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ABSTRACT
Emotion distribution learning has gained increasing attention with
the tendency to express emotions through images. As for emotion
ambiguity arising from humans’ subjectivity, substantial previous
methods generally focused on learning appropriate representa-
tions from the holistic or significant part of images. However, they
rarely consider establishing connections with the stylistic infor-
mation although it can lead to a better understanding of images.
In this paper, we propose a style-guided high-order attention net-
work for image emotion distribution learning termed StyleEDL,
which interactively learns stylistic-aware representations of im-
ages by exploring the hierarchical stylistic information of visual
contents. Specifically, we consider exploring the intra- and inter-
layer correlations among GRAM-based stylistic representations,
and meanwhile exploit an adversary-constrained high-order atten-
tion mechanism to capture potential interactions between subtle
visual parts. In addition, we introduce a stylistic graph convolu-
tional network to dynamically generate the content-dependent
emotion representations to benefit the final emotion distribution
learning. Extensive experiments conducted on several benchmark
datasets demonstrate the effectiveness of our proposed StyleEDL
compared to state-of-the-art methods. The implementation is re-
leased at: https://github.com/liuxianyi/StyleEDL.
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1 INTRODUCTION
Image emotion analysis [40] has gained significant research at-
tention owing to its facility in conveying emotions and views of
people. Currently, image emotion analysis has been applied in var-
ious scenarios, such as multimedia retrieval [16, 20, 22, 41, 42],
social network analysis [5, 12, 24, 27], advertising recommenda-
tion [11, 18, 31].

In prior studies, the image emotion analysis tends to be formu-
lated as a single-label classification task [23, 34, 36, 39, 43], where
each image is assigned a dominant label. However, one image may
contain a mixture of multiple emotions with varying intensities,
and an individual may have different emotional responses toward
one image (i.e., ambiguity). As to this problem, the label distribu-
tion learning (LDL) paradigm [4, 6, 25, 35] has been adopted to
narrow the gap between visual features and affective states. Typi-
cally, [35] intended to learn a more smooth label vector to represent
the emotions of images, replacing the previous dominant emotion
classification. [4] attempted to boost predicting performance by
taking regions that represent emotions most into consideration.
However, these methods failed to explicitly consider the correla-
tions between emotions. For example, an image of a reunion of old
friends may be more likely to evoke feelings of both excitement and
happiness, without causing sadness. Fortunately, emotion correla-
tions [10, 29, 30, 33] have been proven to be able to further improve
the emotional distribution performance with prior knowledge.

However, existing methods for emotion distribution learning
usually suffer from two challenges that tightly hinder performance
improvements. First, due to the subjectivity of human cognition,

ar
X

iv
:2

30
8.

03
00

0v
1 

 [
cs

.C
V

] 
 6

 A
ug

 2
02

3

https://orcid.org/0000-0003-2648-7358
https://orcid.org/0000-0001-6284-9470
https://doi.org/10.1145/3581783.3612040
https://doi.org/10.1145/3581783.3612040
https://doi.org/10.1145/3581783.3612040


MM ’23, October 29-November 3, 2023, Ottawa, ON, Canada Peiguang Jing et al.

Figure 1: Different styles of images can elicit different emo-
tional responses. In the case where the content is the same
but the style is different, the left side contains more melan-
cholic while the right side is more content.

directly using visual representations extracted from convolutional
neural networks (CNNs) may be insufficient to characterize emo-
tions contained in images, especially for the emotion ambiguity
problem. As an example, Figure 1 shows that the right side has more
contentment, while the left side may evoke melancholic feelings
among observers, despite depicting the same content. Different
styles shown in these two pictures cause different emotions, but
the existing methods rarely reveal this point from the perspective
of stylistic representation learning. Second, the correlation among
emotions is generally modeled by a static graph structure [10].
Unfortunately, the adjacent relation of a static graph is usually
manually defined according to the given dataset, and such relation
generally models coarse dependencies, with limited versatility to
mine fine latent relationships between emotions. As a result, these
methods learn only coarse emotional correlations during iterations,
which ultimately leads to unsatisfactory prediction performance.

To address the above issues, we propose a novel method termed
style-guided high-order attention network for image emotion dis-
tribution learning (StyleEDL). The core idea behind our proposed
StyleEDL is to leverage stylistic information to compensate for the
deficiency of visual representations to resolve emotion ambigu-
ity. To explore stylistic-aware information in datasets, we first use
GRAM-based intra- and inter-layer correlations as emotional style
representations. And then we intermix significant attention results
of content information generated by an adversary-constrained high-
order attention module to obtain stylistic-aware representations.
To get more accurate emotions of images, we consider the intrinsic
relationship upon stylistic-aware representations using a stylis-
tic graph network. Taking the coarse information of static graph
network learning as the prior information, the network adopts a
dynamic graph structure to obtain the emotional-aware represen-
tations from the stylistic-aware representations in an adaptive way.
Our main contributions are as follows:

• We propose a novel emotion distribution learning method
termed StyleEDL, which explores stylistic information as

complementary information to refine the representations of
images. To the best of our knowledge, this is the first work
using a style-induced paradigm for IEDL.

• We devise a stylistic-aware representation learning network
that extracts attentive visual content representations and
hierarchical stylistic representations. In addition, develop
a stylistic GCN to capture the intrinsic correlation among
stylistic-aware representations.

• We conduct experiments on three public datasets, and the re-
sults show the superiority of the proposed method compared
to state-of-the-art methods.

The remaining sections of the paper have been structured as follows:
Section 2 expounds on the related research, Section 3 presents the
proposed StyleEDL, Section 4 provides empirical evaluation and
analysis, and Section 5 concludes the paper.

2 RELATEDWORK
2.1 Image Emotion Distribution Learning
Existing research on LDL can be borrowed to describe the emo-
tions corresponding to an image. In particular, [37] proposed two
methods, conditional probability neural network with binary code
(BCPNN) and augmented conditional probability neural network
(ACPNN), based on conditional probability neural networks to ad-
dress sentiment ambiguity with multiple emotions. [6] proposed
the deep label distribution learning (DLDL) method, which effec-
tively utilizes label ambiguity by minimizing the Kullback-Leibler
divergence for the first time. [35] developed amulti-task deep frame-
work by jointly optimizing classification and distribution prediction.
Later, polarity and relevance among emotions were also taken into
account to explicitly model emotional correlation, making it effec-
tive to learn the distribution. [10] utilized graph neural networks
as emotional predictors to capture the correlation among emotions.
[29] designed a combined loss based on the earth mover’s distance
(EMD) and kullback-leibler divergence using structured labels in
sentiment polarity. [33] designed a novel progressive circular (PC)
loss based on an emotional circle to boost the learning process in an
emotion-specific way. To explore emotional style representations in
complicated images, our proposed method proposes stylistic-aware
representation learning and emotional-aware enhanced representa-
tion learning, producing accurate emotion distribution in real-world
datasets.

2.2 Image Style Recognition
Many recent works have indicated that the style of an image has
a significant impact on the meaning it conveys. For example, [15]
proposed a multi-patch aggregation network for extracting fine-
grained features from images and showed that this approach achieves
good performance in image style classification, aesthetic classifica-
tion, and quality estimation tasks. [17] used the GRAM matrix of
feature maps to generate style vectors, which they applied to style
image retrieval. [14] demonstrated the effectiveness of deep residual
networks in image style recognition. [32] proposed a multi-factor
distribution soft label and performed image style classification in a
multi-task framework. [3] systematically explored the use of corre-
lations between feature maps to characterize image style. [13] con-
firmed that mid-level features corresponding to textures, shadows,
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etc., are particularly well-suited for illustration style classification.
[9] proposed using geometry-sensitive style features based on im-
age saliency for photographic image classification. However, those
works have only focused on directly extracting feature maps from
their models, which may not fully capture fine representations. In
this paper, we propose a novel style-induced method that leverages
attentive visual content representations and hierarchical stylistic
representations to guide emotion distribution learning. This ap-
proach allows for more comprehensive emotional representations
than previous methods.

3 THE PROPOSED METHOD
Emotion distribution learning task can be defined as: given a labeled
sample pair {𝑥, ŷ}, which is used to learn a function:

H : 𝑥 −→ y (1)

where 𝑥 represents an input image, ŷ = {𝑦𝑛}𝑁𝑛=1 (
∑𝑁
𝑛=1 𝑦

𝑖
𝑛 = 1,

𝑦𝑖𝑛 ∈ [0, 1]) is the degree to which 𝑁 emotions are expressed in this
image, and y represents the corresponding emotional distribution
learned. Our goal is to optimize the function H with the help of
supervised information ŷ, fitting the true emotional distribution of
the image.

3.1 Framework Overview
The representations of images can evoke different emotions de-
pending on the aspects being considered. Different aspects can
also contribute differently to the triggering of emotions. One way
to construct different representations was to directly use shallow
features extracted by CNN as emotional concepts. However, these
concepts may not fully capture the emotional content of an image.
Another way to represent emotions in different aspects is by using
CNN with multiple convolutional layers. Even though a convolu-
tional layer with small kernels may struggle to perceive everything
in an image, a deeper architecture can increase the model’s recep-
tive field. As a result, the early layers of the CNN tend to capture
low-level features such as color and texture, while the later lay-
ers capture more complex and high-level features. Therefore, we
use the characteristics of the CNN to construct a module for the
stylistic-aware representation learning. In detail, we first use
the GRAM matrix of low-level features as stylistic information.
And then we combine it with visual content information from high-
level features enhanced by a high-order attention module to obtain
stylistic-aware representations. Moreover, recent studies [19] have
shown that the graph convolutional network (GCN) can improve
the performance of emotion distribution learning due to its abil-
ity to capture emotion dependencies. However, traditional GCN
only captures coarse emotion dependencies. And the stylistic-aware
representations contain relatively comprehensive emotional repre-
sentations from visual and stylistic information, but only parts of
them play a role in improving performance. Therefore, we propose
a stylistic GCN module for emotional-aware enhanced repre-
sentation learning, which captures emotion relations of stylistic-
aware representations in an adaptive way. Specifically, the module
initializes coarse emotion dependencies from a static GCN and uses
them to capture emotional-aware dependencies of stylistic-aware
representations for each image. By integrating the stylistic-aware

representations and emotional-aware dependencies, our proposed
method can better capture the emotions present in images.

3.2 Stylistic-aware Representation Learning
In this module, we first learn the emotional style representations
with image style by exploring intra-layer and inter-layer correla-
tions in feature maps. Second, a high-order attention mechanism
with adversary constraints is introduced to guide learning emo-
tional content representations. Finally, we fuse the emotional style
representations and emotional content representations and further
explore the latent stylistic-aware representations of images.

3.2.1 GRAM-based Intra- and Inter-layer Correlation. Inspired by
the work [17], we use the GRAM matrix of each layer’s feature
maps as the intra-layer emotional style representations. Because
the features related to the emotional style of the image, such as
texture and color, are typically captured in the low-dimensional
feature maps, we first extract the input feature maps from the
outputs of different layers of ResNet-50 to calculate the stylistic
representation within each layer, as follows:

X𝑘 = [X1
𝑘
,X2

𝑘
, ...,X𝑐𝑘

𝑘
] ∈ R𝑐𝑘 ×𝑤𝑘 ×ℎ𝑘 , 𝑘 = 0, 1, 2 (2)

where X𝑘 represents the feature maps of the 𝑘-th layer extracted
from an image 𝑥 . For simplicity, in all the following layers, 𝑐∗,𝑤∗
and ℎ∗ represent the number of channels, width and height of
the feature maps or representations, respectively. We then convert
feature maps into a vector x𝑖

𝑘
∈ R𝑚𝑘 ,𝑖 = 0, 1, ..., 𝑐𝑘 ,𝑚𝑘 = 𝑤𝑘 × ℎ𝑘

and concatenate them into a matrix B𝑘 .
B𝑘 = [x1

𝑘
, x2

𝑘
, ..., x𝑐𝑘

𝑘
] ∈ R𝑐𝑘 ×𝑚𝑘 (3)

Following the above transformation, we can obtain the GRAM
matrix of each layer as the corresponding intra-layer correlation.

G𝑘 = B𝑘B𝑘T ∈ R𝑐𝑘 ×𝑐𝑘 , 𝑘 = 0, 1, 2 (4)

In G𝑘 , each element𝐺𝑖 𝑗

𝑘
=
∑
𝑎 B𝑖𝑎𝑘 B𝑎𝑗

𝑘
, 𝑎 = 0, 1, · · · ,𝑚𝑘 is the inner

product between the transformed feature maps 𝑖 and 𝑗 in layer 𝑘 .
To capture the correlations between different layers of the net-

work, we first use the GRAM matrix G𝑘 defined in Eq. (4) to obtain
the emotional style representation for each layer. However, the
shape of the GRAMmatrix obtained from different layers may vary,
so we next upsample them to the same shape and further stack
them together along the channel dimension, denoted as

G̃ = Stack(G̃0, G̃1, G̃2 ) (5)

G̃𝑘 = Upsample(G𝑘 ), 𝑘 = 0, 1, 2 (6)

where G̃ is the stacked GRAM matrix by the operator Stack(·).
To measure the inter-layer correlations in the image, we design

an inter-layer correlation module that consists of two convolutional
layers, each followed by a layer normalization (LN) and a ReLU
activation. Unlike the commonly used instance normalization (IN)
in image style transfer networks, the proposed module uses LN to
normalize the input feature maps along the three dimensions of
channel, width, and height. This increases the correlation between
channels, and can be expressed as follows:

F𝑠𝑡𝑦𝑙𝑒 = 𝑓𝑐𝑐 ( G̃) ∈ R𝑐𝑠×𝑤𝑠×ℎ𝑠 (7)

where F𝑠𝑡𝑦𝑙𝑒 is the emotional style representations, 𝑓𝑐𝑐 represents
inter-layer correlation module.
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Figure 2: Detailed structure of our StyleEDL, which consists of three core networks: (1) ResNet-50 is the backbone of our
method, discarded the last fully connected layer and retained the top convolutional layer and four groups of convolutional
layers, namely ‘Conv1’, ‘Layer1’, ‘Layer2’, ‘Layer3’, and ‘Layer4’. (2) Stylistic-aware representation learning network generates
stylistic-aware representations based on emotional content representations F𝑐𝑜𝑛𝑡𝑒𝑛𝑡 and emotional style representations F𝑠𝑡𝑦𝑙𝑒 .
(3) Emotional-aware enhanced representation Learning network uses a stylistic GCN to obtain emotional-aware enhanced
representations.

3.2.2 Visual Attention Module. The visual content information of
an image can be derived from the objects and scene information
depicted in the image. Complex emotions are not easily acquired
from those pieces of information. Inspired by [2] in solving person
re-identification tasks, we propose a visual attention module that
introduces high-order attention (HOA) and feature pyramid mech-
anisms. It captures the complex relations and subtle differences
among visual parts to enhance the ability of emotion distribution
learning. Specifically, given the feature maps X2 obtained from the
‘Layer2’ layer, HOA is utilized to model the high-order attentive
results X𝑟

𝑎𝑡𝑡 among visual parts as follows:

X𝑟
𝑎𝑡𝑡 = 𝑓 𝑟

ℎ𝑜𝑎
(X2 ), 𝑟 = 1, . . . , 𝑅 (8)

𝑓 𝑟
ℎ𝑜𝑎

(X) =
𝑟∑︁

𝑠=1
Conv1×1 (Z𝑟

1 ⊙ · · · ⊙ Z𝑟
𝑠 ⊙ · · · ⊙ Z𝑟

𝑟 ) (9)

Z𝑟
𝑠 = Conv1×1 (X), 𝑠 = 1, · · · , 𝑟 (10)

where 𝑓 𝑟
ℎ𝑜𝑎

represents HOA, 𝑅 is the number of order, ⊙ represents
element-wise product operator. Specifically, Eq. (10) mines simple
and coarse information from 𝑠 emotional perspectives using various
1 × 1 convolution layers Conv1×1 (·). The element-wise product
operator that follows is used to capture the complex and high-order
interactions of visual parts, as well as the subtle differences among
emotional-aware regions caused by the objects present in the image.
As shown in Figure 2, to generate the emotional content features
under the guidance of high-order relationships, we use the ‘Layer3’
layer termed 𝑓3 (·) and ‘Layer4’ layer termed 𝑓4 (·) in ResNet-50
to encode the high-order attentive results to obtain multi-scale

emotional content features X3 and X4:
X3 = [ 𝑓3 (X1

𝑎𝑡𝑡 ), . . . , 𝑓3 (X𝑅
𝑎𝑡𝑡 ) ] ∈ R𝑅×𝑐3×𝑤3×ℎ3 (11)

X4 = [ 𝑓4 (X1
3 ), . . . , 𝑓4 (X𝑅

3 ) ] ∈ R𝑅×𝑐4×𝑤4×ℎ4 (12)

To effectively extract and describe visual content information, we
construct a feature pyramid network (FPN) to improve the net-
work’s multi-scale perception ability. This is done by upsampling
the feature maps X4 and convolving it with a 1 × 1 convolution
layer to match the number of channels in X3. The resulting fea-
ture maps are then added to X3 to obtain the emotional content
representations F𝑐𝑜𝑛𝑡𝑒𝑛𝑡 .

F𝑐𝑜𝑛𝑡𝑒𝑛𝑡 = Conv1×1 (Upsample(X4 ) ) + X3 (13)

The HOA can explicitly capture diverse and complementary high-
order information, which encourages the richness of the learned
features. However, simply employing the HOA module causes par-
tial/biased learning behavior, hindering the performance of our
method. The variant labeled as "noAN" aptly demonstrates this fact
with great efficacy in Table 4. As mentioned in [2], we introduce an
adversary constraint to suppress the problem of order collapse for
the multi-scale emotional content features X3 and X4, respectively:

max
𝐻𝑂𝐴|𝑅=𝑟

𝑅=1

min
𝑓𝑎𝑑𝑣

L𝑘
𝑎𝑑𝑣

=

max
𝐻𝑂𝐴|𝑅=𝑟

𝑅=1

min
𝑓𝑎𝑑𝑣

(
𝑟∑︁

𝑠,𝑠′=1,𝑠≠𝑠′
∥ 𝑓𝑎𝑑𝑣 (x𝑠𝑘 ) − 𝑓𝑎𝑑𝑣 (x𝑠

′
𝑘
) ∥22 ) )

(14)

X𝑘 = [X1
𝑘
, . . . , X𝑟

𝑘
, . . . , X𝑅

𝑘
], 𝑘 = 3, 4 (15)

x𝑟
𝑘
= Flatten(X𝑟

𝑘
) (16)
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where 𝑓𝑎𝑑𝑣 is the adversary network (AN) which contains two fully-
connected layers, 𝐻𝑂𝐴|𝑅=𝑟

𝑅=1 means there are 𝑟 HOA modules (from
first-order to 𝑟 -th order), x𝑠

𝑘
∈ R𝐷𝑠 (𝐷𝑠 = 𝑐𝑘 × 𝑤𝑘 × ℎ𝑘 ) is the

multi-scale emotional content vector flattened from X𝑟
𝑘
with 𝑟 = 𝑠

and Flatten(·) is the flattening operator. According to Eq. (14) , we
get the adversarial loss L𝑎𝑑𝑣 =

∑
𝑘 L𝑘

𝑎𝑑𝑣
.

3.2.3 Stylistic-aware Representation. Based on the emotional style
and content representations learned above, we use a fusion operator
to obtain the stylistic-aware distribution y𝑠𝑡𝑦𝑙𝑒 . The fusion operator
is a 1 × 1 convolution layer with concatenation, which produces an
output with the same number of channels as the number of emotion
categories.

Specifically, we first use the concatenation operator to com-
bine the stylistic-content representation pairs {F𝑠𝑡𝑦𝑙𝑒 , F𝑐𝑜𝑛𝑡𝑒𝑛𝑡 }
and {F𝑠𝑡𝑦𝑙𝑒 ,X4} to obtain the intermediate representations F𝑠𝑐 ∈
R𝑅×𝑐𝑠𝑐×𝑤𝑠𝑐×ℎ𝑠𝑐 and F𝑠4 ∈ R𝑅×𝑐𝑠4×𝑤𝑠4×ℎ𝑠4 , respectively. On the
condition, we set𝐶 = 𝑐𝑠𝑐 = 𝑐𝑠4. We then concatenate these interme-
diate representations to obtain the stylistic-aware representations
F𝑒 ∈ R𝑅×𝐶×𝐷𝑒 , where 𝐷𝑒 = ℎ𝑠𝑐 ×𝑤𝑠𝑐 +ℎ𝑠4×𝑤𝑠4. Finally, we apply
global average pooling mean(·) and global max pooling max(·) to
F𝑒 to generate the stylistic-aware distribution results y𝑠𝑡𝑦𝑙𝑒 .

[y1𝑒 , · · · , y𝑅𝑒 ] = Softmax(mean(F𝑒 ) + 𝜆 ∗max(F𝑒 ) ) ∈ R𝑅×𝐶 (17)

y𝑠𝑡𝑦𝑙𝑒 = mean(y1𝑒 , · · · , y𝑅𝑒 ) (18)

where 𝜆 is the coefficient to control the trade-off between two types
of pooling method, Softmax(·) is the activation function to unify
the element value in y𝑠𝑡𝑦𝑙𝑒 to [0, 1].

3.3 Emotional-aware Enhanced Representation
Learning

Different from other LDL tasks, emotions and their unique charac-
teristics have intrinsic relationships, as demonstrated in psycho-
logical theories [33]. Previous work [10, 29, 33] has shown that
exploiting the correlations between emotion labels can improve the
prediction of the emotion distribution of images.

Inspired by [38], we introduce a stylistic GCN, which consists of
a static GCN termed 𝑓𝑆𝐺𝐶𝑁 and a dynamic GCN termed 𝑓𝐷𝐺𝐶𝑁 ,
obtaining initialization representation F𝑠𝑔𝑐𝑛 and emotional-aware
enhanced representations F𝑑𝑔𝑐𝑛 as follows:

F𝑠𝑔𝑐𝑛 = 𝑓𝑆𝐺𝐶𝑁 (A𝑠 , F̃𝑒 ,W𝑠 ) (19)

where A𝑠 is the graph adjacency matrix constructed using the co-
occurrence relationship between labels. F̃𝑒 ∈ R𝐶×𝐷 is obtained
by concatenating F𝑒 , where 𝐷 = 𝐷1

𝑒 + 𝐷2
𝑒 + . . . + 𝐷𝑟

𝑒 + . . . + 𝐷𝑅
𝑒 .

𝐷𝑟
𝑒 represents 𝑟 -th order stylistic-aware representations. W𝑠 are

learnable parameters. However, the static GCN is not very flexible
and can not eliminate irrelevant information of stylistic-aware
representations to capture fine emotional dependencies. Therefore,
we use the adaptability of the dynamic graph network to better
capture emotional-aware enhanced representations:

F𝑑𝑔𝑐𝑛 = 𝑓𝐷𝐺𝐶𝑁 (A𝑑 , F𝑠𝑔𝑐𝑛,W𝑑 ) (20)

A𝑑 = 𝛿 (W𝐴F̃𝑑𝑔𝑐𝑛 ) (21)

where A𝑑 enables the network structure to be dynamically adjusted
for each image. W𝐴 and W𝑑 are learnable parameters. F̃𝑑𝑔𝑐𝑛 is ob-
tained by concatenating F𝑠𝑔𝑐𝑛 and its global representations F𝑠𝑔𝑐𝑛 ,
𝛿 (·) is the sigmoid activation function.

In the same way as Eq. (17) and Eq. (18), we can obtain the
emotional-aware distribution results y𝑒𝑚𝑜𝑡𝑖𝑜𝑛 ∈ R𝐶 of the module.

3.4 Final Distribution and Optimization
Once we have these two predicted distributions y𝑒𝑚𝑜𝑡𝑖𝑜𝑛 and y𝑠𝑡𝑦𝑙𝑒 ,
we can simply combine them using the weighted sum defined above
to obtain the final emotional distribution y as follows:

y = 𝜇 ∗ y𝑒𝑚𝑜𝑡𝑖𝑜𝑛 + (1 − 𝜇 ) ∗ y𝑠𝑡𝑦𝑙𝑒 (22)

where 𝜇 is the coefficient to control the trade-off between two
different predicted results.

As with the previous method, the proposed method employs the
KL loss [6] for the distribution learning. Our objective function
consists of adversarial loss L𝑎𝑑𝑣 and prediction loss L𝑝𝑟𝑒𝑑 . For
prediction loss, we consider intermediate supervision instead of
directly optimizing the predicted results as follows:

L𝑝𝑟𝑒𝑑 = mean( 1
𝑅

𝑅∑︁
𝑟=1

(KLloss(y𝑟𝑒 , ŷ) ) + KLloss(y𝑒𝑚𝑜𝑡𝑖𝑜𝑛, ŷ) ) (23)

Meanwhile, in order to balance the difference in the numerical scale
of the two losses, we adopt an adaptive balance method:

L = L𝑝𝑟𝑒𝑑 + L𝑎𝑑𝑣/∥ L𝑎𝑑𝑣/L𝑝𝑟𝑒𝑑 ∥ (24)

where ∥ L𝑎𝑑𝑣/L𝑝𝑟𝑒𝑑 ∥ represents the truncated gradient operator,
which calculates the adaptive balance coefficient of adversarial loss.

4 EXPERIMENT
4.1 Experimental Setup
4.1.1 Emotion Datasets. Flickr-LDL [37] is a collection of images
that has been annotated with emotional label distributions (i.e.anger,
amusement, awe, contentment, disgust, excitement, fear and sadness).
Per emotional category was created by selecting a subset of the
Flickr dataset [1] using 1200 adjective-noun pairs, and then hav-
ing 11 viewers annotate the images with one of eight common
emotions. The final dataset contains 10700 images, with roughly
equal numbers of images per emotion class. Twitter-LDL [37] was
created by using a variety of emotional keywords to search for
images on Twitter and then the retrieved images were manually
screened and annotated by 8 viewers. The final dataset contains
10045 images, with the annotations indicating the distribution of
emotions present in each image. Emotion6 [21] contains 1980
images that were obtained from Flickr using seven categories of
emotion keywords (i.e.anger, disgust, joy, fear, sadness, surprise and
neutral), with 330 images in each category. And each image was
annotated by 15 viewers.

4.1.2 Evaluation Metrics. To evaluate the effectiveness of our pro-
posed StyleEDL, four metrics are selected: Kullback-Leibler (KL)
divergence, Chebyshev distance, Cosine coefficient, Intersection
similarity, Clark distance and Canberra metric. Additionally, Aver-
age Rank is also adopted to indicate the total performance of each
model.
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Table 1: Comparison with the state-of-the-art methods on Twitter-LDL dataset.

Measures PT-Bayes PT-SVM AA-kNN AA-BP SA-BFGS SA-CPNN SSDL LDL-LDM DIEDL Ours

KL ↓ 1.31(8) 1.65(9) 3.89(10) 1.19(6) 1.19(6) 0.85(5) 0.51(3) 0.53(4) 0.47(2) 0.42(1)
Chebyshev ↓ 0.53(9) 0.63(10) 0.28(5) 0.37(7) 0.37(7) 0.36(6) 0.25(3) 0.27(4) 0.24(2) 0.22(1)

Clark ↓ 0.85(5) 0.91(9) 0.58(1) 0.89(7) 0.89(7) 0.85(5) 0.84(2) 2.35(10) 0.84(2) 0.84(2)
Canberra ↓ 0.77(3) 0.88(9) 0.41(1) 0.84(7) 0.84(7) 0.78(6) 0.76(2) 6.05(10) 0.77(3) 0.77(3)
Cosine ↑ 0.53(9) 0.25(10) 0.82(5) 0.71(8) 0.82(5) 0.75(7) 0.86(3) 0.85(4) 0.87(2) 0.89(1)

Intersection ↑ 0.40(9) 0.21(10) 0.66(5) 0.59(6) 0.57(7) 0.56(8) 0.69(2) 0.67(3) 0.67(4) 0.73(1)
Average Rank ↓ 7.17(9) 9.50(10) 4.50(4) 6.83(7) 6.50(6) 6.17(8) 2.50(2) 5.83(5) 2.50(2) 1.50(1)

Table 2: Comparison with the state-of-the-art methods on Emotion6 dataset.

Measures PT-Bayes PT-SVM AA-kNN AA-BP SA-BFGS SA-CPNN SSDL LDL-LDM DIEDL Ours

KL ↓ 2.32(10) 1.07(8) 0.85(7) 0.63(6) 1.16(9) 0.56(5) 0.40(2) 0.44(4) 0.40(2) 0.36(1)
Chebyshev ↓ 0.35(8) 0.39(10) 0.29(5) 0.30(6) 0.38(9) 0.30(6) 0.24(2) 0.26(3) 0.26(3) 0.22(1)

Clark ↓ 0.73(8) 0.69(7) 0.62(2) 0.64(6) 0.74(9) 0.63(5) 0.62(2) 1.65(10) 0.62(2) 0.59(1)
Canberra ↓ 0.66(8) 0.62(7) 0.51(2) 0.54(5) 0.67(9) 0.54(5) 0.51(2) 3.64(10) 0.52(4) 0.47(1)
Cosine ↑ 0.69(6) 0.48(10) 0.75(4) 0.68(7) 0.63(9) 0.66(8) 0.79(3) 0.72(5) 0.81(2) 0.84(1)

Intersection ↑ 0.56(8) 0.42(10) 0.62(5) 0.59(7) 0.52(9) 0.60(6) 0.66(2) 0.65(4) 0.66(2) 0.70(1)
Average Rank ↓ 8.00(8) 8.67(9) 4.17(4) 4.17(4) 9.00(10) 5.83(6) 2.17(2) 6.00(7) 2.50(3) 1.00(1)

Table 3: Comparison with the state-of-the-art methods on Flickr-LDL dataset.

Measures PT-Bayes PT-SVM AA-kNN AA-BP SA-BFGS SA-CPNN SSDL LDL-LDM DIEDL Ours

KL ↓ 1.88(9) 1.69(8) 3.28(10) 0.82(5) 1.06(6) 1.06(6) 0.46(3) 0.49(2) 0.46(3) 0.39(1)
Chebyshev ↓ 0.44(9) 0.55(10) 0.28(5) 0.36(7) 0.37(8) 0.30(6) 0.23(2) 0.25(4) 0.23(2) 0.21(1)

Clark ↓ 0.89(9) 0.87(8) 0.57(1) 0.82(5) 0.86(7) 0.82(5) 0.78(3) 2.14(10) 0.79(4) 0.76(2)
Canberra ↓ 0.85(9) 0.83(8) 0.41(1) 0.75(6) 0.82(7) 0.74(5) 0.69(3) 5.26(10) 0.70(4) 0.66(2)
Cosine ↑ 0.63(9) 0.32(10) 0.79 (5) 0.72(6) 0.70(7) 0.70(7) 0.85(3) 0.84(4) 0.86(2) 0.88(1)

Intersection ↑ 0.49(9) 0.29(10) 0.64(5) 0.53(8) 0.56(7) 0.60(6) 0.68(3) 0.66(4) 0.70(2) 0.71(1)
Average Rank ↓ 9.00(9) 9.00(9) 4.50(4) 6.17(7) 7.00(8) 5.83(6) 2.83(2) 5.66(5) 2.83(2) 1.33(1)

4.1.3 Parameter and Evaluation Settings. We used a ResNet-50
model pre-trained on the ImageNet dataset as our backbone net-
work and removed the last fully connected layer. We considered
the outputs of the top convolutional layer and four groups of con-
volutional layers (‘Conv1’, ‘Layer1’, ‘Layer2’, ‘Layer3’, and ‘Layer4’)
of the ResNet-50 model. All training images are resized to 448× 448
pixels and undergo random scaling and horizontal flipping for data
augmentation. Our proposed method is implemented using the
PyTorch deep learning framework and is trained on an NVIDIA
GTX 1080Ti GPU. We used mini-batch stochastic gradient descent
(SGD) with momentum and weight decay to optimize our proposed
method. The mini-batch size is set to 8 and the learning rate is set to
0.01 for the first 10 epochs, then decreased 10-fold every 20 epochs
until the total number of training epochs reaches 90.

4.2 Experimental Results
To evaluate the effectiveness of our proposed StyleEDL, we com-
pared our proposed scheme with several existing state-of-the-art
methods, which are grouped into four categories: problem trans-
formation (PT-Bayes and PT-SVM [7]), algorithm adaptation (AA-
kNN and AA-BP [7]), specialized algorithm (SA-BFGS [7] and SA-
CPNN [8]) and CNN-based methods (SSDL [29], LDL-LDM [26] and

DIEDL [28]). Table 1, 2 and 3 show the performances of these meth-
ods on three widely used datasets. The best results are highlighted
in boldface. The down arrow ↓ next to the measure means a lower
score is better, and the up arrow ↑means that a higher one is better.
From the table, we canmake the following observations: 1) AA-kNN
achieves insurmountable results in Clerk Distance and Canberra
metric, affirming its superiority in addressing intersecting samples
in visual emotion distributions. 2) CNN-based methods perform
better than the other three types of algorithms, which suggests that
CNNs have a stronger ability to capture emotional-related content
information from visual parts. 3) Our method consistently outper-
forms the other methods by a clear margin, indicating that we can
expect more accurate results by considering stylistic representa-
tions in emotion distribution learning tasks.

4.3 Ablation Study
To further investigate the influence of different components of the
proposed method, several variants of our proposed method are
configured and ablation experiments are conducted on the Twitter-
LDL dataset for comparison. The variants of the model include:
(a) B only, which adopts the backbone network. (b) B+G, which
adds the GRAM-based intra- and inter-layer correlation based on
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Table 4: Ablation analysis on Twitter-LDL. ‘B’, ‘G’, ‘G★’, ‘V’, ‘E’
and ‘E★’ correspond to the backbone, GRAM-based intra- and
inter-layer correlation, only GRAM-based inter-layer corre-
lation, visual attention module, emotional-aware enhanced
representation learning, and static GCN, respectively.

Method KL↓ Chebyshev↓ Cosine↑ Intersection↑

B 0.457 0.228 0.881 0.718
B+G 0.448 0.228 0.881 0.719
B+V 0.441 0.226 0.882 0.717
B+E 0.482 0.229 0.876 0.718

B+G+V 0.433 0.223 0.884 0.719
B+G+V+E★ 0.465 0.228 0.879 0.715
B+G★+V+E 0.434 0.224 0.884 0.719

noAN 0.446 0.223 0.882 0.723
Ours 0.420 0.218 0.889 0.726

the (a) model. (c) B+V, which employs the visual attention mod-
ule based on the (a) model. (e) B+E, which adopts only backbone
and emotional-aware enhanced representation learning. (d) B+G+V,
which involves both GRAM-based intra- and inter-layer correlation
and visual attention module based on the (a) model. (f) B+G+V+E★,
which replaces our emotional-aware enhanced representation learn-
ing with a static GCN. (g) B+G★+V+E, which only considers the
correlation between GRAMmatrices, but not the correlation within
the layers. (h) noAN, which discards adversarial constraint loss
based on our proposed method. The results are shown in Table 4. In
this table, we selected six metrics mentioned in our paper to report
the emotion distribution based on their predicted results. From the
results, the following observations can be made: 1) Without style-
induced information, B+V performs worse than B+G+V, indicating
that the emotional style representations are beneficial for learning
stylistic-aware representations. 2) B+G and B+V all take positive
effects, which demonstrate that not only the learning of visual con-
tent information improves emotional distribution results, but also
the style information plays an important role. 3) B+E yields inferior
outcomes compared to B, suggesting that features extracted from
ResNet-50 and directly applied to our stylistic GCN do not yield
favorable results. 4) Our proposed StyleEDL consistently surpasses
B+G+V, B+G+V+E★ and B+G★+V+E, which means our proposed
method gains from the use of the intra- and inter-layer correlation
and the stylistic GCN. Moreover, the outcomes further indicate that
the flexible dynamic GCN can eliminate irrelevant information of
stylistic-aware representations. Similar observations also can be
found for the other two datasets.

4.4 Parameter Sensitivity Analysis
In our work, there are three essential parameters, which are the
order 𝑅 of the HOA module and the balance coefficients 𝜆 and
𝜇 in stylistic-aware representation learning and emotional-aware
enhanced representation learning, respectively. We conducted com-
prehensive experiments on two datasets: the Twitter-LDL and the
Emotion6. Specifically, the KL divergence and Intersection coeffi-
cient metrics were used for the Twitter-LDL, while the KL diver-
gence and Cosine coefficient metrics were used for the Emotion6.

Figure 3: Effect of 𝜇 on datasets Twitter-LDL (left) and Emo-
tion6 (right)

Figure 4: Sensitivity analysis of 𝜆 on Twitter-LDL (left) and
Emotion6 (right)

4.4.1 Order of HOAmodule. Tables 5 and 6 show that our proposed
method performs best when 𝑅 = 2 for both two datasets. When
𝑅 = 1, our proposed method lacks the ability to further encode
feature maps and fails to employ the attention mechanism to refine
the visual content representations, while a large value of 𝑅 makes
the model more susceptible to being influenced by noise.

4.4.2 Balance coefficient. We investigated the influence of the bal-
ance coefficients 𝜆 and 𝜇 by varying their values from 0.0 to 1.0. As
shown in Figure 4, larger values of 𝜆 generally result in better per-
formance than smaller values. A proper value of 𝜆 can enhance the
stylistic-aware representations of images and improve the overall
performance of the model. The coefficient 𝜇 plays an important role
in balancing the importance between stylistic-aware distribution
results and emotional-aware distribution results. From Figure 3,
our proposed method steadily improves from 0.0 to 0.6 and reaches

Table 5: Sensitivity analysis of 𝑅 on Twitter-LDL.

Order 𝑅 = 1 𝑅 = 2 𝑅 = 3 𝑅 = 4

KL↓ 0.445 0.420 0.421 0.427
Chebyshev↓ 0.225 0.218 0.221 0.219
Cosine↑ 0.882 0.889 0.888 0.886

Intersection↑ 0.721 0.726 0.720 0.724

Table 6: Sensitivity analysis of 𝑅 on Emotion6.

Order 𝑅 = 1 𝑅 = 2 𝑅 = 3 𝑅 = 4
KL↓ 0.377 0.361 0.385 0.393

Chebyshev↓ 0.227 0.222 0.231 0.235
Cosine↑ 0.829 0.839 0.827 0.822

Intersection↑ 0.694 0.698 0.689 0.687
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Figure 5: Visualization of the predicted emotion distributions (Predicted) and the ground-truth (GT). "Amu", "Con", "Awe", "Exc",
"Fea", "Sad", "Dis" and "Ang" represent "amusement", "contentment", "awe", "excitement", "fear", "sadness", "disgust" and "anger"
in Twitter-LDL, respectively.

its best performance at 0.6. Intuitively, the performance can be en-
hanced by introducing emotional-aware enhanced representation
learning. Moreover, all values of KL divergence on emotion6 are
much lower than that on Twitter-LDL, which may be owing to the
fact that the dataset size of emotion6 is much smaller than that of
Twitter-LDL.

4.5 Computational Complexity
Table 7 reports the actual inference time with several recent state-of-
the-art methods. As discerned from the table, our approach achieves
superior performance than those methods at the cost of the high
computational complexity of the HOA, which proffers us a glimpse
into the future. In the future, we will explore light high-order solu-
tions. Figure 5 presents a qualitative comparison of the predicted

Table 7: Model complexity for inference with several state-
of-the-art methods.

SSDL LDL-LDM DIEDL Ours

Time (ms) 5.853 1.27 7.659 16.272

distributions on the Twitter-LDL dataset. The visualization encom-
passes two aspects: 1. different scenarios, such as human, animal,
etc. 2. the impact of style on emotions. From the illustration, we
could discern that our method has achieved decent prediction re-
sults. In particular, our model can identify well the changes in
emotions induced by stylistic information. Taking the first and
second images in Figure 5 as an example, the second one evokes
a more melancholic state, and our method cannot solely rely on
content perception alone to account for this difference, thereby
substantiating the efficacy of incorporating style information.

5 CONCLUSION
In this paper, we propose a novel image emotion distribution learn-
ing method termed StyleEDL to learn emotional distribution in a
style-induced manner. In StyleEDL, we sought stylistic-aware repre-
sentations of images based on the hierarchical stylistic information
of visual parts. In addition, emotional-aware enhanced represen-
tations are obtained and further exploited to explore correlations
between emotions by the stylistic GCN. Comprehensive experi-
ments on three well-known datasets demonstrate the superiority
of our StyleEDL.
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