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ABSTRACT
Blind super-resolution (BSR) methods based on high-resolution
(HR) reconstruction codebooks have achieved promising results in
recent years. However, we find that a codebook based on HR re-
construction may not effectively capture the complex correlations
between low-resolution (LR) and HR images. In detail, multiple
HR images may produce similar LR versions due to complex blind
degradations, causing the HR-dependent only codebooks having
limited texture diversity when faced with confusing LR inputs. To al-
leviate this problem, we propose the Rich Texture-aware Codebook-
based Network (RTCNet), which consists of the Degradation-robust
Texture Prior Module (DTPM) and the Patch-aware Texture Prior
Module (PTPM). DTPM effectively mines the cross-resolution cor-
relation of textures between LR and HR images by exploiting the
cross-resolution correspondence of textures. PTPM uses patch-wise
semantic pre-training to correct the misperception of texture simi-
larity in the high-level semantic regularization. By taking advantage
of this, RTCNet effectively gets rid of the misalignment of confusing
textures between HR and LR in the BSR scenarios. Experiments
show that RTCNet outperforms state-of-the-art methods on various
benchmarks by up to 0.16 ∼ 0.46dB.

CCS CONCEPTS
• Computing methodologies → Image processing.

KEYWORDS
Neural networks, blind super-resolution, codebook, texture

ACM Reference Format:
Rui Qin, Ming Sun, Fangyuan Zhang, Xing Wen, Bin Wang. 2023. Blind
Image Super-resolution with Rich Texture-Aware Codebooks. In Proceedings
of the 31st ACM International Conference on Multimedia (MM ’23), October 29-
November 3, 2023, Ottawa, ON, Canada. ACM, New York, NY, USA, 12 pages.
https://doi.org/10.1145/3581783.3611917

∗Corresponding author. This work was supported by the National Natural Science
Foundation of China under Grant 62072271.

This work is licensed under a Creative Commons Attribution
International 4.0 License.

MM ’23, October 29-November 3, 2023, Ottawa, ON, Canada
© 2023 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0108-5/23/10.
https://doi.org/10.1145/3581783.3611917

103.6

40.3

101.9

40.1

DIV2K - Sample 0827HR 1 LR 1

HR 2LR 2

DIV2K - Sample 0852

Figure 1: Confusing LR samples with different HR textures
processed with the same random degradation used in [7, 8,
66] (including various noise, blur, and compression). The
MSE in RGB space on the line indicates the patch distance.

1 INTRODUCTION
Blind Super-Resolution (BSR) aims to realistically reconstruct high-
resolution (HR) images from low-resolution (LR) images with un-
known degradation [7, 8, 21, 30, 34, 55, 57]. To avoid the Gen-
eral Adversarial Network (GAN) artifact, codebook-based BSR ap-
proaches [7, 8], inspired by VQVAE [47, 48] and VQGAN [63], model
high-resolution textures using a discrete feature space created by
a pre-trained feature codebook to reconstruct HR images. These
methods have shown promising results, as the codebook effectively
constrains the output to fall within a valid solution space.

One of the major challenges in BSR is the complex blind degra-
dation, which leads to similar LR versions from different HR inputs,
disrupting the LR-HR matching correlation [7, 8, 21, 34, 55, 57]. For
example, in Fig. 1, we sample two HR images from the DIV2K [1]
dataset and degrade them using the widely used blind degradation
procedure of [66]. We compute the Mean Square Error (MSE) for
the similarity evaluation and find that complex degradation reduces
the distinction between LR patches compared to their HR distinc-
tion. In detail, HR 1 has a smaller MSE (40.1) with LR 2, in contrast
to its own corresponding LR patch (LR 1), which has an MSE of
40.3. In addition, similar LR patches tend to match the same HR
patch rather than their individual HR versions. Such phenomena
complicate the handling of LR data.

To address this issue, recent codebook-based methods [7, 8]
incorporate an additional LR encoder to model the LR-HR relation-
ship, based on the texture codebook learned from HR data (Fig. 2.a).
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(a) The frame work of previous SR codebooks (left) and our DRTC (right)

(b) The influence of image global information (label, shape, contour) on texture features (does not exist in Patch-aware Texture Prior)
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Figure 2: An illustration of our motivation. (a) Left: The previous HR-reconstruction-based codebook trained only on HR
reconstruction, requiring a second stage training for the LR encoder; right: DTPM, which incorporates both resolutions and
cross-resolution consistency during training. (b) Top: Image classification-based features susceptible to global factors such as
class labels, object shapes, and contours; bottom: our PTPM prior without the influence of global information.

While this technique is effective when dealing with mildly degraded
data, it shows lower-quality results when handling severely de-
graded areas. We find two main factors that limit its performance
on complex degraded data. 1) First, the previous codebook space,
built from distinct HR data, struggles with confusing LR inputs.
Unlike the clear relationship between HR textures, HR-LR rela-
tionships within BSR are confusing and often many-to-one. This
poses a challenge for the previous codebooks pre-trained for HR
reconstruction [7, 8] to distinguish different textures from similar
degraded versions, thus limiting the diversity of texture restora-
tion. Besides, to simplify learning, they apply the codebook only at
the network bottleneck, which effectively captures larger textures
but may miss mid-to-low-level details. 2) Second, they use image
classification-based features (often from backbones like VGG [50]
pre-trained on ImageNet) for additional semantic regularization
during codebook learning. However, high-level tasks that prioritize
global semantics may neglect local information [22, 29] crucial for
low-level tasks, causing inconsistency between pre-trained features
and local texture perception (e.g., Fig. 2.b). To this end, developing
a texture-friendly and efficient prior based on existing global prior
is worthwhile for BSR tasks, but remains underexplored.

To address the first limitation, we propose the Degradation-
robust Texture Prior Module (DTPM). Unlike previous methods
that rely solely on HR data for codebook learning (Fig. 2.a), DTPM
involves LR data in codebook learning, improving the adaptability
of codebooks to LR data. Furthermore, we exploit the distinguisha-
bility of HR representations to improve LR distinguishability by
delving deeper into HR-LR correlation. Specifically, we enforce the
consistency of paired HR-LR representations in codebook space
and the consistency of texture content across resolutions in re-
construction results. Besides, we conduct a hierarchical codebook

and a deep-to-shallow sequence training strategy for fine-grained
texture modeling and stable optimization. To address the second
problem, we propose the Patch-aware Texture Prior Module (PTPM)
to improve the local texture perception of priors based on existing
image labels. Specifically, we propose a patch-level classification-
based pre-training task to reduce the global contour and shape
influences. Simultaneously, we reorganize texture-friendly labels
based on coarse feature clustering to correct the misleading fea-
ture similarity caused by global labels. Feature visualization and
ablation studies show that PTPM offers better texture similarity as-
sessment and benefits subsequent BSR tasks. By integrating DTPM
with PTPM, we propose the Rich Texture-aware Codebook-based
Network (RTCNet) for BSR. Experiments on several benchmark
datasets show that RTCNet outperforms state-of-the-art methods
by up to 0.16 ∼ 0.46dB in PSNR and provides competitive perceptual
performance. Our contributions are summarized as follows:

(1) To alleviate the limitations of previous codebook-basedmeth-
ods in modeling texture diversity and granularity, we pro-
pose the Degradation-robust Texture Prior Module (DTPM),
which incorporates the cross-resolution consistency and hi-
erarchical codebook structure of the texture.

(2) We propose the Patch-aware Texture Prior Module (PTPM).
Compared to previous image classification-based priors,
PTPM eliminates the influence of global information on local
texture learning by patch-level pre-training with texture-
friendly reorganized labels.

(3) Compared to recent methods, the proposed RTCNet frame-
work combining DTPM and PTPM achieves state-of-the-art
performance on multiple benchmark datasets.
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Figure 3: The RTCNet framework. (1) During training, LR and HR input images are encoded using multi-scale encoders.
These features are quantized in multi-scale codebooks via DTPM. The LR and HR decoders then perform dual-resolution
reconstruction. (2) During inference, only LR images are used as input; these are processed by the LR encoder and DTPM to
obtain multi-scale quantized features, which are then used by the HR decoders to reconstruct super-resolution images.

2 RELATEDWORK
2.1 Codebook-based SISR
Traditional codebook-based methods [5, 61] have been effective
in modeling low-resolution (LR) and high-resolution (HR) patches
in color spaces, especially under light degradation. However, in
the case of blind super-resolution (BSR) with severe and unknown
degradation, their effectiveness decreases due to the complex cor-
respondence of different resolutions. Recent advances in deep
learning [42, 47, 48, 63] have enabled the development of vec-
tor quantization-based methods [7, 8, 75] that transition patch
matching from pixel to feature space, showing notable improve-
ments in BSR scenarios. Specifically, these methods used a high-
resolution VQVAE [47, 48] generation model (vector codebook and
decoder) to model HR textures and an additional LR encoder for
cross-resolution feature matching. Despite these advantages, as
mentioned in Sec. 1, recent codebook-based methods still struggle
with limited diversity and limitations and coarse modeling for fine
textures. Therefore, we design the DTPM to alleviate codebook
collapse and achieve hierarchical texture modeling.

2.2 Prior-based SISR
Since SR is inherently an ill-posed problem, using additional image
priors can effectively improve the restoration performance. The
prior-based super-resolution methods can be simply divided into
explicit and implicit methods. Explicit methods [22, 30–32, 60, 71,
73, 76], which use HR reference images, can restore realistic textures
but have low performance with limited reference images. Implicit
methods [14, 24, 40, 44] use generative model-based priors [3] and
achieve superior results on domain-specific images such as faces [4,
54, 62]. Several methods learn a posterior distribution with pre-
trained StyleGAN [3] and use another encoder to project LR images
into StyleGAN’s latent space. However, since learning the prior
from the generative model on generic images is challenging, recent
methods use the high-level task-based priors for image texture
reconstruction [7, 8, 59]. However, they tend to overlook local
textures and instead focus on global semantics, making them less
suitable for texture-sensitive image restoration.

3 METHOD
3.1 Overview
The framework of our method is shown in Fig. 3 and briefly de-
scribed herein.

Training. During training, RTCNet inputs both low-resolution
(LR) images 𝐼𝐿𝑅 and high-resolution (HR) images 𝐼𝐻𝑅 , with CNN
encoders 𝐸𝐻𝑅, 𝐸𝐿𝑅 used to extract hierarchical features 𝐹𝐻𝑅, 𝐹𝐿𝑅 =

𝐸𝐻𝑅 (𝐼𝐻𝑅), 𝐸𝐿𝑅 (𝐼𝐿𝑅) respectively. Following prior work [8], addi-
tional RSTB [34] layers are added to 𝐸𝐿𝑅 for stronger learning ability.
The extracted features are quantized via hierarchical codebooks in
the Degradation-robust Texture Prior Module (DTPM),

𝐹𝐻𝑅 = 𝐷𝑇𝑃𝑀 (𝑍, 𝐹𝐻𝑅), 𝐹𝐿𝑅 = 𝐷𝑇𝑃𝑀 (𝑍, 𝐹𝐿𝑅) (1)

where 𝑍 denotes the hierarchical codebooks in DTPM. Finally,
we pair the quantized features of all resolutions with decoders
𝐷𝐻𝑅, 𝐷𝐿𝑅 for cross-resolution reconstruction, and compute the
reconstruction loss against ground truth images.

Inference. Different from training, we only apply the LR input
to the HR reconstruction process to obtain the super-resolution
result 𝐼𝑆𝑅 :

𝐼𝑆𝑅 = 𝐷𝐻𝑅 (𝐷𝑇𝑃𝑀 (𝑍, 𝐸𝐿𝑅 (𝐼𝐿𝑅)). (2)

3.2 Degradation-robust Texture Prior Module
In this section, we introduce our Degradation-robust Texture Prior
Module in detail, including vector quantization, cross-resolution
consistency constraints, and the hierarchical codebook structure.

Vector Quantization. For each point feature 𝑓 ∈ 𝑅𝐶 , its quan-
tized result 𝑓 ∈ 𝑅𝐶 is the nearest neighbor based on 𝐿2 distance in
the codebook 𝑍 ∈ 𝑅𝑁×𝐶 as

𝑓 = 𝑄 (𝑍, 𝑓 ) = 𝑧𝑚,𝑚 = arg min
𝑗∈[1,𝑁 ]

| |𝑓 − 𝑧 𝑗 | |2, (3)

where N denotes the size of the codebook. Given the input fea-
ture 𝐹 ∈ 𝑅𝐻×𝑊 ×𝐶 , its quantized feature 𝐹 is the combination
of the quantized results of all point features within 𝐹 , expressed
as 𝐹 = 𝑄 (𝑍, 𝐹 ) = {𝑄 (𝑍, 𝑓𝑖, 𝑗 ) |𝑖 ∈ [1, 𝐻 ], 𝑗 ∈ [1,𝑊 ]}. Following
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preious work [12, 52], we directly copy the gradient from 𝐹 to 𝐹

for backpropagation and use the following loss function, 𝐿𝐶𝑜𝑑𝑒 to
optimize the codebooks:

𝐿𝐶𝑜𝑑𝑒 (𝐹, 𝐹 ) = | |𝐹 − 𝑠𝑔(𝐹 ) | |2 + 𝛽 · | |𝑠𝑔(𝐹 ) − 𝐹 | |2, (4)

where 𝑠𝑔(·) means stop-gradient operation and 𝛽 = 0.25 [12, 52].
In training, DTPM quantizes HR and LR features simultaneously.

Its loss, 𝐿𝐷𝑇𝑃𝑀 , is the sum of 𝐿𝑐𝑜𝑑𝑒 of hierarchical codebooks:

𝐿𝐷𝑇𝑃𝑀 = 𝐿𝐶𝑜𝑑𝑒 (𝐹𝐻𝑅, 𝐹𝐻𝑅) + 𝐿𝐶𝑜𝑑𝑒 (𝐹𝐿𝑅, 𝐹𝐿𝑅). (5)

Cross-Resolution Correlation Constraints. We investigate
the texture correlation between HR and LR images, focusing on
the cross-resolution consistency. We decompose the texture consis-
tency between LR and HR data into two separate components: 1)
Reconstruction consistency constraint in RGB space. The sim-
ilar code representations should have similar texture content across
resolutions. Since paired HR and LR images share the same content,
their quantized features 𝐹𝐻𝑅 and 𝐹𝐿𝑅 should be able to reconstruct
both 𝐼𝐿𝑅 and 𝐼𝐻𝑅 inputs using decoders of both resolutions,

𝐿𝑅𝑟𝑒𝑐𝑜𝑛𝐿𝑅
= 𝐷𝐿𝑅 (𝐹𝐿𝑅), 𝐿𝑅𝑟𝑒𝑐𝑜𝑛𝐻𝑅

= 𝐷𝐿𝑅 (𝐹𝐻𝑅),

𝐻𝑅𝑟𝑒𝑐𝑜𝑛𝐿𝑅
= 𝐷𝐻𝑅 (𝐹𝐿𝑅), 𝐻𝑅𝑟𝑒𝑐𝑜𝑛𝐻𝑅

= 𝐷𝐻𝑅 (𝐹𝐻𝑅) .
(6)

Generated images should align with their corresponding resolution
inputs, to which image reconstruction supervision is applied,

𝐿𝑅𝑒𝑐 𝐶𝑜𝑛 =
∑︁

𝑖={𝐿𝑅,𝐻𝑅}
𝐿𝑅𝑒𝑐 (𝐼𝐿𝑅, 𝐿𝑅𝑅𝑒𝑐𝑜𝑛𝑖 ) + 𝐿𝑅𝑒𝑐 (𝐼𝐻𝑅, 𝐻𝑅𝑅𝑒𝑐𝑜𝑛𝑖 ),

(7)
where 𝐿𝑅𝑒𝑐 denotes the image reconstruction loss function in
Sec 3.4. 2) Representation consistency constraint in code-
book space. Images with similar texture content across resolu-
tions should have similar representations in the codebook space.
Specifically, we constrain the features extracted from paired HR-LR
images to be consistent with each other,

𝐿𝑅𝑒𝑝 𝐶𝑜𝑛 = | |𝐹𝐻𝑅 − 𝐹𝐿𝑅 | |2 . (8)

Multi-scale Codebook Structure. The hierarchical codebook
structure is based on the assumption that textures of different sizes
can be characterized by codebooks of different scales. In the im-
plementation, we employ two scales of ×4 and ×8 downsampling,
hereafter referred to as local scale 𝑙 and global scale 𝑔 below. We
apply codebooks to these scales for feature quantization,

𝐷𝑇𝑃𝑀 (𝑍, 𝐹𝐻𝑅) = {𝑄 (𝑍𝑔, 𝐹𝐻𝑅𝑔 ), 𝑄 (𝑍𝑙 , 𝐹𝐻𝑅𝑙 )},
𝐷𝑇𝑃𝑀 (𝑍, 𝐹𝐿𝑅) = {𝑄 (𝑍𝑔, 𝐹𝐿𝑅𝑔 ), 𝑄 (𝑍𝑙 , 𝐹𝐿𝑅𝑙 )}.

(9)

In contrast to previous bottleneck-like methods, additional shallow
codebooks can represent diverse and minute texture information
at smaller scales, which is helpful for generating finer textures. To
mitigate convergence difficulties when training multiscale code-
books from scratch, we propose a deep-to-shallow training strategy.
Specifically, codebooks are trained sequentially, starting from the
deepest scales and progressing toward the shallowest scales. Fig. 4
shows the detailed training strategy. First, the global codebook is
trained starting from scratch, and the temporary decoder is imple-
mented in place of the local codebook and the multi-scale decoders.
In this phase, the multi-scale encoder and the global codebook are
trained well. Second, we introduce the local codebook and replace

Stage 1: Single Scale Pre-training

Stage2 : Multi Scale training

Residual Block Residual Swin Transformer BlockParameters ShareC Concatenate

Global Codebook

Global Codebook

Local Codebook C

Multi-scale Decoders

Global 

Decoder

Temporary Decoders

Local

Decoder

Figure 4: Hierarchical structure and its training strategy, us-
ing LR parts as an example due to the symmetry between LR
and HR pipelines except for the RTSB in LR Encoder.

the temporary decoder with multi-scale decoders, and freeze the
well-trained modules in Stage 1. The well-trained encoder and the
global codebook allow for more effective and stable optimization
of the local codebook.

3.3 Patch-aware Texture Prior Module
To obtain a low-level friendly prior emphasizing local details over
global semantics for enhanced texture perception (Sec. 1), we build
our Patch-aware Texture Prior Module (PTPM) upon patch-level
classification pre-training, drawing insights from multiple instance
learning [45, 46] and fine-grained image classification [19]. This sec-
tion details the creation process of PTPM, covering data generation
and agent task pre-training.

Patch Data Generation. In general, non-overlapping patches
are extracted from the images, and those without sufficient segmen-
tation labels are discarded. The rest are assigned respective labels.
Fig. 5(a) illustrates the process of extracting a patch 𝑝 ∈ 𝑅𝐻𝑝×𝑊𝑝×3

from an image 𝐼 with segmentation map𝑀 in a non-overlapping
manner. For each patch 𝑝 , we consider it valid and assign its cat-
egory label 𝑌𝑝 as 𝑦 ∈ 𝑌 , if the proportion of 𝑀𝑝 belonging to 𝑦

exceeds 𝛾 . Otherwise, it is deemed invalid,

𝑉𝐴𝐿𝐼𝐷 (𝑝,𝑀𝑝 , 𝑌 ) =


1, ∃ 𝑦 ∈ 𝑌,

∑(𝑀𝑝 == 𝑦)
𝐻𝑝 ×𝑊𝑝

> 𝛾,

0, ∀ 𝑦 ∈ 𝑌,

∑(𝑀𝑝 == 𝑦)
𝐻𝑝 ×𝑊𝑝

≤ 𝛾 .

(10)

The patch-category data pairs 𝑃 = {(𝑝, 𝑐) |𝑉𝐴𝐿𝐼𝐷 (𝑝, 𝑐) = 1} are
collected as the dataset for training the PTPM net. In the imple-
mentation, we manually set the threshold 𝛾 = 0.85 to balance data
quality and quantity. This results in 16,818 effective patches across
27 classes, with 15,056 training and 1,763 validation samples. Divid-
ing the images into patches allows for the separation of different
texture classes. For instance, a cat or dog’s head represents a charac-
teristic patch within its class, while the body parts show inter-class
similarities. As the data is cropped into patches, classifying inter-
class similar patches becomes more challenging, allowing easier
grouping of similar patches with different class labels while in-
creasing the distance between class-unique and inter-class similar
patches at the same time. Therefore, patch-level pre-training allows
for improved texture aggregation at the patch level.
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Figure 5: PTPM consists of two main blocks: (a) patch data generation; (b) patch classification training and label refinement.

Patch Classification Pre-training. We perform patch-level
classification on the collected data, as shown in Fig. 5.b. Specifically,
we use the CNN part of VGG19 before the 3rd max pooling layer
as our PTPM net 𝜙𝑝𝑎𝑡𝑐ℎ , pre-initialize with ImageNet pre-trained
weights, and add an additional linear classifier 𝐶 for pre-training.
To ensure compatibility of the learned prior with the 𝐿2 distance in
the codebook space, we add contrastive supervision 𝐿𝐼𝑛𝑓 𝑜𝑁𝐶𝐸 [43]
to the cross-entropy loss 𝐿𝐶𝐸 . Patches within the same category are
treated as positive samples, while patches from different categories
are negative samples in 𝐿𝐼𝑛𝑓 𝑜𝑁𝐶𝐸 . Given patch samples 𝑃 = {𝑝𝑖 |𝑖 =
0, 1, ..., 𝑘} and labels𝑌 = {𝑦𝑖 |𝑖 = 1, 2, 3, ..., 𝑘}, the total prior training
loss function is:
𝐿𝑝𝑟𝑖𝑜𝑟 = 𝐿𝐶𝐸 + 𝜆𝐿𝐼𝑛𝑓 𝑜𝑁𝐶𝐸

= −
𝑘∑︁
𝑖=1

𝑦𝑖 log (𝑦𝑖 ) − 𝜆 log
exp

(
| |𝑞𝑖 − 𝑞𝑖+ | |2/𝜏

)∑𝑘
𝑖=1 exp ( | |𝑞𝑖 − 𝑞𝑖 | |2/𝜏)

,
(11)

where 𝑞𝑖 = 𝜙𝑝𝑎𝑡𝑐ℎ (𝑝𝑖 ) denotes the feature embedding of 𝑝𝑖 after
GAP and 𝑦𝑖 = 𝐶 (𝑞𝑖 ) denotes the prediction results.

Texture-orient Label Reorganization and Prior Refinement.
Coarse pre-training using patch data and original image-level labels
may be affected by global label influence. We mitigate this problem
by reorganizing class labels based on coarse pre-training results.
This process, shown in the right part of Fig. 5, entailed feature visu-
alization by t-SNE [53], merging similar texture data with different
labels, and separating discrete clusters. To further expand our data,
we combined an edge-sensitive image matting dataset, resulting
in 20,181 samples assigned with 35 reorganized labels. We then
fine-tuned the PTPM Net using this restructured data for the final
PTPM. For an intuitive comparison, we show the feature distribu-
tion comparison of our PTPM and the image classification-based
prior in the appendix (Fig. 13). The PTPM feature shows better
clustering performance than the image classification-based feature,
signifying its increased sensitivity to texture changes. Additionally,
in Fig. 6, the L2 nearest neighbors of selected samples in differ-
ent prior spaces show that PTPM’s method of measuring texture
similarity more closely aligns with human perception.

3.4 Training losses
Codebook Loss. This loss optimizes DTPM, including the code-

book loss and two correlation constraints:

𝐿𝐶𝑜𝑑𝑒𝑏𝑜𝑜𝑘 = 𝐿𝐷𝑇𝑃𝑀 + 𝐿𝑅𝑒𝑝 𝐶𝑜𝑛 + 𝐿𝑅𝑒𝑐 𝐶𝑜𝑛 . (12)

Image-Classification Feature Patch-aware Texture FeatureSelected Samples

Nearest Neighbor Nearest Neighbor

Figure 6: L2 nearest neighbors of several selected samples in
different prior spaces.

Image Reconstruction Loss. We use 𝐿1 and Perceptual
Loss [23] as the main reconstruction loss. Following previous
work [7, 8], we use a U-net discriminator 𝐷 in [55] and a hinge
loss as an adversarial loss to get more realistic textures. Given a
reconstructed image 𝐼𝑅𝑒𝑐𝑜𝑛 and its ground truth image 𝐼𝐺𝑇 , the
image reconstruction loss can be formulated as

𝐿𝑅𝑒𝑐 (𝐼𝐺𝑇 , 𝐼𝑅𝑒𝑐𝑜𝑛) =| |𝐼𝐺𝑇 − 𝐼𝑅𝑒𝑐𝑜𝑛 | |1
+𝜆𝑝𝑒𝑟 | |𝜙𝑝𝑒𝑟 (𝐼𝐺𝑇 )−𝜙𝑝𝑒𝑟 (𝐼𝑅𝑒𝑐𝑜𝑛) | |1 + 𝜆𝑎𝑑𝑣𝐸 [𝐷 (𝐼𝑅𝑒𝑐𝑜𝑛)],

(13)

where 𝜙𝑝𝑒𝑟 denotes a pre-trained VGG16 [50] network.

PTPM Loss. We integrate the PTPM prior into the DTPM’s
training by applying scale-matched texture prior regularization.
Specifically, the global texture priors are the activations of the 5th
ReLU of the ImageNet-pretrained VGG19 [50] network 𝜙𝑖𝑚𝑔 and
the local-friendly priors are the activations of the 2nd Max Pooling
of our PTPM Net 𝜙𝑝 . We extract the texture priors from the HR
images. The PTPM supervision 𝐿𝑃𝑇𝑃𝑀 is computed between the
quantized features 𝐹 and the corresponding texture priors which
can be formulated as

𝐿𝑃𝑇𝑃𝑀 (𝐼𝐻𝑅, 𝐹 ) = | |𝜙𝑖𝑚𝑔 (𝐼𝐻𝑅) − 𝜙𝑝𝑔 (𝐹𝑔) | |2 + ||𝜙𝑝 (𝐼𝐻𝑅) − 𝜙𝑝𝑙 (𝐹𝑙 ) | |2,
(14)

where 𝜙𝑝𝑙,𝑔 are single convolution layer to transfer from the code-
book space to the prior space. The total PTPM supervision is the
sum of the supervision on the quantized features of two scales as

𝐿𝑃𝑇𝑃𝑀 = 𝐿𝑃𝑇𝑃𝑀 (𝐼𝐻𝑅, 𝐹𝐻𝑅) + 𝐿𝑃𝑇𝑃𝑀 (𝐼𝐻𝑅, 𝐹𝐿𝑅) . (15)

Overall Loss. The overall loss is then defined as

𝐿𝑡𝑜𝑡𝑎𝑙 = 𝐿𝐶𝑜𝑑𝑒𝑏𝑜𝑜𝑘 + 𝐿𝑃𝑇𝑃𝑀 . (16)
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Table 1: Quantitative comparison (PSNR ↑, SSIM ↑) with state-of-the-art BSR methods on 6 different benchmarks.

Method DIV2K Urban100 BSDS100 Manga109 Set14 Set5
PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

CDC (2020) 19.79 0.4735 17.43 0.4010 20.13 0.4384 17.64 0.5223 19.69 0.4802 18.90 0.4717
DAN (2020) 20.07 0.4577 17.74 0.4034 20.46 0.4341 18.13 0.5229 19.83 0.4727 19.63 0.4697

Real-ESRGAN (2021b) 20.08 0.5273 17.51 0.4443 20.31 0.4383 18.76 0.6064 20.05 0.4723 19.95 0.5125
SwinIR-GAN (2021) 20.37 0.5283 17.64 0.4562 20.15 0.4310 19.18 0.6251 20.21 0.4776 19.44 0.4680

BSRDM (2022) 20.19 0.5330 17.18 0.4031 19.94 0.4333 17.31 0.5437 19.17 0.4621 18.62 0.4715
D2C-SR (2022b) 19.44 0.4156 17.40 0.3801 20.12 0.4199 17.54 0.4933 19.82 0.4765 18.61 0.4229
KXNet (2022) 20.10 0.4696 17.57 0.3992 20.34 0.4341 17.84 0.5214 19.64 0.4702 19.28 0.4650

MM-RealSR (2022) 20.60 0.5471 17.95 0.4585 20.34 0.4473 18.80 0.6153 20.02 0.4817 19.84 0.5152
FeMaSR (2022b) 20.31 0.4918 18.01 0.4384 20.09 0.4156 19.15 0.6024 20.18 0.4581 19.57 0.4536
MRDA (2023) 19.91 0.4474 17.70 0.4009 20.43 0.4328 18.07 0.5202 19.82 0.4731 19.57 0.4666
RTCNet(ours) 20.76 0.5268 18.40 0.4586 20.91 0.4537 19.52 0.6133 20.38 0.4829 20.32 0.4931

Table 2: Perceptual metrics (LPIPS [67] ↓ ) comparison with state-of-the-art blind super-resolution methods on DIV2K.

Methods CDC DAN SwinIR Real-ESRGAN BSRDM MM-RealSR KXNet D2C-SR FeMaSR MRDA RTCNet(ours)
LPIPS 0.7722 0.7466 0.4739 0.5637 0.7505 0.5724 0.7655 0.7689 0.4480 0.7464 0.4390

4 EXPERIMENTS
4.1 Datasets and Evaluation Metrics

Prior Pre-training Datasets. Our coarse patch classification
dataset is based on the ADE20K [74] semantic segmentation dataset
and expanded using the SIM [51] image matting dataset. Following
the strategy in Sec 3.3, we generate a final dataset with 17, 880
training samples and 2, 301 validation samples.

Super-Resolution Training Dataset. We build an overall train-
ing dataset including DV2K [1], DIV8K [15], Flickr2K [35], and
OST [59] datasets. HR patches are generated using the following
approach: 1) crop large images into non-overlapping 512 × 512
patches; 2) apply the blur detection method [25] to each patch to
filter out blurred patches with a blurred area greater than 95%. Our
final training dataset contains 123, 395 HR patches, while we gener-
ated LR patches for each iteration using thewidely used degradation
model proposed in [66].

Super-Resolution Test Datasets. We evaluated the perfor-
mance of our model using six benchmark datasets, namely
DIV2K [1], Set14 [65], Set5 [2], Urban100 [20], BSD100 [38], and
Manga109 [39]. We used the mixed degradation model described
in [55] and [66] for LR generation. The diverse datasets with com-
plex degradation, allowed for a comprehensive performance evalu-
ation. A 4x downsampling was used for all experiments.

EvaluationMetrics. We used Peak Signal to Noise Ratio (PSNR)
and Structural Similarity (SSIM) to evaluate the quality of generated
images. In addition, for better perceptual evaluation, we also use
the Learned Perceptual Image Patch Similarity (LPIPS) [67].

Implementation Details. We implement our model using the
PyTorch framework. In both low-level prior pretraining and SR
training, we use an Adam [27] optimizer with 𝛽1 = 0.9, 𝛽2 =

0.99, 𝑙𝑟 = 1 × 10−4. The number of codes in both scale codebooks is

set to 512. The RTCNet is trained with a batch size of 16 and a HR
patch size of 256 × 256 on 4 NVIDIA V100 GPUs for about 4 days.

4.2 Comparison with SOTA
We compared the proposed RTCNet with 10 recent state-of-
the-art blind SR methods, including CDC [57], DAN [21], Real-
ESRGAN [55], SwinIR-GAN [34], BSRDM [64], D2C-SR [33],
KXNet [13], MM-RealSR [41], FeMaSR [8] and MRDA [58]. We
compare our method with these approaches using the published
codes and weights from the official public GitHub repos.

As shown in Tab. 1, our method achieves the best PSNR/SSIM
performance on almost all 6 datasets. In Fig. 7, we compare the
restored images of different BSR methods. First, consistent with the
results in Tab. 1 and Tab. 2, DAN and CDC have limited recovery
effects for complex degraded images. Second, Real-ESRGAN and
SwinIR-GAN tend to confuse noise and texture. They erase texture
details as noise and cause over-smoothing problems. Besides, Fe-
MaSR mistakes some noise for texture, resulting in noisy texture
generation. On the contrary, since our DTPM effectively maintains
the cross-resolution consistency of texture codebooks, it is more
robust to low-resolution degradation. It can reasonably distinguish
between texture and degradation, ensuring the restoration of realis-
tic textures while denoising. The multi-scale structure and low-level
friendly priors further improve the restoration of local fine textures.
In general, our RTCNet achieves state-of-the-art performance in
quantitative metrics and human perception.

4.3 Ablation Study
Effectiveness of Cross-Resolution Correlation. To verify the

effectiveness of cross-resolution constraints, we conduct an ablation
study on the two cross-resolution strategies used: cross-resolution
representation consistency (Rep. C.) and cross-resolution recon-
struction consistency (Rec. C.). As shown in Tab. 3, both of them
can effectively improve the performance of DTPM. This is because
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Ours

Bicubic CDC DAN Real-ESRGAN

SwinIR FeMaSR Ours GT

16.27/0.1264/0.489115.89/0.1005/0.4763 16.36/0.1142/05435

15.56/0.1154/0.268215.78/0.1065/03104 16.23/0.1256/0.3854

SwinIR FeMaSR Ours GT

Bicubic CDC DAN Real-ESRGAN
18.33/0.4878/0.328519.63/0.4473/0.3602 23.5870.5791/0.2857 

20.27/0.5026/0.246719.86/0.5194/0.2732 19.86/0.5194/0.2732

LROurs

OursLR

Figure 7: Visual comparison with other blind super-resolution images. The PSNR/SSIM/LPIPS values are shown at the bottom
of the images. The captions in the images below have the same meaning as the descriptions provided here.

Table 3: Ablation of DTPM. Rows 1-4: Ablation of DTPM
consistency constraints. Rows 5-7: Ablation of components
in hierarchical codebook learning. Rep. C.: Representation
Consistency; Rec. C.: Reconstruction Consistency. H.S.: Hier-
archical Structure; D2S: Deep-to-Shallow strategies.

Rep. C. Rec. C. H.S. D2S PTPM PSNR SSIM
× × × - - 19.90 0.5004
× ✓ × - - 20.17 0.4974
✓ × × - - 20.19 0.4990
✓ ✓ × - - 20.59 0.5180
✓ ✓ ✓ × × 19.53 0.4781
✓ ✓ ✓ ✓ × 20.52 0.5215
✓ ✓ ✓ ✓ ✓ 20.76 0.5268

the cross-resolution constraint forces the LR representation in the
codebook to be closer to the HR, making it as distinguishable as
the HR in the codebook space. And the combination of the two can
further enhance the improvement.

Effectiveness of Hierarchical Structure. We validated the ef-
fectiveness of prior feature regularization and deep-to-shallow train-
ing strategy for multi-scale codebook training in Tab. 3. Training a
multi-scale model from scratch leads to insufficient texture learn-
ing due to the more diverse and sensitive texture degradation at
the local scale, making its performance even worse than that of
the single-scale model (see rows 4 and 5, Tab. 3). The addition of
the deep-to-shallow training strategy stabilizes the learning of the

Table 4: Comparison of DTPM with the high-resolution
reconstruction-based codebook of FeMaSR [8] in the DIV2K
validation set. The ’*’ indicates that we conduct a single-scale
codebook without the hierarchical structure.

PSNR SSIM Codebook Use ratio
FeMaSR [8] 20.31 0.4918 33 / 1024
DTPM* 20.59 0.5180 396 / 512

local scale codebook by the well-trained encoders and global fea-
tures, which significantly improves the restoration of large textures.
Notably, the performance of the deep-to-shallow strategy is not
significantly better than the single-scale model, while after adding
the PTPM regularization on this basis, the result is better than the
single-scale model. This shows that the full multi-scale model can
achieve better performance for fine textures than the single-scale
model through hierarchical texture learning, but the learning of
local-scale texture is challenging and requires the assistance of a
low-level texture-friendly prior.

Comparison with Previous Codebooks. To verify the superior-
ity of our proposed DTPM, we compare it with the high-resolution
reconstruction-based codebook of FeMaSR [8]. For fairness, both
of them used the bottleneck model structure (codebook at x8 down-
sampling) and trained with our overall loss except for the local-scale
PTPM loss. As shown in Tab. 4 and Fig. 8, DTPM outperforms Fe-
MaSR [8] in both quantitative and qualitative results. Compared to
FeMaSR [8], our single-scale DTPM has a more stable and realistic
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LR FeMaSR DRCC HR

11.80/0.1039/0.6498 12.03/0.2053/0.6770

21.31/0.5198/0.3981 21.33/0.5805/0.4095

Figure 8: Visual comparison between single-scale DTPM and
FeMaSR [8].

Table 5: Comparison of different priors used to learn the
local-scale codebook in the DIV2K validation set. († denotes
the coarse prior before label refinement and fine-tuning).

Local Prior PSNR SSIM
- 20.52 0.5215

ImgNet-Classification Prior 20.57 0.5240
Patch-aware Texture Prior† 20.67 0.5314
Patch-aware Texture Prior 20.76 0.5268

LR Image-Classification Prior PTPM HR

14.30/0.1767/0.3771 14.25/0.1682/0.3324

17.80/0.2147/0.5002 17.78/0.2134/0.4828

Figure 9: Visual comparison of local-scale codebooks trained
with different prior features.

texture generation in heavy degradation. To show the advantage of
DTPM more intuitively, we also statistically analyze the codebook
utilization in the inference stage. As shown in Tab. 4, only 3.2%
of FeMaSR’s codebook was used during inference. Such an over
collapse indicates the inadequacy and indistinguishability of the
HR-reconstruction-based codebook when applied to LR data. This
limitation of the codebook limits the variety of textures that can be
generated, resulting in unrealistic recovery during super-resolution.
In contrast, DTPM has a wider range of codebook usage. This is
because the codebook space is trained with LR data and contains
more discriminative LR representations under the cross-resolution
consistency constraint. Benefiting from this, DTPM achieves more
diverse texture generation and stronger stability (less noise on row
2 and clear texture on row 1 in Fig. 8).

Effectiveness of PTPM in blind super-resolution. To verify
the superiority of our PTPM for low-level texture learning, we com-
pared the impact of different semantic features on the learning of

the local codebook in RTCNet. As shown at the bottom of Fig. 9 and
in Tab. 5, while all pre-trained priors improve the texture restoration
performance, our PTPM prior outperforms the ImageNet-based pre-
trained prior. This superiority can be attributed to our PTPM’s better
perception of low-level texture correlations. In addition, patch-level
pre-training and texture-oriented label organization both improve
the performance of the PTPM. To demonstrate the superior ability of
the PTPM prior to distinguish different types of textures compared
to the image classification-based prior, we analyzed the frequency
distribution of different codes used for super-resolution on the OST
dataset in the appendix (Fig. 14). As can be observed, compared to
the ImageNet Classification pre-trained priors, PTPM shows more
distribution differences between the "grass" and "plant" categories,
which have more overlapping semantic labels, and has a smaller
difference in the "sky" and "water" categories, which have different
semantic categories but relatively similar textures. This shows that
our pre-training strategy enables PTPMNet to paymore attention to
the correlation of local texture information by excluding high-level
information from the pre-training.

4.4 Limitation and Discussion
First, by observing the results, we find that RTCNet has some limi-
tations when dealing with regular texture restoration, especially for
data types that have plenty of such textures, such as buildings (ex-
amples in Supplement). This problem also occurs with the previous
codebook-based method, which we will investigate in future work.
Second, we find that the improvement of RTCNet is more obvious in
the heavily degraded samples than in the lightly degraded samples
(perhaps no improvement in some light samples) (Fig. 11.c). We
speculate that the notable improvements in the heavily degraded
data are due to increased matching confusion, a scenario where
RTCNet performs optimally. Conversely, light degradation with
less confusion can also be handled by previous methods, leading to
marginal improvements. Although both data types are common in
applications, we argue that the correction of complex degraded data
has great challenges and value for super-resolution (SR) tasks. Third,
the improvements brought by PTPM are not very considerable and
stable, indicating that larger valid datasets and a more refined pre-
training strategy is valuable for better performance. Furthermore,
based on experience, pre-training features tend to adapt more effec-
tively to data with strong domain priors, suggesting that applying
the codebook method in combination with pre-training strategies
to specific types of data may be a direction worth investigating.

5 CONCLUSION
In this paper, we have presented the Rich Texture-aware Codebook
Network (RTCNet) framework for blind image super-resolution.
With our proposed Degradation-aware Texture Codebook Module,
we allow for more efficient modeling of LR-HR correspondences
than previous single HR reconstruction pre-training. The architec-
tures of DTPM allow it to model large and fine textures separately.
In addition, we build the low-level friendly Patch-aware Texture
Prior Module (PTPM) which further improves the performance of
DTPM. Various experiments on different benchmarks show that
our RTCNet achieves state-of-the-art performance.
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A APPENDIX
A.1 LR Confusion in BSR data
This section presents a statistical analysis of the LR data from all
validation datasets used to show the universal confusion phenome-
non observed in LR data compared to HR data. We densely cropped
all HR images and their corresponding LR versions, which have the
same size as the HR version after bicubic upsampling, into 128×128
patches (a total of 26,753 patches). We then computed the mean
squared error (MSE) between all HR and LR patches. First, we ana-
lyzed the distributions of both HR and LR patches using the MSE,
as shown in Figure 10.a. The plot highlights that HR patches have
a more concentrated MSE distribution, while LR patches have a
more dispersed one. This indicates that the LR data are more prone
to confusion. Second, we extracted the index of HR patches in the
nearest HR patch sorting of its LR patch. As shown in Figure 10.b,
the index is dispersed, with a significant proportion not being the
top-1 nearest. This implies that many LR patches have a closer MSE
distance to other HR patches than their corresponding HR patches.
Furthermore, Fig. 10.c shows the frequency of selection of each HR
patch as the nearest one to different LR patches. The figure shows
that there is a large partition of non-1 frequency, indicating a large
part of the LR-HR mismatch. Although the MSE statistic is not
entirely suitable for evaluating the similarity between patches, the
considerable partition of mismatches between HR patches and their
LR counterparts suggests the confusion caused by blind degradation
and the complex correlation it introduces.
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Figure 10: The MSE statistics of LR-HR data in validation
datasets.

A.2 Detailed Comparison between DTPM and
FeMaSR

In this section, we performed a comparative analysis of our DTPM
and previous high-resolution reconstruction-based codebooks (us-
ing FeMaSR as an example). We statistically investigated the per-
formance improvements of DTPM over the FeMaSR method on
samples of varying difficulty in the DIV2K validation set. Specifi-
cally, we divided the high-resolution (HR), low-resolution (LR), and

their super-resolution (SR) results into 128 × 128 patches(15585 in
total). We used the mean squared error (MSE) distance between LR
and HR as a simple measure of sample difficulty, with smaller values
indicating easier samples and larger values indicating more difficult
samples. We compared and plotted the measurements including
MSE(Fig. 11.a), Peak Signal to Noise Ratio (PSNR, Fig. 11.b), and
Structural Similarity Index (SSIM, Fig. 11.d) of the SRs of DTPM and
FeMaSR under different levels of difficulty. To better illustrate the
advantages of DTPM on difficult samples, we also investigate the
performance gain of DTPM over the FeMaSR method for different
sample difficulty levels(Fig. 11.c). As shown in Fig. 11, compared to
FeMaSR, our DTPM has achieved improvements in different levels
of difficulty, especially for samples with higher difficulty Tab. 11.c.
This verifies the good adaptability of DTPM to LR data, and thanks
to its mining of texture cross-resolution consistency, DTPM can
better distinguish different types of textures and perform diverse
reconstructions for more difficult samples.
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Figure 11: Detailed comparison between DTPM and FeMaSR.
(a) Distribution of MSE between LR and HR. (b) Distribution
of PSNR between SR and HR. (c) Distribution of PSNR gain of
DTPM over FeMaSR. (d) Distribution of SSIM between SR and
HR. (e) Number distribution of image patches with different
LR-HR MSE.

A.3 Validation of Hierarchical texture learning
of multi-scale structure

To better understand the advantage of hierarchical codebooks for
texture learning, we explore the texture content learned at different
scales in the hierarchical codebook architecture. Specifically, dur-
ing the quantization process of local-scale DTPM, we replace the
quantized features obtained from the low-resolution input with the
noise features generated by the random indexes, thereby removing
the influence of the local scale feature during the reconstruction
process. The quantitative and qualitative results are shown in Tab. 6
and Fig. 12, respectively.

In Fig. 12, when the local-scale information is missing, detailed
texture restoration is heavily affected, causing unrealistic fine tex-
ture reconstruction. In contrast, the global contour and large-scale
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Table 6: Comparison between full hierarchical structure
DTPM and noisy-local DTPM.

Method PSNR SSIM
RTCNet(noisy local-scale code) 20.17 0.4928

RTCNet 20.76 0.5268

LR RTCNet (Noisy local code) RTCNet HR

25.11/0.4506/0.1013 20.42/0.2750/0.1360 27.38/0.5624/0.0884 19.42/0.3060/0.1263

16.96/0.2619/0.2131 18.20/0.2790/0.2217 16.78/0.3076/0.2354 18.10/0.3367/0.2277

Figure 12: Reconstruction Comparison of the local-scale
quantized features generated by randomnoise and thematch-
ing local-scale quantized features obtained from the input
(more samples in the Supplement).

textures are not significantly affected. This shows that the hierar-
chical structure learns textures of different sizes with different-scale
codebooks. The global codebook and local codebook are responsible
for global and local-scale textures separately. Such a strategy im-
proves the model’s ability to model different textures and increases
the diversity of textures in the reconstruction results.

A.4 More Analysis Experiment of PTPM Prior
Features

We present the detailed visualized comparison using t-SNE dimen-
sionality reduction between image classification-based priors and
our PTPM priors in Fig. 13. Compared to image classification-based
priors, our PTPM priors have better clustering performance, indi-
cating a higher sensitivity to local texture similarity. To further
illustrate the difference between our PTPM prior and the ImageNet
prior in the process of learning low-level texture, we conducted
super-resolution statistics on the OST dataset. The high-resolution
images in the OST dataset were divided into seven categories accord-
ing to rough textures, including animal, building, plant, grass, sky,
water, and mountain. We degraded the HR data in the OST dataset
and perform BSR on them. Then we counted the usage frequency of
each code in the codebook during the super-resolution process by
category. By comparing the distribution of codes used when facing
different textures, we compare the rationality of learned code spaces
for texture perception. As can be observed in Fig. 14, compared
to the ImageNet Classification pre-trained priors, PTPM has more
distribution differences between the "grass" and "plant" categories,

which have more overlapping semantic labels, and has a smaller
difference in the "sky" and "water" categories, which have different
semantic categories but relatively similar textures. This shows that
our pre-training strategy allows PTPMNet to pay more attention to
the correlation of local texture information by excluding high-level
information from the pre-training.
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Figure 13: The detailed t-SNE visualization of different prior
features extracted from the images of our low-level patch
classification validation dataset with the legend of patch-
classification dataset classes.
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Figure 14: The frequency distribution of different codes used
during super-resolution on the OST dataset.
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