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ABSTRACT
The self-media era provides us tremendous high quality videos.
Unfortunately, frequent video copyright infringements are now
seriously damaging the interests and enthusiasm of video creators.
Identifying infringing videos is therefore a compelling task. Cur-
rent state-of-the-art methods tend to simply feed high-dimensional
mixed video features into deep neural networks and count on the
networks to extract useful representations. Despite its simplicity,
this paradigm heavily relies on the original entangled features and
lacks constraints guaranteeing that useful task-relevant semantics
are extracted from the features.

In this paper, we seek to tackle the above challenges from two
aspects: (1) We propose to disentangle an original high-dimensional
feature into multiple sub-features, explicitly disentangling the fea-
ture into exclusive lower-dimensional components. We expect the
sub-features to encode non-overlapping semantics of the original
feature and remove redundant information. (2) On top of the dis-
entangled sub-features, we further learn an auxiliary feature to
enhance the sub-features. We theoretically analyzed the mutual in-
formation between the label and the disentangled features, arriving
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at a loss that maximizes the extraction of task-relevant information
from the original feature.

Extensive experiments on two large-scale benchmark datasets
(i.e., SVD and VCSL) demonstrate that our method achieves 90.1%
TOP-100 mAP on the large-scale SVD dataset and also sets the
new state-of-the-art on the VCSL benchmark dataset. Our code and
model have been released at https://github.com/yyyooooo/DMI/,
hoping to contribute to the community.
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• Computing methodologies → Visual content-based index-
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1 INTRODUCTION
Videos and images have become the most popular information
source for us. A person may spend hours watching online videos,
and an appealing video on YouTube could attract millions of views
per day. The sheer number of videos on multiple internet platforms
(such as Facebook and TikTok) has also brought along the issue of
copyright infringement. Frequent video copyright infringements
now turn into a major concern for video creators and publishers,

ar
X

iv
:2

30
9.

06
87

7v
1 

 [
cs

.C
V

] 
 1

3 
Se

p 
20

23

https://doi.org/10.1145/3581783.3612002
https://github.com/yyyooooo/DMI/
https://doi.org/10.1145/3581783.3612002
https://doi.org/10.1145/3581783.3612002


MM ’23, October 29–November 3, 2023, Ottawa, ON, Canada. Zhenguang Liu et al.

who have to spend numerous resources to prevent plagiarism and
seek remedies for infringed works. As a result, infringing video
retrieval has become an increasingly important task and has drawn
intense attention from the research community.

Technically, a malicious user may directly copy a video and re-
lease it on another link or website. Such duplicate videos are trivial
to be detected. However, malicious users usually conduct video edit-
ings to avoid infringement detection, the editings typically involve
video cropping, blocking, flipping, splicing, etc. Fig. 1 demonstrates
several video infringement examples.

Infringing video retrieval amounts to detecting similar and near-
duplicate video pairs out from a video gallery. Over the past decade,
code books [17] and hashing functions [32] have been popular so-
lutions to generate video representations and enable video sim-
ilarity computation. However, these models heavily depend on
handcrafted features and shallow functions to identify infringe-
ments, leading to unsatisfactory performance. Recently, deep learn-
ing models [7, 39, 40, 42] have become the dominant approaches
in infringing video retrieval, by virtue of their capacity to learn
non-linear functions and sophisticated feature representations. One
line of work attempts to fuse all the frame features into a single
video-level representation and perform similarity matching on such
representations [21, 23, 24]. Another line of work computes a frame-
to-frame similarity matrix for all the frame-level features, and subse-
quently combines the matrix elements into a video-level similarity
score [1, 15, 34].

Fundamentally, given an input video pair, the essence of in-
fringing video retrieval is to obtain their feature representations,
which capture their content similarity and disregard the superficial
differences (such as varying video encodings, noises or pixel-level
differences). Upon investigating and experimenting on the released
implementations of state-of-the-art approaches [14, 21, 23], we em-
pirically observe that two issues still persist: (1) Although existing
methods have shown promising results in retrieving near-duplicate
video pairs, they still have difficulties in identifying complicated
cases where two videos are not explicitly similar, e.g., an infringing
videomight be obtained by cutting out part of the frame, video splicing,
or blocking part of the frames. (2) Current state-of-the-art methods
rely on neural networks to extract label-relevant (in this task the
label indicates whether two videos are similar) representations from
the original feature, lacking mathematical constraints guarantee-
ing that useful cues are extracted and redundant information is
reduced. Consequently, the final video embedding may overfit to
trivial features or insufficient representations, which compromises
the performance and robustness of such methods.

In this paper, we believe it would be fruitful to investigatewhether
introducing supervision to disentangle the features and enforce
task-relevant feature extraction would facilitate the task. With this
goal in mind, we come up with the following designs. (i) Following
the theoretical analysis steeped in the framework of contrastive
learning and Kullback–Leibler divergence, we explicitly disentangle
the original feature into a group of non-overlapping sub-features.
(ii) On top of the sub-features, we further engage in mutual informa-
tion theory to extract an auxiliary feature from the original feature.
The sub-features and the auxiliary feature together are composed
into the final global feature. We attempt to maximize the mutual
information between the label and the auxiliary feature so that no

task relevant information is dropped. This framework follows a
maximum relevancy and minimum redundancy paradigm, serving
to remove superfluous information and retaining as much useful
information as possible for the end task.

We extensively evaluate the proposed method on two large-scale
benchmark datasets (i.e., SVD and VCSL). Empirical evaluations
show that our approach significantly outperforms current state-of-
the-art methods. Specifically, our method achieves 90.1% TOP-100
mAP on the large SVD dataset and also sets the new state-of-the-
art performance on the VCSL benchmark dataset. Our code has
been submitted to Github and are availabel at https://github.com/
yyyooooo/DMI/ . We also present extensive ablation analyses on
the contribution of each component, and evaluate the efficacy of
feature disentangling and the proposed mutual information loss.

To summarize, our contributions are:
• We introduce a novel framework for extracting disentangled
sub-features, which incorporates KL divergence maximiza-
tion and contrastive learning to supervise the sub-feature
learning process. The disentangled sub-features each serves
to preserve an unique aspect of the original feature and is
closely-related to the end task.

• In order to further extract task relevant information missed
by the sub-features, we propose an auxiliary feature extrac-
tion method entrenched in the mutual information theory,
which seeks to distill as much task relevant information from
the original feature as possible.

• Extensive experiments on the large-scale SVD and VCSL
benchmark datasets show that our method surpasses state-
of-the-art approaches. Interesting findings and insights on
feature disentanglement, original feature selection, and ex-
isting methods are presented.

2 RELATEDWORK
In this section, we provide a brief holistic overview on the literature
that is closely pertinent to this work. Roughly, the closely-related
literature can be cast into 3 categories, namely video retrieval, con-
trastive learning, and mutual information theory.

2.1 Video Retrieval
Earlier approaches for video retrieval mainly revolve around code
books [2, 20, 22] and hashing functions [32, 33] for encoding a video
into a low-dimensional representation. Fueled by the success of deep
learning [6, 10, 25, 27, 28, 41] in recent years, the predominant ap-
proaches are to decompose the video into frames and feed them into
an image extraction backbone network, obtaining a sequence of im-
age feature representations. One approach is to fuse all these image
features into a single video-level representation and perform simi-
lar video pair detection on video-level representations [21, 23, 24].
Another approach is to compute a frame-to-frame similarity ma-
trix for all the frame-level features, and subsequently combine the
matrix elements into a video-level similarity score [1, 15, 34]. How-
ever, current methods heavily rely on the network architecture to
extract effective representations from the input video pair, with no
explicit mathematical constraints that can be leveraged to enforce
extraction of useful semantic cues and removal of redundancies.
Our work seeks to address this research gap by proposing a new

https://github.com/yyyooooo/DMI/
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Figure 1: Video infringement usually involves video editings such as video cropping, blocking, flipping, splicing, etc. The left
most column shows the original video and the right columns show the modified videos.

knowledge distillation framework tailored for the video retrieval
task.

2.2 Contrastive Learning
Contrastive learning, which is typically done in a self-supervised
manner, seeks to learn a representation that forces dissimilar videos
to be far away from each other in the encoding space and similar
videos to be close to each other [5, 11]. One seminal work [30] pro-
poses the InfoNCE loss as an effective contrastive learning objective.
Furthermore, [4] presents SimCLR, which engageed in data aug-
mentations to generate positive (similar) pairs. Another landmark
work, MoCo [11], improves upon the InfoNCEwork through the use
of a momentum contrast mechanism that improves convergence.
[43] further advocates to train convolutional neural networks with
contrastive learning and hard data augmentation, trying to explore
more discriminative representations. Both [5] and [43] employ a
similar strategy of data augmentation and take an augmented im-
age as a positive (similar) sample. Such data augmentations include
cropping, grayscale, blocking part of the picture, and horizontal flip-
ping, which are quite similar to the strategies adopted in video
infringement.

2.3 Mutual Information Theory
The mutual information of two random variables gives a quantita-
tive measurement of the mutual dependency between them. The
seminal work [36, 37] of information bottleneck theory present
mathematical backgrounds of statistical learning and deep learning
in the framework of mutual information. The theory put forth by
the authors plays an indispensable role for carrying out information
distillation by eliminating irrelevant input noises and preserving
only those that are necessary for the task at hand. Estimatingmutual
information of two variables from their unknown distributions is no-
toriously challenging by nature. Recent works, such as [26, 35, 44],

propose a variational self-distillation approach to estimate mutual
information, which can be combined effectively with backpropa-
gation training in the deep learning life-cycle. Inspired by this, we
embrace mutual information to perform feature level supervision
that constrains label-relevant representation distillation.

3 METHOD
Problem Presented with a query video 𝑞 and a video gallery
{𝑔𝑖 }𝑛𝑖=1, we are interested in retrieving all similar videos of 𝑞 from
the video gallery. Specifically, we seek to learn an embedding for
each video, where the similarity of a video pair can be conveniently
computed via the distance between their respective embedding
vectors. In other words, our task can be deemed as a supervised
metric learning problem where the effectiveness of the embedding
is assessed based on whether similar videos have a correspondingly
smaller distance in the embedding space. Unsurprisingly, the em-
bedding vectors for dissimilar videos should be far apart and have
a low similarity score.

3.1 Method Overview
Broadly, we outline the proposed framework in Figure 2. First, we
employ a pre-trained backbone network, such as MoCoV3 [11] and
VGG [31], to extract a sequence of frame-level features from each
input video. Subsequently, we fuse all frame-level features through
average pooling, to get a video-level original feature for each video.

Given the original feature 𝑉 for a video, (1) we propose a sub-
features extraction module, which extracts a total of 𝑘 disentan-
gled sub-features {z𝑖 }𝑘𝑖=1 from 𝑉 . The key component in this mod-
ule is to maximize the distributional distance (such as the KL diver-
gence and Wasserstein distance) between each pair of sub-features.
We expect each sub-feature z𝑖 to encode exclusive aspects of the
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Figure 2: Our pipeline: (1) In the training stage, the network input are an anchor video, a positive video (namely a video that
is similar to the anchor video), and a set of negative videos (namely a set of videos that are dissimilar to the anchor video).
We utilize MoCoV3 [5] backbone network to extract original features for the input videos. The original features go through a
disentangled feature learning module and an auxiliary feature extraction module. The three objective functions shown in (c)
constrain the network, mathematically guaranteeing the network to extract disentangled sub-features and the task-relevant
auxiliary feature. (2) In the test stage, a query video is fed into the trained network to extract its features. Videos in the gallery
are also input into the newtork to obtain their features. The cosine similarity between the query video and a video in the
gallery is used to measure their similarity.

original video feature. As such, we break the high dimensional fea-
ture into low dimensional disentangled components to remove re-
dundancy and facilitate the extraction of task-relevant information.
(2) In order to ensure the sufficiency of the feature representation,
we further extract an auxiliary feature z𝑠 to complete {z𝑖 }𝑘𝑖=1. In
particular, we leverage a mutual information objective to effectuate
task-relevant supplementary information extraction. The disen-
tangled subfeatures {z𝑖 }𝑘𝑖=1 and the auxiliary feature z𝑠 are then
combined (concatenated) to arrive at our final feature representa-
tion. We would like to point out that the proposed approach has
an edge in explicitly disentangling the feature, as well as in intro-
ducing mutual information supervision and sub-feature learning
objectives.

In what follows, we will elaborate the key components of disen-
tangled sub-feature learning and auxiliary feature learning, respec-
tively.

3.2 Disentangled Sub-feature Learning Module
We can certainly train a direct end-to-end CNN network for extract-
ing infringement-related video features, as is done in most previous
methods [21, 23, 24]. However, such approaches implicitly mix dif-
ferent kinds of video features together, translating to high feature
redundancy and low interpretability. Inspired by this, we believe it
would be fruitful to investigate whether introducing supervision to
disentangle the features would facilitate the task. With this goal in
mind, we design a sub-features extraction module in the framework
of contrastive learning and Kullback–Leibler divergence, which
maps the original 𝑑-dimensional video feature to 𝑘 disentangled

lower dimensional sub-features. Contrastive learning supervises
that similar videos have close embeddings and dissimilar videos
have distinct embeddings, while Kullback–Leibler divergence en-
forces the 𝑘 sub-features to be different from each other.

Formally, we denote the 𝑘 extracted sub-features for a given
anchor video 𝑉 as {z𝑖 }𝑘𝑖=1, and the concatenation of sub-features
{z𝑖 }𝑘𝑖=1 as v. For a positive video 𝑉 + that is similar to 𝑉 , we de-
note its concatenated sub-features as v+. Meanwhile, for a set of
negative videos {𝑉 −

𝑗
}𝑁
𝑗=1 that are dissimilar to 𝑉 , we denote their

concatenated sub-features as {v−1 , v
−
2 , · · · , v

−
𝑁
} respectively. We ap-

ply infoNCE loss [30] to v, v+, and {v−1 , v
−
2 , · · · , v

−
𝑁
}, constraining

that similar video pairs have similar embeddings while dissimilar
pairs have distinct embeddings, which is given by:

LinfoNCE = −𝑙𝑜𝑔 𝑒𝑥𝑝 (v · v+/𝜏)∑𝑁
𝑗=1 𝑒𝑥𝑝 (v · v−

𝑗
/𝜏)

, (1)

where 𝜏 is a regulation parameter.
On top of the contrastive learning, we further add supervision on

the extracted sub-features {z𝑖 }𝑘𝑖=1 of a video, ensuring that different
sub-features encode minimally-overlapping aspects (semantics) of
the original video. More specifically, for each two subfeatures z𝑖
and z𝑗 of a video, we try to maximize their difference, which is
formulated as:

max DKL (Pz𝑖 | |Pz𝑗 ) = max
[
−
∫
Pz𝑖 (𝑥)𝑙𝑛(

Pz𝑗 (𝑥)
Pz𝑖 (𝑥)

)𝑑𝑥
]
. (2)
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Actually we have 𝑘 subfeatures for each video (namely 𝑘∗(𝑘−1)
2

subfeature pairs), therefore, the overall KL divergence objective is:

max
𝑘∑︁
𝑖=1

𝑘∑︁
𝑗=𝑖+1

DKL (Pz𝑖 | |Pz𝑗 ) =

max
[
−

𝑘∑︁
𝑖=1

𝑘∑︁
𝑗=𝑖+1

∫
Pz𝑖 (𝑥)𝑙𝑛(

Pz𝑗 (𝑥)
Pz𝑖 (𝑥)

)𝑑𝑥
]
.

(3)

Through such a principled disentangling of the original feature,
we are able to remove redundancy and obtain compact disentangled
sub-features, which also facilitate subsequent steps of task-relevant
information extraction.

3.3 Auxiliary Feature Extraction Module
Up to this point, we are able to acquire the disentangled subfea-
tures {z𝑖 }𝑘𝑖=1 for a video. However, in the process of redundancy
removing, the subfeatures might also miss some useful information
in the original feature, leading to erosion of task-relevant informa-
tion. Therefore, we propose to complete the subfeatures with an
additional feature that consists of task-relevant information missed
by subfeatures. To achieve this goal, we theoretically analyzed the
mutual information between the label and the features, and derive a
loss that maximizes the extraction of complementary task-relevant
features. These allow us to enhance the extracted subfeatures and
approach a better accuracy.

Formally, mutual information is a formal measure of the mutual
dependency between random variables. The mutual information
I(x1; x2) between two random variables x1 and x2 quantifies their
correlated information and is defined as:

I(x1; x2) = Ep(x1,x2 )
[
log

p(x1, x2)
p(x1)p(x2)

]
, (4)

where 𝑝 (x1, x2) is the joint probability distribution of x1 and x2,
and 𝑝 (x1) and 𝑝 (x2) are their marginals.

Technically, given the acquired subfeatures z = 𝑐𝑜𝑛𝑐𝑎𝑡𝑒𝑛𝑎𝑡𝑒

{z1, z2, · · · , z𝑘 }, our primary objective is to maximize the amount of
complementary task-relevant information in the auxiliary feature
z𝑠 , which is given by:

max I(𝑦; z𝑠 |z), (5)

where 𝑦 denotes the label (whether two videos are similar), and
I(𝑦; z𝑠 |z) represents the amount of task-relevant information in the
auxiliary feature z𝑠 . Intuitively, maximizing this objective amounts
to optimizing the additional task-relevant information we seek to
extract from the original feature.

To simplify this problem, we factorize Eq. (5) as below:

max I(𝑦; z𝑠 |z) ⇒max [I(𝑦; z𝑠 )
− I(z𝑠 ; z) + I(z𝑠 ; z|𝑦)] .

(6)

Interestingly, I(z𝑠 ; z|𝑦) represents the shared task-irrelevant in-
formation between z𝑠 and z. Wemay assume that the task-irrelevant
information shared between z𝑠 and z is negligible upon sufficient
training [35]. This simplifies Eq. (6) to:

max I(𝑦; z𝑠 |z) −→ max [I(𝑦; z𝑠 ) − I(z𝑠 ; z)] . (7)

To alleviate information dropping, we further introduce a regu-
larization term:

min
𝑘∑︁
𝑖=1

I(𝑦; z𝑖 |z𝑠 ) . (8)

I(𝑦; z𝑖 |z𝑠 ) measures the vanishing task-relevant information
in z𝑖 during feature disentanglement. Analogous to the procedure
from Eq. (6) to Eq. (7), we simplify the regularization term in Eq. (8)
as follows:

min
𝑘∑︁
𝑖=1

I(𝑦; z𝑖 |z𝑠 ) −→ min
𝑘∑︁
𝑖=1

[I(𝑦; z𝑖 ) − I(z𝑖 ; z𝑠 )] . (9)

The overall mutual information objective is:

maxI(𝑦; z𝑠 |z) +min
𝑘∑︁
𝑖=1

I(𝑦; z𝑖 |z𝑠 ) . (10)

According to Eqs. (7), (9), and (10), the mutual information loss
can be finally formulated into:

L𝑀𝐼 = −[I(𝑦; z𝑠 ) − I(z𝑠 ; z)] +
𝑘∑︁
𝑖=1

[I(𝑦; z𝑖 ) − I(z𝑖 ; z𝑠 )] . (11)

Training Objective. We would like to point out that the overall
training objective for our end-to-end network consists of two parts.
(1) Contrastive learning loss LinfoNCE and KL divergence loss that
supervise the extraction of disentangled sub-features, which is
given by:

Ldecouple =LinfoNCE

− 𝛼 ·
[
−

𝑘∑︁
𝑖=1

𝑘∑︁
𝑗=𝑖+1

∫
Pz𝑖 (𝑥)𝑙𝑛(

Pz𝑗 (𝑥)
Pz𝑖 (𝑥)

)𝑑𝑥
]
.

(12)

(2) The mutual information lossL𝑀𝐼 , which is presented in Eq. (11),
constrains the extraction of the auxiliary feature. As such, the
overall loss function is:

Ltotal = Ldecouple + LMI . (13)

4 EXPERIMENTS
In this section, we evaluate the proposed approach on two large-
scale benchmark datasets, SVD and VCSL. We seek to answer the
following research questions.

• RQ1: How is the proposed method comparing to state-of-
the-art approaches?

• RQ2: How much do different components of our method
contribute to its performance?

• RQ3: What interesting insights and findings can we obtain
from the empirical results?

Next, we first present the experimental settings, followed by an-
swering the research questions one by one.
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Figure 3:We visualize the features of 6,157 randomly selected
videos. zi denotes the 𝑖𝑡ℎ sub-feature, which has 256 dimen-
sions. We use TSNE to reduce the dimension of zi to 2.

4.1 Experimental Settings
Datasets The SVD [16] dataset is a large-scale benchmark dataset
for infringing video retrieval. The dataset contains over 500,000
videos and over 30,000 labeled pairs of infringing (similar) videos.
The categories of videos are almost all-encompassing, including
movies, TV series, commentary videos, daily videos, etc. The VCSL
[13] dataset consists of more than 167,000 video infringement pairs
with diverse video categories and varying video durations.

Implementation Details Our DMI (feature Disentanglement
and Mutual Information maximization) framework is implemented
with PyTorch 1.4.0. For pre-processing, we divide the videos into
frames and feed them into pre-trained network MoCoV3 [5] to ex-
tract the original feature for each frame. In the training process, the
unlabeled videos are deemed as dissimilar to other videos and serve
as negative training samples for an anchor video, which increases
the number of training samples and improves the robustness of our
model. Training is done with 4 Nvidia Geforce RTX 2080 Ti GPUs.
The batch sizes on SVD and VCSL datasets are set to 64 and 16,
respectively. In contrastive learning, the ratio of positive samples
to negative samples for an anchor video is 64:2048. All training
processes are terminated within 300 epochs. The number of sub-
features is set to 𝑘 = 6. For evaluation, the widely used top-100
mAP [16] and F-score [13] metrics are adopted.

4.2 Comparisons with State-of-the-art Methods
(RQ1)

First, we benchmark our approach against state-of-the-art methods
on the SVD dataset. The performance of different methods are
presented in terms of Top-100 mAP in Table 1. A total of 8 methods
are compared, including DML [21], CNN-L [20], CNN-V [20], IsoH
[18], ITQ [9], HDML [29], SVRTN [14], and ours. Specifically, 1)
DML proposes to early or late fuse frame-level features into a sin-
gle video vector, which is then fine-tuned by deep metric learning.
2) CNN-L & CNN-V [20] advocate to convert intermediate CNN
features into one vector via layer and vector aggregation schemes,
respectively. 3) SVRTN [14] exploits a transformer structure to
aggregate frame-level features into clip-level features and learns

Table 1: Comparison with existing methods on the SVD
dataset.

Method Top-100 mAP Method Top-100 mAP
ITQ [9] 0.301 CNN-V [20] 0.251
IsoH [18] 0.309 DML [21] 0.813
HDML [29] 0.316 SVRTN [14] 0.871
CNN-L [20] 0.610 Our Method 0.901

Table 2: Comparison with existing methods on the VCSL
dataset.

Method F-score Method F-score
ViT [8] 57.61 R-MAC [38] 58.75
DINO [3] 59.99 ISC [43] 61.36
VGG [31] 51.28 ViSiL [19] 61.46
Resnet [12] 52.07 Our method 61.69

the discriminative information from the interactions among clip
frames. 4) ITQ [9] learns similarity-preserving binary codes for
image retrieval by proposing an alternating minimization scheme
that minimizes the quantization error. 5) IsoH [18] improves ITQ
and presents isotropic hashing strategy to learn projection func-
tions that produce projected dimensions with isotropic variances.
6) HDML [29] develops a new loss-augmented inference algorithm
that overcomes discontinuous optimization of the mapping from
data to binary codes. From Table 1, we observe that metric learning-
based and transformer-based approaches, namely DML and SVRTN,
achieve the current state-of-the-art performance. Conventional
methods [9, 18, 29], which try to map a frame into binary codes,
are surpassed by deep learning methods. Our method is able to
outperform DML and SVRTN with a 8.8% and 3.0% mAP gain, and
overall achieves a 90.1% TOP-100 mAP. These empirical evidences
suggest the feasibility of the proposed approach.

Further, we also conduct evaluations on the VCSL dataset. The
comparison results are illustrated in Table 2. Specifically, to evaluate
the methods, we follow the F-score metric proposed by the VCSL
dataset [13], which serves as the official comparison metric of the
dataset and measures the overlapped similar clips between two
videos. Following [13], we choose the Temporal Network (TN)
[34] as our alignment method. We compare our method with the
approaches that achieve the current state-of-the-art performance on
the VCSL dataset, including ViT [8], DINO [3], R-MAC [38], ViSiL
[19], and ISC [43]. Two baselines VGG [31] and Resnet [12] are also
included in the comparison. For VGG [31], we use the VGG [31]
network to extract the frame features and employ cosine similarity
to compute the distance between frames. For Resnet [12], we use the
Resnet-50 [12] network to extract frame features and adopt cosine
similarity to compute the distance between frames. From the table,
we have the following observations. Due to the inherent challenge
in precisely identifying overlapped similar clips between two videos,
existing methods have yet achieved impressive F-score on this large
dataset. In particular, the current state-of-the-art methods ViSiL
[19] and ISC [43] obtain 61.36% and 61.46% F-score respectively on
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MoCoV3 VGG
Features Top-100 mAP Top-inf mAP Top-100 mAP Top-inf mAP
Sub-feature z1 0.863 0.857 0.826 0.805
Sub-feature z2 0.861 0.855 0.825 0.801
Sub-feature z3 0.862 0.849 0.795 0.778
Sub-feature z4 0.867 0.843 0.801 0.790
Sub-feature z5 0.863 0.847 0.824 0.807
Sub-feature z6 0.851 0.839 0.821 0.801
Global feature 0.901 0.887 0.838 0.813

Table 3: Ablation study on sub-features.

Table 4: Ablation of different components in our method.

Method Disentangle
Module

Auxiliary
Module

Disentangle
Loss Mi Loss Top-100

mAP
Top-inf
mAP

(a) Remove 0.873 0.856
(b) Remove 0.881 0.862
(c) Remove 0.876 0.858
(d) Remove 0.883 0.861

Default 0.901 0.887

Table 5: The impact of varying the number of sub-features.

Feature count top-100 mAP top-inf mAP
2 88.43% 87.09%
4 88.47% 86.82%
6 90.12% 88.70%
8 88.87% 87.56%

this dataset. Our method consistently achieves the state-of-the-art
performance.

4.3 Ablation Study (RQ2)
Effect of the disentangled sub-feature learning module and
the auxiliary feature extraction module. By default, the pro-
posed disentangled sub-feature learning module and the auxiliary
feature extraction module are coupled together to approach high
performance. We are interested in studying the impact of removing
each module respectively from the proposed method.

Towards this aim, we empirically study the impact of removing
the two modules from the framework. (a) For the fisrt setting, we
remove the sub-feature learning module in our framework, and
only use the auxiliary feature extraction module to extract features.
(b) For the second setting, we remove the global feature extrac-
tion module in our framework, and only adopt the sub-features
extraction module to learn representations.

The two modules are shown in Fig. 4. When the sub-feature
learning module is removed, we only compute the infoNCE and the
mutual information objectives, where infoNCE objective guaran-
tees that two similar videos get similar features while the mutual
information objective enforces to extract the auxiliary feature.

We compare themwith the default network. Experimental results
on the SVD dataset is demonstrated in Table 4 , where both top-100
mAP and top-inf mAP results are reported. We see that without the
sub-features extraction module, the proposed method undergoes

Figure 4: The architectures of the two ablation modules.

Figure 5: Features visualization for similar and dissimilar
videos.

2.8% top-100 mAP and 3.1% top-inf mAP drops, respectively. These
empirical evidences indicate the importance of the sub-features
extraction module, which contributes in removing redundancy and
disentangling features. Meanwhile, without the auxiliary feature
extraction module, the method undergoes 2.0% top-100 mAP and
2.5% top-inf mAP drops, respectively. This suggests the significance
of the auxiliary feature extraction module, which contributes in
capturing more complete task-relevant information. Removing the
sub-features extraction module leads to higher performance drop
than removing the auxiliary feature extraction module.

Effect of the disengtangle loss and mutual information
loss. Furthermore, we study the impact of removing the proposed
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disengtangle loss and mutual information loss from our network.
More specifically, we remove the disengtangle loss and mutul in-
formation loss respectively from the network while preserving all
other components. As demonstrated in (c) and (d) in Table 4, the
top-100 mAP and top-inf mAP drop 2.5% and 2.9% respectively
when the disengtangle loss is removed, while top-100 mAP and
top-inf mAP drop 1.8% and 2.6% respectively when the mutual in-
formation loss is removed. This indicates that the disengtangle loss
and mutual information loss both contribute to performance gain.

Number of sub-features. By default, in our method the num-
ber of sub-features is set to 6. It is interesting to see the effect of
enlarging or reducing the number of sub-features. We illustrate the
emprical results in Table 5. We observe that enlarging the number
of sub-laysers tends to gradualy increase the accuracy. The highest
accuracy is obtained when the number of features is set to 6.

4.4 Insights (RQ3)
We make some key findings in our research. Firstly, we find that
in cases of video infringement, the videos are often modified by
cropping, blocking parts of the picture, splicing, and editing content.
To extract the original frame features, we test the VGG andMoCoV3
(Resnet) networks as backbone networks. Our experiments showed
that the MoCoV3 feature outperformed the VGG feature in terms
of accuracy. We attribute this to the fact that the MoCoV3 network
inherently considers data augmentations, which are commonly
used in video infringement, e.g., cropping, grayscale, blocking parts
of the picture, and horizontal flipping.

Secondly, we empirically study the separability of the extracted
sub-features. To investigate this, we randomly select 6,157 videos
and visualized their extracted sub-features using TSNE. The results
are shown in Figure 3. We set 𝑘 to 6, so six sub-features {z𝑖 }6𝑖=1
are depicted. The dimension of z𝑖 is 256. We conduct dimension
reduction using TSNE. Interestingly, we find that the sub-features
are disentangled from each other.

Furthermore, we visualize the features of similar and dissimilar
videos in Fig. 5. We find that sub-features for similar videos are
similar to each other, while dissimilar videos have quite different
sub-features. Moreover, the sub-features for the same video are
distinct from each other, which reconfirms the separability of the
extracted sub-features.

We randomly sample 978 similar video pairs. We divide the 978
pairs of videos into two sets𝐴 and𝐵, where the two similar videos in
each pair are put into two different sets. We compute the similarity
matrix between the two sets of videos by utilizing the proposed
method. The similarity matrix is visualized in Figure 6(a), where
the 𝑥-axis represents the 978 videos of set 𝐴 and 𝑦-axis denotes the
978 videos of set 𝐵. The color of a pixel (𝑖, 𝑗) reflects the similarity
between the 𝑖𝑡ℎ video of set𝐴 and the 𝑗𝑡ℎ video of set 𝐵. Figure 6(b)
shows the ground-truth similarity matrix. From Figure 6(a) and
Figure 6 (b), we observe that the results of our method is very close
to the ground truth. Further, we zoom in the similarity matrix in
Figure 6(a) by sampling 10 pairs of videos from the matrix. The
sampled sub-matrix is demonstrated in Figure 7(a). Figure 7(a)
shows clearer details of the similarity matrix while Figure 7(b)
provides the corresponding ground truth. We see that the results
of our method are in consistent with the ground truth.

Figure 6: (a): The similarity matrix computed by our method.
Experiments are conducted on the SVD dataset. (b): The cor-
responding ground-truth similarity matrix of (a).

Figure 7: (a): The sub-matrix sampled from the computed
similarity matrix. (b): The corresponding ground-truth simi-
larity matrix of (a).

During the experiments, another interesting phenomena catches
our attention. We are curious to know the effect of using each ex-
tracted sub-feature alone in detecting infringements. Towards this
aim, we conduct experiments by using each sub-feature alone for
computing video similarity. As shown Table 3, we found that using
only one extracted sub-feature also yields good result. However, uti-
lizing all the sub-features and the auxiliary feature achieves better
performance.

5 CONCLUSION
In this work, we have proposed a novel framework for infringing
video retrieval, which is equipped with feature disentanglement
and mutual information maximization. Within the framework, we
combine contrastive learning and the KL divergence maximization
to effectively supervise the disentangling of subfeatures. Further, we
theoretically derive a mutual information objective for supervising
the extraction of auxiliary and task-relevant features that might be
missed by sub-features. Extensive experiments demonstrate that our
method achieves state-of-the-art results on large-scale benchmark
datasets, SVD and VCSL.
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