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ABSTRACT
In recent years, the explosion of web videos makes text-video re-
trieval increasingly essential and popular for video filtering, recom-
mendation, and search. Text-video retrieval aims to rank relevant
text/video higher than irrelevant ones. The core of this task is to
precisely measure the cross-modal similarity between texts and
videos. Recently, contrastive learning methods have shown promis-
ing results for text-video retrieval, most of which focus on the
construction of positive and negative pairs to learn text and video
representations. Nevertheless, they do not pay enough attention
to hard negative pairs and lack the ability to model different levels
of semantic similarity. To address these two issues, this paper im-
proves contrastive learning using two novel techniques. First, to
exploit hard examples for robust discriminative power, we propose a
novel Dual-Modal Attention-Enhanced Module (DMAE) to mine hard
negative pairs from textual and visual clues. By further introducing
a Negative-aware InfoNCE (NegNCE) loss, we are able to adaptively
identify all these hard negatives and explicitly highlight their im-
pacts in the training loss. Second, our work argues that triplet sam-
ples can better model fine-grained semantic similarity compared to
pairwise samples. We thereby present a new Triplet Partial Margin
Contrastive Learning (TPM-CL) module to construct partial order
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triplet samples by automatically generating fine-grained hard neg-
atives for matched text-video pairs. The proposed TPM-CL designs
an adaptive token masking strategy with cross-modal interaction to
model subtle semantic differences. Extensive experiments demon-
strate that the proposed approach outperforms existing methods
on four widely-used text-video retrieval datasets, including MSR-
VTT, MSVD, DiDeMo and ActivityNet. Code is publicly available
at https://github.com/alipay/Ant-Multi-Modal-Framework.
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1 INTRODUCTION
With the explosive growth of videos in recent years, the task of
text-video retrieval has become increasingly essential and popular.
The goal of text-video retrieval is to retrieve videos that are most
semantically relevant to the given text query. A typical paradigm
tends to first embed texts and videos into a joint latent space and
then employ a distance metric to measure cross-modal similarity [9,
11, 25, 34, 35]. A critical challenge is to learn precise semantic
similarities between texts and videos. The recent trend towards
large-scale contrastive image-language pre-training like CLIP [39]
mitigates this issue to some extent [31, 35, 36], yet they tend to
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neglect the distinct role of hard examples, leading to confusion
with hard positives/negatives and noisy correspondence. Moreover,
most existing contrastive learning works focus on the pairwise
semantic relation, which lacks the ability to measure different levels
of semantic similarity [54].

Figure 1: Illustration of embedding distributions constrained
by NegNCE and DMAE. (a) Embedding distribution con-
strained by InfoNCE loss. Hard negative pairs that lie inside
the elastic boundary are ignored. (b) Hard negative pairs in-
side the elastic boundary are adaptively incorporated into
the NegNCE loss, and are pushed away from the anchor. (c)
DMAE enlarges the elastic boundary and adds more hard
negatives. (d) After training with DMAE, positive and nega-
tive pairs are further pushed away from each other.

Contrastive learning becomes a popular representation learning
paradigm for text-video retrieval recently [2, 14, 24, 26, 31, 34–
36, 52]. Among them, the majority [11, 14, 31, 34–36, 44, 50] rely on
conventional pairwise contrastive losses (e.g., NCE [15], BCE [50],
infoNCE [45]) to learn a cross-modal embedding space, which min-
imizes the distance of matched pairs while maximizing the distance
of all other negative pairs in a batch. As shown in Fig. 1(a), the elas-
tic boundary is defined by the farthest positives, and hard negatives
refer to negatives that lie inside the elastic boundary and are closer
to the anchor than the farthest positives. Usually, these conven-
tional contrastive losses focus on positives and treat all negatives
in the batch equally, without distinguishing between hard and easy
ones. However, hard negatives should make a greater impact on the
discrimination between matched and mismatched pairs. Most of
the current approaches adopt random sampling strategies [34, 57]
or a specific sampling strategy [10, 50, 52] to cut the number of neg-
atives to a fixed number. These strategies may result in sub-optimal
learning or overlooking some hard negatives. This is because the
limited number of selected negatives may not accurately reflect
the true distribution of negative pairs. To address these issues, we
introduce a Negative-aware InfoNCE (NegNCE) loss to adaptively
find out all hard negative pairs inside the elastic boundary and
incorporate them into the training objective as in Fig. 1(b).

Nevertheless, the fundamental challenge is: "How to select as
many hard negatives as possible?". Selecting hard negatives is not
as straightforward as selecting positives. As in Fig. 1(b), it is easy

to miss the hard negative pairs near the elastic boundary as they
are more challenging to differentiate from the positives. Previous
work [30] has observed that "strong variations between the positive
and anchor samples usually result in smaller shared information but
a greater degree of invariance against nuisance variables". Therefore,
we need to enhance text-video pairs so that contrastive learning
can keep the shared information between positives and anchors
while mining hard negatives. Here, we propose a novel Dual-Modal
Attention-Enhanced Module (DMAE) to enlarge variations between
easy and hard positives so that similar hard negatives that lie near
the elastic boundary can be extracted as in Fig. 1(c). As the cases
shown in Fig. 1, when matching visual content to a text query, we
categorize text-video pairs accordingly. Those pairs with multiple
frames matching the query are considered as easy positives, while
those with only a single frame match are classified as hard positives.
By enlarging the discrimination between easy positives and hard
positives, we can find those hard negatives with single-frame visual
content that only partly matches the text query. Specifically, DMAE
enhances text-video pairs through two components named Textual
Attention and Visual Attention to find out more challenging hard
negatives while filtering out easy negatives. In this way, we expect
that positives are pulled closer to each other while negatives are
pushed away after training as in Fig. 1(d).

As mentioned above, most existing works [14, 31, 35, 36, 47]
focus on pairwise contrastive losses. Yet using pairwise losses es-
sentially applies a binary quantization on the semantic similarity
among text-video pairs, i.e., to either positive or negative pairs,
which is a very coarse way to measure their relations. In contrast,
we prefer to have a finer measurement on the semantic similarity
among text-video pairs so as to take advantage of different levels of
semantic similarity in contrastive learning. As the case in the right
part of Fig. 2, the original text query with more details of the video
should be more similar than the masked one "the woman talk as
the shelves are behind her" or "the woman talk" to the video. There-
fore, we propose the Triplet Partial Margin Contrastive Learning
(TPM-CL) module to model the subtle difference in semantic simi-
larity by leveraging partial order triplet samples. Unlike previous
work [8] which adopts a relevance-based margin in the triplet loss
to impart subtle semantic differences to the model, our focus is on
the automatic generation of partial order triplet samples. Previous
works construct triplet samples by offline text token masking for
text matching [54] or in-batch hard negative mining for face recog-
nition [42, 53]. Instead, we design an automatic scheme to generate
partial text-video triplets by cross-modal interaction. Then an aux-
iliary target based on triplet ranking loss is adopted to consume
the fine-grained semantic similarity among the triplet samples.

Extensive experiments on four text-video retrieval benchmarks
show that the proposed method achieves the state-of-the-art per-
formance, including MSR-VTT (212.2 rsum), MSVD (209.3 rsum),
DiDeMo (206.3 rsum) and ActivityNet (207.5 rsum). Our approach
outperforms the previous SOTA methods by +2.2%, +0.7%, +2.4%,
+2.7% absolute improvements on these benchmarks. The ablation
experiments demonstrate that the proposed DMAE and TPM-CL
modules both improve the text-video retrieval performance.

Our main contributions can be summarized as follows:
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• We propose a novel Dual-Modal Attention-Enhanced Module
(DMAE) to leverage hard negatives from textual and visual
clues, and introduce a Negative-aware InfoNCE (NegNCE)
loss to explicitly incorporate these hard negatives into the
training objective.
• We present a new Triplet Partial Margin Contrastive Learning
(TPM-CL) module to automatically generate partial order
triplet samples by an adaptive token masking strategy with
cross-modal interaction and model different levels of seman-
tic similarity among them.
• We report top performance of retrieval performance on four
text-video retrieval benchmarks and conduct extensive abla-
tion studies to demonstrate the merits of our approach.

2 RELATEDWORK
2.1 Text-Video Retrieval
Most of the existing works directly apply the pre-trained backbone
to obtain textual and visual representations, followed by interaction
modules to measure the cross-modal similarity. With the success
in many downstream tasks [37, 38, 41, 46, 56], CLIP [39] has in-
jected new impetus into the improvement of text-video retrieval
and quickly becomes one of the mainstream backbones [6, 9, 13, 14,
35, 36, 47]. For example, CLIP4CLIP [35] and CLIP2TV [13] transfer
image knowledge to text-video retrieval to learn better representa-
tions. TS2-Net [31] and CenterCLIP [55] introduce a token selection
or token clustering module to find the most informative tokens.
XCLIP [36] first applies multi-grained contrastive learning to reduce
the negative effects of unnecessary information. DRL [47] proposes
an effective interaction method to solve the sequential matching
problem, and an auxiliary loss to reduce feature redundancy. Yet
these works do not pay enough attention to either the entailment
relation among hard examples or triplet samples. Our work also
applies contrastive learning under the aforementioned typical par-
adigm. Differently, we are the first to improve the discriminative
power from pairwise and triple-wise perspectives by hard negative
mining and automatic partial order triplet generating.

2.2 Negative Mining in Contrastive Learning
Most of the negative mining methods can be divided into two
categories: negative sampling and negative generating. The former
focuses more on selecting hard negatives from a given corpus, while
the latter aims to generate hard negatives in certain ways.

In terms of negative sampling, the majority of current meth-
ods [2, 26, 31, 34–36, 57] use random sampling strategies. TACo [52]
utilizes a token-aware cascade hard negative sampling strategy to
select a fixed number of hard negatives within a batch. Moreover,
triplet ranking loss with online triplet mining often acts as an auxil-
iary target to guide the text-video alignment, which usually selects
the hardest negative sample to construct triplet samples [7, 10, 50].
Nevertheless, these strategies may result in sub-optimal learning
or missing some hard negatives as the distribution of hard pairs
may be either scarce or dense, depending on the batch size. Some
other works [12, 29, 33] introduce a momentum mechanism (like
MOCO [16]) to maintain a large negative queue as the corpus of
negatives. Although MOCO-based methods can decouple the num-
ber of negative samples from the batch size, they require keeping a

large memory up-to-date for negatives. Different from them, we
focus on adaptively finding out hard negative pairs according to
the distribution of pairs and taking them into consideration in the
pairwise contrastive loss.

As for negative generating, [48] proposes an offline strategy to
generate negated text-video pairs by partially negating its original
caption, which is unable to model the negation from visual clues.
Authors in [21] adopt a feature mix-up strategy to generate hard
negatives, which may lead to false negatives. Yet the major draw-
back of these methods is the lack of cross-modal interaction. This
work generates fine-grained hard negatives by an adaptive token
masking strategy with cross-modal interaction to construct triplet
samples. Coupling with the triplet ranking loss, it is able to model
different levels of semantic similarity among them.

3 METHOD
This section presents each component of the proposed method
(Fig. 2). Starting with an introduction of feature representation in
Sec. 3.1, we then elaborate on the details of our two core mod-
ules:(i) Dual-Modal Attention-Enhanced Module (DMAE), (ii) Triplet
Partial Margin Contrastive Learning (TPM-CL), in Sec. 3.2 and 3.3,
respectively, followed by the total objective function in Sec. 3.4.

Figure 2: Overview of our approach, containing two major
modules: (1)Dual-Modal Attention-Enhanced Module (DMAE),
which aims to mine hard negatives and is coupled with a
Negative-aware InfoNCE(NegNCE) loss to incorporate these
hard negatives into training objective, and (2)Triplet Partial
Margin Contrastive Learning (TPM-CL), which aims to model
the partial order of semantics among triplet samples.

3.1 Feature Representation
Given a text set T and a video set V , our target is to learn a
similarity function 𝑓 (𝑡𝑖 , 𝑣𝑖 ), which calculates the similarity score
between a text 𝑡𝑖 ∈ T and a video 𝑣𝑖 ∈ V . Following the typical
text-video retrieval framework [9, 13, 35], our model is composed of
a text encoder 𝑔 and a video encoder ℎ, which leverages CLIP [39]
as a backbone. The text encoder 𝑔(𝑡𝑖 ) produces the sentence-level
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textual feature t𝑐𝑙𝑠 ∈ R1×𝐷 and the word-level textual feature
t𝑡𝑜𝑘𝑒𝑛𝑠 ∈ R𝑀×𝐷 , where𝑀 is the length of 𝑡𝑖 and𝐷 is the dimension
of features. The video encoderℎ(𝑣𝑖 ) produces the frame-level visual
feature f𝑐𝑙𝑠 ∈ R𝑁×𝐷 and the patch-level visual feature v𝑡𝑜𝑘𝑒𝑛𝑠 ∈
R𝑃×𝐷 , where 𝑁 is the number of frames and 𝑃 is the length of
the patch sequence. Note that f𝑐𝑙𝑠 and v𝑡𝑜𝑘𝑒𝑛𝑠 are extracted from
separate frames and the interaction among frames is ignored. Thus,
we further use a temporal encoder to aggregate the features of all
frames as in previous works [14, 31, 35, 36]. Then, we obtain the
aggregated frame-level visual feature vℎ ∈ R𝑁×𝐷 .

3.2 Dual-Modal Attention-Enhanced Module
To alleviate the limitations of InfoNCE loss for overlooking hard
negatives, we present a modified Negative-aware InfoNCE (Neg-
NCE) loss. In addition, we introduce a novel Dual-modal Attention-
Enhanced Module (DMAE) to optimize representations of text-video
pairs, aiming to find out more challenging hard negatives. As shown
in Fig. 3, DMAE consists of two components, which are 1) Textual
Attention, aiming to mine crucial textual clues; and 2) Visual At-
tention, aiming to explore the intrinsic characteristics from visual
clues. Then we obtain the Textual Attention Matrix𝑊𝑇𝐴 and Vi-
sual Attention Matrix𝑊𝑉𝐴 , which are applied to incorporate the
crucial textual and visual clues into the final similarity calculation.
After that, we get the attention-enhanced similarity matrix S′ and
employ the NegNCE loss to train our model.

Figure 3: Illustration of DMAE, which mines hard negatives
from textual and visual clues.

Textual Attention. Some works [5, 49, 52] have observed that
content words with specific PoS tags, such as nouns and verbs, are
more likely than function words to be aligned with visual content
in the video. Moreover, words with a high frequency in a paragraph
also tend to show higher relevance to videos. Hence, our idea is to
obtain two weight vectors w𝑃𝑜𝑠 and w𝑓 𝑟𝑒𝑞 from these two aspects
for modeling the crucial textual clues. The algorithm is shown in
Algorithm 1. Next, as shown in the left part of Fig. 3, we construct
the Textual Attention Matrix𝑊𝑇𝐴 as follows:

W𝑇𝐴 = 𝑆𝑜 𝑓 𝑡𝑚𝑎𝑥 (w𝑃𝑜𝑆 ◦w𝑓 𝑟𝑒𝑞) ∈ R1×𝑀 , (1)

where ◦ denotes element-wise multiplication.
Visual Attention. Due to the redundancy nature in continu-

ously changing visual frames, there often exists more than one

Algorithm 1 Textual Attention.
Input: A text query 𝑡𝑖 with 𝑀 words of the video 𝑣𝑖 , 𝑡𝑖 =

[𝑠1, 𝑠2, ..., 𝑠𝑀 ]; All description sentences of the video 𝑣𝑖 ;
Output: Aweight vector of PoS,w𝑃𝑜𝑆 = [𝑝1, 𝑝2, ..., 𝑝𝑀 ]; A weight

vector of word frequency, w𝑓 𝑟𝑒𝑞 = [𝑞1, 𝑞2, ..., 𝑞𝑀 ];
1: Extracting the PoS of each word with the Spacy [19] toolkit;
2: Defining the significant PoS set: 𝑃𝑆𝐼𝐺 = [’NOUN’,’VERB’,’ADJ’];
3: Concatenating all sentences into a paragraph 𝑇 ;
4: Calculating the word frequency with the TF-IDF method [1, 20];
5: Selecting the irrelevant word set F : the 𝑘 words with the lowest

tf-idf score in 𝑇 ;
6: for𝑚 = 1 to𝑀 do
7: if PoS of word 𝑠𝑚 ∈ 𝑃𝑆𝐼𝐺 then
8: pm ← 𝜂 (𝜂 > 1); ⊲ 𝜂 = 2 by default
9: else
10: pm ← 1;
11: end if
12: if word 𝑠𝑚 ∈ F then
13: qm ← 0.;
14: else
15: qm ← 1.;
16: end if
17: end for
18: return w𝑃𝑜𝑆 , w𝑓 𝑟𝑒𝑞 ;

critical frame. Some recent works [31, 55] apply a token selec-
tion algorithm to reduce the redundant visual tokens, which may
abandon informative tokens due to the limited number of selected
tokens. Differently, our work argues that shared information of crit-
ical frames can facilitate representations as well. Towards this end,
we aim to enhance samples by aggregating the shared information
of critical frames.

As shown in the right part of Fig. 3, we first utilize cosine similar-
ity to compute the similarities between frames based on vℎ . Then,
we obtain the self-frame similarity matrix S(vℎ, vℎ) ∈ R𝑁×𝑁 to
capture the intrinsic similarity relations among frames. Next, we
build the Visual Attention Matrix𝑊𝑉𝐴 as follows:

𝑊𝑉𝐴 = 𝑡𝑜𝑝𝐾 (S(vℎ, vℎ), 𝑑𝑖𝑚 = 0) ∈ R𝑁×𝑁 , (2)

where topK is set to top-2 by default.𝑊𝑉𝐴 preserves similarities
between the two most similar frames and erases the others to 0.

After obtaining𝑊𝑇𝐴 and𝑊𝑉𝐴 , we construct the attention-enhanced
similarity matrix S′ for each text-video pair (𝑡𝑖 , 𝑣𝑖 ) as follows:

S′ (t𝑡𝑜𝑘𝑒𝑛𝑠 , vℎ) =𝑊𝑇𝐴 ⊙ S(t𝑡𝑜𝑘𝑒𝑛𝑠 , vℎ) ⊙𝑊𝑉𝐴,
S′ (t𝑐𝑙𝑠 , vℎ) = S(t𝑐𝑙𝑠 , vℎ) ⊙𝑊𝑉𝐴,

S′ = 1
2
(S′ (t𝑡𝑜𝑘𝑒𝑛𝑠 , vℎ) + S′ (t𝑐𝑙𝑠 , vℎ)) ∈ R1×𝑁 ,

(3)

where ⊙means dot-product,S is the original cross similarity matrix
calculated based on the input textual features and visual features.

Finally, we apply theToken-wise Interaction(TI) or theWeighted
Token-wise Interaction(WTI) method [47] on S′ to get the final
similarity score 𝑠𝑖𝑚(𝑡𝑖 , 𝑣𝑖 ) of each pair (𝑡𝑖 , 𝑣𝑖 ).

Negative-aware InfoNCE Loss. Most prior works [31, 36, 39,
47] adopt the symmetric InfoNCE loss to optimize the retrieval
model, which only considers the positive pairs (𝑡𝑖 , 𝑣𝑖 ) with little
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attention to the hard negative pairs (𝑡𝑖 , 𝑣 𝑗 ) (𝑖 ≠ 𝑗). The InfoNCE
loss can be formulated as:

L𝑡2𝑣𝑝 = − 1
𝐵

𝐵∑︁
𝑖

𝑙𝑜𝑔
𝑒𝑥𝑝 (𝜏 · 𝑠𝑖𝑚(𝑡𝑖 , 𝑣𝑖 ))∑𝐵
𝑗=1 𝑒𝑥𝑝 (𝜏 · 𝑠𝑖𝑚(𝑡𝑖 , 𝑣 𝑗 ))

,

L𝑣2𝑡𝑝 = − 1
𝐵

𝐵∑︁
𝑖

𝑙𝑜𝑔
𝑒𝑥𝑝 (𝜏 · 𝑠𝑖𝑚(𝑡𝑖 , 𝑣𝑖 ))∑𝐵
𝑗=1 𝑒𝑥𝑝 (𝜏 · 𝑠𝑖𝑚(𝑡 𝑗 , 𝑣𝑖 ))

.

(4)

Different from the above InfoNCE loss, we propose a modified
Negative-aware InfoNCE (NegNCE) loss, which identifies all hard
negatives within a batch and penalizes them more heavily in the
training loss.

In order to adaptively find out the hard negative pairs, we ad-
ditionally compute a marginal similarity score 𝑠𝑖𝑚𝑚

𝑖 𝑗
for all pairs

(𝑡𝑖 , 𝑣 𝑗 ) in a batch of 𝐵 pairs, which is expected to measure the dis-
tances between the hard negative and positive pairs. Concretely,
the marginal similarity score is calculated by:

𝑠𝑖𝑚𝑚𝑖 𝑗 =𝑚𝑎𝑥 (0, 𝑠𝑖𝑚(𝑡𝑖 , 𝑣 𝑗 ) − 𝑠𝑖𝑚(𝑡𝑖 , 𝑣𝑖 ) + 𝜉)
+𝑚𝑎𝑥 (0, 𝑠𝑖𝑚(𝑡 𝑗 , 𝑣𝑖 ) − 𝑠𝑖𝑚(𝑡𝑖 , 𝑣𝑖 ) + 𝜉),∀𝑖, 𝑗 ∈ [1, 𝐵],

(5)

where 𝜉 is the margin and is set to 0 by default. 𝑠𝑖𝑚𝑚
𝑖 𝑗

denotes that
when the similarity of the negative pair (𝑡𝑖 , 𝑣 𝑗 ) is larger than the
similarity of the positive one (𝑡𝑖 , 𝑣𝑖 ), it equals the difference between
them, otherwise it will be set to zero. Therefore, if 𝑠𝑖𝑚𝑚

𝑖 𝑗
> 0, we

set the pair (𝑡𝑖 , 𝑣 𝑗 ) ∈ N , where N is the set of hard negative pairs
and represents all negatives inside the elastic boundary in Fig.1(c).

Next, the effect of hard negative pairs can be measured as:

L𝑡2𝑣𝑛 = − 1
𝐻

∑︁
(𝑡𝑖 ,𝑣𝑗 ) ∈N

𝑙𝑜𝑔(1 − 𝑝𝑡2𝑣𝑖 𝑗 ),

L𝑣2𝑡𝑛 = − 1
𝐻

∑︁
(𝑡𝑖 ,𝑣𝑗 ) ∈N

𝑙𝑜𝑔(1 − 𝑝𝑣2𝑡𝑖 𝑗 ),
(6)

where 𝐻 is the number of negative pairs in N . The symmetric
probabilities 𝑝𝑡2𝑣

𝑖 𝑗
and 𝑝𝑣2𝑡

𝑖 𝑗
of each pair (𝑡𝑖 , 𝑣 𝑗 ) are computed by:

𝑝𝑡2𝑣𝑖 𝑗 =
𝑒𝑥𝑝 (𝜏 · 𝑠𝑖𝑚(𝑡𝑖 , 𝑣 𝑗 ))∑𝐵
𝑘=1 𝑒𝑥𝑝 (𝜏 · 𝑠𝑖𝑚(𝑡𝑖 , 𝑣𝑘 ))

,∀𝑖, 𝑗 ∈ [1, 𝐵],

𝑝𝑣2𝑡𝑖 𝑗 =
𝑒𝑥𝑝 (𝜏 · 𝑠𝑖𝑚(𝑡𝑖 , 𝑣 𝑗 ))∑𝐵
𝑘=1 𝑒𝑥𝑝 (𝜏 · 𝑠𝑖𝑚(𝑡𝑘 , 𝑣 𝑗 ))

,∀𝑖, 𝑗 ∈ [1, 𝐵] .
(7)

Finally, we compute the symmetric weighted loss based on the
corresponding positive and negative pairs as follows:

L𝑡2𝑣 = 𝛾1 · L𝑡2𝑣𝑝 + 𝛾2 · L𝑡2𝑣𝑛 ,

L𝑣2𝑡 = 𝛾1 · L𝑣2𝑡𝑝 + 𝛾2 · L𝑣2𝑡𝑛 ,
(8)

L𝑁𝑒𝑔𝑁𝐶𝐸 =
1
2
(L𝑡2𝑣 + L𝑣2𝑡 ), (9)

where 𝛾1 and 𝛾2 are the weighting parameters.

3.3 Triplet Partial Margin Contrastive Learning
In this section, we elaborate on the details of the proposed Triplet
Partial Margin Contrastive Learning (TPM-CL) module. In order to
capture different levels of semantic similarity, the TPM-CL module
automatically generates partial order triplet samples for matched
text-video pairs and optimizes an auxiliary Triplet Partial Margin

(TPM) loss. As shown in Fig. 4, TPM-CL is formed by two key
components, namely, 1)Cross-Modal Token Weight Predictor and
2)Adaptive Token Selector. The former aims to utilize the cross-
modal interaction to predict token weights. The latter generates
partial triplets by masking informative textual and visual tokens
according to their weights. At last, we design an auxiliary target
based on triplet ranking loss to learn the similarity levels.

Figure 4: Illustration of TPM-CL, which generates partial or-
der triplet samples with cross-modal interaction and models
the subtle difference in semantics among them.

Cross-Modal Token Weight Predictor. Intuitively, the impor-
tance of the visual patches and the text words differs depending on
the given context. Thus, we use coarse-grained sentence-level and
frame-level features to select the most informative tokens.

Given the word-level textual feature t𝑡𝑜𝑘𝑒𝑛𝑠 and the frame-level
visual feature f𝑐𝑙𝑠 , we first apply a linear projection layer (an MLP)
over f𝑐𝑙𝑠 for dimension alignment and output f̂𝑐𝑙𝑠 ∈ R𝑀×𝐷 . We
then concatenate t𝑡𝑜𝑘𝑒𝑛𝑠 with f̂𝑐𝑙𝑠 . Finally, we feed the concatenated
feature to an adaptive module 𝑓𝑡𝑤 (·) to calculate the weight of each
textual token:

w𝑝𝑡𝑡𝑜𝑘𝑒𝑛𝑠 = 𝑓𝑡𝑤 ( [t𝑡𝑜𝑘𝑒𝑛𝑠 ;𝑀𝐿𝑃 (f𝑐𝑙𝑠 )]) ∈ R1×𝑀 , (10)

where 𝑓𝑡𝑤 (·) is composed of another MLP and a Softmax layer.
In the samemanner, we use the sentence-level textual feature t𝑐𝑙𝑠

and the patch-level visual feature v𝑡𝑜𝑘𝑒𝑛𝑠 to calculate the element-
wise weight of each visual token, which can be formulated as:

w𝑝𝑣𝑡𝑜𝑘𝑒𝑛𝑠 = 𝑓𝑣𝑤 ( [v𝑡𝑜𝑘𝑒𝑛𝑠 ;𝑀𝐿𝑃 (t𝑐𝑙𝑠 )]) ∈ R1×𝑃 , (11)

where 𝑓𝑣𝑤 has a similar structure to 𝑓𝑡𝑤 .
Adaptive Token Selector. After obtaining the weight of each

textual and visual token, we adopt an adaptive approach to generate
a triplet with entailment relation. We first mask the original textual
and visual features according to the binary masks as follows:

t𝑝
𝑡𝑜𝑘𝑒𝑛𝑠

= t𝑡𝑜𝑘𝑒𝑛𝑠 ◦ b𝑡 ∈ R𝑀×𝐷 , (12)

v𝑝
𝑡𝑜𝑘𝑒𝑛𝑠

= v𝑡𝑜𝑘𝑒𝑛𝑠 ◦ b𝑣 ∈ R𝑃×𝐷 , (13)

where ◦ denotes element-wise multiplication with broadcasting,
b𝑡 = {𝑏𝑟𝑖𝑖 } ∈ R

1×𝑀 and b𝑣 = {𝑏𝑟 𝑗
𝑗
} ∈ R1×𝑃 are the binary masks

for the textual and visual tokens, respectively. The element 𝑏𝑟𝑖
𝑖
in
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b𝑡 or b𝑣 is defined as:

𝑏
𝑟𝑖
𝑖

=

{
1, 𝑐𝑢𝑚_𝑠𝑢𝑚(𝑟𝑖 ) < 𝜏,
0, 𝑐𝑢𝑚_𝑠𝑢𝑚(𝑟𝑖 ) > 𝜏,

(14)

where 𝑐𝑢𝑚_𝑠𝑢𝑚(𝑟𝑖 ) means the cumulative weights till the element
𝑏𝑖 which ranks 𝑟𝑖 th in descending order. And 𝜏 is a fixed threshold
that indicates the ratio of features to be masked.

We then derive the weighted global textual feature:

t𝑔 = t𝑡𝑜𝑘𝑒𝑛𝑠 ⊙ w𝑝𝑡𝑡𝑜𝑘𝑒𝑛𝑠 ∈ R
1×𝐷 , (15)

and the corresponding masked textual feature:

t𝑝𝑔 = t𝑝
𝑡𝑜𝑘𝑒𝑛𝑠

⊙ w𝑝𝑡𝑡𝑜𝑘𝑒𝑛𝑠 ∈ R
1×𝐷 , (16)

where operation ⊙ in Eq. 15-16 means dot-product.
Finally, we apply a temporal encoder like in Sec. 3.1 to aggregate

v𝑝
𝑡𝑜𝑘𝑒𝑛𝑠

to obtain the masked visual feature v𝑝
ℎ
∈ R𝑁×𝐷 .

Triplet Partial Margin Loss. In order to model cross-modal
partial order of semantics, we formulate the margin losses as:

L𝑡𝑟𝑝𝑙,1 =𝑚𝑎𝑥 (0,− S(t𝑐𝑙𝑠 , vℎ) + S(t𝑐𝑙𝑠 , v
𝑝

ℎ
) + 𝛿),

L𝑡𝑟𝑝𝑙,2 =𝑚𝑎𝑥 (0,− S(t𝑔, vℎ) + S(t𝑔, v
𝑝

ℎ
) + 𝛿),

L𝑡𝑟𝑝𝑙,3 =𝑚𝑎𝑥 (0,− S(t𝑔, vℎ) + S(t
𝑝
𝑔 , vℎ) + 𝛿),

(17)

where 𝛿 is the margin constant.
Finally, the auxiliary Triplet Partial Margin (TPM) loss is formu-

lated as:
L𝑇𝑃𝑀 = L𝑡𝑟𝑝𝑙,1 + L𝑡𝑟𝑝𝑙,2 + L𝑡𝑟𝑝𝑙,3 . (18)

3.4 Objective Function
Given a batch of 𝐵 video-text pairs, the model generates a 𝐵 ×
𝐵 similarity matrix. We employ the Negative-aware InfoNCE loss
L𝑁𝑒𝑔𝑁𝐶𝐸 to jointly incorporate the effects of positive and hard
negative pairs. Moreover, we also utilize the Triplet Partial Margin
loss L𝑇𝑃𝑀 to model different levels of semantic similarity among
triplet samples. Hence, the total training loss L𝑎𝑙𝑙 is defined as:

L𝑎𝑙𝑙 = L𝑁𝑒𝑔𝑁𝐶𝐸 + L𝑇𝑃𝑀 . (19)

4 EXPERIMENTS
4.1 Experimental Setting
Datasets To validate the effectiveness, we conduct experiments on
four popular text-video retrieval datasets, including MSR-VTT [51],
MSVD [4], DiDeMo [18] and ActivityNet [17]. MSR-VTT [51]
is a general video dataset collected from YouTube and contains
10k videos and 200k captions. The videos range in length from 10
to 32 seconds. We train models on 9K videos, and report results
on the 1K-A test set like [31, 36, 47]. MSVD [4] contains 1,970
videos and the duration of videos varies from 1 to 62 seconds. There
are 40 English captions annotated for each video. The number of
videos in the train/validation/test split is 1,200/100/670, respectively.
DiDeMo [18] is one of the largest and most diverse datasets for
the temporal localization of events in videos given natural lan-
guage descriptions and contains 10k Flickr videos annotated with
40k sentences. Following earlier studies [31, 35, 36], all captions
from a video are concatenated together for video-paragraph re-
trieval. ActivityNet [17] contains 20k YouTube videos with 100k

caption annotations. The videos are 120 seconds long on average.
We concatenate all of a video’s descriptions into one paragraph and
evaluate the model with video-paragraph retrieval on the val1 split.

Evaluation Metrics For a fair comparison, we evaluate the
experimental results using standard text-video retrieval metrics:
Recall at Rank K (R@K, higher is better), Median Rank (MdR, lower
is better), Mean Rank (MeanR, lower is better) and rsum (higher is
better). R@K calculates the percentage of correct samples in the
top-K retrieved points to the query sample. Following previous
works [13, 31, 36], we report results for R@1, R@5, R@10. In order
to reflect the overall retrieval performance, we also sum together
all the R@K results as rsum like in [5, 7, 31, 50], which is the main
concern in our experiments. MdR measures the median rank of
correct items in the retrieved ranking list and MeanR calculates the
mean rank of correct items in the retrieved ranking list.

Implementation Details Our experiments are conducted on 8
NVIDIA Tesla V100 32GB GPUs using PyTorch. We initialize the
text and video encoder with pre-trained weights from CLIP [39],
while other modules are initialized randomly. We adopt the Adam
optimizer [22] to train our model and decay the learning rate using
a cosine schedule strategy [32]. We set the learning rate 1e-7 and
1e-4 for text/video encoder and other modules, respectively. For
MSR-VTT and MSVD, we set the max query text length, max video
frame length and batch size to 32, 12 and 128, and apply v𝑡𝑜𝑘𝑒𝑛𝑠
for the temporal encoder. We set the max query text length and
max video frame length as 64 in ActivityNet and DiDeMo. Because
of GPU memory limitations, we reduce the batch size of DiDeMo
and ActivityNet to 64 and adopt f𝑐𝑙𝑠 for the temporal encoder. We
perform ablation experiments on theMSR-VTT dataset and the base
model is ViT-B/16, while for the other datasets, the base model is
ViT-B/32. During training, we set the NegNCE loss weight 𝛾1 = 1.0
and 𝛾2 = 0.5 (in Eq. 8), and the TPM-CL parameters 𝜏 = 0.6 and
𝛿 = 0.6(in Eq. 14 and Eq. 17).

4.2 Comparison with State-of-the-Art Methods
We compare our approach against recent works (CLIP4CLIP, TS2-
Net, DRL, etc.) on MSR-VTT, MSVD, DiDeMo and ActivityNet
datasets. Note that the performance may be affected by many fac-
tors, such as environment and algorithm module settings. To mit-
igate the influence of the environment (e.g., GPU memory and
version), we re-trained some experiments of previous methods in a
unified environment setting. For a fair comparison with different
methods, we show the results of our approach with two similarity
calculation methods, i.e., TI andWTI [47](denoted as 𝑂𝑢𝑟𝑠𝑡𝑖 and
𝑂𝑢𝑟𝑠𝑤𝑡𝑖 in Tab. 1-4). We set our baseline model as the degraded
model, which removes the two core modules (DMAE and TPM-CL)
and applies TI for similarity calculation.

We can see that our approach notably outperforms the base-
line model in terms of all evaluation metrics and achieves the
state-of-the-art performance. For the MSR-VTT dataset in Tab.1,
our approach outperforms existing methods by a large margin on
both ViT-B/32 and ViT-B/16 at two retrieval directions. Specifically,
𝑂𝑢𝑟𝑠𝑤𝑡𝑖 outperforms DRL by nearly 1% and over 2% improvements
on rsum of ViT-B/32 at two directions, respectively.When compared
with the baseline model using ViT-B/16, 𝑂𝑢𝑟𝑠𝑡𝑖 obtains 4.4% and
2.0% improvements at two directions, respectively, while 𝑂𝑢𝑟𝑠𝑤𝑡𝑖
largely improves rsum by 3.4% and 3.9%, where the R@1 gains 1.3%
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Table 1: Retrieval results on MSR-VTT-1kA. † denotes that results are obtained by our re-training.

Text-to-Video Retrieval Video-to-Text Retrieval
Method R@1↑ R@5↑ R@10↑ MdR↓ MeanR↓ rsum↑ R@1↑ R@5↑ R@10↑ MdR↓ MeanR↓ rsum↑
CLIP-ViT-B/32
CLIP4Clip [35] 44.5 71.4 81.6 2.0 15.3 197.5 - - - - - -
CenterCLIP [55] 44.2 71.6 82.1 2.0 15.1 197.9 42.8 71.7 82.2 2.0 10.9 196.7
CLIP2TV [13] 46.1 72.5 82.9 2.0 15.2 201.5 43.9 73 82.8 2.0 11.1 199.7
XPool [14] 46.9 72.8 82.2 2.0 14.3 201.9 - - - - - -
XCLIP† [36] 47.4 73.4 83.1 2.0 13.7 203.9 46.7 72.7 83.0 2.0 10.0 202.4
DRL† [47] 47.5 73.8 83.6 2.0 13.3 204.9 46.3 72.7 82.5 2.0 9.5 201.5
TS2-Net† [31] 47.2 73.7 83.1 2.0 13.1 204.0 44.8 74.3 84.0 2.0 9.3 203.1
Baseline 45.3 74.2 83.5 2.0 13.0 203.0 45.5 73.1 83.9 2.0 9.6 202.5
Ours𝑡𝑖 46.6 75.0 84.1 2.0 13.3 205.7 46.0 74.7 83.0 2.0 9.5 203.7
Ours𝑤𝑡𝑖 46.9 74.6 84.2 2.0 12.8 205.7 46.2 73.7 84.2 2.0 8.8 204.1
CLIP-ViT-B/16
CenterCLIP [55] 48.4 73.8 82.0 2.0 13.8 204.2 47.7 75.0 83.3 2.0 10.2 206.0
CLIP2TV [13] 49.3 74.7 83.6 2.0 13.5 207.6 46.9 75.0 85.1 2.0 10.0 207.0
DRL† [47] 49.4 76.4 84.2 2.0 13.2 210.0 47.0 77.1 84.4 2.0 9.2 208.5
XCLIP† [36] 49.0 76.9 83.7 2.0 13.6 209.6 47.9 75.0 83.2 2.0 9.8 206.1
TS2-Net† [31] 47.8 76.8 85.2 2.0 13.7 209.8 47.8 76.0 84.6 2.0 8.5 208.4
Baseline 48.6 74.8 84.4 2.0 13.6 207.8 48.0 75.9 83.1 2.0 9.6 207.0
Ours𝑡𝑖 49.3 77.0 85.9 2.0 12.7 212.2 47.9 76.0 85.1 2.0 9.1 209.0
Ours𝑤𝑡𝑖 49.9 75.8 85.5 2.0 12.5 211.2 49.6 76.3 85.0 2.0 8.5 210.9

Table 2: Retrieval results on MSVD. † denotes re-training.

Method R@1↑ R@5↑ R@10↑ MdR↓ MeanR↓ rsum↑
CLIP4Clip [35] 45.2 75.5 84.3 2.0 10.3 205.0
CLIP2TV [13] 47.0 76.5 85.1 2.0 10.1 208.6
DRL† [47] 46.5 76.3 85.0 2.0 10.7 207.8
TS2-Net† [31] 44.0 75.5 84.6 2.0 10.4 204.1
Baseline 44.0 75.2 84.2 2.0 10.9 203.4
Ours𝑡𝑖 46.1 76.4 85.0 2.0 10.1 207.5
Ours𝑤𝑡𝑖 46.9 76.8 85.6 2.0 9.7 209.3

Table 3: Retrieval results on DiDeMo. † denotes re-training.

Method R@1↑ R@5↑ R@10↑ MdR↓ MeanR↓ rsum↑
CLIP4Clip [35] 42.5 70.2 80.6 2.0 17.5 193.3
CLIP2TV [13] 45.5 69.7 80.6 2.0 17.1 195.8
TS2-Net† [31] 41.5 70.9 80.6 2.0 13.9 193.0
DRL† [47] 46.5 73.9 83.5 2.0 13.3 203.9
Baseline 44.4 73.3 82.6 2.0 13.1 200.3
Ours𝑡𝑖 45.2 74.1 84.3 2.0 12.7 203.6
Ours𝑤𝑡𝑖 46.7 75.6 84.0 2.0 11.7 206.3

Table 4: Retrieval results on ActivityNet. † denotes re-
training.

Method R@1↑ R@5↑ R@10↑ MdR↓ MeanR↓ rsum↑
CLIP4Clip [35] 40.5 72.4 - 2.0 7.5 -
CenterCLIP [55] 43.9 75.3 85.2 2.0 7.0 204.4
TS2-Net† [31] 39.9 72.3 84.3 2.0 8.5 196.5
DRL [47] 44.2 74.5 86.1 2.0 - 204.8
Baseline 41.1 72.3 84.1 2.0 8.2 197.5
Ours𝑡𝑖 44.8 74.4 85.1 2.0 7.4 204.3
Ours𝑤𝑡𝑖 44.9 76.1 86.5 2.0 6.6 207.5

and 1.6% improvement. Moreover, compared to the previous SOTA
methods (i.e., DRL and TS2-Net) using ViT-B/16, we have also over
2% improvements on rsum at two directions.

Table 5: Retrieval performance with different settings of
DMAE on the MSR-VTT.

Method R@1↑ R@5↑ R@10↑MdR↓MeanR↓ rsum↑
Baseline 48.6 74.8 84.4 2.0 13.6 207.8
Exp1(+NegNCE) 49.3 75.9 83.8 2.0 12.8 209.0
Exp2(+NegNCE+TA) 48.7 76.5 84.3 2.0 12.7 209.5
Exp3(+NegNCE+VA) 50.0 75.7 84.5 1.5 12.7 210.2
Exp4(+All) 49.5 76.7 84.7 2.0 12.8 210.9

We also further verify the generalization and robustness of our
approach on MSVD, DiDeMo and ActivityNet. Precisely, on the
MSVD dataset as shown in Tab. 2, we observe that 𝑂𝑢𝑟𝑠𝑡𝑖 outper-
forms the baseline model by 4.1% improvement on rsum, while
𝑂𝑢𝑟𝑠𝑤𝑡𝑖 achieves 1.5% gains compared to DRL. For the DiDeMo
dataset in Tab. 3, compared with the baseline and DRL,𝑂𝑢𝑟𝑠𝑤𝑡𝑖 sur-
passes all their evaluation performance and gains improvements of
6.0% and 2.4% on rsum, respectively. In the case of the ActivityNet
dataset in Tab. 4, our approach outperforms other existing meth-
ods by a large margin and achieves SOTA results on all evaluation
metrics. In general, the steady progress on several benchmarks is a
solid indication of the effectiveness of our approach.

4.3 Ablation Study
In this section, we conduct ablation experiments on the MSR-VTT
to verify the effectiveness of each module in our approach.

4.3.1 Effectiveness of Dual-Modal Attention-Enhanced Module. We
first investigate the impact of DMAE and conduct an ablation study
to compare different variants of each component. As shown in
Tab. 5, all variants see a big boost in terms of retrieval performance.
Specifically, compared with the baseline model, DMAE with only
NegNCE (i.e., Exp1) achieves merely 1.2% gains on rsum. When
DMAE is equipped with the components of Textual Attention and
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Table 6: Ablation studies about the weighting parameters
of NegNCE loss (in Eq. 8) on the MSR-VTT. The experiment
setting is the same as Exp4 in Tab.5.

.

Method R@1↑ R@5↑ R@10↑ MdR↓ MeanR↓ rsum↑
Baseline 48.6 74.8 84.4 2.0 13.6 207.8
with 𝛾1 = 1.0 by default
𝛾2 = 0.0 49.2 76.0 84.4 2.0 13.0 209.6
𝛾2 = 0.3 50.1 75.4 84.4 2.0 13.0 209.9
𝛾2 = 0.5 49.5 76.7 84.7 2.0 12.8 210.9
𝛾2 = 0.7 48.4 75.7 85.5 2.0 13.7 209.6

Visual Attention (i.e., Exp2 and Exp3), the performance further im-
proves by 1.7% and 2.4%, respectively. At last, DMAE with all com-
ponents (i.e., Exp4) obtains a notable improvement of 3.1% on rsum,
where the R@1, R@5, R@10 gain 0.9%, 1.9%, 0.3% improvements,
respectively. Therefore, we conclude that all components in DAME
contribute to the retrieval task and different components can pro-
mote each other to achieve better results.

4.3.2 The Impact of weight in NegNCE loss. To explore the impact
of different weights in the NegNCE loss, we also design a group of
experiments by setting different weighting parameters 𝛾2 with a
fixed setting of 𝛾1 = 1.0 (i.e., the original InfoNCE loss is a special
case of the NegNCE loss if 𝛾2 = 0.0). From Tab. 6, it can be seen
that the overall retrieval performance initially increases before
reaching saturation (i.e., 𝛾2 = 0.5), and then declines slightly. The
main reason may be that when 𝛾2 is large, the model weights too
much on the hard negative pairs. Conversely, if the 𝛾2 is small, the
effect of hard negative pairs may be underestimated.
Table 7: Retrieval performance with TPM-CL on the MSR-
VTT.

Method R@1↑ R@5↑ R@10↑ MdR↓ MeanR↓ rsum↑
Baseline 48.6 74.8 84.4 2.0 13.6 207.8
+TPM-CL 49.4 76.1 85.1 2.0 13.2 210.6
+DMAE+TPM-CL 49.3 77.0 85.9 2.0 12.7 212.2

4.3.3 Effectiveness of Triplet Partial Margin Contrastive Module.
Similarly, we also perform experiments to validate the effect of
TPM-CL. The results in Tab.7 clearly demonstrate that the model
with only TPM-CL outperforms the baseline model by 2.8% on rsum,
while the full model equipped with DMAE and TPM-CL further
obtains a largemargin of 4.4%, indicating that our two coremodules
are both beneficial to improve the retrieval performance.

Table 8: Ablation studies about the hyper parameters of TPM-
CL (in Eq. 14 and Eq. 17) on the MSR-VTT.

.

Method R@1↑ R@5↑ R@10↑ MdR↓ MeanR↓ rsum↑
Baseline 48.6 74.8 84.4 2.0 13.6 207.8
with triplet ranking loss margin 𝛿 = 0.2
𝜏 = 0.2 47.9 76.1 84.6 2.0 13.0 208.6
𝜏 = 0.6 48.8 76.3 85.0 2.0 12.8 210.1
𝜏 = 0.9 49.2 75.6 84.5 2.0 13.6 209.3
with masked feature ratio 𝜏 = 0.6
𝛿 = 0.2 48.8 76.3 85.0 2.0 12.8 210.1
𝛿 = 0.6 49.3 77.0 85.9 2.0 12.7 212.2
𝛿 = 1.0 48.4 76.6 84.6 2.0 12.9 209.6

Figure 5: Visualization of text-to-video retrieval results on
MSR-VTT. For each query, the top-3 results are displayed
and sorted based on their similarity scores. The upper half of
the two retrieval groups are the results with our full model,
while the lower half are the retrieval results with the baseline
model. Green box: ground truth.

4.3.4 The Impact of hyper parameters in TPM-CL. We conduct a
group of experiments with different values of the triplet ranking
loss margin 𝛿 and the masked feature ratio 𝜏 . From Tab. 8, we
get the best rsum performance when 𝜏 = 0.6 for a fixed setting
of 𝛿 = 0.2. Furthermore, with 𝛿 varying, the overall performance
first improves from 210.1 to 212.2 and then declines if 𝜏 is fixed
to 0.6. The main reason may be that a large 𝜏 makes the masked
sample quite different from the original one and a large 𝛿 means
the difference between them should be large enough to make sense.
Thus, a moderate setting of both 𝜏 and 𝛿 can encourage the learning
to examine the fine-grained semantic similarity among triplets.

4.4 Qualitative Analysis
To qualitatively validate the effectiveness of our approach, we visu-
alize some text-to-video retrieval examples from the MSR-VTT in
Fig. 5. Specifically, as in Fig. 5(a) and (b), our model retrieves the
correct videos that contain all matched fragments described in the
text query (i.e., "child in pink", "a white bird" and "an open box" in
(a), "woman in the purple blouse" and "shelves" in (b), respectively).
Our model can successfully differentiate positives from those hard
negatives with partly matched fragments. The examples in Fig. 5(c)
show that our model is capable of accurately capturing the corre-
sponding hard positive video, even if the matched fragment is only
present in a small segment of the video. Meanwhile, we find that our
model can focus on the relevant videos with fully or partly matched
fragments while eliminating the false positives without matched
fragments (e.g., the 2nd example in the lower part of Fig. 5(c)). To
summarize, our model can accurately capture the correct videos
and retrieve more related videos compared to the baseline model,
demonstrating the merits of our approach.

5 CONCLUSION
This paper proposed a novel Dual-Modal Attention-Enhanced mod-
ule (DMAE) to mine hard negatives from textual and visual clues,
and introduced a Negative-aware InfoNCE (NegNCE) loss to adap-
tively incorporate them into the training objective. Then we pre-
sented a new Triplet Partial Margin Contrastive Learning (TPM-CL)
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module, which aims to focus on the automatic constitution of triplet
samples and capture the fine-grained semantic similarity among
them. The effectiveness and superiority of our proposed method
have been clearly demonstrated in comprehensive experiments on
four text-video retrieval benchmarks.
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A METHODS
A.1 More Details of Feature Representation
Text Encoder. We adopt the text encoder of CLIP to generate
the textual representation, which is a transformer encoder and
typically consists of multi-head self-attention (MHSA) and feed-
forward (FFN) networks. Specifically, there are 12 layers and 8
attention heads in the transformer and the query, key, and value
features have a 512-dimensional size. The text tokenizer employed
in our experiment is a lower-cased byte pair encoding (BPE) [43]
with a 49,152 vocab size. After adding a special token [𝐵𝑂𝑆] and
[𝐸𝑂𝑆] at the beginning and end of the textual token sequence,
respectively, we feed the token sequence into the text encoder to
obtain the sentence-level textual feature t𝑐𝑙𝑠 ∈ R1×𝐷 and the word-
level textual feature t𝑡𝑜𝑘𝑒𝑛𝑠 = [𝑡1, 𝑡2, ..., 𝑡𝑀 ] ∈ R𝑀×𝐷 , where 𝑀
is the length of 𝑡𝑖 and 𝐷 is the dimension of features. The text
representations t𝑐𝑙𝑠 and t𝑡𝑜𝑘𝑒𝑛𝑠 are outputs of the [𝐸𝑂𝑆] token and
corresponding word tokens from the last layer of the text encoder.

Video Encoder. In this work, the video encoder is a standard
vision transformer (ViT) with 12 layers, whose architecture is the
same as the transformer in natural language processing. The differ-
ence is the additional visual tokenization process that turns frames
into discrete token sequences. We first sample the given video
𝑣𝑖 into 𝑁 frames with the sampling rate of 1 frame per second
(FPS) and convert each frame into 𝐾 non-overlapped patches. After
adding a token [𝐶𝐿𝑆] at the beginning of each token sequence, we
feed the token sequence into the video encoder to obtain the frame-
level visual feature f𝑐𝑙𝑠 = [𝑓1, 𝑓2, ..., 𝑓𝑁 ] ∈ R𝑁×𝐷 and the patch-
level visual feature v𝑡𝑜𝑘𝑒𝑛𝑠 = [𝑝𝑖,𝑐𝑙𝑠 , 𝑝𝑖,0, 𝑝𝑖,1, ..., 𝑝𝑖,(𝐾−1) ] ∈ R𝑃×𝐷 ,

where 𝑃 = 𝑁 × (𝐾 + 1) is the length of the patch sequence. The
visual representations f𝑐𝑙𝑠 and v𝑡𝑜𝑘𝑒𝑛𝑠 are outputs of the [𝐶𝐿𝑆] to-
ken and corresponding patch tokens from the last layer of the video
encoder. Specifically, we use a ViT-B/32 model [23] with 12 layers
and 8 attention heads following the previous work [31, 35, 36].

A.2 More Details of the Cross-Modal Token
Weight Predictor in TPM-CL

Here we include some further elaboration on the details of the
concatenation process described in Eq. 10 in the TPM-CL module.

As discussed in Sec. 3.3, we use a cross-modal feature interaction
module to get the weight of each textual token. For a given text
𝑡𝑖 and its word-level textual feature t𝑡𝑜𝑘𝑒𝑛𝑠 = [𝑡1, ..., 𝑡𝑀 ] ∈ R𝑀×𝐷 ,
a video 𝑣 𝑗 and its frame-level visual feature f𝑐𝑙𝑠 = [𝑓1, ..., 𝑓𝑁 ] ∈
R𝑁×𝐷 , the detailed explanation of the cross-modal token weight
predictor is as follows:
• First, we apply a dense layer with a trainable weight matrix
𝑊 ∈ R𝑀×𝑁 over the frame-level visual feature f𝑐𝑙𝑠 to align
its dimension with the word-level textual feature t𝑡𝑜𝑘𝑒𝑛𝑠 :

f̂cls =𝑊 · f𝑐𝑙𝑠 = [𝑓1, ..., 𝑓𝑀 ] ∈ R𝑀×𝐷 , (20)

where f̂cls ≜ 𝑀𝐿𝑃 (f𝑐𝑙𝑠 ) in Eq.10. The dense layer is also a
lightweight aggregator for the interaction among frames and
its weight matrix𝑊 is updated during the training phase.
• We then concatenate t𝑡𝑜𝑘𝑒𝑛𝑠 with f̂cls to get the concatenated
word-leval textual feature:

t̂tokens = [𝑡1, ..., 𝑡𝑀 ] ∈ R𝑀×𝐷 , (21)

where t̂tokens ≜ [t𝑡𝑜𝑘𝑒𝑛𝑠 ;𝑀𝐿𝑃 (f𝑐𝑙𝑠 )] is the concatenated
feature in Eq. 10 and 𝑡𝑖 = [𝑡𝑖 , 𝑓𝑖 ].
• Finally, we feed the concatenated feature t̂tokens to an adap-
tive module 𝑓𝑡𝑤 (·) to calculate the weight of each textual
token.

B EXPERIMENTS
B.1 More Results with post-processing

operations
The hubness problem [27, 40] has been shown to be particularly
prevalent in high-dimensional embedding spaces. Qualitatively,
the hubness problem means that a small proportion of samples
occur disproportionately frequently among the set of k-nearest
neighbours of all embeddings [3], which can harm the model’s
performance. To mitigate the hubness problem observed among
cross-modal embeddings for text-video retrieval, some methods
adopted Inverted Softmax (IS) to improve the text-video matching.
Among them, Dual Softmax loss (DSL) [6] and QueryBank Nor-
malization (QB-Norm) [3] are two commonly used and effective
post-processing operations(such as DRL [47] uses QB-Norm, and
CAMoE [6], TS2-Net [31] and STAN [28] use DSL). They can bring
significant advancements in performance.

As shown in Tab. 9, we add the results of our approach with
DSL [6] to make a fair comparison with previous methods using
post-processing operations, e.g., DSL or QB-Norm. Note that our
results with DSL still surpass all other methods with significant
improvements and achieve SOTA performance on all four datasets.
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Table 9: Retrieval results with post-processing. ∗ means
DSL [6] are utilized during inference. † denotes re-training.

MSR-VTT-1kA
Method R@1↑ R@5↑ R@10↑ MdR↓ MeanR↓ rsum↑
CLIP-ViT-B/32
QB-Norm [3] 47.2 73.0 83.0 2.0 - 203.2
CAMoE∗ [6] 47.3 74.2 84.5 2.0 11.9 206.0
TS2-Net†∗[31] 50.5 76.7 85.9 1.0 11.8 213.1
STAN∗ [28] 49.0 74.8 83.5 2.0 - 207.3
Baseline∗ 49.8 76.9 85.8 2.0 11.3 212.5
Ours∗ 51.7 77.6 86.2 1.0 11.4 215.5
CLIP-ViT-B/16
TS2-Net†∗[31] 52.8 79.0 87.4 1.0 11.4 219.2
DRL [47] 53.3 80.3 87.6 1.0 - 221.2
STAN∗ [28] 54.1 79.5 87.8 1.0 - 221.4
Baseline∗ 53.3 78.8 87.1 1.0 11.0 219.2
Ours∗ 55.5 79.4 87.1 1.0 10.0 222.0

MSVD
Method R@1↑ R@5↑ R@10↑ MdR↓ MeanR↓ rsum↑
CLIP-ViT-B/32
QB-Norm [3] 47.6 77.6 86.1 2.0 - 211.3
TS2-Net†∗ [31] 46.9 77.3 85.4 2.0 10.5 209.6
Baseline∗ 46.4 76.8 84.6 2.0 11.3 207.8
Ours∗ 48.7 78.4 86.3 2.0 9.8 213.4

DiDeMo
Method R@1↑ R@5↑ R@10↑ MdR↓ MeanR↓ rsum↑
CLIP-ViT-B/32
QB-Norm [3] 43.5 71.4 80.9 2.0 - 195.8
CAMoE∗ [6] 43.8 71.4 79.9 2.0 16.3 195.1
TS2-Net†∗ [31] 47.1 73.9 82.9 2.0 12.6 203.9
STAN∗ [28] 51.3 75.1 83.4 1.0 - 209.8
Baseline∗ 49.1 76.9 85.1 2.0 10.5 211.1
Ours∗ 52.7 79.3 86.6 1.0 10.5 218.6

ActivityNet
Method R@1↑ R@5↑ R@10↑ MdR↓ MeanR↓ rsum↑
CLIP-ViT-B/32
CAMoE∗ [6] 51.0 77.7 - - - -
TS2-Net†∗ [31] 48.3 78.0 86.8 2.0 7.7 213.1
Baseline∗ 48.3 76.3 86.5 2.0 7.6 211.1
Ours∗ 53.4 80.7 89.2 1.0 5.3 223.3

Overall, the good results on different datasets also demonstrate the
effectiveness and generalization of our approach.

B.2 More Qualitative Results with TPM-CL
Fig. 6 shows the internal mechanism of generating the triplet sam-
ples. For the given example, the cross-modal interaction masks the
informative textual tokens(i.e., "woman" and the [CLS] token, in
the lower half of Fig. 6) and visual tokens(i.e., the [CLS] token for
each frame, and the visual tokens 𝑝5,1 and 𝑝5,2 in 𝐹𝑟𝑎𝑚𝑒5, in the
upper half of Fig. 6). From the heatmap of the visual token aggre-
gate weights, we can tell that the masked visual tokens 𝑝5,1 and
𝑝5,2 are primarily concentrated on the middle and bottom areas
of 𝐹𝑟𝑎𝑚𝑒5, which correspond to the female subject. This indicates
that our model has effectively captured the informative tokens and
produced accurate, fine-grained hard negatives to represent the
subtle semantic differences.

Figure 6: Visualization of the internal mechanism of gener-
ating triplet samples in TPM-CL. Masked textual and visual
tokens are marked with an orange strikethrough, whose cu-
mulative weights 𝑐𝑢𝑚_𝑠𝑢𝑚(𝑟𝑖 ) are less than 𝜏 = 0.6. Note that,
we give the heatmap visualization of the visual token aggre-
gate weights, with bright yellow colors representing areas
of large weights and dark blue colors representing areas of
small weights.
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