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Figure 1: The enhanced results of the proposed method. (a) Compared with the results of current methods [37, 41, 45], which
suffer from chromatic aberration, the proposed method reaches enhancement with accurate color. (b) The proposed method
achieves customized enhancement based on reference images. (c) The proposed method can adjust the saturations of the
enhanced results.

ABSTRACT
Low-Light Image Enhancement (LLIE) aims to improve the percep-
tual quality of an image captured in low-light conditions. Generally,
a low-light image can be divided into lightness and chrominance
components. Recent advances in this area mainly focus on the re-
finement of the lightness, while ignoring the role of chrominance.
It easily leads to chromatic aberration and, to some extent, limits
the diverse applications of chrominance in customized LLIE. In
this work, a “brighten-and-colorize” network (called BCNet), which
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introduces image colorization to LLIE, is proposed to address the
above issues. BCNet can accomplish LLIE with accurate color and
simultaneously enables customized enhancement with varying sat-
urations and color styles based on user preferences. Specifically,
BCNet regards LLIE as a multi-task learning problem: brighten-
ing and colorization. The brightening sub-task aligns with other
conventional LLIE methods to get a well-lit lightness. The coloriza-
tion sub-task is accomplished by regarding the chrominance of
the low-light image as color guidance like the user-guide image
colorization. Upon completion of model training, the color guid-
ance (i.e., input low-light chrominance) can be simply manipulated
by users to acquire customized results. This customized process is
optional and, due to its decoupled nature, does not compromise the
structural and detailed information of lightness. Extensive experi-
ments on the commonly used LLIE datasets show that the proposed
method achieves both State-Of-The-Art (SOTA) performance and
user-friendly customization.
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1 INTRODUCTION
Low-Light Image Enhancement (LLIE) is an important but chal-
lenging task in computer vision. It can not only improve the visual
quality, but also be helpful for other high-level computer vision
tasks (e.g., face detection [42], action recognition [27], and object
detection [31]). Until now, many traditional methods [11, 28, 29]
and learning-based methods [22, 37, 39, 41, 43, 45, 46, 51, 52] have
been proposed to enhance low-light images. However, most of
them mainly focus on improving the quality of the lightness, which
easily leads to serious loss of chrominance information and unpleas-
ant visual results. Although some works try to apply additional
constraints on chrominance information (e.g., the vectors of RGB
channels [37]), they still hardly handle chrominance information
well (as shown in Fig. 1 (a)). On the other hand, chrominance plays
an important role in customized enhancement, however, recent
customized methods [14, 34, 36, 47, 57] do not notice this prob-
lem. iUP-Enhancer [57] achieved chrominance customization by
leveraging histograms in HSV color space, while the histograms as
global information hardly guarantee local consistency. In summary,
existing (customized) LLIE methods do not pay enough attention
to the importance of chrominance information.

Meanwhile, image colorization, as an active research field that
aims to predict lost chrominance information on the given light-
ness, has two key challenges: 1) how to ensure boundaries of the
generated chrominance, 2) how to solve the problem that one object
can be filled by multiple colors (e.g., a balloon can be colorized red
or blue). Some image colorization methods tackle these problems
by introducing semantic information [33, 54], which can provide
the boundaries or object information, and the user interactions (e.g.
color strokes [50] or reference image [6, 23]), which are helpful for
generating the certain colors. However, we observe that although
the chrominance of low-light image is unsaturated, it contains both
boundary information and some color hints.

Hence, we novelly propose to regard the chrominance prediction
in LLIE as a colorization problem, which takes the low-light chromi-
nance as a guidance to recover proper colors. In this way, LLIE is
decoupled into the brightening and colorization sub-tasks. Since
the input of the colorization process is usually carried out on grey
images under normal light, an intuitive implementation is to first
brighten the low-light lightness and then colorize it. However, this
two-step approach is tedious and lacks information interactions
between two sub-tasks. In this work, a new “brighten-and-colorize”

paradigm, called BCNet is proposed. BCNet adopts multi-task learn-
ing architecture, which contains one encoder and two task-specific
decoders. The encoder takes the low-light lightness as the input,
while the two task-specific decoders aim to output predicted light-
ness and chrominance, respectively. By training two sub-tasks si-
multaneously, the brightening sub-task can provide information
of normal-light lightness to the colorization sub-task. Besides, the
color classification loss [48], which transforms colorization to a
classification task, is introduced to relieve color vanishment in the
colorization sub-task.

Since the chrominance of the low-light image serves as color
guidance for colorization, users can modify it to generate cus-
tomized results in the testing phase. In our work, we introduce
two customized operations. Firstly, users can change the color style
of the guidance based on a reference image, resulting in diverse
color styles (see Fig. 1 (b)). Secondly, users can adjust the saturation
of the guidance coarsely to achieve the enhancement with different
saturations (see Fig. 1 (c)). Note that the key process of customized
enhancement in this work is to generate customized color guidance
for the colorization sub-task, some simple non-learning operators
are sufficient to produce pleasing results. Meanwhile, benefiting
from the decoupled nature, the details of the lightness component
can be preserved well during any customized processes.

To sum up, our contributions are four folds: 1) We decouple
LLIE into brightening and colorization sub-tasks by intro-
ducing image colorization. 2) A multi-task learning architec-
ture called BCNet is proposed to implement this decoupled
enhancement. 3) Based on the property of the colorization
sub-task, we provide a new solution for customized LLIE.
4) Extensive experiments on popular LLIE datasets demon-
strate the proposed method reaches SOTA performance and
performs well on customized LLIE.

2 RELATEDWORK
2.1 Low-Light Image Enhancement
Traditional low-light image enhancement (LLIE) methods can be
broadly categorized into two types: Histogram Equalization (HE)-
based methods [28] and Retinex-based methods [11, 29]. HE-based
methods aim to flatten the histograms of low-light images, while
Retinex-based methods attempt to decompose low-light images
into illumination and reflectance components. However, these tra-
ditional methods often struggle with noise and color. In recent
years, Deep Neural Networks (DNNs) have shown great potential
for image enhancement [7, 9, 10, 12, 13, 19, 22, 40, 53]. The first
Convolutional Neural Network (CNN) architecture designed for
LLIE was proposed by Lore et al. [22], and since then, several other
CNN-based architectures [3, 12, 13, 40] have been proposed. To
achieve more realistic results, Retinex theory has been incorpo-
rated into DNNs [39, 43, 51, 52]. Methods in [5, 37, 53] apply an
additional constraint on color information. Besides, many unsuper-
vised methods [5, 8, 21, 24] have been proposed to eliminate the
requirement of paired training data. However, these methods often
do not make optimal use of chrominance.

Another line of LLIE methods aims to achieve customized en-
hancement to satisfy the different preferences of users. The first
method to introduce customization to LLIE was PieNet [14], which
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Figure 2: Framework of the proposed method. The proposed method adopts multi-task learning architecture, containing one
encoder and two task-specific decoders. It implements two sub-tasks: brightening and colorization. After model training is
completed, the input chrominance can be manipulated by users to achieve enhancement with diver styles and saturations.

achieved customized enhancement by extracting style vectors from
reference images. TSFlow [36] introduced style vectors to normaliz-
ing flow [16] to obtain diverse results. However, these "black-box"
processes may lead to poor flexibility for user customization. ReL-
LIE [47] achieved enhancements with different brightness by intro-
ducing deep reinforcement learning, but it ignores chrominance
information. iUP-Enhancer [57] provided a "white-box" approach
to accomplish customized enhancement by leveraging histogram
information in the HSV color space. While histograms as a form of
global information may hardly ensure local consistency. Compared
to existing customized LLIE methods, BCNet provides a new per-
spective by using image colorization to achieve customization. This
approach preserves lightness details well and allows for accurate
chrominance.

2.2 Image Colorization
Image colorization techniques can be classified into two categories:
automatic colorization and user-guided colorization. Automatic
colorization [4, 17, 48] aims to colorize grayscale images without
any external color guidance. Zhang et al. [48] transformed image
colorization into a classification task to generate diverse coloriza-
tion results. Kumar et al. [17] introduced transformer [35] to image
colorization. However, automatic colorization methods often suffer
from color ambiguity. To address this issue, user-guided image col-
orization methods were proposed. Zhang et al. [50] utilized color
strokes as color guidance, while He et al. [6], Lu et al. [23], and
Yin et al. [44] used exemplar images as color references. Moreover,
to achieve more precise colorization, some methods [33, 54] incor-
porated semantic information to provide object boundaries and

object-specific colorization. In this work, we present a user-guided
colorization method that leverages the chrominance information
of low-light images to provide not only color guidance but also
object boundary information. We also introduce the concept of
color classification [48] and apply both regression and classifica-
tion constraints to achieve more robust colorization.

3 METHOD
3.1 “Brighten-and-Colorize”
To accomplish the “brighten-and-colorize” enhancement, we first
decompose the image into lightness and chrominance. In widely
used RGB color space, every single channel contains part of light-
ness and chrominance, which means they are inseparable in the
RGB color space. Therefore, to separate lightness and chrominance,
we transform the image from RGB color space to CIELAB color
space, where the “L” channel represents lightness and the “AB” chan-
nels represent chrominance. Note that we follow the commonly
used color space transform function in the image colorization field.

After decomposing the image, the LLIE task is decoupled into
two sub-tasks: brightening and colorization. The brightening itself
can be regarded as an LLIE problem that predicts lightness with well
exposure and details. The colorization aims to predict realistic and
accurate chrominance based on the normal-light lightness informa-
tion and low-light chrominance like user-guide image colorization
methods.
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3.2 Network Architecture
In this sub-section, we present the details of the proposed method
BCNet shown in Fig. 2. BCNet adopts multi-task learning architec-
ture and contains an encoder and two task-specific decoders. Given
a low-light image 𝐼𝑖𝑛 ∈ R𝐻×𝑊 ×3, we first decompose it into a light-
ness map 𝐿𝑖𝑛 ∈ R𝐻×𝑊 ×1 and a chrominance map 𝐶𝑖𝑛 ∈ R𝐻×𝑊 ×2.
Then, the encoder takes 𝐿𝑖𝑛 as input and two task-specific decoders
output a predicted lightness 𝐿𝑝𝑟𝑒𝑑 ∈ R𝐻×𝑊 ×1 and a predicted
chrominance 𝐶𝑝𝑟𝑒𝑑 ∈ R𝐻×𝑊 ×2, respectively. The constraints are
applied with lightness of ground-truth 𝐿𝑎𝑐𝑡𝑢𝑎𝑙 ∈ R𝐻×𝑊 ×1 and
chrominance of ground-truth 𝐶𝑎𝑐𝑡𝑢𝑎𝑙 ∈ R𝐻×𝑊 ×2. In the following
parts, we illustrate the reasonability for adopting the multi-task
learning design and the details of two task-specific decoders.

3.2.1 Multi-Task Encoder. The structure content of the lightness
is essential for the brightening and colorization sub-tasks. It deter-
mines the network how to brighten and where to colorize. In this
work, the brightening sub-task aims to recover the clear structure
content of lightness, and the colorization sub-task predicts the lost
chrominance based on the clear structure content. Due to different
inputs, the two sub-tasks are not in the typical design of multi-
task learning. However, when training the brightening sub-task,
the encoder can learn the information of the clear structure con-
tent, which is necessary for the colorization sub-task. By sharing
the same encoder, this necessary information for the colorization
sub-task can be obtained from the brightening sub-task. Hence, it
still can be regarded as a multi-task learning problem. Further, this
design not only encourages the information interactions between
two sub-tasks but also makes the network more efficient.

Referring to Fig. 2, the multi-task encoder takes the low-light
lightness image as input and contains four encoding blocks (E-
Block). Every encoding block consists of a Recursive Context Block
(RCB) [45], which provides a more effective feature extraction, and
a down-sample layer. In this way, we can extract the features 𝐹𝐿
from 𝐿𝑖𝑛 as:

𝐹𝐿 = 𝐸𝑛𝑐𝑜𝑑𝑒𝑟 (𝐿𝑖𝑛) (1)
Note that the output of every encoding block is transmitted to the

corresponding decoding block in two sub-tasks by skip-connection
layers.
3.2.2 Lightness Decoder. The lightness decoder is adopted in the
brightening sub-task. It contains four decoding blocks (D-Block)
and five Lightness Adjustment Modules (LAMs). Every decoding
block consists of a skip-connection layer, an up-sample layer, and
an RCB. The LAM is proposed for guiding the network to improve
contrast and preserve better details. Empirically, the darker regions
of a low-light image need to be brightened more than brighter
regions, and the edges information is essential for an enhanced
image. Hence, LAM first takes the inverted map 𝐵 of 𝐿𝑖𝑛 as the
attention prior to indicate where needs more contrast improvement.
Then, it utilizes the edge map 𝐸 of 𝐿𝑖𝑛 to help preserve edges. As
shown in Fig. 2, the LAM can be formulated as:

𝐵 = 1 − 𝐿𝑖𝑛, 𝐸 = 𝑒𝑑𝑔𝑒 (𝐿𝑖𝑛) (2)

𝐹𝑜𝑢𝑡 = 𝐹𝑖𝑛 ×𝜓 (𝐵) × (1 +𝜓 (𝐸)) (3)
where 𝐹𝑖𝑛 and 𝐹𝑜𝑢𝑡 are input and output features, respectively.𝜓 (.)
represents resizing operation (bilinear is adopted in this work). 𝑒𝑑𝑔𝑒

(1) (2)

a a

b b

Figure 3: The quantization operation [48] in CIELAB color
space. The continuous colors (left) are quantized to 313 dis-
crete colors (right) with a grid size of 10.

denotes an edge extractor, which is a 𝑠𝑜𝑏𝑒𝑙 operator with kernel
size of 3. Then, the predicted lightness 𝐿𝑝𝑟𝑒𝑑 can be obtained by:

𝐿𝑝𝑟𝑒𝑑 = 𝐵𝑟𝑖𝑔ℎ𝑡𝑒𝑛𝑖𝑛𝑔(𝐹𝐿, 𝐵, 𝐸) (4)

3.2.3 Chrominance Decoder. The chrominance decoder is adopted
in the colorization sub-task, which contains four decoding blocks
and a Color Embedding Module (CEM).
Colorization by the low-light chrominance. As mentioned be-
fore, colorization is an ill-posed problem, since the color of a certain
object is ambiguous. Existing image colorization methods address
this issue through the user-guide strategy that introduces an exem-
plar image or color strokes as color hints. The exemplar image can
offer a specific color style, and the color strokes provide approxi-
mate guidance. Besides, the colorization methods easily colorize
one object beyond its boundary, and this problem can be relieved
by introducing semantic information, which reflects the boundaries
of objects, to the colorization process. However, different from the
original image colorization tasks, in this work, the low-light images
already contain part of the chrominance information. Although it
is unsaturated, it can provide enough clues to help generate the
proper chrominance. For example, the chrominance 𝐶𝑖𝑛 in Fig. 2
is from the input low-light image, it still reflects the approximate
color tone and shapes of the ground-truth chrominance 𝐶𝑎𝑐𝑡𝑢𝑎𝑙 .

Therefore, we utilize this information by embedding the features
of 𝐶𝑖𝑛 to the chrominance decoder. Inspired by [20], we regard
features extracted from lightness and chrominance as multi-scale
(i.e., multiple information sources) features and propose a CEM
to accomplish feature fusion. As shown in Fig. 2, given the input
features 𝐹𝑖𝑛−𝑙 extracted from 𝐿𝑖𝑛 and 𝐹𝑖𝑛−𝑐 extracted from 𝐶𝑖𝑛 ,
CEM first get the summation feature ˆ𝐹𝑖𝑛 of two features by element-
wise addition as:

ˆ𝐹𝑖𝑛 = 𝐹𝑖𝑛−𝑙 + 𝐹𝑖𝑛−𝑐 (5)
Then, we calculate affinity matrices 𝐴𝑙 , 𝐴𝑐 , which are used to

embed chrominance features to the colorization process, by two
convolutional layers and 𝑠𝑖𝑔𝑚𝑜𝑖𝑑 activations as:

𝐴𝑙 = 𝑠𝑖𝑔𝑚𝑜𝑖𝑑 (𝑐𝑜𝑛𝑣𝑙 ( ˆ𝐹𝑖𝑛)), 𝐴𝑐 = 𝑠𝑖𝑔𝑚𝑜𝑖𝑑 (𝑐𝑜𝑛𝑣𝑐 ( ˆ𝐹𝑖𝑛)) (6)

Finally, the output feature 𝐹𝑜𝑢𝑡 of CEM is obtain by:

𝐹𝑜𝑢𝑡 = 𝐹𝑖𝑛−𝑙 ×𝐴𝑙 + 𝐹𝑖𝑛−𝑐 ×𝐴𝑐 (7)

Colorization free from color vanishment. Regarding coloriza-
tion as a regression task easily results in color vanishment. For
example, the day sky is blue and the dusk sky is red, while the
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Figure 4: The visual results of color style control. It can be seen that the enhanced results have different color styles based on
different reference images.

More saturated𝝎 = 𝟎 𝝎 = 𝟏

Input / GT Our results

Figure 5: The visual results of saturation control. It can be seen that the result becomes more saturated as the value of 𝜔 goes up.

mean of red and blue is gray. To relieve this problem, we quan-
tize entire colors in CIELAB color space to 313 categories with a
grid size of 10 (as shown in Fig. 3) and calculate the classification
loss followed by [48]. It is an effective solution for color vanish-
ment. Note that the classification output 𝑞𝑝𝑟𝑒𝑑 ∈ Rℎ×𝑤×313 hardly
reaches the original size of the image limited by memory. We set ℎ
and𝑤 to a quarter of the original size. However, it may affect the
enhanced result at the pixel-level. On the other hand, the quantized
operation can also lead to performance degradation. Therefore, we
apply constraints on color classification output and chrominance
map simultaneously, which is helpful for generating various colors
and more precise colors at pixel-level, respectively. The predicted
chrominance map 𝐶𝑝𝑟𝑒𝑑 and color classification output 𝑞𝑝𝑟𝑒𝑑 can
be expressed by:

𝐶𝑝𝑟𝑒𝑑 , 𝑞𝑝𝑟𝑒𝑑 = 𝐶𝑜𝑙𝑜𝑟𝑖𝑧𝑎𝑡𝑖𝑜𝑛(𝐹𝐿,𝐶𝑖𝑛) (8)

3.3 Loss Functions
We apply different constraints in the brightening and colorization
sub-tasks based on their different characteristics. For lightness
losses, Charbonnier loss [18] is first applied as the reconstruct loss
L𝑟𝑒𝑐−𝑙 to supervise lightness reconstruction at pixel-level, which
can be defined as:

L𝑟𝑒𝑐−𝑙 =
√︃

𝐿𝑎𝑐𝑡𝑢𝑎𝑙 − 𝐿𝑝𝑟𝑒𝑑




2 + 𝜖2 (9)

where 𝜖 is set to 10−3 empirically. Then, the SSIM [38] loss L𝑠𝑠𝑖𝑚

and total variation [2] loss L𝑡𝑣 are applied to get a better structural
details. For chrominance losses, as analyzed in [48, 50], L2 loss is
not robust for colorization due to the inherent multi-modal nature
of colorization. In this work, we apply L1 loss as chrominance

reconstruction loss L𝑟𝑒𝑐−𝑐 , which is described as:

L𝑟𝑒𝑐−𝑐 =


𝐶𝑎𝑐𝑡𝑢𝑎𝑙 −𝐶𝑝𝑟𝑒𝑑




1 (10)

Next, the perceptual loss L𝑝𝑒𝑟 , which constrains in features
extracted from VGGNet[32], is adopted to get better visual results.

Then, color classification loss L𝑞 is applied to get various colors.
The L𝑞 is defined as:

L𝑞 = H(𝑞𝑎𝑐𝑡𝑢𝑎𝑙 , 𝑞𝑝𝑟𝑒𝑑 ) (11)

whereH(.) is a 2-D cross-entropy loss function. 𝑞𝑎𝑐𝑡𝑢𝑎𝑙 is obtained
by soft-encoding resized 𝐶𝑎𝑐𝑡𝑢𝑎𝑙 as [48].

The total loss of BCNet L𝑡𝑜𝑡𝑎𝑙 can be formulated as:

L𝑡𝑜𝑡𝑎𝑙 =𝜆1L𝑟𝑒𝑐−𝑙 + 𝜆2L𝑠𝑠𝑖𝑚 + 𝜆3L𝑡𝑣+
𝜆4L𝑟𝑒𝑐−𝑐 + 𝜆5L𝑝𝑒𝑟 + 𝜆6L𝑞

(12)

where 𝜆1, 𝜆2, 𝜆3, 𝜆4, 𝜆5, 𝜆6 are weigh factors and set to 1, 0.1, 0.01, 1,
0.01, 0.01, respectively.

3.4 Customized Enhancement
The chrominance of low-light images is served as color guidance
to help the colorization sub-task. It provides two essential pieces
of information: 1) boundaries information for guiding where to
colorize, and 2) color hints for guiding what color to be used. When
model training is completed, users can modify the color guidance to
achieve customized enhancement. This process only needs to main-
tain the boundaries information of color guidance to ensure the
position of predicted chrominance. Meanwhile, the lightness com-
ponent is lossless after customized operations since the guidance
only affects the colorization sub-task. In this work, two customized
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(a) Input (b) Reference (c) Color adaptation of (a) and (b)

(e) Result of (c) by feature fusion (f) Result of (a)(d) Result of (c)

Figure 6: The process of color style control. The input image
(a) and reference image (b) first through a color adaptation
module [30] to get customized color guidance (c). (d) is the
result of directly embedding (c) to the colorization process,
(e) is the result of embedding (c) to the colorization process
with a feature fusion module, and (f) is the result of directly
embedding the original chrominance of (a) to the colorization
process. By comparing (d), (e), and (f), we can find the color
style of (b) is transferred to (e) and the feature fusion module
is helpful for keeping the color details.

operations, which achieve color style control (see Fig. 4) and color
saturation control (see Fig. 5), are proposed as follows.

3.4.1 Color Style Control. To generate results with diverse color
styles, the color hints provided by guidance can be modified. How-
ever, since the boundary information needs to be preserved, manu-
ally modifying them may be complicated. One effective solution is
to introduce a reference image. There are many color style transfer
works [6, 23, 44] that can transmit the color style from a reference
image to the input image. In our case, since the modification is
applied to the guidance, we do not need to explore a complex and
accurate transfer. Therefore, we adopt a traditional non-learning
color transfer method [30], which achieves color transfer by trans-
forming images to an orthogonal color space (the detailed imple-
mentation can be found in supplementary materials), to obtain
customized color guidance (as shown in Fig. 6 (c)). However, this
traditional method may hardly perform well in some color details
when the input and reference images are irrelevant (as shown in
Fig. 6 (d)). To address this issue, we fuse the features 𝐹𝑐 extracted
from 𝐶𝑖𝑛 into the features 𝐹 ′𝑐 extracted from 𝐶𝑟𝑒 𝑓 −𝑖𝑛 to retain the
color details (as shown in Fig. 6 (e)). The fusion process is defined
as (1−𝛾) × 𝐹𝑐 +𝛾 × 𝐹 ′𝑐 , where 𝛾 is a hyper-parameter that balances
the two features and is set to 0.7 for testing and 0 for training.

3.4.2 Saturation Control. The color guidance provides what color
should be used, besides, its intensity also can affect the saturation of
output. To preserve the boundaries information, a simple amplified
operation is designed as shown in “saturation control” of Fig. 2. The
amplified color guidance is obtained by 𝐶𝑖𝑛 × (1 +𝜔), where 𝜔 is a
hyper-parameter to control the saturation. The bigger 𝜔 represents
the result is more saturated and colorful (see Fig. 5). Actually, 𝜔 can
be any value, we empirically set 𝜔 ∈ [0, 1]. When 𝜔 < 0 or 𝜔 > 1,
the results may be over dull or saturated.

Note that the above customized operations are not involved in
model training. They are optional and only run in the testing phase.
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Figure 7: The illustration of the two-step “brighten-and-
colorize”. Note that the exemplar-based colorizer takes the
low-light image as color hints and the stroke-based colorizer
takes the chrominance of the low-light image as color hints.

4 EXPERIMENT
4.1 Datasets and Implementation Details
LOL-real [43] and MIT-Adobe-FiveK [1] (for short called FiveK)
are adopted as our experimental datasets. LOL-real is captured in
the real world by changing exposure time and ISO. It contains 689
pairs of low-/normal-light images for training and 100 pairs for
testing. FiveK contains 5,000 raw images and corresponding five
high-quality versions retouched by experts. The version retouched
by expert C is adopted as the ground-truth and it is divided into
4,500 training pairs and 500 testing pairs following [37, 45].

BCNet is implemented in PyTorch and trained in an RTX2080Ti
GPU with batch size of 8. The learning rate is initiated to 2.0× 10−4
and a multi-step scheduler is adopted. Adam [15] with momentum
of 0.9 is adopted as the optimizer. Input training images are ran-
domly cropped to 256 × 256 and rotated by multiples of 90 degrees.

4.2 Comparison with Recent LLIE Methods
We compare BCNet with recent SOTA LLIE methods, which include
DRD [39], Kind [52], Kind++ [51], MIRNet [46], EnGAN [8], Deep-
UPE [37], DeepLPF [25], UEGAN [26], SGM [43], MIRNet-v2 [45],
and SNR-Aware [41]. Note that we load the pre-trained parameters
of EnGAN and retrain other methods on the same datasets.
Quantitative comparison. In this work, PSNR, SSIM [38], the
𝐿2 −𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 in CIELAB color space (△𝐸𝑎𝑏 ), LPIPS [49], and Color-
Sensitive Error (CSE) [56] are employed as the evaluation matrices.
Note that LPIPS measures the distance of high-level features be-
tween two images, and CSE measures the color difference between
two images. We employ the ratio of our result as the unit of CSE
following recent works [53, 55]. In general, the lower LPIPS, lower
CSE, lower △𝐸𝑎𝑏 , higher SSIM, and higher PSNR values represent
two images with more relative low-/high- level features. Table 1
shows the quantitative comparisons of LOL-real and FiveK. The
proposed method achieves the best results on all metrics benefiting
from the decoupled strategy. It demonstrates that enhanced images
of our method are closer to ground-truth no matter in structure,
color, or high-level features. Besides, we also present the compar-
ison of model size. As shown in Table 1, the size of the proposed
method is comparable to other methods.
Qualitative comparison. We present the visual results of two
datasets in Fig. 8 for comparing the proposed method with some
baselines good at PSNR. It can be seen that although existing meth-
ods reach decent lightness, they are hard to recover chrominance
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Table 1: Quantitative comparison on the LOL-real [43] and FiveK [1]. The best results are boldfaced and the second-best ones
are underlined.

Methods LOL-real [43] FiveK [1] Size (M)
PSNR ↑ SSIM ↑ Δ𝐸_𝑎𝑏↓ LPIPS ↓ CSE (ratio) ↓ PSNR ↑ SSIM ↑ Δ𝐸_𝑎𝑏 ↓ LPIPS ↓ CSE (ratio) ↓

DRD[39] 16.08 0.6555 22.35 0.2364 2.53 21.68 0.8604 10.52 0.0574 2.18 0.86
Kind[52] 20.01 0.8412 12.53 0.0813 1.30 20.71 0.8835 10.75 0.0480 1.38 8.02

Kind++[51] 20.59 0.8294 12.51 0.0875 1.18 19.71 0.8640 14.05 0.0574 2.12 8.27
MIRNet[46] 22.11 0.7942 10.11 0.1448 1.35 24.41 0.9097 7.90 0.0344 1.33 31.79
EnGAN[8] 18.64 0.6767 17.73 0.1512 6.18 15.38 0.7752 18.89 0.0984 2.97 8.64

DeepUPE[37] 18.68 0.5791 17.54 0.1868 9.48 24.24 0.8957 8.16 0.0440 2.15 0.99
DeepLPF[25] 20.03 0.7819 12.58 0.1460 3.23 24.74 0.9170 7.50 0.0570 1.44 1.72
UEGAN[26] 20.30 0.7417 14.69 0.1464 12.97 23.00 0.8717 9.96 0.0503 3.84 4.16
SGM[43] 20.06 0.8158 11.36 0.0727 1.33 22.57 0.8823 9.36 0.0557 4.23 2.31

MIRNet-v2[45] 21.83 0.8455 11.47 0.0666 1.49 25.04 0.9188 8.05 0.0357 1.54 5.86
SNR-Aware[41] 21.48 0.8478 10.58 0.0740 1.14 25.41 0.9234 7.24 0.0293 1.49 39.12

Ours 23.27 0.8637 8.97 0.0566 1.00 25.74 0.9285 6.77 0.0291 1.00 6.84

Input SNR-Aware MIRNet-v2 Ours GT

Input DeepLPF SNR-Aware MIRNet-v2 Ours GT

MIRNet

Figure 8: The qualitative comparison on FiveK [1] (the first row) and LOL-real [43] (the second row). It can be seen that the
proposed method reaches the best visual results.
well (e.g., the color of the sky in Fig. 8). While the proposed method
can obtain satisfying results. Besides, the proposed method achieves
customized enhancement as shown in Fig. 4 and Fig. 5. The users
can enhance low-light images as per their preferences.

4.3 Comparison with Two-Step
“Brighten-and-Colorize” Methods

Wealso compare BCNetwith other two-step “brighten-and-colorize”
methods, which are composed of a brightener (brightening network)
and a colorizer (colorization network). The brightener is an LLIE
method, whose input and output are single-channel lightness. The
colorizer is a user-guide image colorization method, which takes
the low-light image as color hints and predicts chrominance based
on the output of brightener and color hints. The implementation
details of the two-step “brighten-and-colorize” can refer to Fig. 7.
For brighteners, we choose SNR-Aware [41] and MIRNet-v2[45].
For colorizers, we choose an exemplar-based Yin et al. [44] method
and a stroke-based Zhang et al. [50] method. Then, we pair them up
to get four methods. Note that the brighteners need to be retrained
on our datasets since the mismatched input/output channels of
networks. The stroke-based colorizer is easy to be retrained as well.
While for the exemplar-based colorizer, it is hard to be retrained
in traditional LLIE datasets, since it needs to calculate similarities
between the input image and the exemplar image, and query color

from the database when lacking matched colors in the exemplar
image. Therefore, we opt to solely retrain the stroke-based colorizer,
while utilizing the pre-trained exemplar-based colorizer.

The quantitative comparison is presented in Table 2. We adopt
PSNR, SSIM, and CSE as the assessment metrics, and it can be
seen that the proposed method obtains the best performance. Fig.
9 shows the qualitative results. For the exemplar-based colorizer,
which aims to transfer color from the exemplar image to the input
lightness, the generated color is unsaturated due to the unsatu-
rated exemplar image (i.e., input low-light image). On the other
hand, color hints in stroke-based colorization are just provided as
approximate guidance. Although the input color is unsaturated,
the generated color of the stroke-based colorizer is bright. After
retraining, the generated color can be more realistic. For example,
the input color of the Ping-Pong table in Fig. 9 is dull blue, therefore,
the result of exemplar-based colorizer is still dull blue, while stroke-
based colorizer can generate bright blue and retrained stroke-based
colorizer can generate more realistic bright blue. However, the
result of the proposed method is more accurate and saturated.

4.4 Analysis
Ablation study.We conduct the ablation study on five different set-
tings to demonstrate the effectiveness of the proposed designs: (1)
“W/o Decoupling” adopts an encoder-decoder architecture and pre-
dicts enhanced results in RGB color space; (2) “W/o Sharing” adopts
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Table 2: Quantitative comparison with two-step “brighten-
and-colorize” methods on LOL-real [43] dataset. The best
results are boldfaced and the second-best ones are underlined.
Note that “*” represents this method is retrained.

Brightener Colorizer PSNR ↑ SSIM ↑ CSE(ratio) ↓

SNR-Aware [41]
Zhang et al.* [50] 20.90 0.8304 1.34
Zhang et al. [50] 11.81 0.5411 70.44
Yin et al. [44] 19.69 0.7881 7.40

MIRNet-v2 [45]
Zhang et al.* [50] 21.91 0.8242 1.09
Zhang et al. [50] 12.01 0.5313 77.60
Yin et al. [44] 20.44 0.7810 7.30

Ours 23.27 0.8637 1.00

SNR-Aware + Zhang et al.*

SNR-Aware + Zhang et al.SNR-Aware + Yin et al.

Ours

Input

GT

Figure 9: The qualitative comparison with “brighten-and-
colorize” methods. Note that two brighteners have similar
visual results, we only present the results of SNR-Aware [41].

Table 3: Ablation studies on LOL-real [43] dataset. The best
results are boldfaced and the second-best ones are under-
lined.

Methods PSNR ↑ SSIM ↑ CSE(ratio) ↓ Size (M)
W/o Decoupling 21.28 0.8003 3.05 4.22
W/o Sharing 23.03 0.8591 1.12 8.44
W/o LAM 22.77 0.8516 0.91 6.84
W/o CEM 23.06 0.8575 1.66 6.84
W/o L𝑞 23.21 0.8600 1.11 6.84
Ours 23.27 0.8637 1.00 6.84

two-step “brighten-and-colorize”, where brightener and colorizer
are based on the proposed designs; (3) “W/o LAM” removes the
lightness adjustment module; (4) “W/o CEM” removes the color em-
bedding module and adopts concatenation; (5) “W/o L𝑞” removes
color classification loss.

We report the ablation study results in Table 3. We can see that
our full setting yields the best PSNR, SSIM, and second-best CSE.
“W/o Decoupling” verifies the effectiveness of this decoupled en-
hancement mode. “W/o L𝑞”, “W/o Sharing”, “W/o LAM”, and “W/o
CEM” verify the effectiveness of the proposed corresponding de-
signs. Fig. 10 presents the visual results of ablation studies. “W/o
L𝑞”, “W/o Sharing”, and “W/o CEM” hardly performwell in chromi-
nance. “W/o LAM” may lead to worse performance in lightness.
“W/o Decoupling” suffers from both above problems. Our result
reaches the best visual quality. It is worth mentioning that although
the quantitative results of “W/o L𝑞” have only a few reductions,
the qualitative result suffers from a little color vanishment (e.g., the
color of grasses). It verifies the effectiveness of L𝑞 . Besides, we also
conduct the ablation study in the other loss functions and adopted
color spaces, which can be found in the supplementary materials.

W/o Decoupling W/o CEM

W/o LRM Ours

W/o Sharing

W/o ℒ𝒒

Figure 10: The qualitative comparison of ablation studies.

Input Ours

Figure 11: Failure case. When the input image is extremely
dark, we hardly predict proper chrominance, since the input
image hardly provides enough chrominance information.

Limitation. The precondition of the colorization sub-task is that
the chrominance of the input image contains a little color tone
and shapes. However, when the input image is extremely dark, it
hardly provides enough information for colorization. As a result,
the chrominance of the enhanced image is very dull as shown in
Fig. 11. Actually, it may be relieved by the automatic colorization
methods, which is also one of our future works.

5 CONCLUSION
In this work, we novelly introduce image colorization to LLIE and
propose a “brighten-and-colorize” enhancement network BCNet for
low-light images. Based on the relation of image colorization and
LLIE, we treat this enhancement as a multi-task learning problem.
A low-light image is decomposed to lightness and chrominance and
fulfills the decoupled enhancement by the proposed BCNet. BCNet
contains a multi-task encoder and two task-specific decoders, which
are designed elaborately according to different characteristics of
lightness and chrominance. Based on the decoupled design, BCNet
further achieves lightness-invariant customization with diverse
saturations and color styles by manipulating the color guidance
of the colorization sub-task. Extensive experiments demonstrate
that BCNet sets the current SOTA results in LLIE and flexible cus-
tomization. In the future, we will explore more effective ways to
introduce image colorization to other image restoration tasks.
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Table 5: Quantitative comparisonwith customized LLIEmeth-
ods.

Methods PieNet [14] Sun te al. [34] TSFlow [36] Ours
PSNR(dB) 25.28 20.87 25.57 25.74

Table 6: Results of the color space ablation studies on LOL-
real [43] dataset. The best results are boldfaced and the
second-best ones are underlined.

Methods PSNR SSIM LPIPS CSE (ratio)
HSV 22.02 0.8257 0.0809 1.12
HLS 22.31 0.8454 0.0869 1.38
Luv 22.02 0.8420 0.0702 1.06
Yuv 22.37 0.8416 0.0751 1.16

Lab (ours) 23.21 0.8600 0.0619 1.00
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Figure 12: The process of color adaptation.

input Reference

Sun et al. Ours
Figure 13: Visual comparison with other Su et al. [34].

Table 4: Results of the loss functions ablation studies on
LOL-real [43] dataset. The best results are boldfaced and the
second-best ones are underlined.

Methods PSNR SSIM LPIPS CSE (ratio)
w/o L𝑠𝑠𝑖𝑚 22.40 0.8388 0.0801 1.01
w/o L𝑡𝑣 22.02 0.8454 0.0739 1.39
w/o L𝑝𝑒𝑟 22.92 0.8582 0.0729 1.99
Ours 23.27 0.8637 0.0566 1.00

A ADDITIONAL ABLATION STUDIES
Loss functions. We further conduct an ablation study on loss
functions.

• “W/o L𝑠𝑠𝑖𝑚" removes ssim loss in brightening sub-task.
• “W/o L𝑡𝑣" removes smooth loss in brightening sub-task.
• “W/o L𝑝𝑒𝑟 " removes perceptual loss in colorization sub-task.

The results in Table 4 demonstrate the effectiveness of adopted loss
functions.
Color spaces. In fact, there are several color spaces that can decom-
pose an image into lightness and chrominance, such as HSV, HSI,
Luv, Yuv, et al.. We conduct an ablation study on color spaces to
verify the effectiveness of adopted Lab color space. However, since
it is hard to quantize chrominance channels in other color spaces
like [48] in Lab color space, we present the results of removing
color classification loss in Lab color space for a fair comparison. As
shown in Table 6, the Lab achieves the best results. Actually, it is
also the popular color space in the image colorization field.

B COMPARISONWITH OTHER CUSTOMIZED
LLIE METHOD

We conduct the comparison with other customized LLIE methods
in Table. 5 and Fig. 13. Note that we only compare the visual result
with Sun et al. [34] since only their method is based on one reference
image and opens the source code. As can be seen, the proposed
method reaches accurate and flexible enhancement.

C IMPLEMENTATION OF COLOR
ADAPTATION

The color adaptation is responsible for generating customized color
guidance based on a reference image. We utilize a non-learning
method [30] to accomplish this process. Given an input low-light
image 𝐼𝑖𝑛 and a reference image 𝐼𝑟𝑒 𝑓 , we first transform them into
CIELAB color space:

𝐿𝑖𝑛, 𝑎𝑖𝑛, 𝑏𝑖𝑛 = 𝑅𝐺𝐵2𝐿𝑎𝑏 (𝐼𝑖𝑛)
𝐿𝑟𝑒 𝑓 , 𝑎𝑟𝑒 𝑓 , 𝑏𝑟𝑒 𝑓 = 𝑅𝐺𝐵2𝐿𝑎𝑏 (𝐼𝑟𝑒 𝑓 )

(13)

where 𝑅𝐺𝐵2𝐿𝑎𝑏 (.) represents the color space transform function.
Then, the mean value and standard deviation are used to transfer
color:

𝑎𝑖𝑛 = 𝑎𝑖𝑛 −𝑚𝑒𝑎𝑛(𝑎𝑖𝑛), 𝑏𝑖𝑛 = 𝑏𝑖𝑛 −𝑚𝑒𝑎𝑛(𝑏𝑖𝑛) (14)

𝑎𝑖𝑛 = 𝑎𝑖𝑛 × (𝑠𝑡𝑑 (𝑎𝑖𝑛)/𝑠𝑡𝑑 (𝑎𝑟𝑒 𝑓 ))
𝑏𝑖𝑛 = 𝑏𝑖𝑛 × (𝑠𝑡𝑑 (𝑏𝑖𝑛)/𝑠𝑡𝑑 (𝑏𝑟𝑒 𝑓 )

(15)

where 𝑚𝑒𝑎𝑛(.) and 𝑠𝑡𝑑 (.) represent to extract the mean value
and standard deviation. Finally, the transferred color guidance
𝐶𝑟𝑒 𝑓 −𝑖𝑛 = 𝑐𝑎𝑡 (𝑎𝑖𝑛, 𝑏𝑖𝑛). The visual result can be seen in Fig. 12.
Note that the focus of color adaptation is the chrominance infor-
mation, we ignore the lightness components of two images.

D MORE VISUAL RESULTS
We present more customized enhancement results in Fig. 14 (en-
hancement with diverse saturations) and Fig. 15 (enhancement with
diverse color styles).
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Input / GT Our results

More saturated𝝎 = 𝟎 𝝎 = 𝟏

Figure 14: Enhancement with diverse saturations.

reference images:

Our resultsInput/GT

Figure 15: Enhancement with diverse color styles.
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