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ABSTRACT
Video Quality Assessment (VQA), which aims to predict the percep-
tual quality of a video, has attracted raising attention with the rapid
development of streaming media technology, such as Facebook,
TikTok, Kwai, and so on. Compared with other sequence-based vi-
sual tasks (e.g., action recognition), VQA faces two under-estimated
challenges unresolved in User Generated Content (UGC) videos.
First, it is not rare that several frames containing serious distortions
(e.g., blocking, blurriness), can determine the perceptual quality of
the whole video, while other sequence-based tasks require more
frames of equal importance for representations. Second, the per-
ceptual quality of a video exhibits a multi-distortion distribution,
due to the differences in the duration and probability of occurrence
for various distortions. In order to solve the above challenges, we
propose Visual Quality Transformer (VQT) to extract quality-related
sparse features more efficiently. Methodologically, a Sparse Tempo-
ral Attention (STA) is proposed to sample keyframes by analyzing
the temporal correlation between frames, which reduces the com-
putational complexity from 𝑂 (𝑇 2) to 𝑂 (𝑇 log𝑇 ). Structurally, a
Multi-Pathway Temporal Network (MPTN) utilizes multiple STA
modules with different degrees of sparsity in parallel, capturing co-
existing distortions in a video. Experimentally, VQT demonstrates
superior performance than many state-of-the-art methods in three
public no-reference VQA datasets. Furthermore, VQT shows better
performance in four full-reference VQA datasets against widely-
adopted industrial algorithms (i.e., VMAF and AVQT).

CCS CONCEPTS
• Computing methodologies → Artificial intelligence; Com-
puter vision; Computer vision tasks; Scene understanding.

KEYWORDS
video quality assessment, user-generated content, spatiotemporal
information, distortions, video Transformer, sparse sampling

1 INTRODUCTION
User Generated Content (UGC) has brought evolution to the daily-
life consumer domain, which empowers amateurs to become active
producers more than consumers. Lower video production cost leads
to an explosion of UGC videos on video-sharing platforms, such
as FaceBook, Kwai, and so on, which aims to deliver high-quality
Quality of Experience (QoE) / Quality of Service (QoS) experience
†Authors contributed equally to this research.
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Figure 1: An example of UGC videos of No.13079468475 in
the KoNViD-1k [20]. This video containsmultiple distortions
along the temporal dimension, including motion-related
types (i.e. out-of-focus and blurriness) and compression-
related types (i.e. blocking artifacts). There exists a large
difference in perceptual quality among frames. And those
frames with low quality determine the overall quality in-
stead of an arithmetic mean. Therefore, a more appropriate
strategy is needed for spatiotemporal representation in VQA.

to users. Compared with Professionally Generated Content (PGC),
UGC videos inevitably have worse conditions of shooting, poor
capturing equipment, and unstable transmission links [54]. For
video streaming services, VQA has attracted more attention to
filter out videos with low perceptual qualities [14, 17]. Furthermore,
VQA is also used to conduct content-aware video encoding [6] or
enhancement [12, 21, 66], resulting in lower bandwidth cost and
better viewing experience. Therefore, it is of great economic value
to rate the perceptual quality of UGC videos through VQA.

A large number of studies on image/video quality assessment
(QA) are studied in the previous literature. According to the avail-
ability of reference videos, QA measures can be categorized into
full-reference (FR) [16, 26], reduced-reference (RR) [37] and no-
reference (NR) [25, 30, 40, 57]. Since distortion-free reference videos
are often hard to obtain, NR-VQA is widely adopted in the UGC
scenarios. According to the feature generation types, QA methods
are divided into traditional hand-crafted [38, 40] and learning-based
[4, 18, 23, 31] ones. With the rapid development of deep learning,
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convolutional neural networks (CNN) [29, 30, 67] and Transformers
[25, 57, 59] are also used to boost the VQA domain.

As shown in Fig. 1, the common phenomenon is that multiple dis-
tortions co-occur within a UGC video, where different distortions
begin to appear at different frames and own different time-span.
Such a phenomenon casts two challenges for a better fit of hu-
man perceptual quality. First, the perceptual quality of a video is
determined by the keyframes that contain particular distortions.
Excessively dense sampling brings an unbalanced distribution of
frames and may disturb the learning process of distortion char-
acteristics. While relatively current sparse sampling may ignore
keyframes. How to select frames efficiently is an essential problem
to be solved. Second, due to the differences in temporal duration
of different distortions, the perceptual quality of frames within a
video exhibits a multi-distribution mode. Take some distorted char-
acteristics for example, blocking artifact [23], dirty lens [19], and
noise [33, 70] are usually easy-detected given an individual frame.
But out-of-focus and motion blurriness [34] can only be recognized
using multiple frames. These factors put forward a higher request
for VQA methods with the ability to perform frames analysis under
different durations simultaneously.

To overcome the aforementioned annoying challenges, we pro-
pose Visual Quality Transformer (VQT) to extract quality-aware
features focusing on multi-distortions more efficiently. Specifically,
to solve the first challenge, a Sparse Temporal Attention (STA)
is proposed to sample keyframes via analyzing the temporal cor-
relation between frames. It reformulates self-attention from the
perspective of sparse sampling and adopts a proper sampling ra-
tio according to the Johnson-Lindenstrauss (JL) lemma [22]. The
keyframes can be selected by comparing the Kullback–Leibler (KL)
difference between the Uniform distribution and its cosine simi-
larity with other frames. As for model efficiency, compared with
vanilla temporal attention, STA reduces the computational com-
plexity from𝑂 (𝑇 2) to𝑂 (𝑇 log𝑇 ). To solve the second challenge,
owing to the efficiency of the STA module,Multi-Pathway Temporal
Network (MPTN) is adopted to capture co-existing distortions in
a video simultaneously, which stacks multiple STA modules with
different degrees of sparsity. Finally, the aggregated features are
used for the representation of a video in VQA.

Our contributions are summarized as follows:

• We propose an effective and efficient Visual Quality Trans-
former (VQT) for the NR-VQA tasks, where the proposed
STA selects key frames containing particular distortions and
the MPTN helps capture different distorted characteristics
simultaneously in UGC scenarios.

• VQT demonstrates superior performance than many state-
of-the-art (SoTA) methods in three NR-VQA datasets, raising
the performance by 2.14% of PLCC in KoNViD-1k and 2.17%
of PLCC in YouTube-UGC over the best results. Furthermore,
VQT obtains better results in four FR-VQA datasets (cross-
dataset evaluation in three of them) against widely-adopted
industrial algorithms (e.g., VMAF and AVQT).

• VQT can act as a plug-in module used for general computer-
vision tasks and shows good generalization ability in the
video classification task. Compared with the original dense

attention mechanism (e.g., TimeSformer), the computational
cost decreases from 197 TFLOPs to 154 TFLOPs (-22%).

2 RELATEDWORK
2.1 Perceptual Quality Assessment
According to the accessibility of the reference images or videos,
QA is divided into FR-QA, RR-QA, and NR-QA tasks. FR-QA and
RR-QA tasks require a full and partial reference respectively. While
the NR-QA method only takes distorted images or videos as input,
which is often more challenging, but also more practical in most
scenarios. In this paper, we focus on the NR-VQA domain.

In the early period of NR-VQA, most works [1, 36, 56] focused
on identifying specific types of distortions(e.g., blur, blocky). Then,
more methods [38, 62] have been proposed to focus on multiple
distortions jointly to carry out comprehensive QA. With the rapid
progress of deep learning, learning-based methods [27, 49, 63, 67–
69] have suppressed the performance of traditional hand-crafted
ones, due to their versatility and generalization. RAPIQUE [49]
combined quality-aware features of scene statistics and semantics-
aware deep convolutional features. A combination of 3D-CNN and
LSTM was adopted [64] to extract local spatiotemporal features
from small clips in the video. Patch-VQA [63] devised a local-to-
global patch-based architecture, and extracted both 2D and 3D video
features using a temporal DNN to predict the quality. STDAM [60]
introduced using the graph convolution and attention module to
extract and enhance the quality-related features. 2BiVQA [44] pro-
posed using two Bi-directional Long Short TermMemory (Bi-LSTM)
to conduct the quality assessment. One is for capturing short-range
dependencies between image patches, and the other is for captur-
ing long-range dependencies between frames. However, how to
efficiently select keyframes to model quality-related features is still
an open problem in the VQA domain. Recently, DisCoVQA [57] de-
signs a Transformer-based Spatial-Temporal Distortion Extraction
module to tackle temporal quality attention.

2.2 Video Transformer Architecture
Visual Transformers [10] are the most popular alternatives ap-
plied in various vision tasks, due to their good ability in modeling
long-term dependency of sequential data. Following ViT, many
Transformer-based models [2, 3, 13, 35, 65] were developed for
video classification tasks. TimeSformer [3] explored the factoriza-
tion of spatial-temporal dimension for efficient computation. Video
Swin Transformer [35] globally connected patches across the spatial
and temporal dimensions, and advocated an inductive bias of lo-
cality for a better speed-accuracy trade-off. There also exists some
work exploring the applicability of Transformers in the field of
VQA. B-VQA [28] combined GRU unit with Transformer encoder to
model the temporal information, which further boosts the perfor-
mance. StarVQA [59] transferred the divided space-time attention
in TimeSformer directly into VQA, showing well generalization abil-
ity in the regression task. But these architectures are not designed
specifically for VQA, especially for efficiently modeling co-existing
distortions. In this paper, we deeply analyze the problems faced by
VQA and design the VQT in a targeted manner.
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Figure 2: Illustration of the proposed Visual Quality Transformer (VQT). It receives a clip as input and reshapes each frame into
patches for tokenization. Then the sequence of tokens is fed into a stacked encoder, performing the spatiotemporal attention.
In the temporal dimension, VQT utilizes a Multi-Pathway Temporal Network to capture different distorted characteristics
simultaneously with stacking Sparse Temporal Attention blocks. In each block, STA conducts sparse query sampling to locate
keyframes for distortion representation. To further enhance STA with spatial relationships, temporal offsets across frames are
assigned to patches for alignment. Different blocks contribute to the final representation within an encoder block. To predict
the video quality, the corresponding quality score token is used for the final representation.

3 METHOD
3.1 Revisiting Video Transformer
Different from image Transformers, video Transformers receive a
sequence of frames as input. There exist some differences in basic ar-
chitecture modules, including clip tokenization and spatiotemporal
attention. We first briefly revisit them for a better understanding.

Clip Tokenization. The video Transformer takes a clip as input
denoted as X ∈ R𝑇×𝐻×𝑊 ×3, which composes of 𝑇 RGB frames
with the size of 𝐻 ×𝑊 under equal temporal interval sampled from
original videos. Following ViT, video Transformers reshape each
frame into 𝑁 non-overlapping patches, where each size is 𝑃 × 𝑃
and 𝑁 = 𝐻×𝑊

𝑃2 . Then the sequence of frames can be flattened into
X ∈ R𝑇×𝑁×(3𝑃2 ) . Besides, an extra learnable positional embedding
E𝑝𝑜𝑠 is added to encode the spatiotemporal position of each patch.
Then the input embedding Z ∈ R𝑇×𝑁×𝑑 is calculated as:

Z = WX⊤ + E𝑝𝑜𝑠 , (1)

where W ∈ R𝑑×3𝑃2 is the mapping weight and 𝑑 is the embedding
dimension of each frame token.

Divided Space-Time Attention. To process spatiotemporal infor-
mation, TimeSformer utilizes the “Divided Space-Time Attention"
module, where the temporal attention and the spatial attention
are performed sequentially. In each encoder block ℓ , the temporal

attention first computes the relationship among all patches in the
same spatial location from different frames, expressed as:

Zℓtime = Softmax
(
Qℓ−1
𝑡 ′√
𝑑

Kℓ−1𝑡 ′
⊤
)
Vℓ−1, (2)

where Q, K, V are the query, key, and value. And 𝑡 ′ denotes that the
inner products are computed on the temporal dimension. Then the
generated Zℓtime is fed back for the spatial attention, computing as:

Zℓ space = Softmax
(
Qℓ−1
𝑝′√
𝑑

Kℓ−1𝑝′
⊤
)
Vℓ−1, (3)

where 𝑝′ denotes inner products on the spatial dimension.

3.2 Visual Quality Transformer
The illustration of VQT is given in Fig. 2. The core components are
STA and MPTN, which we will describe in more detail.

Sparse Temporal Attention. Video clips own widespread informa-
tion redundancy in the temporal dimension [55, 61], both in the
frame level and feature level. Frames containing distorted charac-
teristics largely reflect the perceptual quality of the whole video.
The upper part of Fig. 3 demonstrates this phenomenon in the VQA
domain, where the computed temporal attention map shows that
all frames have a strong correlation with the 5-𝑡ℎ frame (i.e., , an
over-exposed distorted image). And the factor of overexposure in
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Figure 3: The upper images show that the quality of the
video is largely affected by frames containing distortions.
The below curves give the distributions of 𝐷𝐾𝐿 for the 5-th
(left) and 3-th (right) frame.

this frame deteriorates the quality of this video. Based on the obser-
vations in Fig. 1 and Fig. 3, we propose a Sparse Temporal Attention,
aiming to sample key-frames containing distortions in a video.

Specifically, the attention mechanism is first reformatted from
the perspective of sparse sampling. Given the query Q ∈ R𝑇×𝑑 ,
key K ∈ R𝑇×𝑑 , and value V ∈ R𝑇×𝑑 , the self-attention is computed
as V′ = softmax(QK

⊤
√
𝑑
)V, where V′ ∈ R𝑇×𝑑 . According to the

JL lemma, there exists a linear transformation that projects V into
V′ ∈ Rlog𝑇×𝑑 with low-distortion embedding, where log𝑇 is the
minimal number of frames sampled from 𝑇 frames. Specifically,
we let 𝑞𝑖 and 𝑘 𝑗 represent the feature of 𝑖-th row and 𝑗-th row
in Q and K, respectively. Then we calculate the cosine similarity
between 𝑞𝑖 and 𝑘 𝑗, 𝑗=1,..,𝑇 . And the computed distribution can be
noted as 𝑝 (K|𝑞𝑖 ), representing the correlation of the 𝑖-th frame with
all frames. Then we compute the KL divergence between 𝑝 (K|𝑞𝑖 )
and the uniform distribution𝑈 :

𝐷KL (𝑝 (K|𝑞𝑖 )∥𝑈 ) =
𝑇∑︁
𝑗=1

1
𝑇
log 1

𝑇
− 1
𝑇
log

(
𝑞𝑖𝑘

𝑇
𝑗∑𝑇

𝑗=1 𝑞𝑖𝑘
𝑇
𝑗

)
(4)

= − log 1
𝑇

−
𝑇∑︁
𝑖=1

1
𝑇

©­«ln exp
𝑞𝑖𝑘

𝑇
𝑗√
𝑑

− ln
𝑇∑︁
𝑗=1

𝑒

𝑞𝑖𝑘
𝑇
𝑗√

𝑑
ª®¬ . (5)

For simplicity, we ignore the constant term of − log 1
𝑇
. And the

equation can be rewritten as:

D𝐾𝐿 (𝑝 (K|𝑞𝑖 ) | |𝑈 ) = ln
𝑇∑︁
𝑗=1

𝑒

𝑞𝑖𝑘
⊤
𝑗√

𝑑 − 1
𝑇

𝑇∑︁
𝑗=1

(
𝑞𝑖𝑘

⊤
𝑗√
𝑑

)
. (6)

Algorithm 1 Pseudo-code of selection of keyframes
1: 𝑄𝑠𝑎𝑚𝑝𝑙𝑒 = 𝑟𝑎𝑛𝑑𝑜𝑚.𝑠𝑎𝑚𝑝𝑙𝑒 (𝑄,𝑔𝑎𝑚𝑚𝑎) ⊲ gamma:logT/T
2: 𝑚𝑢 = 𝐾𝐿-𝐷𝑖𝑣𝑒𝑟𝑔𝑒𝑛𝑐𝑒 (𝑄𝑠𝑎𝑚𝑝𝑙𝑒 , 𝐾).𝑚𝑒𝑎𝑛(𝑑𝑖𝑚 = −1)
3: 𝑠𝑖𝑔𝑚𝑎 = 𝐾𝐿-𝐷𝑖𝑣𝑒𝑟𝑔𝑒𝑛𝑐𝑒 (𝑄𝑠𝑎𝑚𝑝𝑙𝑒 , 𝐾).𝑠𝑡𝑑 (𝑑𝑖𝑚 = −1)
4: init 𝑖 = 0; 𝑎𝑡𝑡𝑛 = 𝑧𝑒𝑟𝑜𝑠 (𝑙𝑜𝑔𝑇 ,𝑇 )
5: for 𝑞 𝑖𝑛 𝑄 do
6: if 𝑖 < 𝑙𝑜𝑔𝑇 and 𝐾𝐿-𝐷𝑖𝑣𝑒𝑟𝑔𝑒𝑛𝑐𝑒 (𝑞, 𝐾) > 𝑚𝑢 + 𝑠𝑖𝑔𝑚𝑎 then
7: 𝑎𝑡𝑡𝑛[𝑖, :] = 𝑞@𝐾.𝑡𝑟𝑎𝑛𝑠𝑝𝑜𝑠𝑒 ()
8: 𝑖 +=1
9: end if
10: end for
11: 𝑉 = 𝑏𝑚𝑚(𝑎𝑡𝑡𝑛,𝑉 ) ⊲ bmm:batch matrix multiplication

Larger values of D𝐾𝐿 (𝑝 (K|𝑞𝑖 ) | |𝑈 ) indicate a stronger correla-
tion with other frames, which can be used for the selection of
keyframes. Examples are given in Fig. 3, where frames containing
distortions own larger (e.g., , the 5-𝑡ℎ frame) values and vice versa.

To reduce the complexity of computing the divergence of all
frames, log𝑇 frames are sampled randomly. The distribution of
divergence of all frames can be estimated by calculating the mean
𝜇 and variance 𝜎 of log𝑇 frames. Then log𝑇 query frames can be
selected, whose divergence meets D𝐾𝐿 (𝑝 (K|𝑞𝑖 ) | |𝑈 ) > 𝜇 + 𝜎 . The
dimension of sampled query Q̂ is reduced to log𝑇 × 𝑑 . And the
pseudocode is shown in Alg. 1.

To enhance the spatial relationship of queries between different
frames, STA further performs a spatial shift for alignment. Specifi-
cally, we reshape the spatial dimension of selected query features
Q̂ ∈ Rlog𝑇×𝑁×𝑑 into Rlog𝑇×

√
𝑁×

√
𝑁×𝑑 (the spatial dimension 𝑁 is

not shown in Fig. 2 for simplify). Then a linear projection layer is
attached on the reshaped features to predict 2D offsets P for each to-
ken, where P ∈ Rlog𝑇×

√
𝑁×

√
𝑁×2. Then the shifted query features

Q̂′ can be obtained by bilinear interpolation. Then the weighted
value features can be computed by:

V′ = softmax( Q̂
′K⊤
√
𝑑

)V. (7)

Multi-Pathway Temporal Network. To capture different distorted
characteristics simultaneously, multiple STA modules with dif-
ferent degrees of sparsity are stacked in parallel. Given a video
clip with 𝑇 frames, the number 𝑚 of pathway is determined by
𝑚 = ⌊log( 𝑇

⌈log𝑇 ⌉ + 1)⌋ − 1, where ⌈·⌉ and ⌊·⌋ represents the ceiling
and flooring operation respectively. The minimal number of frames
for different STA modules is log𝑇 , and the maximal is 2𝑚 log𝑇 .
Take an input clip with 96 frames, for example, its𝑚 is 3, contain-
ing 3 pathways. And each pathway selects 7, 14, and 28 keyframes
respectively. Each block performs temporal attention over selected
frames, resulting in a weighted value of V′𝑚 ∈ R2𝑚 log𝑇×𝑑 . Then the
values generated by different blocks are concatenated in the tem-
poral dimension, resulting in V̂ ∈ R(1+···+2𝑚 ) log𝑇×𝑑 . To align with
succeeding encoder blocks, we use the mean padding operation to
fill V̂ in the temporal dimension, generating Z𝑙 ∈ R𝑇×𝑑 :

V̂ = Concate(V′
1, · · · ,V

′
𝑚)

Z𝑙 = Mean-Padding(V̂).
(8)
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3.3 Optimization Objective
A smooth L1 loss is adopted to train VQT models. Let F (·) rep-
resent the mapping function of the VQT model. Given mini-batch
videos during training, the objective function can be denoted as:

min 1
|B|

B∑︁
𝑖=1

L1−𝑠𝑚𝑜𝑜𝑡ℎ (F (X𝑖 ), 𝑦𝑖 ), (9)

where X𝑖 and 𝑦𝑖 is the input video and corresponding labeled Mean
Opinion Score (MOS). B indicates the size of the mini-batch.

3.4 Computational Efficiency
Computational Complexity of STA. For an input clipwith𝑇 frames,

the computational cost of the original temporal attention module
is 𝑂 (𝑇 2). The STA module applies sparse computation among the
temporal dimension with a cost of𝑂 (2𝑚 log𝑇 ·𝑇 ). And 2𝑚 log𝑇 is
smaller than 𝑇 as mentioned above.

Computational Complexity of MPTN. MPTN is composed of mul-
tiple STA blocks, whose total computational cost is computed by
combining each one of𝑂 (∑𝑚𝑎=0 2𝑎 log𝑇 ·𝑇 ·𝑑). Since ∑𝑚

𝑎=0 2
𝑎 log𝑇

is smaller than 𝑇 , the computational cost of MPTN is still less than
that of the original temporal attention module.

Measured Inference Speed. Further evaluations of efficiency are
given in the following experiments. In Tab. 5 and 6, compared with
the original version of dense attention (i.e., , TimeSformer used in
StarVQA), VQT has a less computational cost (-22%), faster inference
speed (+13%) and higher performance in PLCC (+3.49%).

4 EXPERIMENTS
4.1 Datasets and Evaluation

NR datasets. We leverage three NR-VQA datasets to evaluate
VQT models: LIVE Video Quality Challenge Database (LIVE-VQC)
[43], Konstanz Natural Video Database (KoNViD-1k) [20], and Blind
Video Quality Assessment for User Generated Content (Youtube-
UGC) [53]. Subjective quality scores are provided in the form of
MOS. LIVE-VQC contains 585 videos labeled by MOS with a reso-
lution from 240P to 1080P. KoNViD-1k comprises a total of 1,200
videos with a resolution of 960 × 540 that are fairly sampled from a
large public video dataset, YFCC100M[45]. The duration of videos is
8s with 24/25/30FPS, whose MOS ranges from 1.22 to 4.64. Youtube-
UGC is composed of 1,500 videos that are sampled from millions of
YouTube videos belonging to 15 categories annotated by a knowl-
edge graph. The resolutions of videos are from 360P to 4K. For the
Youtube-UGC, we follow the default training and testing splits [53].
For LIVE-VQC and KoNViD-1k, following [49], 80% of the dataset
is used for training, and the remaining 20% is used for testing.

FR Datasets. To verify the generalization ability to video codec
field, four more FR-VQA datasets are tested, including ICME-FR
†, VQEG HD3 †, NFLX Video dataset † and the Waterloo IVC 4k
Video Quality database [32]. The VQEG HD3 database is composed
of 9 source clips with a resolution of 1080P. And the source clips are
encoded into 63 distorted videos for evaluation. The NFLX Video
†http://2021.ieeeicme.org/2021.ieeeicme.org
†https://www.cdvl.org
†https://github.com/Netflix/vmaf

consists of 34 source clips, whose duration is 6s. They are sampled
from popular TV shows and movies on Netflix. Source clips are
encoded at resolutions ranging from 384 × 288 to 1920 × 1080,
resulting in about 300 distorted videos. The Waterloo IVC 4k Video
Quality database is created from 20 pristine 4K videos. Each video
is encoded by five encoders: HEVC, H264, VP9, AV1, and AVS2, and
divided into three solutions (960× 540, 1920× 1080 and 3840× 2160
with four distortion levels, resulting in 1,200 encoded videos.

Evaluation Criteria. Pearson’s Linear Correlation Coefficient
(PLCC), Spearman’s Rank-Order Correlation Coefficient (SROCC),
Kendall’s Rank-Order Correlation Coefficient (KROCC), and Root
Mean Square Error (RMSE) are used for evaluation. PLCC and RMSE
measure the prediction accuracy, SROCC, and KROCC indicate the
prediction monotonicity. Better VQA methods should have larger
PLCC/SROCC/KROCC and smaller RMSE values.

4.2 Implementation Details
Our implementation is based on PyTorch [41] and MMAction2 [8].
All models are trained using 4 NVIDIA Tesla V100. The number
of encoders follows the original setting of TimeSformer. We set a
patch size of 16 in clip tokenization. The embedding dimension 𝑑 is
768. We use models that have been pre-trained on ImageNet [9] and
Kinetics-400 [24] for training. During the optimization procedure,
we use the AdamWoptimizer with a learning rate of 1e-5 decayed by
a factor of 0.1 every 30 epochs, minimizing the L1 loss. All models
are trained for 90 epochs. By default, the checkpoint generated by
the last iteration is used for evaluation. The batch size of video clips
is set to 4 with a clip length of 96. Other training settings are the
same with [3]. The median result of 10 repeat runs is used for Tab. 1
with different random splits.

4.3 Comparison with SoTA Methods
Extensive experiments are conducted to compare with SoTA QA
methods. As given in Tab. 1, we report the PLCC and SROCC per-
formance in KoNViD-1k, LIVE-VQC and Youtube-UGC datasets.
Besides, weighted average scores are reported based on the number
of videos of three datasets. Some observations and conclusions
can be found here. First, compared with IQA methods (i.e. NIQE
[40], BRISQUE [38], CORNIA [62]), VQT obtains a large perfor-
mance lead (+31.54%, +24.24%, +26.04% of PLCC in KoNViD-1k),
showing the effectiveness of fusion strategy of frames over an arith-
metic mean. Second, compared with hand-crafted features (i.e. [39]),
VQT demonstrates the utility of learning-based methods over prior
knowledge. Third, compared with CNN models (i.e. [28, 49, 60, 63]),
VQT shows the advantage of Transformer models in building long-
range dependencies. Fourth, compared with current Transformer
models (i.e. StarVQA [59], TimeSformer), VQT also evaluate the
gains from architecture modification by large margins (+7.24% of
PLCC in KoNViD-1k, +2.77% of PLCC in LIVE-VQC). Compared
with current SOTA method, VQT also outperforms STDAM [60] in
three datasets(+2.59% of PLCC in KoNViD-1k, +1.53% of PLCC in
LIVE-VQC, and +2.17% of PLCC in Youtube-UGC). Since the size of
LIVE-VQC is the smallest (only containing 585 videos), BVQA [28]
achieves the highest performance by introducing extra QA training
data. However, VQT still surpasses it in the weighted scores (+2.39%
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Table 1: Quantitative results of different methods on three public NR-VQA datasets. Larger PLCC and SROCC indicate better
performance. Besides, weighted average scores are reported based on the number of videos of three datasets. The best and
second best performances are highlighted and underlined. The mark “-" denotes that results are not reported originally. The “*"
mark indicates using extra training data for QA tasks. The VQT models outperform almost all SoTA methods by large margins.

Method KoNViD-1k LIVE-VQC Youtube-UGC Weighted Average
PLCC ↑ SROCC ↑ PLCC ↑ SROCC ↑ PLCC ↑ SROCC ↑ PLCC ↑ SROCC ↑

VIIDEO [39] 0.303 0.298 0.2164 0.0332 0.1534 0.0580 0.2230 0.1459
NIQE [40] 0.5530 0.5417 0.6286 0.5957 0.2776 0.2379 0.4500 0.4225

CORNIA [62] 0.608 0.610 - - - - - -
BRISQUE [38] 0.626 0.654 0.638 0.592 0.395 0.382 0.5299 0.5265
VBLIINDS [42] 0.6576 0.6947 0.7120 0.7015 0.5551 0.5590 0.6431 0.6427
GRU-VQA [29] 0.744 0.755 - - - - - -
TLVQM [11] 0.7688 0.7729 0.8025 0.7988 0.6590 0.6693 0.7284 0.7337

MDTVSFA [30] 0.7856 0.7812 0.7728 0.7382 - - - -
UGC-VQA [48] 0.7803 0.7832 0.7514 0.7522 0.7733 0.7787 0.7719 0.7754

PVQ [63] 0.786 0.791 0.837 0.827 - - - -
RAPIQUE [49] 0.8175 0.8031 0.7863 0.7548 0.7684 0.7591 0.7907 0.7753
StarVQA [59] 0.796 0.812 0.808 0.732 - - - -
BVQA∗ [28] 0.8335 0.8362 0.8415 0.8412 0.8194 0.8312 0.8290 0.8350
STDAM [60] 0.8415 0.8448 0.8204 0.7931 0.8297 0.8341 0.8320 0.8305
2BiVQA [44] 0.835 0.815 0.832 0.761 0.790 0.771 0.794 0.800

DisCoVQA [57] 0.847 0.847 0.826 0.820 - - - -
Our TimeSformer 0.8293 0.8342 0.8017 0.7845 0.8279 0.8133 0.8235 0.8159

VQT 0.8684 0.8582 0.8357 0.8238 0.8514 0.8357 0.8529 0.8421

of PLCC), showing strong generalization ability. Compared with
recent DisCoVQA, VQT obtain a higher result of PLCC by 2.14%.

4.4 Comparing with VMAF/AVQT
We further compare the effectiveness of our method with the two
industrial standards, i.e. Netflix’s VMAF † and Apple’s AVQT † on
the four widely adopted open datasets. The VMAF and AVQT have
been used as standard deals to their simplicity in computations
and consistent performance across different types of videos. As
shown in Tab. 2, their performance is consistently high across the
four datasets except for the Waterloo IVC 4k since both VMAF and
AVQT were developed before 4K videos were becoming popular.
The performance decrease on Waterloo IVC 4k indicates that the
generability of these two algorithms is not always satisfying when
a new video format is induced.

We train our VQTmodel with data solely from the ICME-FR train
split. However, we not only test it on the ICME-FR test split but
also directly evaluate its performance on the aforementioned three
datasets without any fine-tuning (i.e., cross-dataset evaluation).
From Tab. 2, we observe that our proposed VQT method further im-
proves the performance. This enhancement is not only attributed to
the fact that our model is learned from a large-scale dataset but also
thanks to our carefully designed architecture that can effectively
extract and integrate spatiotemporal features to better model users’
Mean Opinion Scores (MOS). It is worth noting that our method is
efficient and can be easily integrated and substituted by existing

†https://github.com/Netflix/vmaf
†https://developer.apple.com/videos/play/wwdc2021/10145

Table 2: Comparisons with industrial standards. The VQT
model is trained on the ICME-FR datasets with the super-
vision of DMOS. And direct inference results are reported
on the other three datasets without fine-tuning. VQT shows
strong generalization ability and practical prospects.

Datasets Method PLCC ↑ SROCC ↑

ICME-FR
VMAF 0.9423 0.9137
AVQT 0.9730 0.9334
VQT 0.9867 0.9364

NFLX Video Dataset
VMAF 0.9351 0.9173
AVQT 0.9571 0.9420
VQT 0.9715 0.9532

VQEG HD3
VMAF 0.9266 0.9238
AVQT 0.9481 0.9417
VQT 0.9603 0.9576

Waterloo IVC 4k
VMAF 0.7324 0.7325
AVQT 0.7749 0.7738
VQT 0.7885 0.7821

methods such as VMAF/AVQT for evaluating the performance of
different video encoding strategies.

4.5 Ablation Studies and Visualization
To verify the rationality of the proposed modules, ablation studies
are conducted in the following aspects.
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Table 3: Ablation study of individual modules in VQT, con-
ducted in KoNViD-1k, Youtube-UGC, and Kinetics-400.

Modules KoNViD-1k YoutuUGC K400
STA MPTN PLCC ↑ SROCC ↑ PLCC ↑ SROCC ↑ Top-1 Acc ↑
✓ ✓ 0.8684 0.8582 0.8514 0.8357 80.3

✓ × 0.8530 0.8510 0.8429 0.8280 79.0
× × 0.8293 0.8342 0.8279 0.8133 78.0

Table 4: Ablation study on the type of reduction and the
number of frames used in the STA module. Experiments are
conducted in the KoNViD-1k.

Sampling Strategy Frames PLCC↑ SROCC↑
our KL-based log𝑇 0.8684 0.8582

our KL-based 0.5 log𝑇 0.8320 0.8309
our KL-based 2 log𝑇 0.8691 0.8575
Random[7] log𝑇 0.8067 0.7798
Linear[50] log𝑇 0.8142 0.8091
Conv[51] log𝑇 0.8140 0.8090
Clustering log𝑇 0.8379 0.8203

The rationale of the proposed STA module. The rationale of STA
is verified theoretically and experimentally. Theoretically, according
to the JL lemma, the lower bound of the error coefficient 𝜀 after
projection is measured by 𝑑 > 8 ln(𝑇 )/𝜀2, where 𝑇 is the number
of frames, and 𝑑 is the embedding size. In our setting of 𝑇 = 96
and 𝑑 = 768. So 𝜀 can be calculated as 0.215, which means more
than 78.5% of temporal information or more is maintained by
selected log𝑇 keyframes. Experimentally, sufficient ablation studies
also confirm the effectiveness of STA as shown in Tab. 3 and 4.
Simply adding the STA module to the baseline can bring consistent
promotion on two VQA datasets (KoNViD-1k and Youtube-UGC)
and one general video classification dataset (Kinetics-400).

Reduction types in the STA module. We conducted an evaluation
of various linear reduction methods, including random[7] (log𝑇
frames are randomly selected from 𝑇 frames), linear reduction[50]
(features are transformed using a matrix of log𝑇 ×𝑇 , resulting in
the representation of log𝑇 frames), conv reduction[51] (features
are transformed using a Conv/BN/ReLU module, which reduces
the channel from 𝑇 to log𝑇 ), clustering (features are clustered into
log𝑇 centers according to cosine similarity), and STA. The results,
presented in Tab. 4, demonstrate that the STA reduction method
has the most significant positive impact on performance, effectively
removing redundant information. Additionally, we found that the
log𝑇 setting was the optimal sparsity setting through experimen-
tation involving increasing and decreasing the number of frames
used to represent keyframes.

Different combinations of proposed modules. We conduct abla-
tion experiments for different proposed modules, including STA
and MPTN. Results are given in Tab. 3. The best performance is

Table 5: Comparison of inference cost with academic and
industrial methods. VQT shows high efficiency.

Type TFLOPs Device Time Speed Ratio
VMAF - CPU 9.85s 1.0×
AVQT - CPU 4.61s 2.1×

MDTSVFA 231 GPU 7.07s 1.4×
StarVQA 197 GPU 0.57s 17.3×
BVQA 89 GPU 0.51s 19.3×
STDAM 106 GPU 2.12s 4.6×
VQT 154 GPU 0.50s 19.7×

obtained by combining them. We also verify individual modules
on Kinetics-400, where a combination of modules improves 1.3%
on Top-1 accuracy which proves the ability of generalization on
general classification tasks. For better understanding, we plot the
visualization of the learned temporal attention maps in Fig. 4. The
visualization shows that different STA modules in the MPTN pay
attention to different frames in a clip. It means that the proposed
MPTN can capture different distortions simultaneously.

Visualization. To further validate the effectiveness of VQT, we
visualize the frames with the highest response and analyze the
corresponding quality scores for each individual frame. As shown
in Fig. 5, 6 and 7, VQT is capable of effectively perceiving co-existing
low-quality features in videos, such as interlace, motion blur, out-of-
defocus and blocking artifacts. Furthermore, compared to averaging
the predicted results for all frames, VQT-based temporal processing
yields prediction results that are closer to the labeled MOS values.

Efficiency comparison. Computation Efficiency is compared with
SoTA methods under 1080P/30FPS/30s videos, as shown in Tab. 5,
including academic algorithms and industrial algorithms. Due to
commercial confidentiality, we cannot obtain open-source model
information (e.g., , FLOPs) fromNetflix/Apple. For a fair comparison,
in GPU, VQT shows higher efficiency than image-based (MDTSVAF,
STDAM) and video-based SoTA methods (StarVQA, BVQA). That
0.5s inference time can fulfill the real-timemonitoring of the service-
side quality variation. Further, speed-up can be investigated in
future work (e.g., , knowledge distillation and quantization).

4.6 Generalization in Video Classification
To further evaluate the generalization ability of VQT to other gen-
eral semantic task, the performance on the video classification
dataset of Kinetics-400[5] with SoTA video classification models is
evaludated, including R(2+1)D [47], I3D [5], I3D+NL [52], ip-CSN-
152 [46], SlowFast [15], TimeSformer [3] and Video Swin Trans-
former [35]. We follow the default training setting in MMAction2
for a fair comparison. As shown in Tab. 6, VQT achieves a Top-1
accuracy by 80.3%, outperforming CNNmodels [46, 47, 58] and very
recent Transformer-based models, e.g., TimeSformer[3] and Video
Swin Transformer[35]. This proves the effectiveness and general-
ization ability of VQT in the general video classification task. We
hope this VQT module can achieve more satisfactory performance
when used in more general computer vision tasks.
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Figure 4: Visualization results of the temporal attention maps generated by an MPTN consisting of two STA modules
(No.5956265529 in the KoNViD-1k). By the comparison between V′

1 and V′
2, these two STA modules concentrate on different

distortions. The STA with fewer frames pays much attention to compression distortions that can be detected by spatial infor-
mation, and the STA with more frames focuses on camera movement that can be detected by temporal information.
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Figure 5: Visualization results of the No.TelevisionClip-0604
video sampled from Youtube-UGC. The mixture of interlace
and motion blur deteriorates the video quality. Compared to
the average image quality score, VQT focuses more on the
clips containing distortions, as shown by 4 sampled frames.
LIVE-VQC/B174

AVG: average image quality score

PRS: predicted video quality score
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Figure 6: Visualization results of the No.B174 video sampled
from LIVE-VQC. Our analysis indicates that the primary
factors contributing to the degradation are motion blur (ex-
hibited in the 1st and 2nd frames) and out-of-focus (exhibited
in the 3rd and 4th frames).

5 CONCLUSION AND FUTUREWORK
This paper proposed VQT to address two underestimated challenges
faced by VQA. To tackle the first challenge that the perceptual
quality of videos is largely determined by deteriorated keyframes,
we propose the STA module, which performs sparse sampling by
analyzing the correlation between frames, resulting in efficient
computation of attention. To address the second challenge that
various types of distortions co-exist in a video, we propose the
MPTN capture co-existing distortions by stacking multiple STA
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1 Frame Index=18 2 Frame Index=43

3 Frame Index=80 4 Frame Index=104

1
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AVG: average image quality score

PRS: predicted video quality score
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Figure 7: Visualization results of the No.0095_47 video sam-
pled from ICME. The video quality is mainly decided by
blocking artifacts, which appear in the fighting scenarios.

Table 6: Classification results on the K-400 validation set. The
computational FLOPs and Top-k accuracy are reported.

Method Backbone Top-1 Top-5 TFLOPs
R(2+1)D ResNet34 72.0 90.0 75
I3D ResNet50 72.1 90.3 108

I3D+NL ResNet101 77.7 93.3 359
ip-CSN-152 Res152 77.8 92.8 109
SlowFast ResNet101 79.8 93.9 234

TimeSformer ViT-B 78.0 93.7 197
Video Swin Swin-T 78.8 93.6 88

VQT ViT-B 80.3 94.5 154

modules with different degrees of sparsity. Our proposed method is
extensively evaluated on three widely-used NR-VQA datasets. Ad-
ditionally, VQT outperforms widely-adopted industrial algorithms
of VMAF and AVQT on four FR-VQA datasets. Extensive ablation
studies and visual analysis further validate the effectiveness of each
component of VQT. We also observe good generalization ability
when transferring to the video classification task. We hope that
VQT can serve as a new baseline for VQA tasks.

Regarding the selection of keyframes, the STA module currently
relies on predefined hyperparameters. In the future, it would be
possible to propose methods for adaptive keyframe selection, which
can determine the number of keyframes based on prior information
or employ a learning-based approach to identify keyframes that
exhibit distortion-related features.
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