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ABSTRACT
Although existing neural video compression (NVC) methods have
achieved significant success, most of them focus on improving ei-
ther temporal or spatial information separately. They generally
use simple operations such as concatenation or subtraction to uti-
lize this information, while such operations only partially exploit
spatio-temporal redundancies. This work aims to effectively and
jointly leverage robust temporal and spatial information by propos-
ing a new 3D-based transformer module: Spatio-Temporal Cross-
Covariance Transformer (ST-XCT). The ST-XCT module combines
two individual extracted features into a joint spatio-temporal fea-
ture, followed by 3D convolutional operations and a novel spatio-
temporal-aware cross-covariance attention mechanism. Unlike con-
ventional transformers, the cross-covariance attention mechanism
is applied across the feature channels without breaking down the
spatio-temporal features into local tokens. Such design allows for
modeling global cross-channel correlations of the spatio-temporal
context while lowering the computational requirement. Based on
ST-XCT, we introduce a novel transformer-based end-to-end opti-
mized NVC framework. ST-XCT-based modules are integrated into
various key coding components of NVC, such as feature extraction,
frame reconstruction, and entropy modeling, demonstrating its gen-
eralizability. Extensive experiments show that our ST-XCT-based
NVC proposal achieves state-of-the-art compression performances
on various standard video benchmark datasets.
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• Computing methodologies → Reconstruction; • Computer
vision problems;
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1 INTRODUCTION
Video compression is an important task due to the increasing de-
mand for storing and transmitting videos. Traditional video com-
pression standards (e.g., H.266/VVC [8]) heavily rely on complex
hand-crafted modules that must be individually optimized. Re-
cently, Neural Video Compression (NVC) methods benefit from
powerful end-to-end optimized neural modules (e.g., neural entropy
model [6, 11, 32]) and have achieved comparable performance as
traditional codecs [18].

Despite attracting increasing research attention, most existing
NVC methods focus on generating better temporal or spatial con-
texts separately. Recent approaches have adopted multi-frame align-
ment [21], deformable convolutional warping [16], and coarse-to-
fine temporal context mining [36] to produce better temporal in-
formation. Even though a few research attempts have investigated
how to take advantage of temporal and spatial information jointly,
they adopt simple and non-optimal strategies. Specifically, one pop-
ular category of methods [4, 16, 26], deep residual coding, subtracts
the temporal information (e.g., aligned frame or feature) and com-
presses the residuals. Another category [17, 18, 24], deep contextual
coding, concatenates the spatial and temporal contexts to build a
dependency model. Indeed, effectively fusing spatial and temporal
information is a non-trivial task.

Vision Transformer (ViT) has recently demonstrated an excellent
ability to fuse information using its powerful attention mechanism
in various video restoration tasks [19, 20, 37]. The rise of ViT has
also inspired NVC research. Mentzer et al. [31] proposed the first
ViT-based NVC method VCT, which fuses temporal and spatial
information using both ViT encoder and decoder in its entropy
model. However, such a proposal is still limited. First, despite bring-
ing improvement, directly adopting a vanilla ViT also comes with
a large computational burden, which makes NVC methods hard
to optimize and can limit their performance. Second, VCT only
exploits the spatio-temporal context in the entropy model, even
though NVC also involves other essential coding components that
should not be ignored.
†This work was done during Zhenghao Chen’s internship at DisneyResearch|Studios.
E-mail: zhenghao.chen@sydney.edu.au
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To effectively leverage spatio-temporal correlations and address
the challenges of integrating transformers into NVC frameworks,
we propose a Spatio-Temporal Cross-Covariance Transformer (ST-
XCT) as a universal transformer-based feature fusion module. ST-
XCT first aggregates two 2D-based individual features into a 3D-
based joint spatio-temporal feature, which includes an additional
temporal dimension. Then it uses a 3D convolutional operation
to mix the spatio-temporal information locally while applying the
attention mechanism across the entire feature channel to produce
a global spatio-temporal-aware cross-covariance attention matrix.
Unlike conventional ViT strategies, which decompose the feature
into local patches and operate the attention mechanism among
spatial dimensions, our ST-XCTmodule directly computes the cross-
covariance attention without splitting the features into several
parts. Such a design not only allows ST-XCT to model global spatio-
temporal correlations but also maintains a linear complexity. To
improve the information flow, we further introduce a 3D-based
feed-forward gate mechanism to update the feature by using a
“gate” to regulate and update the information flow. Such a “gate”
is learned by 3D convolutional operations to exploit the spatio-
temporal correlation between neighboring pixels.

Furthermore, we explore how to effectively deploy our univer-
sal ST-XCT in NVC. To fully benefit from ST-XCT and exploit the
spatio-temporal characteristic, we integrate it into three key coding
operations: feature extraction, frame reconstruction, and entropy
modeling. We first apply ST-XCT in hierarchical feature extraction
to progressively fuse multi-resolution features and generate latent
features with spatio-temporal correlation. Then, we deploy ST-XCT
to fuse two priors into a spatio-temporal-aware prior, which im-
proves conditional entropy coding. Last, to reconstruct the frame
more effectively, we adopt ST-XCT to fuse multi-scale aligned fea-
tures progressively.

Overall, our novel end-to-end optimized NVC framework, em-
powered by our universal ST-XCT modules, allows us to effectively
exploit spatial and temporal information across various coding op-
erations, resulting in significantly improved video compression per-
formance. Through extensive experiments with UVG [2], MCL [43],
and HEVC [38] datasets, we demonstrate that our proposed frame-
work not only achieves better performance than traditional video
codecs (e.g., H.266/VVC [8] and H.265/HEVC [38]) on most of the
benchmarks (except HEVC Class C), but also outperforms state-of-
the-art NVC methods (e.g., DCVC* [18] and VCT [31]).

Our contributions can be summarized as follows:

• We propose a novel transformer-based feature fusion mod-
ule, ST-XCT, which generates a spatio-temporal-aware cross-
covariance attention matrix with a linear complexity and
better leverages both spatial and temporal information.

• Wepropose an end-to-end optimized transformer-basedNVC
framework, which applies the ST-XCT modules to all key
coding components. It includes transformer-based multi-
scale feature extraction, spatio-temporal hybrid entropymodel,
and multi-scale frame reconstruction components.

• We conduct extensive experiments and ablation studies, demon-
strating that our proposed NVC framework achieves state-of-
the-art performance, outperforming both traditional video
codecs and previous transformer-based NVC frameworks.

2 RELATEDWORK
2.1 Neural Image Compression
Compared to conventional hand-engineered algorithms [7, 39, 42],
neural image compression (NIC) codecs have shown superior com-
pression performance. NIC-based methods [9, 11, 22, 29, 34, 40, 41]
can be end-to-end optimized on large datasets. Hyper-prior-based
methods [6, 30] utilize a hierarchical design to model dependen-
cies across various image scales, while autoregressive-prior meth-
ods [11, 32] further capture the spatial correlation between neigh-
boring pixels.

2.2 Neural Video Compression
Existing NVC methods can be divided into two categories: deep
residual coding and deep contextual coding.

Methods in the deep residual coding category [4, 10, 12, 14, 15, 21,
25, 28, 45]) follow traditional video compression frameworks. They
perform predictive coding (e.g., motion compensation) and encode
residual information. The pioneering work DVC [28] replaces all
key coding operations with CNNs in the traditional residual cod-
ing pipeline, enabling end-to-end optimization. Most subsequent
works build upon this pipeline and improve performance using
more powerful modules and advanced techniques. For example, to
produce better-aligned context (e.g., frame or feature), M-LVC [21]
uses a multi-frame alignment strategy, while FVC [16] adopts a
deformable convolutional warping technique.

The works in the deep contextual coding category [13, 17, 18,
24, 36] extend the generative-based NIC methods and build spatio-
temporal conditional entropy models using spatial and temporal
contexts. Lombardo et al. [24] produced the dynamic global and
local latent variables, while Habibian et al. [13] adopted a 3D-based
VAE with a gated mechanism to generate temporal context. Dif-
ferent from the aforementioned methods using all accumulated
information, Li et al. proposed DCVC [17], which directly adopts a
motion compensation strategy to generate temporal context from
the adjacent compressed frame. To enhance the temporal informa-
tion, Sheng et al. [36] further improved DCVC by using multi-scale
temporal context mining. The most recent version of DCVC (re-
ferred to as DCVC* in this work) with hybrid entropy models [18]
outperforms the traditional video coding standard H.266/VVC [8].

Nevertheless, to the best of our knowledge, most NVC research
focuses on producing better spatial and temporal information in-
dividually rather than on how to aggregate and leverage them
effectively. For instance, deep residual coding methods simply sub-
tract the temporal information, whereas deep contextual coding ap-
proaches mostly adopt common operations (such as concatenation)
to combine the learned temporal and spatial contexts. Instead of
such simple combinations, we propose a transformer-based module
ST-XCT, which leverages the powerful cross-covariance attention
mechanism to support better exploitation of the spatio-temporal
correlation.

2.3 Transformers in Neural Compression
More recently, Vision Transformers (ViT) have been incorporated
into NIC for building better entropy models. Qian et al. [34] lever-
aged a ViT-decoder (i.e., masked mechanism) for auto-regressive
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Figure 1: Overview of our proposed Spatio-Temporal Cross-Covariance Transformer (ST-XCT) module. It consists of 𝑁 ST-XCT
blocks to fuse the joint feature F𝑗𝑜𝑖𝑛𝑡 . For each ST-XCT block, we first use Spatio-Temporal Cross-Covariance Generator (STCG)
and apply multi-head attention mechanism with 𝐸 heads to produce spatio-temporal-aware cross-covariance attention matrix
𝐴𝑖 , which exploits the global spatio-temporal correlation. Then, we further adopt 3D Feed-Forward Gate (3FFG) mechanism to
control the information flow by using 3D convolutional operation to learn a “gate" and element-wise multiplication to filter.

modeling and a ViT-encoder for hyper-prior modeling to perform
entropy coding. Lu et al. [29] proposed a causal attention mod-
ule for adaptive context modeling. Zhu et al. [47] adopted Swin-
Transformer [23] to replace all convolutional operations in both
hyper-prior [6] and auto-regressive [32] methods.

Regarding NVC, VCT [31] is the first transformer-based method.
It divides video frames into tokens and adopts a ViT-decoder as
an autoregressive-based entropy model to perform the conditional
entropy coding for each token. However, VCT has two main draw-
backs. First, it is ineffective to directly use vanilla ViT with a token-
based strategy, which brings higher computational complexity and
makes the whole framework harder to optimize in an end-to-end
manner. Second, VCT only applies ViT in the entropy model, ignor-
ing other important coding components of NVC.

In this work, we address the above issues and investigate a more
effective combination of NVC and Transformers. First, we propose
the ST-XCT module to directly operate on features without parti-
tioning them into tokens. Such a design allows our model to learn
global spatio-temporal context with a linear complexity. Second,
we deploy ST-XCT into multiple key coding components rather
than only the entropy model. ST-XCT is inspired by previous works
that transpose the spatial dimensions of 2D features and compute
spatial cross-covariance attention [5, 46]. Our method is the first
cross-covariance Transformer for NVC that models spatio-temporal
correlation by transposing both spatial and temporal dimensions
from a 3D-based feature and generating a spatio-temporal-aware
cross-covariance matrix. We further adopt a 3D-based gated mech-
anism to enhance the produced 3D joint spatio-temporal features.

3 METHODOLOGY
3.1 ST-XCT
ST-XCT is a transformermodule that produces joint spatio-temporal
features by mixing two input features spatially and temporally. We

designed ST-XCT as a universal module that can be easily integrated
into different key coding components of NVC frameworks.

Architecture. Fig 1 details the ST-XCT architecture. It takes two
individual 2D features F1, F2 ∈ R𝐻×𝑊 ×𝐶 as inputs1, where𝐻,𝑊 ,𝐶

respectively represent height, width, and the number of channels.
Then, it aggregates these two features by creating an additional
temporal channel (i.e., 2 in our case), with which we produce a
3D-based joint spatio-temporal feature F𝑗𝑜𝑖𝑛𝑡 ∈ R𝐻×𝑊 ×2×𝐶 . This
joint feature is then fused by several ST-XCT blocks, which contain
two components: Spatio-Temporal Feature Generator (STFG) and 3D
Feed-Forward Gate (3FFG). After iteratively being fused by these
two operations in each ST-XCT block, we then reshape the joint
feature to F𝑗𝑜𝑖𝑛𝑡 ∈ R𝐻×𝑊 ×2𝐶 and feed it into a 2D convolutional
layer to generate a final 2D joint feature F𝑗𝑜𝑖𝑛𝑡 ∈ R𝐻×𝑊 ×𝐶 .

Spatio-Temporal Feature Generator. STFG first normalizes the 3D-
based joint feature, followed by applying 3D convolutional layers
with 1 × 1 × 1 and then 3 × 3 × 3 kernels, which operate in the
channel dimension to mix spatial and temporal information locally.
Through this operation, we can obtain 3D-based Query (Q), Key
(K), and Value (V) features, which are subsequently reshaped to
𝑄 ∈ R𝐶×𝐻𝑊 2 and 𝐾,𝑉 ∈ R𝐻𝑊 2×𝐶 . Then, we adopt a multi-head
attention mechanism to partition these features into 𝐸 heads along
the feature channel dimension to obtain 𝑄𝑖 ∈ R𝐶/𝐸×𝐻𝑊 2 and
𝐾𝑖 ,𝑉𝑖 ∈ R𝐻𝑊 2×𝐶/𝐸 for each head 𝑖 . Using partitioned features 𝑄𝑖

and 𝐾𝑖 , we compute their spatio-temporal-aware cross-covariance
attention matrix𝐴𝑖 ∈ R𝐶/𝐸×𝐶/𝐸 , via the dot-product operation and
Softmax function. Next, we use a dot-product operation to multiply
this attention matrix with the partitioned value feature𝑉𝑖 , and then
reshape and concatenate all partitioned product features from all
heads to F𝑝𝑟𝑜 ∈ R𝐻×𝑊 ×2×𝐶 . Finally, we add F𝑝𝑟𝑜 back to the input
joint feature F𝑗𝑜𝑖𝑛𝑡 following the conventional residual transformer
1We define the spatial dimension 𝐻 ×𝑊 as one dimension (i.e., spatial dimension).
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Figure 2: Overview of our proposed transformer-based neural video compression (NVC) framework. It takes the current frame
𝑋𝑡 and reference frame 𝑋𝑡−1 as inputs and produces the multi-scale temporal features F1𝑡 , F

2
𝑡 , F

3
𝑡 by using an optical-flow-based

temporal contextmining strategy. Next, it progressively fuses such temporal features with the feature extracted from the current
frame 𝑋𝑡 to produce the quantized latent feature Ŷ𝑡 by using Multi-scale Transformer-based Feature Encoder (MS-TFE). Then, it
performs the entropy-coding to losslessly encode or decode Ŷ𝑡 with the aid of Transformer-based Hybrid Entropy Model (THEM).
Last, we adoptMulti-scale Transformer-based Feature Decoder (MS-TFD) to reconstruct Ŷ𝑡 back to the reconstructed frame 𝑋𝑡 .
Note that we apply our proposed ST-XCT modules in MS-TFE, THEM and MS-TFD (highlighted in red box).

mechanism. We summarize the process as follows, where [· ⊕ ·]
denotes the concatenation operations,

Q,K,V = W𝑞𝑁𝑜𝑟𝑚(F𝑗𝑜𝑖𝑛𝑡 )),W𝑘𝑁𝑜𝑟𝑚(F𝑗𝑜𝑖𝑛𝑡 ),W𝑣𝑁𝑜𝑟𝑚(F𝑗𝑜𝑖𝑛𝑡 )

𝑅𝑒𝑠ℎ𝑎𝑝𝑒 (Q,K,V) → 𝑄 ∈ R𝐶×𝐻𝑊 2, 𝐾 ∈ R𝐻𝑊 2×𝐶 ,𝑉 ∈ R𝐻𝑊 2×𝐶

𝑄,𝐾,𝑉 = [𝑄1 ⊕ 𝑄2 ... ⊕ 𝑄𝐸 ], [𝐾1 ⊕ 𝐾2 ... ⊕ 𝐾𝐸 ], [𝑉1 ⊕ 𝑉2 ... ⊕ 𝑉𝐸 ]

𝐴𝑖 = 𝑆𝑜 𝑓 𝑡𝑚𝑎𝑥 (𝑄𝑖 ∈ R𝐶/𝐸×𝐻𝑊 2 · 𝐾𝑖 ∈ R𝐻𝑊 2×𝐶/𝐸 )

𝐹 𝑖𝑝𝑟𝑜 = 𝑉𝑖 ∈ R𝐻𝑊 2×𝐶/𝐸 · 𝐴𝑖 ∈ R𝐶/𝐸×𝐶/𝐸

𝑅𝑒𝑠ℎ𝑎𝑝𝑒 ( [𝐹 1𝑝𝑟𝑜 ⊕ 𝐹 2𝑝𝑟𝑜 ... ⊕ 𝐹𝐸𝑝𝑟𝑜 ]) → F𝑝𝑟𝑜 ∈ R𝐻×𝑊 ×2×𝐶

F𝑗𝑜𝑖𝑛𝑡 = F𝑗𝑜𝑖𝑛𝑡 +W𝑝𝑟𝑜F𝑝𝑟𝑜
(1)

3D Feed-Forward Gate. We introduce 3FFG to further enhance
the information flow by applying a gating mechanism commonly
used in transformers. First, we take a 3D joint feature F𝑗𝑜𝑖𝑛𝑡 from
STFG and use 3D convolutional layers with 1 × 1 × 1 and then
3 × 3 × 3 kernels to generate two separate features. Second, one of
these features is transformed by the Sigmoid activation function
to serve as a “gate”, which is then element-wisely multiplied by
another feature for information filtering. Lastly, the fused feature
is fed into a 3D convolutional layer with 1× 1× 1 kernel and added
back to F𝑗𝑜𝑖𝑛𝑡 . This process can be summarized as follows, where
⊙ represents element-wise multiplication,

F𝑔𝑎𝑡𝑒 = 𝑆𝑖𝑔𝑚𝑜𝑖𝑑 (W1𝑁𝑜𝑟𝑚(F𝑗𝑜𝑖𝑛𝑡 ))
F𝑗𝑜𝑖𝑛𝑡 = W3 (F𝑔𝑎𝑡𝑒 ⊙ (W2𝑁𝑜𝑟𝑚(F𝑗𝑜𝑖𝑛𝑡 ))) + F𝑗𝑜𝑖𝑛𝑡

(2)

While STFG produces the joint spatio-temporal feature by ex-
ploiting global spatio-temporal correlation using a cross-covariance
attention mechanism, 3FFG concentrates on better information
transformation by exploring the correlation between spatio-temporal
neighboring pixel positions using 3D convolutional operations.

3.2 Neural Video Compression with ST-XCT
We deploy ST-XCT in an NVC framework, as shown in Fig. 2. Our
framework compresses the current frame 𝑋𝑡 of a video sequence
X = {𝑋1, 𝑋2, . . . 𝑋𝑡−1, 𝑋𝑡 , . . . } to obtain the reconstructed frame𝑋𝑡 ,
where the subscript 𝑡 represents the current time-step 𝑡 . The process
involves four main steps: 1) Temporal Context Mining; 2) Spatio-
Temporal Feature Extraction; 3) Entropy Coding; and 4) Frame Re-
construction. This section discusses each of those steps in detail
and explains how we apply ST-XCT to the different parts of our
end-to-end pipeline.

3.2.1 Temporal Context Mining. We adopt an optical-flow-based
compensation strategy to explore temporal information, as in most
NVC methods [17, 18, 36]. We first estimate the raw optical flow𝑉𝑡
between previous reconstructed frame 𝑋𝑡−1 (i.e., reference frame)
and current-coding frame 𝑋𝑡 by using SpyNet [35], followed by us-
ing an auto-encoder-style network to compress𝑉𝑡 to the quantized
motion feature M̂𝑡 , and decompressing M̂𝑡 back to the reconstructed
flow𝑉𝑡 . Last, we use a multi-scale temporal context extraction strat-
egy as in [36] by taking𝑉𝑡 and 𝑋𝑡−1 as inputs. This results in three
scales of temporal context information, F1𝑡 , F

2
𝑡 , F

3
𝑡 .

3.2.2 Spatio-Temporal Feature Extraction. In existing deep contex-
tual coding frameworks [18, 36], multi-scale temporal context fea-
tures, F1𝑡 , F

2
𝑡 , F

3
𝑡 , are extracted from previous frames and spatial
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Figure 3: Transformer-based key coding components, where we apply our ST-XCT modules in our NVC framework.

features are extracted from the current frame. These features are
directly used for encoding the current frame 𝑋𝑡 into a latent fea-
ture Y𝑡 , which is then quantized to Ŷ𝑡 . However, in this work, we
propose to utilize the Multi-scale Transformer-based Feature En-
coder (MS-TFE) to extract joint spatio-temporal features.

MS-TFE (Fig. 3a) extracts the spatial information from the current
frame𝑋𝑡 and fuses it with previously producedmulti-scale temporal
features F1𝑡 , F

2
𝑡 , F

3
𝑡 . At each scale, the spatial and temporal features

are combined and eventually produce the latent features Y𝑡 with
rich spatio-temporal information. We first concatenate the largest-
scale temporal feature F1𝑡 with 𝑋𝑡 , followed by processing this
combined feature with the standard 2D convolutional operations.
We subsequently fuse F2𝑡 and F3𝑡 with 4 and 6 proposed ST-XCT
blocks and 2 heads for all blocks at the two subsequent scales.

3.2.3 Entropy Coding. To losslessly encode (resp., decode) the
produced quantized latent feature Ŷ𝑡 , we adopt arithmetic en-
coder (resp., decoder) to convert Ŷ𝑡 to bit-stream (resp., convert
bit-stream to Ŷ𝑡 ). To reduce the bitrate, we adopt a Transformer-
based Hyper-prior Entropy Model (THEM) to better estimate the
distribution of Ŷ𝑡 and improve the cross-entropy coding.

THEM (Fig. 3b) estimates the probability distribution of the quan-
tized latent feature Ŷ𝑡 for bitrate saving. We extend the hybrid
entropy model in [18] by using our ST-XCT model instead of sim-
ple concatenation. First, we generate the temporal prior from the
smallest-scale temporal feature F3𝑡 using a temporal prior encoder.
Second, we produce the spatio-temporal prior from the latent fea-
ture Y𝑡 , for which we adopt a hyper-prior encoder to generate the
quantized prior feature Ẑ𝑡 , followed by using a decoder to gen-
erate decoded spatio-temporal prior feature. Last, we apply our
ST-XCT module with 16 ST-XCT blocks and 6 heads for each cross-
covariance attentionmechanism to fuse temporal and decoded prior
features to generate a better spatio-temporal prior. Based on this
prior we can then apply the hybrid entropy model in [18].

3.2.4 Frame Reconstruction. During the decoding stage, we gener-
ate the reconstructed frame 𝑋𝑡 from the quantized latent feature
Ŷ𝑡 . To better leverage spatial and temporal information, we adopt
the Multi-scale Transformer-based Feature Decoder (MS-TFD).

MS-TFD (Fig. 3c) reconstructs the quantized latent feature Ŷ𝑡
back to the reconstructed frame 𝑋𝑡 using two ST-XCT modules.
It uses 6 ST-XCT blocks for fusing F3𝑡 , while 4 ST-XCT blocks for
fusing F2𝑡 , where we set the number of heads as 2 for all blocks
at each scale. For fusing F1𝑡 at the highest resolution, we simply
concatenate it and feed the concatenated feature into a U-Net as
in [18] to generate the reconstructed frame 𝑋𝑡 .

3.2.5 Loss function. We optimize our method by solving the fol-
lowing rate-distortion optimization problem:

L =𝜆𝐷 (𝑋𝑡 , 𝑋𝑡 ) + 𝑅(Ŷ𝑡 ) + 𝑅(Ẑ𝑡 ) + 𝑅(M̂𝑡 ), (3)

where 𝐷 (·) represents the distortion between the reconstructed
and original frames. 𝑅(·) represents the bitrate cost in the com-
pression procedure. Here, Ŷ𝑡 , Ẑ𝑡 and M̂𝑡 respectively represent
the quantized latent feature, the quantized prior feature, and the
quantized motion feature. We use 𝜆 as a hyper-parameter to control
the trade-off between rate and distortion.

4 EXPERIMENTS
4.1 Experimental Setup
4.1.1 Datasets. Training.We trained our models on the Vimeo-
90K dataset [44], which comprises 89,800 video sequences of 7
frames each with resolution 448×256. We randomly cropped the
frames to 256×256 and applied random horizontal and vertical flips
for the data augmentation. Evaluation. To evaluate the perfor-
mance of ourmethod, we used sequences from the HEVC [38] (Class
B, C, D, and E), UVG [2], and MCL-JCV [43] datasets, which are
widely used as evaluation benchmarks for video compression. The
resolutions of videos in HEVC dataset range from 416×240 to
1920×1080 pixels, while those in UVG and MCL-JCV are both
1920×1080 pixels. Consistent with previous benchmark [4, 14–
16, 26–28, 31], we cropped the smaller dimension of all frames to a
multiple of 64. To measure the compression performance, we used
bits per pixel (bpp), while PSNR in RGB space between the target
and reconstructed frames was utilized as the distortion metric.

4.1.2 Baselines. We assessed the effectiveness of our method com-
pared to traditional codecs and state-of-the-art learning-basedmeth-
ods. We use H.265 and H.266 (and respective reference implementa-
tionsHM-16.21 [1] andVTM-13.2 [3]) as traditional codecs baselines
with the same configuration parameters as in [18]. We use FVC [16],
C2F [15], DCVC [17], and DCVC* [18] as neural codecs baselines.
FVC is a leading deep residual coding NVC, while C2F is one of
NVC methods achieving comparable performance to traditional
video codecs. Both DCVC and improved DCVC* were included due
to similar network architecture to our method.

For all baselines, we employed an intra-frame period of 32 and
compressed a total of 96 frames from each sequence in test datasets
as in [18]. We recomputed the performance metrics for DCVC*,
H.266, and H.265 using publicly available code and model weights,
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Figure 4: Rate-distortion (i.e., bitrate vs PSNR) performance comparison of our and other state-of-the-art methods in the HEVC,
MLC-JCV, and UVG datasets.

while FVC, C2F, DCVC, and VCT, reported numbers from the origi-
nal authors were utilized. VCT did not report performance on the
HEVC dataset, therefore we only compared our performance with
VCT on the MCL-JCV and UVG datasets.

4.1.3 Implementation Details. We adopted a two-stage training
strategy. In the first stage, we initialized the relevant modules with
pre-trained weights from DCVC*, while randomly initializing all
other layers, including ST-XCTmodules. The weights of pre-trained
layers were frozen, and the remaining layers were trained with the
learning rate of 5 × 10−5 for 20K iterations. The learning rate was
then reduced to 1 × 10−6 for the subsequent 30K iterations. In
the second stage, we optimized all parameters end-to-end with a
learning rate of 5 × 10−6. After 40K steps, the learning rate was
further reduced to 1 × 10−6, and the model was trained for another
40K iterations. We employed a multi-frame training strategy with
a batch size of 2 (corresponding to 2 sequences). Each sequence
contains 7 frames, where the 1𝑠𝑡 frame was treated as an intra-
frame and the rest as inter-frames. As our focus was on inter-frame
coding, we adopted the intra-frame codingmethod from [18], which
was not optimized during training. Our model was implemented in
PyTorch [33] and optimized using Adam. It was trained on a single
NVIDIA A100 GPU, taking approximately 5 days to converge.

4.2 Results
Quantitative Comparison. Table 1 shows the BD Rate (%) perfor-
mance of ours and existing methods on the evaluation datasets
using H.266/VTM-13.2 [3] as the anchor. Our method significantly
outperforms the existing transformer-based video codecs, VCT, and

achieved better (on HEVC datasets) or comparable (on MCL-JVC
and UVG datasets) performance than other NVC codecs. The exper-
imental results indicate an average of 25.6% savings in bitrate com-
pared to the leading traditional codec H.266 and 2.5% bitrate savings
over the current state-of-the-art method DCVC*. Rate-distortion
comparisons are reported in Fig. 4, where our method uses fewer
bits than the baseline methods for similar reconstruction quality.
We observed the largest improvements on HEVC Class D and Class
E with 5.4% and 3.5% bitrate-saving from DCVC*. One potential
reason is that these datasets are with lower resolution, which more
closely matches our training setup. Smaller improvements were
made on higher-resolution datasets such as HEVC Class B, MCL-
JVC, and UVG which further supports this observation.

Qualitative Comparison. Fig. 7 shows qualitative comparisons
between our method, DVC*, and VTM at similar bitrates. Gener-
ally, our method achieves a better perceptual reconstruction per-
formance. In the BlowingBubbles sequence (1𝑠𝑡 row), our method
recovers more structural information in the tissue box, which the
baseline methods are unable to achieve. Similar phenomena are
visible in the BasketballPass and BasketballDrive sequences (2𝑛𝑑

and 3𝑟𝑑 row, respectively), in which some structural details are lost
in the baseline methods. Furthermore, H.266 introduced ringing
artifacts in the basketball in the latter sequence.

Discussion. Overall, the above results demonstrate the effective-
ness of the ST-XCT module in spatio-temporal feature encoding,
entropy modeling, and frame reconstruction, confirming its perfor-
mance improvements over existing methods. Although DCVC* re-
mains competitive with our method in UVG and MCL-JCV datasets,
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UVG MCL-JCV HEVC B HEVC C HEVC D HEVC E Avg

VTM-13.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0
HM-16.21 36.61 42.27 44.51 36.48 28.36 53.85 40.35
FVC 52.57 41.82 78.42 99.98 76.89 78.32 71.34
C2F 3.07 16.49 19.87 50.50 28.39 13.62 21.99
DCVC 38.68 24.49 50.41 93.00 55.91 140.15 67.11
DCVC* -35.79 -38.08 -26.01 8.87 -14.95 -36.63 -23.77
VCT 10.46 9.93 - - - - 10.20
Ours -36.19 -39.08 -27.35 7.20 -18.63 -39.74 -25.63

Table 1: BD Rate (%) Comparison for PSNR. VTM-13.2 is used as the anchor. Negative values indicate bitrate savings and positive
values indicate extra bitrate cost. The best-performing model is indicated in bold and the second best in italic.
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Figure 5: Ablation Study I: Removing the different
transformer-based components from our NVC framework.

our method shows considerable improvements on all other datasets.
Moreover, our method shows significant improvements over all the
other NVC methods, including the only transformer-based NVC
architectures, VCT.

4.3 Ablation Studies
4.3.1 Ablation I: Individually Removing the transformer-based com-
ponents from our NVC framework. To verify the effectiveness of our
ST-XCT module, we conducted ablation studies on HEVC Class D
dataset, where we removed the ST-XCT modules at various stages
from our pipeline and replaced them with concatenation to the next
block (as in our baseline DCVC*). Fig. 6 displays the rate-distortion
performance of our proposed method without THEM, MS-TFD, and
MS-TFE. The results indicated a noticeable drop in performance
when MS-TFD and MS-TFE were removed, bringing an extra 5.6%
and 4.8% bitrates. This indicates the superior ability of ST-XCT for
extracting and fusing multi-scale spatio-temporal features. Also,
the results showed reduced performance without THEM, which
brings an extra 2.0% bitrates. It provides further evidence that ST-
XCT can efficiently exploit spatio-temporal correlation to benefit
entropy coding. Our findings suggest that including ST-XCT in all
the stages yields the best performance.

4.3.2 Ablation II: Individually Removing Components from ST-XCT.
We have also conducted ablation studies to verify the effectiveness
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Figure 6: Ablation Study II: Removing the different individual
components from our ST-XCT module.

of the STFG and 3FFG modules inside ST-XCT. We removed STFG
and 3FFG individually from our ST-XCT in all coding components of
our framework and evaluated the performance on the HEVC Class
D dataset. In addition, we replaced our ST-XCT module (i.e., STFG
+ 3FFG module) by directly utilizing the 3D joint feature, which is
produced by aggregation and fusion by 3D convolutional operation.
We observed that: i) although only using STFG (i.e., w/o 3FFG) or
3FFG (i.e., w/o STFG) can still improve from the baseline (2.9% and
1.5% reduced bitrates from DCVC*), they both performed worse
than our proposed method with full ST-XCT blocks (resulting in
an additional 2.8% and 4.2% bitrate costs from our full method);
ii) the alternative method without using our ST-XCT module is
also notably worse than our proposed framework (4.8% increased
bitrate), but slightly better than the baseline DCVC* (1.0% reduced
bitrate). The latter shows that the joint 3D feature can intuitively
bring a marginal improvement but cannot sufficiently capture rich
spatio-temporal information by itself.

4.3.3 Complexity Study. We also conducted runtime analysis and
model size experiments, which are summarized in Table 2. Specif-
ically, the runtime metrics were computed by compressing all
sequences from the HEVC Class D dataset with a resolution of
384 × 192. All complexity experiments were performed on a ma-
chine with a single NVIDIA RTX 3090 GPU and Intel Core i7-6700k
CPU. Compared to the other transformer-based NVC codec (VCT),
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Figure 7: Qualitative comparison between our NVC method, DCVC*, and VTM-13.2. The demonstrated images are labeled as
PSNR@bpp. Best viewed on screen.

#Params (M) GPU (MiB) Enc (ms/Frame)

VTM N/A N/A 6104
VCT 121.1 461.9 268
DCVC* 17.5 66.8 19
Ours 26.8 102.2 56

Table 2: The complexity of our method and other video
codecs. The GPU peak memory (i.e., GPU) and encoding time
(i.e., Enc) are calculated by using HEVC ClassD dataset.

our compression framework has 77% fewer parameters and encodes
a frame in 79% less time. Additionally, due to the linear complexity
of ST-XCT, our advantage is likely to increase at higher resolutions.
Our proposed framework also encodes 10× faster than the tradi-
tional codec VTM. Hence, although the ST-XCT blocks are more
computationally intense than the simple concatenation operation
used by DCVC*, our method is significantly less complex than VCT
and VTM, indicating that our framework is practical.

Finally, we also highlight that the most complexity-consuming
coding component is THEM, which accounts for around 20% of

the parameters (due to to its multitude of heads and channels).
Meanwhile, our ST-XCT’s complexity is significantly influenced
by the 3D convolutional operations, constituting approximately
30% of inference time. These are potential avenues for future explo-
ration, and we invite the readers to delve into model compression
techniques (e.g., channel pruning) for such modules.

5 CONCLUSION
In this work, we investigate how to effectively leverage both spatial
and temporal information to improve video compression and pro-
pose a module, Spatial-Temporal Cross-Covariance Transformer.
We conduct extensive experiments to demonstrate its effectiveness
by integrating it into various components of an end-to-end neu-
ral video compression framework. A thorough set of experiments
and ablation studies was performed to showcase the generaliza-
tion capabilities of the ST-XCT in different coding components,
ultimately resulting in superior performance compared to previ-
ous state-of-the-art video compression algorithms. Overall, our
work conducts a solid baseline for the transformer-based video
compression method, which will facilitate the subsequent research
on effective combinations of transformers and neural video codecs.
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