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Abstract

The pretrain-then-finetune paradigm has been widely
used in various unimodal and multimodal tasks. However,
finetuning all the parameters of a pre-trained model be-
comes prohibitive as the model size grows exponentially. To
address this issue, the adapter mechanism that freezes the
pre-trained model and only finetunes a few extra parameters
is introduced and delivers promising results. Most studies
on adapter architectures are dedicated to unimodal or bi-
modal tasks, while the adapter architectures for trimodal
tasks have not been investigated yet. This paper introduces
a novel Long Short-Term Trimodal Adapter (LSTTA) ap-
proach for video understanding tasks involving audio, vi-
sual, and language modalities. Based on the pre-trained
from the three modalities, the designed adapter module
is inserted between the sequential blocks to model the
dense interactions across the three modalities. Specifically,
LSTTA consists of two types of complementary adapter
modules, namely the long-term semantic filtering module
and the short-term semantic interaction module. The long-
term semantic filtering aims to characterize the temporal
importance of the video frames and the short-term semantic
interaction module models local interactions within short
periods. Compared to previous state-of-the-art trimodal
learning methods pre-trained on a large-scale trimodal cor-
pus, LSTTA is more flexible and can inherit any power-
ful unimodal or bimodal models. Experimental results on
four typical trimodal learning tasks show the effectiveness
of LSTTA over existing state-of-the-art methods.

1. Introduction
In real-world scenarios, visual, language, and audio sig-

nals are commonly encountered and play a prominent role
in many applications. Despite substantial advances in pre-
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Figure 1. The proposed LSTTA model consists of long short-term
trimodal adapter blocks. Each block consists of two complemen-
tary modules. The long-term semantic filtering calculates the se-
mantic importance over the whole video and suppresses redun-
dant or less important frames. The short-term semantic interaction
module characterizes the short-term semantic alignments across
different modalities.

training or transfer learning for one or two modalities, such
as visual, visual-language, and audio-visual, effectively fus-
ing and balancing all three modalities via transfer learning
remains a significant challenge. The ability to interact and
refine information from multiple modalities is crucial for
the development of advanced artificial intelligence systems.

Motivated by the success of the pretrain-then-finetune
paradigm in both the CV and NLP domains, there has been
an increasing interest in transferring the paradigm to the
multimodal domain and developing multimodal pretraining
models to address a wide range of multimodal tasks. Recent
studies on multimodal pretraining are focused on the visual-
language domain. These visual-language pretraining (VLP)
approaches first pretrain Transformer-based deep models on
large-scale visual-language pairs and then finetune the pre-
trained models on specific downstream tasks such as image-
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text retrieval [29, 49, 54], image captioning [4, 7, 65], and
visual question answering [28, 29].

Despite that the VLP approaches have achieved promis-
ing results on various benchmarks, we argue that they have
not taken full advantage of multimodal data. In addition to
the visual and language modalities, we human beings also
perceive information from the audio modality, which usu-
ally contains complementary semantics to visual and lan-
guage modalities. However, adapting the prevailing VLP
framework to support audio-visual-language tasks is non-
trivial.

In the realm of audio-visual-language (AVL) learning,
prior studies have adopted the VLP paradigm to pretrain a
trimodal model from scratch, heavily relies on a substantial
amount of trimodal annotations derived from web videos [1,
16, 37, 69]. However, in reality, the availability of sufficient
and diverse trimodal data is relatively limited compared to
unimodal or bimodal ones, posing a significant obstacle to
pretraining an AVL model adequately. This phenomenon
raises a question: How to take full advantage of off-the-shelf
pre-trained unimodal or bimodal model to adapt to the AVL
scenario effectively and efficiently?

One promising answer to this question is the parameter-
efficient transfer learning mechanism [19,48]. This mecha-
nism aims to adapt pre-trained models to new tasks by freez-
ing the pre-trained model and inserting a few adapter mod-
ules between every pair of layers in the pre-trained model.
By introducing the adapter mechanism, the capacity of the
pre-trained model is retained and the adaptation to new
tasks is achieved efficiently. The adapter architectures are
mainly dedicated to unimodal tasks and have achieved im-
pressive results on various NLP [19,48] and CV [5,8] tasks.
Recently, several adapter approaches have been applied to
the multimodal domain to address visual-language [21, 56]
and audio-visual tasks [34].

To the best of our knowledge, the trimodal adapter archi-
tecture that incorporates audio-visual-language signals has
not been investigated yet. In contrast to bimodal adapters,
the design of trimodal adapters needs to address the follow-
ing two challenges. First, the global semantics is not evenly
distributed over time and some video snippets are more in-
formative than others. Second, the audio and visual modal-
ities have local correspondences within a short time period.
Modeling the short-term semantic alignments without any
annotation is crucial yet challenging.

In this paper, we propose a long short-term trimodal
adapter (LSTTA) method to address the above challenges of
trimodal learning. The proposed LSTTA architecture con-
sists of a sequence of LSTTA blocks, where each block con-
sists of a long-term semantic filtering module and a short-
term semantic interaction module. The long-term semantic
filtering module leverages two non-parametric cross-modal
attention blocks to aggregate long-term information from

the visual and audio modalities, respectively. And then
learns a temporal mask on top of them to suppress redun-
dant video frames. LSTTA model consists of long short-
term trimodal adapter blocks. The short-term semantic in-
teraction module learns fine-grained semantic alignments
across different modalities and facilitates local information
transfer and aggregation across modalities. We evaluate the
proposed method on four trimodal learning benchmarks:
Music-AVQA, CMU-MOSEI, UR-FUNNY, and VIOLIN.
Results show the superiority of LSTTA over existing state-
of-the-art methods.

The main contributions of this paper are threefold:

• To the best of our knowledge, LSTTA is the first at-
tempt to investigate the trimodal adapter architecture
for audio-visual-language tasks.

• LSTTA models long-term semantic importance and
short-term semantic alignments simultaneously, which
enhances the understanding of challenging AVL tasks.

• Extensive experiments on three commonly-used public
trimodal datasets show the advantage of our LSTTA
method over existing state-of-the-art counterparts.

2. Related Work
In this section, we first provide a brief overview of

visual-language models and audio-visual models. Next, we
review the trimodal learning tasks involving audio, visual,
and language. Finally, we review the parameter-efficient
transfer learning approaches, especially the adapter archi-
tectures for multimodal data.

2.1. Visual-Language & Audio-Visual Models

Most of current multimodal learning research focuses on
visual-language tasks, e.g., visual question answering [54],
visual captioning [2, 65], and visual grounding [77, 78].
Early studies focus on a single task and design task-specific
models [25, 42, 64, 72]. Motivated by the success of the
pretrain-then-finetune paradigm of BERT in natural lan-
guage understanding [22], there has been an increasing in-
terest in developing visual-and-language pretraining (VLP)
models [7, 32, 41, 57] to address a wide range of visual-
language tasks. Early VLP approaches designed different
pretraining tasks to learn multimodal Transformers on top
of pre-extracted region-based visual features [10, 32, 70].
Motivated by the success of pre-trained visual backbones,
e.g., ViT [11] and CLIP [49], recent VLP methods tend
to exploit these visual backbones to obtain grid-based vi-
sual features and perform multimodal pretraining from the
raw image and language inputs in an end-to-end man-
ner [12, 28, 29, 53, 63].

Audio-visual tasks aim at developing models that can ef-
fectively perceive and integrate both visual and audio fea-
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Figure 2. The flowchart of the LSTTA framework, which consists of (a) the LSTTA backbone and (b) task-specific heads on top of the
backbone for various trimodal learning tasks, namely Music-AVQA and CMU-MOSEI.

tures to comprehend activities in videos [34, 45, 46, 50, 51,
58, 60, 79]. Achieving this requires a robust mechanism for
aligning visual and audio features, which is often accom-
plished by utilizing pre-trained models [33, 47, 61, 68] for
feature extraction and designing fusion modules to combine
the extracted features.

2.2. Audio-Visual-Language Trimodal Learning

As the research on both visual-language and audio-visual
tasks has made great progress so far, it is natural to in-
vestigate the audio-visual-language trimodal tasks. Re-
cently, there has been increasing research on this direc-
tion [1, 37, 69, 76]. For example, VATT employs a trans-
former encoder to project trimodal data from a unified back-
bone [1]. i-Code utilizes merge-attention and co-attention
mechanisms to integrate unimodal encoders [69]. Audio-
CLIP extends the VL model CLIP to AVL tasks by intro-
ducing an audio encoder based on ESResNeXt [16]. De-
spite the success of these methods, a common limitation of
these methods is that they all need large-scale, parallel tri-
modal datasets to support sufficient training of their large
models, which are often difficult to obtain in practice. As
a consequence, how to maximally utilize pre-trained uni-
modal or bimodal models and devise an effective strategy
to train models from limited trimodal data is a critical issue
to be addressed.

2.3. Parameter-Efficient Transfer Learning and
Adapter Architectures

Parameter-efficient transfer learning aims to adapt pre-
trained models to new tasks by introducing a few train-
able parameters [19, 35, 38]. The adapter mechanism is one
of the most popular directions in parameter-efficient trans-
fer learning, which introduces lightweight learnable mod-
ules inserted between every pair of layers in a pre-trained
model. Most adapter approaches are dedicated to unimodal
tasks, e.g., image classification [81], natural language un-
derstanding [19,48], and speech recognition [59]. Recently,
bimodal adapter approaches have been put forward. Lin et
al. introduce a LAVISH adapter method to handle audio-
visual tasks, enabling the adaptation of frozen ViTs to these
tasks [34]. Chen et al. show that the standard transformer
layer can serve as a good adapter architecture to extend pre-
trained models from images to video [21]. However, ex-
isting adapter architectures have primarily focused on one
or two modalities, and balancing the fusion of information
from three modalities in trimodal learning remains an open
problem. To address this issue, we propose two comple-
mentary modules: a long-term semantic filtering, which
characterizes the semantic importance of each frame over
the entire video, and a short-term semantic interaction mod-
ule, which models local interactions within a short time pe-
riod.



3. The Proposed Method
In this section, we describe the overall architecture of

the proposed Long Short-Term Trimodal Adapter (LSTTA)
method. We first overview the whole network architecture
and then introduce the basic components of LSTTA. After
that, we delve into the details of the two modules, namely
the long-term semantic filtering and short-term semantic in-
teraction modules.

3.1. Overview

Network Architecture. As shown in Fig. 2(a), the
proposed LSTTA model contains multiple LSTTA blocks,
where each block consists of one long-term semantic fil-
tering (LTSF) module and two short-term semantic in-
teraction (STSI) modules (i.e., AL2V and VL2A). Given
pre-trained modality encoders from three modalities, each
LSTTA block is inserted between two sequential encoder
blocks across the three modalities.

Denote the visual encoder as V = {V (1), V (2)..., V (L)},
language encoder as L = {L(1), L(2)..., L(L)}, and audio
encoder as A = {A(1), A(2)..., A(L)}, where each encoder
consists of L encoder blocks. Our LSTTA model is denoted
as M = {M (1),M (2)...,M (L−1)}, which contains L − 1
blocks1. For each j ∈ {1, 2, ...L}, the procedures of the
j-th LSTTA block can be expressed as follows:

z(j)v = V (j)(f (j)
v ), z(j)a = A(j)(f (j)

a ), z
(j)
l = L(j)(f

(j)
l ),

[f (j+1)
v , f (j+1)

a , f
(j+1)
l ] = M (j)(z(j)v , z(j)a , z

(j)
l ).

(1)

where f
(j)
v , f

(j)
a , f

(j)
l denote the input features of the j-

th block of the visual, audio, and language encoders, re-
spectively. z

(j)
v , z

(j)
a , z

(j)
l correspond to the intermediate

features of f
(j)
v , f

(j)
a , f

(j)
l , respectively. These intermedi-

ate features are further fed through the j-th LSTTA block
M (j)(·) to obtain the input features of the j + 1-th encoder
blocks.

As shown in Fig. 2(b), on top of the last encoder blocks,
the output features from the last encoder block of each
modality are integrated and then fed to different task-
specific heads to address various trimodal tasks, e.g., AVQA
[27] and MOSEI [74].
Trimodal Representations. Our trimodal learning tasks
take video frames, text descriptions, and audio waveforms
as inputs. For the visual encoder V , it takes a sequence of
T video frames as its input and transforms each frame into
Nv tokens (patches). This results in the final visual features
fv ∈ RT×Nv×Dv , where Dv is the feature dimensionality
of each visual token.

1For the last encoder block, we do not append another LSTTA block
after it.

For the audio encoder A, it takes T audio waveforms as
its inputs, where each waveform is temporally aligned to a
certain video frame. After that, each waveform is encoded
into Na audio tokens, resulting in the final audio features
fa ∈ RT×Na×Da , where Da is the dimensionality of each
audio token.

For the language encoder L, it takes a sentence as its
input and tokenizes the sentence into a maximum of Nl

tokens. Each token is embedded and then passed through
the encoder to obtain Dl-dimensional features. To facili-
tate subsequent computations, we repeat the language fea-
tures T times, thus resulting in the final language features
ft ∈ RT×Nl×Dl .

For simplicity, we assume all the three encoders above
use the same backbone, which means Dv = Dl = Da = D.
Without loss of generality, LSTTA allows using different
backbones with varied dimensionality.

3.2. Basic Components

Before presenting the two key modules in LSTTA, we
first introduce two basic components: the cross-modal at-
tention (CMA) unit and the adapter unit.
Cross-Modal Attention. We follow the strategy in [34] to
design a cross-modal attention (CMA) unit as follows2:

CMA(X,Y ) = X + tanh(g) · Softmax(XY T )Y (2)

where g indicates a learnable scalar to balance the two
terms. tanh(·) is the tanh function to stabilize model train-
ing.
Adapter. Following previous work on adapter [19], we use
a two-layer MLP with bottleneck architecture, which con-
sists of a down-projection layer Wdown ∈ RD×Dh , a ReLU
activation, and an up-projection layer Wup ∈ RDh×D,
where Dh ≪ D is a pre-defined hyper-parameter. Given
an input feature X , the whole process of the adapter unit is
defined as follows:

Adapter(X) = X +Wup(ReLU(Wdown(X))). (3)

3.3. Long-Term Semantic Filtering Module

The video semantics over time may not be uniform.
Some video frames are meaningless or redundant. There-
fore, it is necessary to filter out these uninformative frames.
To this end, we introduce a long-term semantic filtering
(LTSF) module, which is built upon the two basic compo-
nents above, to calculate the semantic importance over time.

Taking the intermediate features zv , za, zl from Eq. (1)
as inputs, we first employ the CMA unit in Eq (2) to in-
tegrate information between two modalities. Specifically,

2The CMA unit requires the dimensionality of X and Y to be equal.
When this condition is not satisfied, we can simply add a linear projection
layer before the CMA unit to make the dimensionality of the input features
consistent.
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we take the language features zl as the anchor and calculate
cross-modal attention w.r.t. the visual features zv and audio
features za, respectively:

zlv = CMA(zl, zv),

zla = CMA(zl, za).
(4)

where zlv ∈ RT×Nl×D and zla ∈ RT×Nl×D are the at-
tended features containing visual and audio semantics, re-
spectively.

After obtaining the attended features zlv and zla, we con-
catenate them along the token dimension to obtain the fused
feature zlva ∈ RT×2Nt×D as follows:

zlva = Concat(zlv, zla). (5)

To measure the semantic importance over T timestamps,
we first perform mean-pooling on zlva along the token di-
mension and then feed the pooled feature through an adapter
module to obtain the important scores S ∈ RT as follows:

S = Softmax(Adapter(MeanPool(zlva))). (6)

The importance scores can be seen as a soft temporal mask
over T timestamps, which is further used in the short-term
semantic interaction module to filter out irrelevant seman-
tics.

The flowchart of the LTSF module is shown in Fig. 3(a).

3.4. Short-Term Semantic Interaction Module

Next, we introduce the short-term semantic interaction
(STSI) module, which is also built upon the two basic com-
ponents. As the visual and audio features are naturally
aligned in the temporal dimension, it is essential to model
their token-level short-term interaction within each times-
tamp.

In contrast to the LTSF module which takes the language
modality as the center, the STSI module takes the audio
(or visual) modalities as the center and aggregates semantic
information from the rest two modalities, resulting in the
VL2A (or AL2V) variant. For simplicity, we use the VL2A
variant as an example to explain the whole process of the
STSI module. The flowchart of the STSI module is shown
in Fig. 3(b).

Taking zv , za, zl from Eq. (1) as inputs, a straightfor-
ward way to achieve the goal above is to concatenate zv and
zl and then using the CMA unit to aggregate information
from the concatenated features to za as follows:

CMA(za,Concat(zv, zl)). (7)

As the number of tokens in za and zv is usually large, di-
rectly using CMA to integrate the audio and visual features
may bring in non-negligible computational costs. Inspired
by the success in previous work [20, 34], we use an alter-
native strategy that introduces a small set of K learnable
latent tokens q ∈ RT×K×D to aggregate information from



visual-language features into a small group of latent token
features:

q̂ = CMA(q,Concat(za, zl)) (8)

where the output features q̂ ∈ RT×K×D contains con-
densed visual-language correlated semantics. Next, we aim
to integrate q̂ with the audio feature za. Recall that we have
obtained a temporal mask S from the LTSF module to sup-
press uninformative timestamps. To make use of the tempo-
ral task, we slightly modify the CMA function and convert
it to a masked CMA (MCMA) version as follows:

MCMA(X,Y, S) = X+tanh(g) ·Softmax(S⊗XY T )Y.
(9)

where ⊗ refers to Hadamard product with broadcasting S
to the same shape of X . By using the MCMA unit, we
obtained the attended audio features ẑa as follows:

ẑa = MCMA(za, q̂, S) (10)

where ẑa ∈ RT×Na×D represents the attended audio fea-
tures containing short-term interactions with the aligned vi-
sual features.

Similar to the LTSF module, we append an adapter unit
on the attended audio features as follows:

fa = Adapter(ẑa) (11)

where fa corresponds to the output features in Eq. (1) of
the current LSTTA block. By analogy, we can obtain the
output visual features fv by simply exchanging the places
of visual features zv and audio features za in Eq. (8)-(11).
For the language modality, we directly feed the intermediate
features zl as the output features fl of the LSTTA block in
Eq. (1).

4. Experimental Results
We evaluate LSTTA on four trimodal learning datasets

and perform a thorough comparison to the state-of-the-art
methods of each dataset. Moreover, we conduct compre-
hensive ablation studies to explore the effectiveness of each
component.

4.1. Datasets and Evaluation Metrics

Music-AVQA [27] consists of 9,288 videos featuring
22 different musical instruments, with a total duration of
more than 150 hours. It contains 45,867 QA pairs covering
three types of questions, namely AQ, VQ, and AVQ. AQ
denotes audio-related questions, VQ denotes visual-related
questions, and AVQ denotes audio-visual-related questions.
For Music-AVQA, answer prediction accuracy is used as
the standard metric for model evaluation.

CMU-MOSEI [74] contains 23,456 videos and two sub-
tasks: sentiment analysis and emotion recognition. The
sentiment analysis task aims to predict the sentiment lev-
els based on trimodal data. The emotion recognition task
aims to predict one of the six emotion classes (happiness,
sadness, anger, fear, disgust, or surprise). For the sen-
timent analysis task, several evaluation metrics are used
jointly, including mean average error (MAE), Pearson cor-
relation (Corr), binary classification accuracy (ACC-2), and
F1 score. For the emotion recognition task, prediction accu-
racy (Acc) and F1 score are used as the evaluation metrics.
UR-FUNNY [17] collects 1,866 videos from the TED
portal, covering 417 topics from 1,741 different speakers.
Based on the laughter makeup, 8,257 humorous punchlines
from the transcripts are chosen as positive examples, and
8,257 negative samples are chosen at random intervals. Pre-
diction accuracy is used as the evaluation metric.
VIOLIN [36] collects 95,322 video-statement pairs from
15,887 video clips. Each video clip is paired with 6 state-
ments and has an average length of 35.2s. All these videos
are selected from popular TV shows and movies from
YouTube channels. VIOLIN provides a multimodal infer-
ence task, which requires the model to predict whether a
statement is true or false.

4.2. Implementation Details

We adopt the pre-trained CLIP model [49] as the default
image encoder (ViT-L backbone with Nv=196, Dv=1,024)
and language encoder (24-layer Transformer backbone with
Nl=77, Dv=1,024), and w2v-Conformer [15] as the default
audio encoder (ViT-L backbone with Na=196, Da=1,024).
Unless otherwise noted, we keep all the encoder parameters
remain frozen, the number of latent tokens K=64, num-
ber of timestamps T=32, and latent dimensionality in the
adapter unit Dh=512. All the models are trained using the
AdamW optimizer [40] on 8 Nvidia V100 GPUs. The co-
sine learning rate decay strategy with an initial learning rate
of 8e-5.

4.3. Main Results

In this section, we conduct a series of experiments to
compare with previous state-of-the-art methods.
Resutlts on Music-AVQA. The results in Tab. 1 show that
LSTTA significantly outperforms previous state-of-the-art
trimodal learning methods in terms of overall and per-type
accuracies (AQ, VQ, and AVQ), verifying the superiority of
our carefully-designed adapter architecture. Compared with
the audio-visual bimodal adapter method LAVISH [34],
LSTTA obtains a 5-point improvement, showing the effec-
tiveness of trimodal modeling.
Results on CMU-MOSEI. As shown in Tab. 2 and 3,
LSTTA achieves slightly better or at least comparable per-



Table 1. Performance comparison with state-of-the-art methods on Music-AVQA. † means our re-implementation based on the official
open-source code.

Method Audio Question (AQ) Visual Question (VQ) Audio-Visual Question (AVQ) All
Counting Comparative Avg. Counting Location Avg. Existential Location Counting Comparative Temporal Avg. Avg.

FCNLSTM [14] 70.45 66.22 68.88 63.89 46.74 55.21 82.01 46.28 59.34 62.15 47.33 60.06 60.34
CONVLSTM [14] 74.07 68.89 72.15 67.47 54.56 60.94 82.91 50.81 63.03 60.27 51.58 62.24 63.65

GRU [3] 72.21 66.89 70.24 67.72 70.11 68.93 81.71 59.44 62.64 61.88 60.07 65.18 67.07
HCAttn [43] 70.25 54.91 64.57 64.05 66.37 65.22 79.10 49.51 59.97 55.25 56.43 60.19 62.30
MCAN [72] 77.50 55.24 69.25 71.56 70.93 71.24 80.40 54.48 64.91 57.22 47.57 61.58 65.49
PSAC [31] 75.64 66.06 72.09 68.64 69.79 69.22 77.59 55.02 63.42 61.17 59.47 63.52 66.54
HME [13] 74.76 63.56 70.61 67.97 69.46 68.76 80.30 53.18 63.19 62.69 59.83 64.05 66.45

HCRN [24] 68.59 50.92 62.05 64.39 61.81 63.08 54.47 41.53 53.38 52.11 47.69 50.26 55.73
AVSD [52] 72.41 61.90 68.52 67.39 74.19 70.83 81.61 58.79 63.89 61.52 61.41 65.49 67.44

Pano-AVQA [73] 74.36 64.56 70.73 69.39 75.65 72.56 81.21 59.33 64.91 64.22 63.23 66.64 68.93
TG+SG [27] 78.18 67.05 74.06 71.56 76.38 74.00 81.81 64.51 70.80 66.01 63.23 69.54 71.52

LAVISH [34] † 75.59 84.13 76.86 77.45 72.91 76.29 71.91 77.52 75.81 76.75 77.62 76.31 76.10
LSTTA (ours) 81.75 82.04 81.90 81.82 82.23 82.03 83.46 79.11 78.23 78.02 79.32 79.63 81.19

Table 2. Performance comparison with state-of-the-art methods on
the sentiment analysis task of CMU-MOSEI.

Method MAE (↓) Corr. Acc-2 F1-Score
MuIT [62] 0.591 69.4 -/81.6 -/81.6
ICCN [55] 0.565 71.3 -/84.2 -/84.2
MISA [18] 0.555 75.6 83.6/85.5 83.8/85.3

ScaleAVLD [44] 0.527 78.1 84.5/86.4 84.7/86.3
Self-MM [71] 0.530 76.5 82.8/85.2 82.5/85.3

i-Code [69] 0.502 81.1 85.3/87.5 85.6/87.4
LSTTA (ours) 0.496 81.4 85.5/87.8 85.9/87.6

Table 3. Performance comparison with state-of-the-art methods on
the emotion recognition task of CMU-MOSEI.

Method Acc. F1-Score Precision Recall
DFG [75] 38.6 49.4 53.4 45.6

MISA [18] 39.8 45.0 37.1 57.1
RAVEN [66] 40.3 51.1 63.3 42.9
HHMPN [80] 43.4 52.8 59.1 47.6
SIMM [67] 41.8 48.4 48.2 48.6

ML-GCN [9] 43.7 52.4 57.3 48.2
i-Code [69] 50.2 56.2 50.7 63.0

LSTTA (ours) 50.8 56.6 63.4 51.1

formance to the counterparts in both sentiment analysis
and emotion recognition tasks of CMU-MOSEI. For the
sentiment analysis task, LSTTA outperforms all the com-
pared methods in terms of all criteria. Note that LSTTA
achieves slightly better performance than the i-Code model
pre-trained on the large-scale trimodal corpus [69], show-
ing the effectiveness and efficiency of our method. For the
emotion recognition task, LSTTA steadily outperforms all
its counterparts in terms of most metrics.
Results on UR-FUNNY and VIOLIN. To validate the gen-
eralization of our method, we conduct experiments on two
more trimodal datasets UR-FUNNY and VIOLIN. The re-
sults in Tab. 4 suggest that LSTTA achieves superior or
comparable performance to the compared methods. It is

Table 4. Performance comparison with state-of-the-art methods on
UR-FUNNY and VIOLIN.

Method UR-FUNNY VIOLIN
MISA [18] 70.61 -
MuIT [62] 70.55 -
HERO [30] - 68.59

GVE [6] - 68.39
i-Code [69] 79.17 72.90

LSTTA (ours) 79.10 73.06

worth noting that all the compared methods are not adapter-
based methods, which means they require much more train-
ing data and have more trainable model parameters.

4.4. Ablation Studies

We perform a series of ablation experiments on Music-
AVQA to validate the effectiveness of the key components
in LSTTA. The results are shown in Tab. 5-7 and Fig. 5 and
described next.
Effects of the STSI module. As shown in Tab. 5, we
first set a baseline model without introducing any LSTTA
module (#1). This results in a simple late-fusion model
with independent and frozen encoders, which relies on task-
specific heads to adapt to different trimodal learning tasks.
Based on the baseline model, we introduce two STSI mod-
ules AL2V and VL2A separately (#2 and #3) and observe
distinct performance improvements on all question types.
Besides, AL2V brings a larger gain on the AQ type while
VL2A brings a larger gain on the VQ type (#2 vs. #3),
which can be explained that the representations of the tar-
get modality have been enhanced by aggregated short-term
semantic information from the rest modalities. Finally, the
synergy of the two modules results in further improvement
on all question types, especially for the AVQ type (#4), re-
flecting the synergistic effect of the AL2V and VL2A mod-
ules in LSTTA.
Effects of the LTSF module. From the results shown in



Figure 4. Visualization of six examples from Music-AVQA with questions (Q), ground-truth answers (GT), and prediction from LSTTA
(w/ or w/o LTST module). For better understanding, we translate the audio contents into descriptions. The learned important scores by the
LTSF module (see Eq. (5)) are quantized into colored bins.

Table 5. Ablations of key modules of LSTTA on Music-AQVA.
LTSF refers to the long-term semantic filtering module. AL2V
and VL2A refer to two short-term semantic interaction modules.
LT means the latent tokens.

LTSF AL2V VL2A LT AQ VQ AVQ
1 % % % % 76.71 79.56 65.73
2 % ! % % 76.79 80.07 67.57
3 % % ! % 77.54 79.67 66.17
4 % ! ! % 78.64 80.23 75.91
5 ! ! ! % 81.34 81.89 78.53
6 ! ! ! ! 81.90 82.03 79.63

#5 of Tab. 5, we can see that introducing LTSF brings a
significant improvement over the variant in #4 in terms of
all question types, especially for the question types contain-
ing the audio modality (2.7- and 2.6-points improvement are
obtained on the AQ- and AVQ types, respectively). The re-
sult indicates that noise and irrelevant information is preva-
lent in the visual and audio modalities. The imposed long-
term semantic filtering module effectively suppresses these
meaningless timestamps and facilitates the representation
capacity of the fused features in the STSI module.

To better verify the effectiveness of the LTSF module,
we visualize the learned temporal mask for several typi-

Figure 5. Ablation of the number of the latent tokens K in the
STSI module. Ranging K from 16 to 256, we report the overall
accuracy and trainable parameters in one STSI block.

cal examples in Fig. 4. From the results, we can see that
the learned temporal mask can filter out meaningless or un-
informative timestamps in most cases, thus improving the
answering accuracy. However, there are still some fail-
ure cases (the last row) on subjective questions or complex
background music. These observations inspire us to intro-
duce more powerful language and audio encoders in the fu-
ture.



Table 6. Ablations of using different backbones for different
modalities, including the CLIP-V [49] and Swin [39] visual back-
bones, CLIP-T [49] and BART [26] language backbones, and
W2V-Conformer [15] backbone.

Visual Lang. Audio AQ VQ AVQ All
1 CLIP-V CLIP-T W2V-Conf 81.90 82.03 79.63 81.19
2 Swin CLIP-T W2V-Conf 81.67 81.74 79.28 80.90
3 CLIP-V BART W2V-Conf 82.02 82.05 79.76 81.28

Table 7. The ablation of parameter-efficiency learning.

Trainable
params (M)

AQ VQ AVQ All

freeze enc. 83M 81.90 82.03 79.63 81.19
fully f.t. 1,150M 79.34 81.27 75.28 78.63

Effects of the latent tokens in STSI. As shown in #6 of
Tab. 5, we can see that introducing latent tokens not only re-
duces the computational costs but also brings performance
improvement. Next, we investigate the effect of the number
of latent tokens to model performance. The results in Fig. 5
show that as the increase of the number of latent tokens K,
the model performance is nearly saturated at K=64. Further
increasing K brings marginal improvement or even degra-
dation at the expense of much more parameters and com-
putational costs. To make a trade-off, we set the number of
latent tokens to 64 in our experiments.
Effects of the different modality encoders. As mentioned
above that LSTTA supports different modality encoders, we
explore the effects of different modality encoders in Tab.6.
From the results, we can see that replacing the visual en-
coder (#2 vs. #1) or language encoder (#3 vs #1) does not
bring performance drops. This suggests that multimodal
alignment can be effectively established by using LSTTA,
regardless of whether the modality encoders have been pre-
trained jointly or not (i.e., CLIP-V and CLIP-T). Besides, as
the capability of the language encoder in CLIP is not strong
enough, replacing it with a more powerful counterpart, e.g.,
BART [26], brings performance improvement. Similar ob-
servations have been witnessed in previous work [12].

Effects of parameter-efficient learning. In Tab. 7,
we compare the effectiveness and parameter-efficiency of
LSTTA (with frozen modality encoders) and the counter-
part with full-parameter fine-tuning. From the results, we
can see that the LSTTA has 1/14× fewer trainable param-
eters while achieving a 2.5-point higher accuracy than the
fully fine-tuned variant. This can be explained that the goal
of trimodal learning lies in establishing interaction across
modalities, which is different from the objectives of the pre-
trained modality encoders and may meet the catastrophic
forgetting problem [19, 23].

5. Conclusion
In this paper, we propose a novel Long Short-Term

Trimodal Adapter (LSTTA) method for universal trimodal
learning tasks. Unlike prior works requiring large-scale pre-
training or fine-tuning the entire model, LSTTA aims to
utilize pre-trained unimodal or bimodal encoders and in-
troduce an adapter architecture with very few parameters
to adapt to downstream tasks effectively and efficiently.
LSTTA consists of a long-term semantic filtering mod-
ule and two short-term semantic interaction modules. Re-
sults on four trimodal learning datasets show that LSTTA
achieves superior performance compared with state-of-the-
art methods. We hope our study may serve as a baseline to
inspire future research on trimodal learning and beyond.
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