tual information between the visual space and the semantic space
has been explored in zero-shot learning. In [33], local patches from
other images with the same label are drawn to estimate the mutual
information for local interpretability. In [34], mutual information is
utilized to learn latent visual and semantic representations so that
multi-modalities can be aligned for generalized zero-shot learning.
Different from the above, we use mutual information to bridge the
skeleton-based visual space and the text label semantic space and

impose a novel constraint on the mutual information to capture
the temporal semantic of the skeleton sequences.

3 METHOD
3.1 Problem Definition
The zero-shot learning setting addressed in this paper is the same
as [14], where the model is trained on seen classes and tested on
disjoint unseen classes. Specifically, the training dataset consists of
the skeleton sequence and the corresponding class name from seen
classes. Each training sample is denoted as (𝑥𝑠 , 𝑒𝑠 ), 𝑥𝑠 ∈ R𝐾× 𝐽 ×𝐶

represents the training skeleton sequence with 𝐾 frames and 𝐽
recorded 3D-joints for each frame, and 𝑒𝑠 is the corresponding class
name. The test dataset comes from unseen classes, a sample of the
test dataset is denoted as (𝑥𝑢 , 𝑒𝑢 ).

Generally, we use a visual feature extractor 𝐹𝑣 , which has been
pre-trained on seen classes, and a semantic feature extractor 𝐹𝑒 ,
which has been pre-trained on large-scale language models. These
two extractors are employed to acquire the visual and semantic
features 𝑣 and 𝑎 by taking in the skeleton sequence and class name
as inputs. Then a layer-norm layer (without learnable parameters)
𝑁 is used to normalize the visual features,

𝑣𝑖 = 𝑁 (𝐹𝑣 (𝑥𝑖 )), 𝑎𝑖 = 𝐹𝑒 (𝑒𝑖 ), 𝑖 ∈ {𝑠,𝑢} . (1)

Let𝑉 and𝐴 represent the random variables of 𝑣 and 𝑎 respectively.
The zero-shot learning aims to classify the sample of the unseen
classes by the model learned based on the training data from seen
classes. The utilization of semantic features is important because
the semantic space is shared between seen and unseen classes,
which can help the learnedmodel transfer knowledge from different
domains. For simplicity, we omit the subscript for seen (s) and
unseen (u) classes during the following model training introduction.

3.2 Method Overview
In Fig. 2, we propose a skeleton-based mutual information estima-
tion andmaximization framework (SMIE). Our SMIE consists of two
modules: The global alignment module uses mutual information
estimation and maximization to capture the statistical correlations
between visual and semantic distributions. The temporal constraint
module is utilized to enable the connection model𝑇 to perceive the
keyframes of sequences, which allows for the exploration of action
dynamics and the capture of inherent temporal information.

In the inference phase, the trainedmutual information estimation
network 𝑇 calculates the similarity score 𝑔 between tested visual
sequences and all semantic features of unseen classes. The unseen
class with the highest similarity score is chosen as the prediction.

3.3 Global Alignment
Previous zero-shot skeleton-based action recognition approaches [6,
14] learn projections that pull the visual features and the corre-
sponding semantic features closer in seen classes without consider-
ing the whole distribution of features. Due to the huge gap between
visual and semantic spaces, it is difficult to bridge the cross-domain
gap and generalize the projections to unseen classes.

To tackle this issue, we design a global alignment module to
learn an estimation network 𝑇 through maximizing the mutual
information 𝐼 (𝑉 ;𝐴) [25, 38] between the random variables of visual
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Figure 2: The framework of our proposed SMIE includes a global alignment module to estimate the mutual information
between visual and semantic features, and a temporal constraint module to incorporate temporal dynamics information into
the estimation network.

and semantic features:
𝐼 (𝑉 ;𝐴) = 𝐷𝐾𝐿 (𝑝 (𝑣, 𝑎) | |𝑝 (𝑥)𝑝 (𝑎))

= E𝑝 (𝑣,𝑎)
[
log 𝑝 (𝑣 |𝑎)

𝑝 (𝑣)

]
.

(2)

𝐷𝐾𝐿 is the KL-divergence between 𝑝 (𝑣, 𝑎) and 𝑝 (𝑣)𝑝 (𝑎), which
represents the joint distribution and product of the marginal dis-
tributions of 𝑣 and 𝑎, respectively. The information on joint distri-
bution can be utilized, and help the model use the global semantic
attributes. Meanwhile, the mutual information can be written with
the joint entropy among 𝑉 , 𝐴 and their conditional entropy,

𝐼 (𝑉 ;𝐴) = 𝐻 (𝑉 ,𝐴) − (𝐻 (𝑉 | 𝐴) + 𝐻 (𝐴 | 𝑉 )). (3)

As pointed out above, maximizing the mutual information between
𝑉 and 𝐴 is equivalent to maximizing the common information, i.e.,
the difference between joint entropy and conditional entropy.

Following Eq. (2), instead of directly modeling 𝑝 (𝑣 | 𝑎), mutual
information is utilized to encode 𝑉 and 𝐴 into compact distributed
vector representations via a connection network learned from data.
Benefiting from it, the captured shared information between visual
and semantic features maintains a better global structure, while
low-level information and noise will be discarded.

However, directly calculating the mutual information of two
random variables in high-dimensional spaces is extremely hard.
Inspired by the Jensen-Shannon divergence (JSD) [24], we propose
to learn an estimation network𝑇 that takes the global visual feature
𝑣 and the semantic feature 𝑎 as inputs. The output of the network
can be served as a similarity metric score 𝑔 between the visual and
semantic features, which is applied to match a skeleton sequence
to the unseen classes in the testing phase.

The estimation network 𝑇 can be trained by maximizing the
following JSD estimator.

𝐼 (𝑉 ;𝐴) ≈𝑚 = E𝑝 (𝑣,𝑎) [−𝑓𝑠𝑝 (−𝑇 (𝑣, 𝑎))]
−E𝑝 (𝑣)𝑝 (𝑎) [𝑓𝑠𝑝 (𝑇 (𝑣 ′, 𝑎))],

(4)

where 𝑚 is the estimated mutual information shown in Fig. 2.
Note that (𝑣, 𝑎) are paired visual/semantic features and (𝑣 ′, 𝑎) are
negative pairs. Specifically, 𝑣 is a visual feature extracted from
skeleton sequences 𝑥 , which is related to 𝑎. And 𝑣 ′ is a visual feature
extracted from negative sample 𝑥 ′ related to other classes. 𝑓𝑠𝑝 is
the soft-plus function 𝑓𝑠𝑝 (𝑧) = log(1 + 𝑒𝑧). Then, the visual feature
𝑣 is concatenated with the paired semantic feature 𝑎 to form the
positive pair, while the negative pair is generated by concatenating
this semantic feature with the visual feature 𝑣 ′ of another sequence.
The two pairs are sent to the estimation network 𝑇 to obtain the
scores 𝑔 and 𝑔′, respectively, for contrastive learning.

In this way, the estimation network encourages the semantic
feature to have a larger similarity to the corresponding visual fea-
ture than those unpaired visual features. Thus, to maximize the
estimated mutual information𝑚 for the global alignment, we have
the following loss:

L1 = −𝑚. (5)
The parameters of the estimation network 𝑇 are updated by

gradient descent during training.

3.4 Temporal Constraint Module
Compared with the image data, 3D human skeleton data is more
complicated because of the additional temporal dimension. Utilizing
the temporal dynamics information within a skeleton sequence can
help the model capture subtle differences among various classes.
A temporal constraint module is proposed to incorporate such
temporal information.

Generally, for human action sequences, the more frames ob-
served the more dynamics information model can capture, which
encourages the visual feature to get a stronger correlation with its
corresponding semantic feature. Furthermore, the keyframes in the
action sequences are often richer in discriminative information, so
the sequence loss of such frames has lower semantic relevance to
their labels. Inspired by PSTL [46], which utilizes the motion of
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skeleton data to find the key frames of each sequence. We further
adopt bidirectional motion attention to enhance the effectiveness.
As shown in the bottom half of Fig. 2, to acquire the attention-
masked sample, we first calculate the bidirectional action attention
for each action sequence. Specifically, the motion 𝑝 ∈ R𝐾× 𝐽 ×𝐶 of
the sequence is computed by the temporal displacement between
frames: 𝑝𝑛𝑒𝑥

𝑘,𝑗,𝑐
= 𝑥𝑘+1, 𝑗,𝑐 − 𝑥𝑘,𝑗,𝑐 , which represents the subsequent

variation of action in each frame. Then we further incorporate the
displacement between the current frame and its preceding frame
into the motion information: 𝑝𝑝𝑟𝑒

𝑘,𝑗,𝑐
= 𝑥𝑘−1, 𝑗,𝑐 − 𝑥𝑘,𝑗,𝑐 . The bidirec-

tional motion of the sequence can be defined as:

𝑝𝑘,𝑗,𝑐 = (𝑝𝑛𝑒𝑥
𝑘,𝑗,𝑐

)2 + (𝑝𝑝𝑟𝑒
𝑘,𝑗,𝑐

)2 . (6)

Then, we calculate the average motion value for each frame to
acquire 𝑝𝑘 :

𝑝𝑘 =
1

𝐽 ×𝐶

𝐽∑︁
𝑗=1

𝐶∑︁
𝑐=1

𝑝𝑘,𝑗,𝑐 . (7)

With the bidirectional motion 𝑝𝑘 , we can acquire the overall motion
rate of a frame which serves as the bidirectional attention weight:

𝑞𝑘 =
𝑝𝑘∑𝐾
𝑖=1 𝑝𝑖

. (8)

Then the top 𝑃 frames with the highest attention scores 𝑞𝑘1 , ..., 𝑞𝑘𝑃
are selected and the frame list 𝑥𝑘1 , ..., 𝑥𝑘𝑃 serves as the keyframes
which contain more discriminative information about the action.
We mask such key frames on the original skeleton sequence 𝑥 to
construct the attention-masked sample sequence 𝑥 , which suffers
some information loss and has lower semantic relevance to their
semantic feature. With the help of the visual feature extractor 𝐹
and layer-norm layer 𝑁 , the temporal-constrained visual feature
𝑣 is extracted and concatenated with the corresponding semantic
feature 𝑎 to construct the temporal-constrained positive pair.

Similar to the usage of the JSD estimator in the global align-
ment module, the temporal-constrained mutual information 𝑚̂ is
formulated as follows,

𝑚̂ = E𝑝 (𝑣,𝑎) [−𝑓𝑠𝑝 (−𝑇 (𝑣, 𝑎))]
−E𝑝 (𝑣)𝑝 (𝑎) [𝑓𝑠𝑝 (𝑇 (𝑣 ′, 𝑎))],

(9)

Here, the mutual information between the temporal-constrained
visual features and corresponding semantic features is maximized.
Note that the negative pair still consist of the original negative sam-
ple 𝑥 ′ and the unpaired semantic feature 𝑎 to ensure the consistency
of the negative sample space. Our temporal constraint module aims
to encourage the connection module to perceive the importance of
the keyframes during mutual information estimation. So a hinge
loss is utilized to force the global mutual information 𝑚 greater
than the partial one during training,

L2 = max(0, 𝛽 − (𝑚 − 𝑚̂)), (10)

where 𝛽 is a hyper-parameter to control the distance between two
types of mutual information. By adjusting 𝛽 , the model can adapt to
different datasets. In brief, the temporal constraint module serves
as a regularization on the JSD estimator, which helps the model
incorporate the dynamics information and be more robust.

Table 1: The hyper-parameters on NTU-60, NTU-120, and
PKU-MMD datasets.

Parameter NTU-60 NTU-120 PKU-MMD

𝛽 0.1 0.5 0.01
𝑃 15 15 15

The overall loss function combines the global mutual information
maximization term and the temporal constraint term together, as
shown in the following,

L = L1 + 𝜆L2 . (11)

𝜆 is the trade-off parameter and is set to 0.5 for all experiments.

4 EXPERIMENTS
4.1 Datasets

NTU-RGB+D 60 [30] contains 56, 578 skeleton sequences of 60
action categories, performed by 40 volunteers. The skeleton se-
quences are collected by Microsoft Kinect sensors and each subject
is represented by 25 joints. Two official dataset splits are applied: 1)
Cross-Subject (xsub): the training set contains half of the subjects,
and the rest make up the testing sets; 2) Cross-View (xview): The
data from different views constitute the training and test set.

NTU-RGB+D 120 [21] is the extended version of the NTU-60.
It is performed by 106 volunteers and contains 113, 945 skeleton
sequences of 120 action categories. NTU-120 also has two official
dataset splits: 1) Cross-Subject (xsub): 53 subjects belong to the
training set and the testing data is performed by the rest volunteers;
2) Cross-Setup (xset): the training set is captured by cameras with
even IDs and the test set is captured with odd IDs.

PKU-MMD [22] has almost 20000 action samples in 51 categories
collected by 66 subjects. It is captured via the Kinect v2 sensors from
multiple viewpoints. The dataset has two parts: 1) Part I contains
21539 samples; 2) Part II contains 6904 samples.

4.2 Implementation Details and Baselines

Detailed Implementation of SMIE. We follow the same data
processing procedure in Cross-CLR [19], which removes the in-
valid frames and resizes the skeleton sequences to 50 frames by
linear interpolation. ST-GCN [43] with 16 hidden channels is used
as the visual feature extractor and the extracted feature dimension
is 256. For the semantic feature, we use Sentence-Bert [28] to ob-
tain the 768-dimensional word embeddings, and then all semantic
features are processed by L2 normalization to improve the stability
of the training phase. For all experiments, we adopt the Adam op-
timizer and the CosineAnnealing scheduler with 100 epochs. The
mini-batch size is 128. The learning rate is 1𝑒 − 5 for NTU-60 and
PKU-MMD datasets, while for the NTU-120 dataset with larger
data size, the learning rate is 1𝑒 − 4. Tab. 1 shows the choices of
the hyper-parameters for all datasets. 𝑃 refers to the number of
masked keyframes, which remains 15 for all three datasets. The
hyper-parameter margin 𝛽 controls the distance between global
and temporal-constrained mutual information. By adjusting 𝛽 , the
model can adapt to different datasets. Note that, with decreasing
margins, the impact of temporal constraints on the overall loss
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Table 2: Comparison of SMIE with the State-of-the-Art meth-
ods on NTU-60 and NTU-120 datasets.

Method NTU-60(%) NTU-120(%)
Split 55/5 48/12 110/10 96/24

DeViSE 60.72 24.51 47.49 25.74
RelationNet 40.12 30.06 52.59 29.06
ReViSE 53.91 17.49 55.04 32.38
JPoSE 64.82 28.75 51.93 32.44
CADA-VAE 76.84 28.96 59.53 35.77
SynSE 75.81 33.30 62.69 38.70

SMIE 77.98 40.18 65.74 45.30

increases. Table 1 indicates a positive correlation between dataset
size and margin parameter 𝛽 . Smaller datasets necessitate a smaller
𝛽 for optimal performance. The reason is that the temporal con-
straint module serves as a regularization on the JSD estimator. By
providing necessary constraints on the model, the module prevents
overfitting to the limited dataset.

For the details of our SMIE model, the network 𝑇 in Eq. (4) is
composed of three MLP layers with ReLU activation functions. For
the negative pairs, we shift the skeleton visual samples in a batch
to make the visual and semantic features do not correspond.

Baseline Methods. The core of skeleton-based zero-shot learn-
ing lies in evaluating the efficacy of the connection model, which
functions as the intermediary between the visual and semantic
spaces. The recent method SynSE [9] follows this main idea and
provides various zero-shot learning comparative methods, such as
Devise [6], ReViSE [37], RelationNet [14], JPoSE [41] and CADA-
VAE [29]. Specifically, DeViSE and RelationNet both use linear
projections to map visual features and semantic features into the
same space. After the projection, DeViSE calculates the dot-product
similarities between projected visual and semantic features. Rela-
tionNet utilizes a relation module to acquire the similarity between
projected features. ReViSE uses a maximum mean discrepancy loss
as cross-domain learning criteria to align the latent embeddings.
JPoSE performs cross-modal fine-grained action retrieval between
text and skeleton data. It learns PoS-aware embeddings and builds
a separate multi-modal space for each PoS tag. CADA-VAE learns
a latent space for both visual features and semantic embeddings
via aligned variational autoencoders. Based on the above, the state-
of-art method SynSE infuses latent skeleton visual representations
with PoS syntactic information. We conducted an apple-to-apple
comparison between our SMIE and such baseline methods.

4.3 Comparison with State-of-the-Art

Evaluation Settings. In zero-shot learning, the selection of distinct
class splits gives rise to varied sets of seen and unseen classes,
exerting a significant impact on the empirical outcomes. Moreover,
the accuracy is also affected by the selection of the feature extractor.
To facilitate a direct comparison with the state-of-the-art approach
and fully demonstrate the effectiveness of our connection model,
we employ identical experimental settings as SynSE. That means
we use the same class splits, and pre-extracted visual and semantic
features as supplied in their codebase. Specifically, SynSE maintains

Table 3: Ablation studies under optimized experimental set-
ting on NTU-60, NTU-120, and PKU-MMD datasets.

Method NTU-60(%) NTU-120(%) PKU-MMD(%)
Split 55/5 110/10 46/5

DeViSE 49.80 44.59 47.94
RelationNet 48.16 40.55 51.97
ReViSE 56.97 49.32 65.65

SMIE w/o L2 62.17 55.34 66.14
SMIE 63.57 56.37 67.15

two types of fixed class splits on NTU-60 and NTU-120 datasets. For
the NTU-60 dataset, SynSE provides 55/5 and 48/12 splits, which
include 5 and 12 unseen classes, respectively. Meanwhile, for the
larger NTU-120 dataset with more categories, SynSE offers 110/10
and 96/24 splits. The visual feature extractor employed in the study
is Shift-GCN [4], while the semantic feature extractor utilized is
Sentence-Bert [28].

Results and Analysis. Tab. 2 presents the comparison results with
baseline methods on NTU-60 and NTU-120. For the 55/5 and 48/12
split on NTU-60 datasets, SMIE outperforms SynSE 2.17% and 6.88%
(relatively 2.86% and 20.66%), respectively. For the 110/10 split and
96/24 split on NTU-120, SMIE achieves 3.05% and 6.60% (relatively
4.87% and 17.05%), respectively. As the number of unseen classes
increases, the difficulty of generalizing the learned knowledge from
seen to unseen classes also increases. Notably, Our proposed SMIE
method utilizes mutual information to capture global semantic
information and effectively bridges the gap between visual and
semantic space, which shows promising potential in enhancing the
performance of unseen classes.

4.4 Ablation Study

Optimized Experimental Setting. From the experimental setting
of SynSE, we find the objective of zero-shot learning experiments
is to verify the effectiveness of the learned connection model. How-
ever, due to the significant impact of different class splits on the
results, there can be a considerable deviation in accuracy even if
the number of unseen classes is the same. Meanwhile, it is advis-
able to minimize the impact of the feature extractors with complex
structures on the results, in order to focus on the effectiveness of
the connection model itself. Thus, we provide an optimized ex-
perimental setting for zero-shot skeleton-based action recognition.
First, we expand the dataset from two to three large-scale skeleton
datasets, i.e., NTU-60, NTU-120, and PKU-MMD datasets, which
increases the credibility of the results. Second, for each dataset, a
three-fold test is applied to eliminate variance. Each fold has differ-
ent groups of seen and unseen classes and the average results are
reported. At last, we follow most skeleton-based self-supervised
methods [19, 20, 35, 46] and apply the classical ST-GCN [43] as
the visual feature extractor to minimize the impact of the feature
extractors. The semantic feature extractor utilized in this study is
Sentence-Bert, which is consistent with SynSE.

Overall Analysis on Optimized Experimental Setting. Under
the optimized experimental setting, we aim to conduct an ablation
study on the temporal constraint module of the SMIE. To provide
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Table 4: Comparisons of different margin 𝛽 in SMIE on NTU-
60, NTU-120, and PKU-MMD datasets.

𝛽 NTU-60 (%) NTU-120 (%) PKU-MMD (%)

0 62.17 55.34 66.14
0.01 62.98 55.93 67.15
0.1 63.57 55.78 66.77
0.5 63.29 56.37 66.29
1 63.12 54.98 65.99

more baseline results for subsequent research work, we reproduced
two mapping methods (DeViSE and RelationNet) and one distribu-
tion alignment method (ReViSE) under this setting. Specifically, for
the NTU-60 and PKU-MMD datasets, 5 unseen classes are selected
randomly and the rest serves as the seen classes. The visual extrac-
tor only pre-trains on the seen classes. For the NTU-120 datasets,
the number of unseen classes is 10. All the datasets get 3 groups of
random splits and the average results are reported on Tab. 3. We
found out that the projection-based methods obtain relatively lower
accuracy. By aligning the distributions of the latent embeddings
in the two domains, ReViSE achieves some improvements on the
three datasets, which further confirms the importance of global
information to the semantic features. However, ReViSE is much
more complicated for the utilization of extra auto-decoders. Our
SMIE achieves significant improvements on all datasets. Specifically,
SMIE outperforms other projection methods by a margin of about
13.77%, 11.78%, and 15.18% on the three datasets. For ReViSE, our
SMIE still achieves 6.60%, 7.05%, and 1.50% increments. By utilizing
mutual information as the similarity metric, SMIE aligns the distri-
butions of the two modalities and incorporates more discriminative
information between different features in Eq. (3). For the ablation
study of the temporal constraint module, “SMIE (w/o L2 )” in the
table indicates that the model with the global alignment module
only, and “SMIE” is the full model. It is observed the temporal con-
straint module brings about 1.40%, 1.03%, and 1.01% performance
on the three datasets, respectively. The results show the temporal
constraint can help to integrate useful temporal information.

Influence of Hyper-parameters. To determine the best choice
of the margin 𝛽 in SMIE, we differ it based on our full model and
conduct a test with all three splits on NTU-60, NTU-120, and PKU-
MMD datasets. Tab. 4 shows the overall results. Note that, with
decreasing margins, the impact of temporal constraints on the
overall loss increases. It is found that as 𝛽 increases, the performance
first increases and then drops. The NTU-60, NTU-120, and PKU-
MMD datasets achieve the best results at 𝛽 values of 0.1, 0.5, and
0.01, respectively. The choice of margin keeps a balance between
the global alignment module and the temporal constraint module.
When the 𝛽 = 1, the temporal constraint can not be fully used,
which results in a performance drop.

Ablation Studies on Different Semantic Features. Under the
optimized experimental setting, we also explored the influence of
different semantic feature extractors on experimental results. As
shown in Table 5, we use CLIP [27] as the semantic feature in-
stead of Sentence-BERT [28]. Similarly, with different semantic
features, the global align methods still achieve better performances
than the direct mapping methods. Our proposed SMIE can also

Table 5: Results of CLIP semantic feature extractor on NTU-
60, NTU-120, and PKU-MMD datasets.

Method NTU-60(%) NTU-120(%) PKU-MMD(%)
Split 55/5 110/10 46/5

DeViSE 56.61 41.55 61.72
RelationNet 56.12 32.68 56.96
ReViSE 55.70 46.72 66.61

SMIE 61.11 45.74 71.50

Table 6: Results with the expanding category descriptions by
ChatGPT on NTU-60, NTU-120, and PKU-MMD datasets.

Method NTU-60 (%) NTU-120 (%) PKU-MMD (%)

SMIE 63.57 56.37 67.15
SMIE_Chat 70.21 58.85 69.26

outperform the baseline methods by a large margin on NTU-60
and PKU-MMD datasets. On the NTU-120 dataset with more data,
our SMIE method achieves results comparable to the more com-
plex ReViSE, which utilizes extra visual and textual auto-decoders.
These results demonstrate that our SMIE method can achieve good
performance on different semantic feature extractors, with a simple
and efficient structure.

Expanding Category Descriptions using ChatGPT. Conven-
tional approaches typically rely on taking the category label as
input to a semantic feature extractor, to obtain the corresponding
semantic feature. However, these labels contain only a few words
and can not fully and accurately describe the corresponding action
semantics. Based on it, we expand each action label name into a
complete action description using ChatGPT and then extract its se-
mantic feature. For example, "Wear jacket" can be expanded to "the
act of putting on a garment designed to cover the upper body and
arms". Following our optimized experimental setting, the results are
shown in Tab. 6. Significant improvement in SMIE_Chat indicates
that a more comprehensive description of action semantics leads to
the improved representational capacity of semantic features, facili-
tating the connection model to capture the relationship between
visual and semantic spaces.

Qualitative Results and Analysis. We visualize some predictive
scores of the four unseen classes given by our approach in Fig. 4.
As for the one-subject scenario shown in Fig. 4 (a, b, c), the actions
of "clapping" and "cough" are very similar to each other. Our model
not only makes the right predictions but also predicts plausible
predictions for similar classes. For example, the class with the sec-
ond highest score is "cough" when the ground truth is "clapping". A
similar conclusion could be made in the two subjects’ scenarios as
shown in Fig. 4 (d, e), which proves the rationality of our method.

Visualization of the Confusion Matrices. Fig. 3 shows the con-
fusion matrices of 3 random class splits on the NTU-120 dataset.
Each matrix contains 10 unseen classes and the number in the
matrix represents the classified samples. By reading the confusion
matrices, the classification accuracy and misclassification of each
class can be understood. We observe 1) short actions such as "jump
up" or "yawn" are likely to be misclassified and the temporal con-
straint is less effective for them; 2) some actions such as "pick up"
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Class Split 1 Class Split 2 Class Split 3

Figure 3: Confusion matrices for 3 randomly selected class splits on the NTU-120 dataset. The x-axis indicates the predicted
class and the y-axis indicates the true class.

Figure 4: Visualization of the predicted results on NTU-60
dataset, where the estimated score of each class is represented
by the corresponding bar length. Best viewed in color.

and "tear up paper" are hard to classify since they are mostly done
with volunteers’ hands. Thus, we will further investigate these two
issues in our future work.

Explanation of Contrastive Learning in SMIE. The global align-
ment module uses contrastive pairs to estimate the mutual infor-
mation between visual and semantic features[12, 26]. It can be
motivated by aligning the two distributions of 𝑝 (𝑣) and 𝑝 (𝑎) to
better connect the visual and semantic spaces. To this end, the joint
distribution 𝑝 (𝑣, 𝑎) and the multiplication of marginal distributions
𝑝 (𝑣)𝑝 (𝑎) should be as different as possible. Thus, we maximize the
mutual information between 𝑣 and 𝑎, which is the KL divergence
between 𝑝 (𝑣, 𝑎) and 𝑝 (𝑣)𝑝 (𝑎) as shown in Eq. 2.

Contrastive learning is used to maximize the approximated
estimator of the KL divergence as in Eq. 4. We can obtain that
𝐼 (𝑉 ,𝐴) ≥ log(𝑆) − 𝐿𝑆 where

𝐿𝑆 = −𝐸𝑉

[
log

𝑓 (𝑣𝑖 , 𝑎𝑖 )∑
𝑥 𝑗 ∈𝑉 𝑓

(
𝑣 𝑗 , 𝑎 𝑗

) ] . (12)

Here
{
𝑣 𝑗 , 𝑎𝑖

}
( 𝑗 ≠ 𝑖) is a negative pair and 𝑆 is the number of all

the negative pairs. If we set 𝑓 = exp
(
∥𝑣𝑖−𝑐 ∥22

𝜏

)
, then 𝐿𝑆 is equal to

the contrastive loss. It can be concluded that contrastive loss is a
lower bound of mutual information.

For the contrastive learning in our experiment, (𝑣, 𝑎) are paired
visual and semantic features that serve as positive pairs while (𝑣 ′, 𝑎)
are negative pairs.

5 CONCLUSION
In this work, we present a Skeleton-based Mutual Information
Estimation and maximization framework (SMIE) for zero-shot ac-
tion recognition, which consists of a global alignment module and a
temporal constraint module. The global alignment module captures
the complex statistical correlations between the visual space and
the semantic space by applying mutual information as the similarity
measure. The temporal constraint module exploits the inherent tem-
poral information to keep the mutual information increasing with
the number of observed frames. Extensive experiments on three
skeleton benchmarks including NTU-60, NTU-120, and PKU-MMD
datasets verify the effectiveness of our proposed SMIE model.
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