2211.00859v3 [cs.CV] 12 Nov 2022

arxXiv

Decoupled Cross-Scale Cross-View Interaction for Stereo Image
Enhancement in The Dark

Huan Zheng!, Zhao Zhang'*, Jicong Fan?, Richang Hong', Yi Yang®, and Shuicheng Yan

4

'Hefei University of Technology, China
2The Chinese University of Hong Kong (Shenzhen), China
3Zhejiang University, China
“Sea Al Lab, Singapore

RGB Image

e

ZeroDCE

Input GT iPASSR

ZeroDCE++

%

NAFSSR-F  SNR

NAFSSR DCI-Net

(PSNR/SSIM) (400/1.000) (10.19/0.409) (20.12/0.634) (9.71/0.385) (16.97/0.557) (24.35/0.825) (27.46/0.852) (15.59/0.537) (31.33/0.937)

Figure 1. Visualization of the enhanced images and the corresponding error maps of each method based on Flickr1024 dataset, including
NAFSSR [3], NAFSSR-F [3], iPASSRNet [43], SNR [48], DVENet [13], ZeroDCE [10], ZeroDCE++ [20] and our DCI-Net. Whiter and
brighter pixels in the error maps indicate smaller errors. It is clear that other compared methods obtain darker pixels in the error maps than
our DCI-Net, which means that our method is capable of preserving consistent color and recovering the textures more accurately.

Abstract

Low-light stereo image enhancement (LLSIE) is a rela-
tively new task to enhance the quality of visually unpleas-
ant stereo images captured in dark condition. However,
current methods achieve inferior performance on detail re-
covery and illumination adjustment. We find it is because:
1) the insufficient single-scale inter-view interaction makes
the cross-view cues unable to be fully exploited; 2) lacking
long-range dependency leads to the inability to deal with
the spatial long-range effects caused by illumination degra-
dation. To alleviate such limitations, we propose a LLSIE
model termed Decoupled Cross-scale Cross-view Interac-
tion Network (DCI-Net). Specifically, we present a decou-
pled interaction module (DIM) that aims for sufficient dual-
view information interaction. DIM decouples the dual-view
information exchange into discovering multi-scale cross-
view correlations and further exploring cross-scale infor-
mation flow. Besides, we present a spatial-channel informa-
tion mining block (SIMB) for intra-view feature extraction,

and the benefits are twofold. One is the long-range depen-
dency capture to build spatial long-range relationship, and
the other is expanded channel information refinement that
enhances information flow in channel dimension. Extensive
experiments on Flickr1024, KITTI 2012, KITTI 2015 and
Middlebury datasets show that our method obtains better
illumination adjustment and detail recovery, and achieves
SOTA performance compared to other related methods. Our
codes, datasets and models will be publicly available.

1. Introduction

Single image processing and understanding have made
great achievements across a wide range of application ar-
eas, such as image classification [ 2], object detection [33
and semantic segmentation [29]. Recently, with the grow-
ing application of dual cameras, stereo vision has attracted
much attention in various fields, e.g., mobile phones and
autonomous driving cars [23]. However, the stereo im-
ages captured in dark environments usually suffer from low-
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Figure 2. The overall framework of our proposed DCI-Net for LLSIE, which contains two weights-shared branches to process left and right
views respectively. Besides, DCI-Net includes two main modules, i.e., DIM and SIMB. To be specific, DIM completes sufficient inter-view
information interaction and flow across two views, which includes cross-view interaction (CVI) and cross-scale interaction (CSI); SIMB
enhances intra-view feature representation, whose structure is shown on the right.

contrast, weak illumination and various noise [55]. As a
consequence, there are obviously negative effects on subse-
quent high-vision tasks. Hence, low-light stereo image en-
hancement (LLSIE) is proposed to enhance dark stereo im-
ages [14]. To be specific, LLSIE is a task of enhancing the
illumination and recovering the hidden details in the dark,
via utilizing the stereo images from left and right views.

Compared with LLSIE, single low-light image enhance-
ment (LLIE) methods aim to refine the illumination of
single-view images in the dark, which can be divided into
traditional and deep learning-based ones [19]. Traditional
LLIE methods build prior-based optimization models to ad-
just the illumination and enhance the contrast [11]. While
these methods are relatively simple or highly rely on the
hand-crafted priors, which may cause low-quality enhanced
results [26]. With the great development of deep learning,
convolutional neural network (CNN)-based methods have
achieved impressive performance in various low-level vi-
sion tasks [5, 7,45, 56,59, 60]. More importantly, CNN-
based deep models also show superior capability for LLIE
[2,21,27,41,42,44,47,54]. These deep LLIE methods use
CNN as backbones to establish a neural network to learn a
map from low-light image to normal-light image.

Stereo image restoration is the task of recovering high-
quality stereo images from diverse degradations. In com-
parison to single image restoration, parallax in stereo image
pairs is a key point for stereo image restoration. Some re-
cent methods have been proposed to restore the lost infor-
mation using the correlations between two views [3, 13,39,

]. iPASSRNet is firstly proposed for stereo image super-

resolution via exploring symmetry cues between two views
[43]. Inspired by iPASSRNet, DVENet is presented, which
is the most representative method exploring the LLSIE task
[13]. However, the generated illumination-improved im-
ages are still unsatisfactory for both low-light enhancement
and stereo image restoration methods, as shown in Fig. 1.
Therefore, we ask: what makes the enhanced stereo im-
ages suffer from undesired and inaccurate contents? We
attempt to answer this question from two respects:

(1) Insufficient dual-view information interaction. The
single LLIE methods do not consider the relationship
between two views as stereo image at all. In contrast,
stereo image restoration methods clearly need to ex-
ploit the cues between stereo image pairs. Neverthe-
less, current dual-view information interaction strate-
gies are still weak. Because existing methods only ex-
plore the cross-view correlations at single scale, while
ignoring the cues at different scales and missing cross-
scale interaction, causing the inability of achieving
sufficient cross-scale cross-view interaction.

(2) Lack of long-range dependency in intra-view learn-
ing. Current methods usually adopt CNNs with a ker-
nel size of 3x3 to build a neural network for image
restoration. However, small kernel size design may
limit the learning ability of CNNs, because the con-
volutional operation can only extract information from
small regions, and prevents capturing long-range de-
pendencies. Poor illumination has a great influence on
the entire image. To handle the spatial long-range ef-
fects caused by the degradation, it is important to build



the long-range relationship for LLSIE.

In this paper, we therefore explore effective strategies to
facilitate interaction and enhance the stereo images in the
dark, and propose a decoupling strategy to complete cross-
scale cross-view information interaction. The main contri-
butions of this paper are summarized as follows:

(1) DCI-Net: LLSIE by Decoupled Cross-scale Cross-
view Interaction Network. We propose DCI-Net to
address the issue of weak cross-view information in-
teraction for LLSIE. Specifically, DCI-Net aims at
improving the enhancement process by refining both
intra-view feature extraction and cross-view informa-
tion interaction. Experiments on Flickr1024, KITTI
2012, KITTI 2015 and Middlebury datasets demon-
strate that our method can better adjust the illumina-
tion, recover the details and obtain SOTA performance.

(2) Decoupled Interaction Module (DIM). To enable
sufficient dual-view information interaction, namely,
cross-scale cross-view information interaction, DIM
decouples the above process into two levels, i.e., cross-
view interactions at multiple scales and further cross-
scale interaction. The first level aims at discovering
multi-scale cross-view cues, and the second level fo-
cuses on exploring cross-scale information flow for
further interaction. Hence, DIM can make full use of
the correlations between stereo image pairs.

(3) Spatial-channel Information Mining Block (SIMB).
We design the novel module SIMB for intra-view fea-
ture extraction. To be specific, SIMB is based on the
structure of vision transformer (ViT) so that it can pos-
sess a strong learning ability, but our core idea departs
from ViT. Instead of using multi-head self-attention,
large-kernel design is incorporated into the process of
long-range dependency capture (LRDC) for discover-
ing spatial long-range correlations. In addition, ex-
panded channel information refinement (ECIR) is also
developed for enhancing channel information flow.

2. Related Work

We briefly review the recent progress on single low-light
image enhancement and stereo image restoration.

2.1. Low-light single image enhancement

For traditional LLIE methods, we mainly introduce the
retinex-based and histogram equalization (HE)-based ones.
Inspired by the retinex theory [ 7], retinex models are pro-
posed to decompose the low-light images and reconstruct
the normal-light images [ 1,22, 35]. HE-based methods aim
at adjusting the dynamic range of the low-light image to en-
hance the contrast [18]. Deep LLIE methods can be further
fallen into end-to-end and retinex-based modes. To be spe-
cific, end-to-end method directly learns a map to reverse the

illumination degradation, which takes the low-light image
as input and directly outputs the enhanced normal-light im-
age [10,20,30,34,48,49,58]; Retinex-based deep methods
decouple an image into the illumination map and reflectance
map [27,44,46,53]. Differently, deep retinex-based meth-
ods employ deep neural networks for image decomposition,
in comparison to the traditional retinex-based methods.

2.2. Stereo image restoration

Recently, stereo vision has been attracting much atten-
tion. A few stereo image restoration methods are also stud-
ied. For stereo image super-resolution, Jeon et al. [15] pro-
posed the first work that uses the shift operation to compen-
sate for the parallax between two views. Wang et al. [43]
developed a novel parallax attention to make full use of the
correlations between stereo image pairs. The latest state-
of-the-art method is NAFSSR, which is the champion of
the NTIRE 2022 Stereo Image Super-resolution Challenge
[3,38]. For stereo image deraining, Zhang et al. [52] in-
corporated semantic priors into deraining process for better
rain removal. For stereo debluring, Zhou et al. [61] pre-
sented a depth-aware and view aggregated method. Li et
al. [24] delivered a novel stereo image debluring model by
exploring the dual-pixel alignment. For stereo image dehaz-
ing, Nie et al. [32] proposed SRDNet which aims at better
exploiting the stereo information from two views. There
are also few works for LLSIE [13, 16, 25]. Specifically,
DVENet [13] is the most representative method, which in-
corporates retinex theory into the overall framework in a
coarse-to-fine manner. Besides, parallax attention model is
also used to explore the correlations between two views.

3. Proposed Method

We introduce the proposed DCI-Net in detail in this sec-
tion. We first illustrate the overall architecture of DCI-Net.
Then, we describe the detailed structures of the designed
modules. Finally, the used loss functions are discussed.

3.1. Overall framework

An overview of the proposed DCI-Net is shown in Fig.
2. Clearly, our model takes a pair of low-light stereo images
as input, enhances the illumination of both views, and out-
puts the enhanced normal-light stereo images. The pipeline
of DCI-Net can be divided into three stages: shallow feature
extraction, deep feature extraction and stereo image recon-
struction. To be specific, we use two convolutional layers
in the head and tail, where the first one extracts shallow
features and the last one reconstructs the enhanced normal-
light stereo images. Given a pair of low-light stereo images,
the above processes can be formulated as follows:

Lfion Tt gn = Hsr (Hpr (Hsp (1, I12,))), (D)
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Figure 3. The detailed process of cross-view interaction in DIM.
To be specific, CVI explores the cues between both left and right
views at multiple scales. Note that only the process at single scale
is shown as example.

where I/, I, I}, and )%, denote the low-light left-
view image, low-light right-view image, enhanced left-view
image and right-view image, Hsp(-), Hpr(-) and Hgr(+)
denote the transformations for shallow feature extraction,
deep feature extraction and stereo image reconstruction re-
spectively. Deep feature extraction can be further fallen
into intra-view feature extraction and dual-view interaction.
For dual-view interaction, we deliver a decoupled interac-
tion module (DIM) to explore synchronous cross-view and
cross-scale interaction. For intra-view feature extraction,
we construct a spatial-channel information mining block
(SIMB)-based U-Net to obtain stronger feature representa-
tion. It is worth noting that the weights of shallow feature
extraction, intra-view feature extraction in deep feature ex-
traction and stereo image reconstruction are always shared.

3.2. Decoupled interaction module (DIM)

Different from single image processing, one key point
of LLSIE is exploring the correlations between two views
to promote illumination enhancement. Hence, methods for
low-light single image enhancement do not well in enhanc-
ing the stereo images, since they only consider one view.
Some previous attempts have done to discover and exploit
the cues between a pair of stereo images [3, 13, 15,40,43].
Nevertheless, these methods lack considering the cross-
view interaction at different scales, which makes the cross-
scale interaction be ignored. Note that a lot of existing stud-
ies on CNN and ViT show the importance of multi-scale in-
formation interaction [9,37]. To alleviate this issue, we pro-
pose DIM to decouple cross-scale cross-view information
interaction into studying inter-view correlations at multiple
scales, and further cross-scale interaction.

Cross-view interaction at multiple scales. Previous
methods only use the correlations at a single scale [3, 13,

,40,43]. In contrast, we explore cross-view cues at mul-
tiple scales. We incorporate a cross-view interaction (CVI)
module into different scales for discovering the multi-scale
cross-view cues. The detailed structure of CVI is shown
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Figure 4. The detailed process of cross-scale interaction in DIM.
Specifically, CSI completes the interaction among different scales.
Note that only the process of left view is shown.

in Fig. 3. Given the input stereo feature maps from the
i-th stage, CVI uses the matrix multiplication to compute
the cross-view correlations for information interaction. This
process can be formulated as follows:

Meor = LRY, 2)

where L € REXWXC and R € REXC*W denote the input
stereo feature maps, and M., € RE*XWXW denotes the
correlations matrix. It is noted that there are only horizontal
shifts for stereo images. Hence, we mainly pay attention to
the horizontal correlations between two views.

Cross-scale interaction. CVI has extracted the multi-
scale correlations between two views, but the information
interaction among different scales is still missing. Cross-
scale interaction (CSI) is therefore presented to handle this
issue by enhancing the cross-scale information flow. The
overall structure of CSI is shown in Fig. 4. Given the left-
view multi-scale feature maps F'~*, %2 and F''3 obtained
by CVI as an example, CSI firstly uses scaling operations
to densely concatenate them, and then utilizes a multilayer
perceptron (MLP) to process the concatenated feature maps.
The purpose is twofold, one is to reduce channels and the
other is to exchange and fuse information in channel dimen-
sion. In the end, a spatial-channel information mining block
is incorporated into the tail for further spatial information
interaction. The above processes can be formulated as

FL gl pls — SIMB(MLP(DC(FE, FE2, Fls)))

csi) " csi) T cst
3)
where DC(+) denotes the densely concatenate operation in
CSI, and FL Pl and FE3 denote the cross-scale inter-

csi’ T ocsi csi
acted feature maps.
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3.3. Spatial-channel information mining block
(SIMB)

Recalling that previous single low-light image enhance-
ment and stereo image restoration methods usually adopt
CNNs with a kernel size of 3x3 to construct a deep neu-
ral network. As a result, the long-range dependency can-
not be well captured. Recently, transformer-based models
have achieved impressive performance in diverse computer
vision tasks due to the capacity of building long-range de-
pendency [6,28]. But vision transformer is computationally
expensive. Some recent works have shown that large ker-
nel convolutional layers can also obtain long-range correla-
tions [4]. Besides, PoolFormer shows that the overall archi-
tecture plays an important role in vision transformer [50].
Inspired by these works, we therefore propose SIMB. Al-
though SIMB inherits the structure of vision transformer, it
replaces the multi-head self-attention with large kernel con-
volutional layers, and further explores the information flow
in channel dimension. The structure of SIMB is shown on
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Figure 5. Visualization of the enhanced images and corresponding error maps of each method based on Flickr1024 dataset, including the
results of NAFSSR [3], NAFSSR-F [3], iPASSRNet [43], SNR [48], DVENet [13], ZeroDCE [10], ZeroDCE++ [20] and our DCI-Net.
Whiter and brighter pixels in the error maps indicate smaller errors. Clearly, our DCI-Net achieves better illumination adjustment and color
correction, and obtains smaller errors and superior performance than other methods, which can also be seen from the shown metrics.

DVENet NAFSSR DCI-Net

the right of Fig. 2. As can be seen, three are two core steps
in SIMB: long-range dependency capture (LRDC) and ex-
panded channel information refinement (ECIR).

Long-range dependency capture (LRDC). To over-
come the shortage that CNNs with small kernel size can-
not build long-range relationship, we use large kernel con-
volutional layers for long-range dependency capture. The
shifted kernel in CNN can be regarded as the shifted win-
dow in Swintransformer [28]. Nevertheless, it is compu-
tationally expensive for the vanilla CNN with increased
kennel size. Hence, large kernel depth-wise convlolutional
(DW-Conv) layer and MLP are used to approach the effect
of vanilla CNN. There are two advantages for this design.
Firstly, large kernel design can discover long-range corre-
lations; secondly, DW-Conv layer can significantly reduce
the computational cost. We set the kernel size of DW-Conv
layer to 7 that is consistent with the window size of Swin-
transformer [28]. From Fig. 2, the transformation of LRDC
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Figure 6. Visualization of the enhanced images and correspondlng error maps of each method based on the KITTI 2012 and KITTI 2015
datasets, including NAFSSR [3], NAFSSR-F [3], iPASSRNet [43], SNR [48], DVENet [13], ZeroDCE++ [20] and our DCI-Net. Whiter
and brighter pixels in the error maps indicate smaller errors. Compared with other methods, our DCI-Net obtains the smallest errors as can
been seen from the error maps. This indicates that our proposed DCI-Net can better adjust the illumination and restore the details.

can be described as follows:
F}. = MLP(DWConv(MLP(LN(F)))) + F, (4

where LN(-), MLP(-) and DWConv(-) denote the layer
normalization (LN), MLP and DW-Conv, F' and Fj, rep-
resent the input and output feature maps.

Expanded channel information refinement (ECIR).
In the first step of SIMB, we mainly explore spatial informa-
tion. But there less attention has been paid to channel infor-
mation. Hence, we develop ECIR. The core idea of ECIR is
simple yet effective, which completes channel information
mixing in higher dimensional space. Note that this design
can be easily implemented by incorporating channel atten-
tion (CA) into the second stage of vision transformer. As
shown in Fig. 2, the process of ECIR can be formulated by

Fu, = MLP(CAQMLP(LN(F},))) + Fir,  (5)

where CA(-) denotes the transformation of channel atten-
tion and Fy;, is the processed result of SIMB. It should be
noted that the first MLP is used to expand the channel of fea-
ture maps to the higher dimension, while the second MLP

re-maps the higher dimensional feature maps to the original
channel size. Since CA can compress the spatial informa-
tion and fully focuses on the channel information, it can be
used to refine the channel information.

3.4. Loss function

The total loss function £ of our DCI-Net contains two
losses, i.e., frequency-domain reconstruction loss £ ¢, and
smooth loss L;,, which are illustrated as follows:

L= Efre + )\Etva (6)

where A is a hyper-parameter that is set to 0.1 in this pa-
per. To be specific, frequency-domain reconstruction loss
is used to guide our method to reconstruct the normal-light
stereo image, which can be described as

Lire =|FFT(1},,) — FFT(I))1+

@)
[FET (4 gn) — FFT(I50)|I1,

where I g¢ and 1 ;ﬁ denote the ground-truth stereo normal-
light images, and FF'T(+) denotes the fast fourier transform.
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Figure 7. Visual results of each method based on Middlebury dataset, including NAFSSR-F [3], SNR [48], DVENet [ 13] and our DCI-Net.
Whiter and brighter pixels in the error maps indicate smaller errors. We can see that there is a motorcycle in the error maps of all compared
methods. But in contrast, it is hard to see the shape of the motorcycle for our DCI-Net, i.e., less information is lost in our method.

NAFSSR-F(23.65/0.910)

Table 1. Evaluation results of each method on Flickr1024, KITTI 2012, KITTI 2015 and Middlebury datasets. Note that PSNR/SSIM
values achieved on both the left images (i.e., Left) and a pair of stereo images (i.e., (Left + Right) /2) are reported. The bold denotes the
best. It is clear that our DCI-Net achieves SOTA performance among all compared methods.

Left (Left + Right) / 2
Method Venue

Flickr1024  KITTI 2012 KITTI2015 Middlebury  Flickr1024  KITTI2012 KITTI2015 Middlebury
ZeroDCE [10] cvpr’20  10.49/0.420  9.21/0.403  10.17/0.441 11.34/0.591 10.49/0.420  9.18/0.401 10.17/0.439  11.27/0.592
iPASSRNet [43]  cvprw’2l  22.27/0.777 23.32/0.820 21.76/0.802 21.50/0.872 22.20/0.777  23.49/0.827 21.69/0.804 21.67/0.871
ZeroDCE++ [20]  tpami’2l  10.74/0.418  9.15/0.388  10.08/0.427 10.28/0.563 10.74/0.418  9.14/0.386  10.07/0.425 10.19/0.563
DVENet [13] tmm’22  21.82/0.751 22.14/0.787 21.05/0.767 20.75/0.855 21.66/0.751 21.96/0.787 21.05/0.769  21.09/0.856
NAFSSR [3] cvprw’22  21.68/0.734  21.43/0.775  20.68/0.767 22.25/0.857 21.74/0.735 21.70/0.778  20.64/0.771  22.39/0.858
NAFSSR-F [3] cvprw’22  24.21/0.815 24.22/0.856  22.29/0.837 23.49/0.920 24.26/0.816 23.93/0.854 22.45/0.842 23.43/0.921
SNR [48] cvpr’22  21.34/0.749  22.11/0.794  20.93/0.769  21.43/0.851 21.40/0.751 22.16/0.793  20.90/0.770  21.65/0.856
DCI-Net - 25.47/0.832  26.69/0.883  26.26/0.862 24.27/0.931 25.36/0.832 26.90/0.884 26.03/0.864 24.26/0.929

The smooth loss is based on the total variation prior to ob-
tain better and smoother results.

KITTI 2015 [31], 20 stereo image pairs from KITTI 2012
[8] and 5 stereo image pairs from Middlebury. Note that
we clearly follow [5 1] to synthesize the low-light stereo im-
ages. For evaluations, we employ two widely used image
quality assessment metrics: PSNR and SSIM. The greater
PSNR and SSIM, the better quality of the enhanced re-
sults. As for the structure of our DCI-Net, we set N1 = 4,
N2 :4,N3 :2,N4 :2,andN5 =4.

Implementation details. All experiments are conducted
by using Pytorch with RTX 2080Ti GPUs. We employ

4. Experimental Results and Analysis

In this section, we first introduce the experimental set-
ting. Then, the experimental results and detailed analysis of
our DCI-Net will be illustrated.

4.1. Experimental setting

Datasets and evaluation metrics. Following the setting
of iPASSRNet [43], we use 60 stereo image pairs from Mid-
dlebury [36] and 800 stereo image pairs from Flickr1024
[39] as the training set. For testing set, we pick 112 stereo
image pairs from Flickr1024, 20 stereo image pairs from

Adam optimizer with batch size of 16. All the training im-
ages are randomly cropped into 128 x 128 pixels. The ini-
tial learning rate is set to 0.0002 and reduced by half per
500 epochs. DCI-Net is trained for 2000 epochs totally.
Some related methods are compared, including NAFSSR



[3], NAFSSR-F [3], iPASSRNet [43], SNR [48], DVENet
[13], ZeroDCE [10] and ZeroDCE++ [20]. For iPASSR-
Net, NAFSSR and NAFSSR-F, we set the upscale factor to
1. Note that we use frequency-domain reconstruction loss
to retrain NAFSSR, which is denoted as NAFSSR-F.

4.2. Quantitative results

We evaluate the performance of our DCI-Net on four
datasets, i.e., Flickr1024, KITTI 2012, KITTI 2015 and
Middlebury datasets. Table 1 shows the numerical results
of both single view and a pair of stereo images. We see
that our DCI-Net obtains better performance on all evalu-
ated datasets than other compared methods. Overall, the
two zero-shot methods ZeroDCE and ZeroDCE++ obtain
the worst results, since no supervised data drives the train-
ing process. For supervised single low-light image enhance-
ment method, SNR is inferior to the stereo image restora-
tion methods, because single LLIE methods do not consider
the cross-view cues. To be specific, greater SSIM values
suggests that our DCI-Net can better recover the structural
information, compared with other competitors. The best
PSNR demonstrates that our DCI-Net is capable of restor-
ing the details to reconstruct the normal-light stereo images.

4.3. Visual analysis results

For better comparison, we visualize the enhanced im-
ages and corresponding error maps of each method on the
Flickr1024 dataset in Fig.5. Note that the process of com-
puting the error maps can be referred to [57]. We see that
our DCI-Net is capable of recovering more consistent color
and accurate illumination than other competitors. Based on
the error maps, DCI-Net is the lightest one, indicating that
our model can recover more details. Fig.6 shows the vi-
sual comparison on KITTI 2012 and KITTI 2015 datasets.
According to the displayed PSNR and SSIM, the proposed
DCI-Net obtains maximum values, which suggests that the
enhanced images of our model are of higher quality. Simi-
lar results can also be found from the error maps. The errors
produced by our method are obviously smaller than others.
The visual results on Middlebury dataset are shown in Fig.
7. We can find that our DCI-Net can better reconstruct the
normal-light image with less information loss.

4.4. Ablation study

We perform ablation studies to demonstrate the effective-
ness of the designed modules, losses and kernel sizes in our
DCI-Net. The experiments are performed on Flickr1024
dataset. The numerical results are shown in Table 2.

Effect of DIM. To show the effectiveness of DIM, we
design three models as shown in Table 2. Specifically, W/o
CVI and W/o CSI denote removing CVI and CSI from our
DCI-Net respectively. W/o DIM denotes removing DIM
from DCI-Net, which is also regarded as removing CVI

Table 2. Ablation study on the effects of losses, kernel size, DIM
and SIMB over the Flickr2014 dataset. Bold denotes the best.

Left (Left + Right) / 2
PSNR SSIM  PSNR  SSIM

W/o DIM 24.67 0.809 24.63 0.811
W/o CVI 25.26 0.828 25.23 0.829
W/o CSI 25.07 0.824 25.08 0.826

W/o LRDC 22.07 0.795 22.13 0.796
W/o ECIM 25.01 0.817 25.06 0.818

W/ Ly 24.17 0.788 24.08 0.789
W/ Lo 21.56 0.655 21.54 0.655
W/ Lssim 24.01 0.819 23.93 0.821

KSof3 x 3 2491 0.814 24.85 0.814
KSof5 x5 25.07 0.823 25.01 0.823

DCI-Net 2547 0.832 25.36 0.832

Model

and CSI simultaneously. From Table 2, we see that there
is significant performance reduction when we remove any
of them. Because the proposed DIM has the ability to com-
plete the cross-scale cross-view information interaction.

Effect of SIMB. We further verify the role of SIMB by
dropping LRDC and ECIM from SIMB in our DCI-Net,
which are denoted as W/o LRDC and W/o ECIM in Table
2. When LRDC is deleted, the numerical results decrease
significantly. The performance degradation suggests that
LRDC is an important component that can capture long-
range dependency. Removing ECIM also makes worse per-
formance since ECIM is able to mine the channel informa-
tion and refine the feature representation.

Effect of losses. We evaluate the performance with dif-
ferent losses. As shown in Table 2, models W/ £ loss,
W/ Lo loss and W/ L., denotes using [y loss, I3 loss and
sstm loss to replace the frequency-domain reconstruction
loss Ly, to train our model. The performance degrades
for the three models, which means the frequency-domain
reconstruction loss is superior to others for our model.

Effect of kernel size. We finally study the impact of
different kernel sizes of the DW-Conv layer in SIMB on the
results. We test the performance with kernel size of 3 x 3
and 5 x b, denoted as KS 3 x 3 and KS 5 x 5. Note that the
kernel size in our DCI-Net is set to 7 x 7. From Table 2, we
see that the performance gets better with larger kernels, and
our proposed DCI-Net obtains the best result.

5. Conclusion

We explored effective strategies to address the issues
of weak cross-view information interaction and lacking of
long-range dependencies in intra-view learning to deal with
the spatial long-range effects for stereo image enhance-
ment in the dark. Technically, we proposed a novel decou-
pled cross-scale cross-view interaction network (DCI-Net).
To be specific, we present a decoupled interaction module



to improve the information flow via exploring cross-scale
cross-view information interaction in a decoupling manner,
namely, cross-view interaction at different scales and cross-
scale interaction. In addition, we further propose a spatial-
channel information mining block to capture long-range de-
pendency and improve the feature representation. Exten-
sive experiments show that our DCI-Net achieves state-of-
the-art quantitative performance and obtains better visual
results in terms of more accurate texture-recovery and less
detail loss, compared to other related methods. In the fu-
ture, designing more effective and more efficient cross-view
interaction method is worth studying. Besides, incorporat-
ing the low-light stereo image enhancement into some high-
level vision tasks is also an interesting future work.
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