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ABSTRACT
Recent progress on vision and language research has shown that
visual supervision improves the performance of large language
models (LLMs) in various natural language processing (NLP) tasks.
In particular, the Vokenization approach [65] initiated a new way of
incorporating visual information into LLM training, demonstrating
the potential of visual supervision for NLP tasks in a monolingual
(i.e., English) setting. Given the effectiveness of visual informa-
tion in human communication among people who speak different
languages, we tackle an ambitious question in this paper; can we
expect that visual supervision contributes to cross-lingual transfer
learning from a high-resource language to low-resource languages
in NLP tasks? To study this hypothesis, we build a cross-lingual Vo-
kenization model and train a cross-lingual LLM on three languages,
English, Urdu, and Swahili, in which the last two are considered
low-resource languages. The experimental results demonstrate that
our visually-supervised cross-lingual transfer learning method sig-
nificantly improves the LLM performance in multiple cross-lingual
NLP tasks such as XNLI, NER, and TyDiQA tasks for low-resource
languages. We also qualitatively and quantitatively demonstrate
that the benefit of our approach increases as the linguistic distance
between low- and high-resource languages grows larger.
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• Information systems → Language models; Multimedia and
multimodal retrieval; • Computing methodologies → Trans-
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Figure 1: Visual information encourages cross-lingual natu-
ral language understanding.
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1 INTRODUCTION
Language acquisition by human beings involves language itself as
well as visual and other perceptions [1, 4, 15]. Prior works have
proven that visual information can enhance various natural lan-
guage processing (NLP) technologies [8, 21, 36, 37, 61, 79]. Recently,
a number of works have been focusing more on improving the per-
formance of large language models (LLMs) and vision and language
(V+L) models with visual information [25, 41, 49, 65, 66, 70, 76, 80].

In particular, the Vokenization approach [65] enables the LLMs to
learn better language representations from textual as well as visual
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supervision during LLM training, leading to improved performance
in NLP tasks in a monolingual (i.e., English) setting.

In addition to language acquisition, visual perception also helps
human communication among people who have different native
languages through, for example, gestures, visual pointing, and body
language [22, 55, 62] as shown at the top of Figure 1. Lots of works
have shown that visual supervision could improve the performance
of multi-modal models in cross-lingual multi-modal tasks such as
image captioning, image retrieval, machine translation, etc. [6, 7, 19,
29, 40, 59, 64, 81]. However, attempts to improve the performance
of LLMs in cross-lingual NLP tasks using visual information have
been less thoroughly explored, even though if successful, they could
provide new ways of using visual information to further augment
the cross-lingual transfer learning of LLMs.

To this end, we study whether visually-derived supervision can
contribute to the cross-lingual transfer learning of an LLM, es-
pecially in low-resource languages. We extend the Vokenization
technique [65] by building a cross-lingual LLM on three languages,
namely English, Urdu, and Swahili, where Urdu and Swahili are
considered low-resource languages. In addition to the standard
masked language modeling, the cross-lingual LLM is jointly trained
to predict the visually-derived supervision and some of these su-
pervisions are shared across languages as intuitively shown at the
bottom of Figure 1, from which we expect to encourage the cross-
lingual transfer learning.

Our experimental results demonstrate that a visually-supervised
cross-lingual LLM significantly improves the performance in multi-
ple cross-lingual NLP tasks such as cross-lingual natural language
inference (XNLI) [13], named entity recognition (NER) [54], and
Typologically Diverse QA (TyDiQA) on not only the low-resource
but also high-resource languages. We also qualitatively and quanti-
tatively demonstrate that the benefit of our approach increases as
the linguistic distance between low- and high-resource languages
grows larger. Specifically, we show that the performance gain over
a vanilla LLM on Urdu is larger than that on Swahili even though
Urdu is less similar linguistically to English than Swahili.

Our contribution is threefold:

• Studywhether visual supervision contributes to cross-lingual
transfer learning of an LLM by extending the Vokeniza-
tion technique to a cross-lingual setting to build a visually-
supervised cross-lingual LLM,

• Experimentally verify the above hypothesis, demonstrating
significant performance improvements over a vanilla LLM
(up to 17.78 points) in multiple cross-lingual NLP tasks for
low-resource languages,

• Qualitatively and quantitatively reveal that the performance
gain by visual supervision can be larger even if a low-resource
language is linguistically less similar to a high-resource one.

2 RELATEDWORK
2.1 Visually-guided NLP methods and tasks
Before the emergence of LLMs, most works focused on incorpo-
rating visual information into specific NLP methods and tasks
to improve language understanding, such as semantic parsing [8,
36, 37, 61], natural language inference [74], information retrieval

[21, 23, 24], machine translation [18, 30, 73, 79], evaluation for nat-
ural language generation [82], spatial commonsense reasoning [45],
bilingual lexicon learning [33, 68], and so on. Since then, a number
of language representation learning methods have been proposed,
which are applicable to multiple NLP tasks [5, 10, 32, 39, 52, 78].
Recent works have proven that visual information can enhance
LLMs [25, 49, 65, 66, 70, 76], V+L models [41, 80], and both [42].

In particular, Vokenization [65] improved LLMs by using token-
level image retrieval while iACE [49] did so by sentence-level im-
age generation with a text-to-image model. Z-LaVI [76] combined
sentence-level image retrieval and image generation. VaLM [70]
appended image features to the attention layer in LLMs while VAWI
[25] inserted image features to the embedding layer in LLMs.

We choose to extend the Vokenization work [65] from the view-
point of the computational efficiency and invariance of the model
architecture. The other works described above either use sentence-
level image generation/retrieval to obtain visual supervisions or
modify the model architecture of LLMs to insert visual information.
The former would become computationally more expensive and
possibly infeasible to generate/retrieve desirable images for whole
input texts as the input texts become semantically more complex.
As for the latter, we want to keep the broader applicability of LLMs
to NLP tasks without modifying the model architecture. The Vo-
kenization work [65] keeps the LLM architecture and works as a
token-level image retriever, which is computationally efficient.

2.2 Cross-lingual transfer of multi-modal
models with visual data

Instead of LLMs, utilizing visual data also improves performance of
multi-modal models across languages in multi-modal tasks such as
image captioning, visual question answering, multi-modal machine
translation, text-image and speech-image retrieval etc. [6, 7, 19, 29,
40, 59, 64, 81]. Specifically, similar to our work, [59] investigated
whether visual information contributes to cross-lingual transfer
learning of a grounded speech model in the low-resource setting.

While most of these works rely on paired image-text or image-
speech datasets where an image and multilingual texts/speeches
are all aligned, we use a multilingual multi-modal dataset whose
texts are not explicitly aligned across languages.

2.3 Cross-lingual transfer of LLMs with texts
LLMs trained on a large corpus of multilingual text data have been
shown to perform better in cross-lingual NLP tasks [11, 12, 16, 17].
These LLMs use a single Transformer-based architecture [67] that
has a unified vocabulary over multiple languages and can process
texts in arbitrary languages without language-specific computa-
tions. There also exist probing works that attempt to investigate
why cross-lingual LLMs work so well despite such a simple train-
ing that trains a single LLM on a multilingual corpus without any
explicit alignment of texts across languages [14, 57].

In this paper, we propose to improve the performance of a cross-
lingual LLM with visual data in cross-lingual NLP tasks.

3 METHOD
We describe the training procedure of the visually-supervised lan-
guage model (VLM) [65] (§3.1). The visually-derived supervision
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Figure 2: Method overview. Left: Training of visually-supervised language model (VLM). Right: Training and inference of
Vokenization.

used in the VLM training is generated by Vokenization (§3.2). Fig-
ure 2 illustrates an overview of the method.

3.1 Visually-supervised language model (VLM)
A VLM is an LLM jointly trained with two pre-training tasks:
masked language modeling (MLM) and voken classification task
(VCT). Since the VLM is an LLM, the VLM is trained on a text corpus
and applicable to NLP tasks taking a text as an input while it is
not applicable to multi-modal tasks that requires to process images.
In this paper, we choose a masked language model as our VLM
architecture following previous work [65], but replace a monolin-
gual model [16] with a cross-lingual model, specifically XLM-R [11].
Since the two pre-training tasks described below are independent of
each other, we can apply the same training method to other model
architectures (e.g., causal language models [58]) wherever possible
by replacing the MLM with the causal language modeling (CLM)
task, but we leave the investigation for future work.

3.1.1 Masked language modeling (MLM). In MLM, the VLM pre-
dicts masked tokens given a masked sentence. By utilizing the
context of the masked sentence, the model learns a good represen-
tation of tokens that can be used in various NLP tasks [16].

Formally, a VLMM predicts a conditional probability of masked
tokens𝒘mask given a masked sentence 𝒔\𝒘mask , in which the orig-
inal sentence 𝒔 from a text corpus Ttxt consists of 𝑛 tokens, 𝒔 =

𝑤1𝑤2 . . .𝑤𝑛 = {𝑤𝑖 }𝑛𝑖=1, and 𝑚% of the tokens in 𝒔 are randomly
masked, i.e., replacedwith a special token <mask>.1 For eachmasked
token 𝑤𝑖 ∈ 𝒘mask, we compute a probability distribution 𝑃 (𝑤𝑖 |
𝒔\𝒘mask ;M) over the vocabularyVtoken from the last hidden states
𝒉𝑖 ∈ R𝑑 of tokens in the VLM.

𝑃 (𝑤𝑖 |𝒔\𝒘mask ;M) = 𝑓token (𝒉𝑖 ), (1)

1We follow the masking strategy proposed in [16].

in which 𝑓token (·) is a multi-layer perceptron (MLP) that projects
the hidden states onto a continuous space with dimension equal to
the vocabulary size |Vtoken | using an activation function. Based on
the output, we compute the negative log likelihood as an objective
function for MLM.

LMLM = − 1
|𝒘mask |

∑︁
𝑤𝑖 ∈𝒘mask

log 𝑃 (𝑤𝑖 |𝒔\𝒘mask ;M) . (2)

3.1.2 Voken classification task (VCT). The VCT enables the VLM
to capture visually-induced knowledge by learning to predict vo-
kens (‘visualized tokens’) assigned to tokens given a sentence. The
vokens are natural images assigned by our Vokenizer (described
in §3.2) considering the context of the input sentence. The use of
the context means that even the same token in different contexts
can be associated with different vokens. For example, the plausible
voken for the token “dog” could be different in “a small white dog”
and “a tall brown dog” due to the different contexts. By contrast,
the voken for “white” in “a small white dog” might also be different
from the one for “white clouds.” Thus, the VLM should learn such
visually-enriched representations of tokens through VCT. This type
of learning cannot be achieved only by MLM because the super-
vision in MLM is always identical to the corresponding masked
tokens even in different contexts.

Similar to the MLM formulation, the VLM predicts a conditional
probability of vokens {𝑣 𝑗 }𝑛𝑗=1 given a masked sentence 𝒔\𝒘mask .

2

We compute a probability distribution of the voken, 𝑃 (𝑣 𝑗 | 𝒔\𝒘mask ;
M), over the voken vocabulary Vvoken from the last hidden states
𝒉 𝑗 ∈ R𝑑 of tokens in the VLM.

𝑃 (𝑣 𝑗 |𝒔\𝒘mask ;M) = 𝑓voken (𝒉 𝑗 ), (3)

in which 𝑓voken (·) is an MLP that projects the hidden states onto
a continuous space with dimension equal to the vocabulary size

2While we could give the original complete sentence 𝑠 to the VLM for VCT, we follow
the work [65] to keep the training consistent.
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|Vvoken | using an activation function. We do not share the model
parameters between the two MLPs 𝑓token and 𝑓voken while we do
share the model parameters of the VLM in MLM and VCT. Based
on this output, we compute the negative log likelihood for VCT,

LVCT = − 1
𝑛

𝑛∑︁
𝑗=1

log 𝑃 (𝑣 𝑗 |𝒔\𝒘mask ;M) . (4)

Combining with LMLM, we minimize the joint objective function
throughout the VLM training,

L = LMLM + LVCT . (5)

3.2 Vokenization
We need a corpus where vokens are assigned to tokens for VCT
training. However, no such corpus exists and annotating vokens
is very costly and might not be feasible because some tokens may
not have a visual correspondence (e.g., abstract or function words).
To this end, we automatically annotate vokens using pseudo-labels
produced by a Vokenizer at the expense of correctness.3 Acting
as a token-level image retriever, the Vokenizer retrieves vokens
(images) related to tokens from an image set given a sentence.

3.2.1 Training. To train the Vokenizer, we leverage a multi-modal
corpus, in which an image is paired with textual descriptions that
describe or are related to the image. The previous work [65] used
COCO [43] and Visual Genome [38], but the descriptions accom-
panied by images in these corpora are written in English. Indeed,
we use WIT [63], a multilingual multi-modal corpus constructed
fromWikipedia, to study the capability of the cross-lingual transfer
of the VLM. WIT contains descriptions written in around 100 lan-
guages in total and images can be linked from multiple Wikipedia
articles written in different languages, which means that some de-
scriptions in different languages may be loosely coupled via images.
However, it is not always ensured that these descriptions are the
direct translations to each other since the images can be used in
different contexts in different articles. 4

The Vokenizer is composed of a language encoder and vision
encoder and trained by contrastive learning [26, 60]. We treat the
existing image-text (description) pair in WIT as a positive instance
while we randomly create a negative instance by replacing an image
with a different image taken from another image-text pair. Through
contrastive learning, the Vokenizer learns representations of texts
and images so that they are close to each other for positive instances
while more distant for negative instances.

More concretely, we adopt a pre-trainedXLM-R [11] and ResNeXt
[75] as the language and vision encoders, respectively. Given an
image 𝑣 and text 𝑡 as an input instance, we separately encode them
by the respective encoders to obtain the feature representations.

{𝒉𝑖 }𝑙𝑖=1 = Encoderlan ({𝑤𝑖 }𝑙𝑖=1), (6)
𝒈 = Encodervis (𝑣), (7)

where Encoderlan and Encodervis are the language and vision en-
coders, respectively, and we apply a tokenizer to the input text 𝑡
3This is the same setting as the original work [65].
4For example, the image found at https://en.wikipedia.org/wiki/File:Classical_
spectacular_laser_effects.jpg is used in different contexts in different articles such as
https://en.wikipedia.org/wiki/Multimedia, https://en.wikipedia.org/wiki/Lighting, and
https://it.wikipedia.org/wiki/Laser, and they are not the translations to each other.

to split it into subword tokens {𝑤𝑖 }𝑙𝑖=1 before encoding. Note that
we utilize the feature representations of each token5 for Vokeniza-
tion and also that we feed all the tokens to the language encoder
at a time so that the encoder can consider the surrounding con-
text of each token in the input text 𝑡 when computing the feature
representation of each token.

We then apply an MLP to both representations to project them
onto the same feature space.

𝒉′𝑖 = Normalize(𝑓lan (𝒉𝑖 )), (8)
𝒈′ = Normalize(𝑓vis (𝒈)). (9)

Normalize(·) applies L2 normalization to the input vector to be of
a length of 1. Based on the outputs 𝒉′

𝑖
, 𝒈′ ∈ R𝑑 ′

of the MLPs 𝑓lan,
𝑓vis, a scoring function 𝑟 (𝑣,𝑤𝑖 ) is calculated by a dot product of the
feature representations.

𝑟 (𝑣,𝑤𝑖 ) = 𝒈′⊤ · 𝒉′𝑖 . (10)

Since the score is equivalent to the cosine similarity between the
two normalized representations, the score represents the relevance
between the image 𝑣 and the token𝑤𝑖 in the text 𝑡 .

Considering a positive and negative instance, we compute a
triplet loss:

LVoken =
1
𝑙

𝑙∑︁
𝑖=1

max {0, 0.5 − 𝑟 (𝑣,𝑤𝑖 ) + 𝑟 (𝑣,𝑤𝑖 )}, (11)

in which 𝑣 is a negative image randomly taken from another in-
stance. To minimize this loss, we update only the model parameters
of the MLPs, fixing those of the language and vision encoders.

While this might be a sub-optimal way to learn the token-level
exact correspondence between vision and language, this can actu-
ally work quite well for VLM training. We hypothesize about this as
follows. End-to-end neural machine translation models implicitly
and automatically learn the token- or phrase-level alignment be-
tween a source and target language from a sentence-level parallel
corpus (it is not perfect, though) even though the ground truth
annotation of the token- or phrase-level alignment is not available
[3, 77]. Similarly, in an image-text pair used for training the Vok-
enizer, there should also be an implicit correspondence between
visual objects in the image and textual expressions in the text. After
training the Vokenizer on a large multi-modal corpus, the Vok-
enizer should globally learn this correspondence. More specifically,
if some visual objects (e.g., “dog”) frequently co-occur with the cor-
responding textual expressions (e.g., “dog” or “puppy”), the visual
feature 𝒈′ and the textual feature 𝒉′ should be accordingly updated
to be close to each other during the training. Thus, arbitrary tex-
tual expressions can statistically be associated with some specific
images based on the learned feature space.

3.2.2 Inference. We apply the trained Vokenizer to a text corpus
Ttxt used for VLM training to annotate vokens.We conduct a nearest
neighbor search [35] over an image datastore to find an image
(voken) relevant to each token in an input sentence.

First, we construct an image datastore D from an image corpus
Timg. We utilize a subset of the images in the WIT dataset. Given a
set of imagesTimg = {𝑣1, . . . 𝑣 |Vvoken | }, we extract the visual features
5We interchangeably use ‘token’ instead of ‘subword token’ throughout the paper for
brevity unless otherwise explicitly stated.
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Table 1: Hyper-parameter settings of our evaluation. lr: learn-
ing rate, bs: batch size, #Epochs: number of epochs, Warm-
ups: warm-up steps, and #Seeds: number of seeds.

Task lr (×10−5) bs #Epochs Warm-ups #Seeds

XNLI {1, 2, 3} {4, 8} 5 0 5
NER {1, 2, 3} {2, 4} {6, 7, 8} 0 5
TyDiQA {3, 4, 5} {2, 4} {1, 2, 3} {500, 1000} 10
GLUE 2.5 32 3 0 10

Table 2: Evaluation results (accuracy) on XNLI. en, sw, and ur
are the two-letter language codes defined by ISO 639-1 and de-
note English, Swahili, and Urdu, respectively. Better average
scores are marked in bold. * indicates that the performance
gap is greater than two sigmas (i.e., standard deviations),
which are denoted by subscripts.

Model en sw ur

LLM 77.50±0.25 39.21±0.65 41.37±0.37
VLM (ours) 80.22∗±0.43 44.57∗±1.19 59.15∗±0.86

using the vision encoder in the Vokenizer. We couple the visual
features with the corresponding input images to form an instance
of the image datastore.

D = {(𝒈′, 𝑣 𝑗 ) |𝑣 𝑗 ∈ Timg}, (12)

where we obtain 𝒈′ from Equations (7) and (9).
We then apply the nearest neighbor search for each token in an

input sentence. Given an input sentence 𝑠 from a text corpus Ttxt,
we tokenize it, 𝑠 = {𝑤𝑖 }𝑛𝑖=1, and encode it with the language encoder
in the Vokenizer to obtain the language features {𝒉′

𝑖
}𝑛
𝑖=1 (Equations

(6) and (8)). Again, note that these features are contextualized in
the input sentence. We can utilize the relevance score 𝑟 (𝑣,𝑤𝑖 ) for
the nearest neighbor search.

𝑣∗ = argmax(𝒈′,𝑣𝑗 ) ∈D𝑟 (𝑣 𝑗 ,𝑤𝑖 ). (13)

These vokens constitute the visually-derived supervision in VCT
training, i.e., Equation (4).

4 EXPERIMENTS
4.1 Experimental setup
4.1.1 Datasets. We utilized WIT [63]6 to train our cross-lingual
Vokenizer. We obtained the metadata and descriptions from the
official site while we manually collected the images fromWikipedia
using the URLs specified in the metadata. We stored the images
with a size of 256 × 256 and in RGB format. The resultant WIT
dataset consisted of 11,355,430 images and 16,335,736 descriptions
in 106 languages. Out of 11M images, 3,238,941 images were paired
with English descriptions while only 36,315 and 21,924 images were
paired with Urdu and Swahili, respectively.

6https://github.com/google-research-datasets/wit

Table 3: Evaluation results (F1) on NER. See caption of Table 2
for additional details.

Model en sw ur

LLM 81.28±0.13 56.85±0.94 33.08±1.68
VLM (ours) 82.85∗±0.23 60.97∗±2.06 45.85∗±3.24

Table 4: Evaluation results (F1) on TyDiQA. See caption of
Table 2 for additional details.

Model en sw

LLM 49.26±1.69 30.76±3.26
VLM (ours) 54.17∗±1.44 34.00±2.85

We trained our cross-lingual VLM on a mixture of Wikipedia7
and CC-1008 [71], in which English (en) texts were from Wikipedia
(same as [65]) while we took Swahili (sw) and Urdu (ur) texts from
CC-100 (considered as low-resource languages in [11]). After tok-
enization, we obtained 2,776,717,588 tokens for English, 275,268,340
tokens for Swahili, and 894,500,384 tokens for Urdu.

We evaluated our VLM on four downstream tasks.We considered
three cross-lingual tasks: natural language inference (NLI), named
entity recognition (NER), and extractive span-based question an-
swering (QA). For each task, we used the XNLI [13], panx [13], and
TyDiQA [9] datasets, respectively, all of which were taken from
the XTREME benchmark [28]. For these cross-lingual tasks, the
training set is always English while the test set is English and the
target language, such as Swahili and Urdu. In addition, we evaluated
our VLM on GLUE [69], which is a natural language understanding
benchmark of English consisting of various NLP tasks, to study the
performance of our VLM on a high-resource language.

4.1.2 Implementation. We built our cross-lingual Vokenizer and
VLM by extending the implementation of [65]9, which is based on
PyTorch [56] and Hugging Face [72].

As for Vokenizer, we used the pre-trained XLM-R [11] (xlm-
roberta-base) provided by Hugging Face10 and the pre-trained
ResNeXt [75] (resnext101_32x8d) provided by TorchVision [50]
as the language and vision encoders, respectively. We concatenated
the hidden states extracted from the last four layers of XLM-R and
considered the resultant 3072-dimension vector as the language
feature representation while we treated the output vector (of 2048-
dimension) of the last fully-connected layer in ResNeXt as the vision
feature representation. We built the two MLPs (in Equations (8) and
(9)) with a linear layer that projects the respective feature represen-
tation onto the intermediate feature space of 256-dimension, ReLU
activation [53], dropout with a probability of 0.3, and another linear
layer that projects the intermediate feature onto a 64-dimension vec-
tor space (𝑑′ = 64). We trained our cross-lingual Vokenizer on WIT
with an effective batch size of 5120 for 20 epochs, using Adam [34]
with a learning rate of 10−3. The training took 19 hours using nine
7https://dumps.wikimedia.org/
8https://data.statmt.org/cc-100/
9https://github.com/airsplay/vokenization
10https://huggingface.co/xlm-roberta-base
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Table 5: Evaluation results on GLUE. Train size indicates the number of examples in the train set. Acc.: accuracy, MCC: Matthews
correlation coefficient, Corr: average of Pearson and Spearman correlations, and Average: macro average on eight tasks. See
caption of Table 2 for the other details.

Task MNLI QQP QNLI SST-2 CoLA STS-B MRPC RTE Average
Train size 393K 364K 105K 67K 8.5K 5.7K 3.7K 2.5K -
Metric Acc. F1 Acc. Acc. MCC Corr. F1 Acc. -
LLM 77.76±0.17 85.60±0.10 85.87±0.30 89.22±0.53 31.80±1.91 84.24±0.33 87.34±0.82 60.07±1.60 75.24±0.72
VLM (ours) 80.64∗±0.25 86.61∗±0.13 88.07∗±0.37 90.77∗±0.33 37.07∗±1.45 85.72∗±0.34 88.62±0.88 58.34±3.07 76.98∗±0.85

NVIDIA Tesla V100 GPUs. To conduct the nearest neighbor search,
we used FAISS [31], a fast and efficient similarity search library. We
constructed the image datastore with the prototypical 50K images
from WIT using K-means clustering [20, 47] (𝐾 = 50, 000) based on
the visual features encoded by ResNeXt.

For our VLM, we adopted XLM-R with the base architecture,
which has 12 layers and 768 dimensions for the hidden states (𝑑 =

768). The MLPs used for MLM and VCT (in Equations (1) and (3))
consisted of a linear layer that projects the output hidden states of
XLM-R to an intermediate feature space of the same dimension as
that of the hidden state, GeLU activation [27], layer normalization
[2], and another linear layer that projects the intermediate feature
to a vector space of the respective vocabulary size. We trained our
VLM on our three language corpora described in §4.1.1 from scratch,
with an effective batch size of 256 for 200K steps, using AdamW
[48] and a learning rate of 10−4 with a warm-up of 10K steps. The
training took 5.6 days with four NVIDIA Tesla V100 GPUs.

To evaluate our VLM on the downstream tasks, we fine-tune
our VLM on each downstream language task by adding an MLP
on top of the VLM. Note that the fine-tuning no longer involves
any visual data. Following the standard practice [16], we composed
the MLP for sequence classification tasks (i.e., XNLI and GLUE)
with a linear layer that projects the output hidden states of the
[CLS] tokens in the VLM onto an intermediate feature space of
the same dimension as that of the hidden state, Tanh activation,
dropout with a probability of 0.1, and another linear layer that
projects the intermediate feature to a vector space whose dimension
corresponds to the number of the target labels. We composed the
MLP for NER with a dropout with a probability of 0.1, and a linear
layer that projects the intermediate feature to a vector space whose
dimension corresponds to the number of the target labels. As for
TyDiQA, the MLP consisted of a linear layer that projects the output
hidden states from the VLM onto a vector space of two dimensions,
which corresponds to the start and end positions of the answer
span, respectively. Table 1 summarizes additional configuration of
the hyper-parameters used in our evaluation. We used one NVIDIA
A100 GPU for each evaluation and the elapsed time including fine-
tuning varied from one minute to 3.8 hours depending on the task
and hyper-parameters.

4.2 Main results
Tables 2 through 5 report the experimental results on four down-
stream tasks.11 Since Urdu is not included in TyDiQA, we report the

11Following the existing work [49, 65, 66], we report the results on the dev set for
GLUE and TyDiQA since the ground truth labels are not published for the test set.

results for English and Swahili. We computed the average scores
and standard deviations for multiple random seeds as shown in
Table 1 (#Seeds). For the cross-lingual tasks, we conducted a hyper-
parameter sweep using grid search and report the best average
scores (averaged on random seeds for the best grid point). We de-
cided the grid search space based on the characteristics of each task;
we considered more grid points and random seeds for unstable tasks
that tend to result in higher standard deviations. We compared our
VLM with an LLM baseline that was trained on exactly the same
text corpora (i.e., English Wikipedia and CC-100 Swahili and Urdu)
using the same configuration but excluding the VCT loss, which
means that the LLM was trained with the MLM loss only (Equation
(2) instead of Equation (5)).

Our VLM significantly outperformed the LLM baseline by mar-
gins larger than two standard deviations12 in most tasks except for
TyDiQA (sw) and the smaller tasks in GLUE, i.e., MRPC and RTE.13
In particular, our VLM that combines the VCT loss with the MLM
loss led to large improvements in cross-lingual transfer learning,
such as a 17.78 point improvement on Urdu (ur) in the XNLI task
(Table 2), and a 12.77 point improvement on Urdu in NER (Table 3). It
is also noteworthy that these large improvements were achieved by
visually-derived supervision in VCT that was obtained by our cross-
lingual Vokenizer even though the WIT datasets used to train the
Vokenizer contained very few images relevant to the low-resource
languages (36K for Urdu and 22K for Swahili) compared to those
for English (3M). Furthermore, our VLM performed better in the
monolingual evaluation setting, in which the model is fine-tuned
and tested on the same language, that is, English (en) in XNLI, NER,
and TyDiQA, as well as GLUE. Overall, these improvements clearly
demonstrate the effectiveness of visually-derived supervision us-
ing Vokenization both for cross-lingual transfer learning and to
improve the performance of a large language model in NLP tasks.

5 ANALYSES
While we demonstrated a clear performance improvement for the
VLM in cross-lingual tasks in the previous section, it raised two new
questions: (1) how does the cross-lingual transfer learning by the
Vokenizer compare to that of cross-lingual texts? and (2) can visual
information complement the cross-lingual transfer from texts? We

12This means that there is no overlap on the standard deviations from both models. In
the case of XNLI (en) in Table 2, the score of our VLM is larger than that of the LLM
plus two standard deviations: 80.22-0.43 > 77.50+0.25.
13One may notice the absence of the WNLI task in the GLUE results, but existing
works [16, 46, 49, 65, 66] have also been reporting the scores on a subset of GLUE,
excluding unstable tasks. Since we observed exceptionally higher standard deviations
of both models for WNLI (i.e., greater than 7), we considered WNLI as abnormal and
excluded it from the evaluation.
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Table 6: Comparison between monolingual and cross-lingual
models in a monolingual setting in XNLI. See caption of
Table 2 for additional details.

Model sw ur

LLM-sw 58.00±0.60 N/A
VLM-sw 59.92∗±0.32 N/A
LLM-ur N/A 57.80±0.27
VLM-ur N/A 58.90∗±0.36
LLM 53.43±1.23 55.40±0.54
VLM (ours) 56.39∗±0.36 57.90∗±0.64

Table 7: Lexical diversity.

Language Lexical diversity

sw 0.001771
ur 0.002249

seek to answer these questions with the following analyses. Our
first analysis (§5.1) disentangles the effects of visual information
and cross-lingual transfer from texts. Our subsequent analyses (§5.2
and §5.3) verify that visual information encourages cross-lingual
transfer even between a linguistically-distant pair.

5.1 Monolingual experiment
We trained the monolingual version of our VLM and the LLM base-
line with the same configuration described in §4.1 except for a
difference in the training data; we used either only Urdu or only
Swahili texts from CC-100. We then fine-tuned the trained mono-
lingual models on the low-resource languages in the XNLI task
(using the dev set due to no training data being available in these
languages), and tested them on the same languages.

Table 6 shows the results. The first section (*-sw and *-ur) shows
the results of themonolingual versions of themodels trained on that
language. The second section (LLM and VLM (ours)) presents the
results of the cross-lingual versions evaluated in the monolingual
setting. Regardless of the training setting (i.e., monolingual or cross-
lingual), our VLMs outperformed the corresponding LLMs. The
outperformance of the monolingual VLMs over the monolingual
LLMs indicates the effectiveness of Vokenization since the only
difference between the VLM and LLM is the loss function. The
outperformance of the cross-lingual VLM over the cross-lingual
LLM in the monolingual setting suggests that the VLM achieved
better language representations derived from the corresponding
token embeddings of the model in the low-resource languages. We
also note that the absolute values of the scores in the monolingual
setting (Table 6) were typically higher than those in the cross-
lingual setting (Table 2). This is natural because the monolingual
setting uses the same language both for fine-tuning and evaluation,
and it is therefore easier for the models to adjust themselves to
that language and data. Moreover, the performance gap between
our VLM and the LLM counterpart is larger in the cross-lingual
setting (Table 2) than that in the monolingual setting (Table 6): 5

Table 8: Subword overlap.

Language pair Subword overlap

(sw, en) 0.3732
(ur, en) 0.3202

Table 9: Shared voken usage on training corpora.

Language pair Top-10 Top-100 Top-1000

(sw, en) 0.08952 0.02024 0.003945
(ur, en) 0.10250 0.02224 0.005408

to 17 points in the cross-lingual setting and 2.5 to 3 points in the
monolingual setting. This implies that the VLM acquired better
cross-lingual representations and the performance improvement in
the cross-lingual setting was boosted by the cross-lingual transfer
learning of visual supervision.

5.2 Language similarity and voken usage
Next, we analyzed the training data used for VLM training from
a language perspective. Prior work [44] proposed to select source
languages useful for cross-lingual transfer learning in NLP tasks
based on multiple linguistic features. Among these features, we
measured the lexical diversity and subword overlap to inspect the
characteristics of the data. The lexical diversity is the ratio of the
number of unique token types, i.e., vocabulary, on a dataset to the
total number of tokens in the dataset. A higher lexical diversity
suggests that training will be difficult because the language model
needs to capture a more diverse set of linguistic expressions. The
subword overlap is the ratio of the number of unique token types
commonly used in two languages to the sum of the numbers of the
vocabulary for the two languages. Intuitively, two languages that
are linguistically similar will have a higher subword overlap.

Tables 7 and 8 show the results. From Table 7, we observe that
Urdu (ur) is more lexically diverse than Swahili (sw), which indi-
cates that it is more difficult for the language model to learn good
representations for Urdu in the low-resource scenario. Furthermore,
Table 8 indicates that Urdu has less subword overlap. This suggests
that it is less likely that the cross-lingual language model can take
advantage of cross-lingual transfer from English during training.
However, this is somewhat not consistent with the fact that the
performance gap is larger in Urdu than Swahili in Tables 2 and 3.

Thus, we hypothesize that these larger performance gains in
Urdu were a result of the visually-induced supervision through VCT.
To reveal specifically which part of the training contributed to these
improvements, we took a closer look at its training mechanism. In
VCT (Equation (3) and the left side of Figure 2), our VLM is trained
to predict vokens using its language representations, i.e., the last
hidden states. There could be vokens visually similar to each other
in the training data, and when predicting these vokens, the VLM
should compute similar language representations to each other
even if the corresponding tokens are different or even in different
languages. This could encourage cross-lingual transfer learning,
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Figure 3: Visualization of language representations encoded by our VLM and LLM. The best view can be seen in color.

especially when more vokens assigned to English tokens are also
assigned to tokens in low-resource languages.

We adopted the mean reciprocal rank (MRR) to measure the
voken usage across languages considering its frequency.

MRR(Vtrg,Vsrc, 𝑘) =
1
𝑘

∑︁
𝑣𝑖 ∈top(Vtrg,𝑘 )

1
rank(𝑣𝑖 ;Vsrc)

, (14)

in which top(Vtrg, 𝑘) returns the most frequent top-𝑘 vokens in
the voken vocabulary Vtrg in the target language while rank(𝑣𝑖 ;
Vsrc) returns the rank of the frequency of the voken 𝑣𝑖 in the voken
vocabulary Vsrc in the source language. For example, MRR(Vsw,
Ven, 10) is the MRR between Swahili and English.

We measured the MRR for vokens used in the corpora for the
low-resource languages (𝑘 ∈ {10, 100, 1000}) and report the results
in Table 9. Clearly, the vokens assigned to the Urdu tokens are more
frequently used in the English tokens. This means that our VLM
had more chances for cross-lingual transfer in Urdu than Swahili
through VCT by predicting more vokens shared with English texts.
Combined with the results for the language similarity, we conclude
that although Urdu is linguistically distant from English, visually-
derived supervision compensated for this limitation.

5.3 Feature visualization
To intuitively understand the learned language representations, we
visualize what the representations look like in their feature space.
For this purpose, we obtained the language representations (of the
[CLS] token) from the last hidden layers in both our VLM and
the LLM counterpart for each instance in the dev set of the XNLI
dataset. We visualized the language representations in Figure 3

using a dimension reduction technique [51]. While the XNLI dataset
contains 15 languages, we focus on the three languages used in our
experiments, that is, English (en), Swahili (sw), and Urdu (ur).

In Figure 3a, the English and Urdu representations are partially
mixed and the Swahili ones are located next to them. This implies
that our VLM learned better cross-lingual representations as shown
in the previous sections (§4.2 and §5.2) especially between English
and Urdu. In contrast, Figure 3b shows that the representations of
the three (and more) languages are distant from each other, sug-
gesting that the LLM struggled with cross-lingual transfer learning.

6 CONCLUSION
In this work, we have studied an interesting question: does visually-
derived supervision contribute to cross-lingual transfer learning
for low-resource languages in NLP tasks. In particular, we extended
the Vokenization approach to the cross-lingual setting using multi-
lingual and multi-modal datasets. Our experimental results demon-
strated that the cross-lingual VLM significantly outperformed the
LLM baseline by large margins in multiple cross-lingual NLP tasks.
Our detailed analysis has shown that visually-derived supervision
can help even more for linguistically-distant languages. We hope
this work sheds light on the line of research for the cross-lingual
transfer of LLMs using visual information.
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