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Figure 1: Illustrating the “semantic contradiction” problem and its negative effect. (a) Three types of common contrastive
learning formulations in medical imaging scenarios: (1) vanilla contrastive learning in which a positive pair is constructed
from two augmented versions (𝐴1, 𝐴2) of one image 𝐴; (2) a single meta label is used to define additional positive pairs, where
images with an identical meta label𝑚 are taken as positive pairs; (3) multiple meta labels are leveraged simultaneously to define
positive pairs, in which “semantic contradiction" may occur (e.g., images 𝐴 and 𝐵 are regarded as both a positive pair and a
negative pair simultaneously based onmeta labels𝑚=1 and𝑚=3, respectively). Our novel gradient-guidedmethod GradMitigator
mitigates such contradiction. (b) Our preliminary experiments show that directly using multi-perspective meta labels without
any additional processing can lead to worse performance (see the blue solid line). Our proposed GradMitigator enables to unify
and accumulate positive effects of multi-perspective meta labels (see the red solid line).

ABSTRACT
Since annotating medical images for segmentation tasks commonly
incurs expensive costs, it is highly desirable to design an annotation-
efficient method to alleviate the annotation burden. Recently, con-
trastive learning has exhibited a great potential in learning robust
representations to boost downstream tasks with limited labels. In
medical imaging scenarios, ready-made meta labels (i.e., specific
attribute information of medical images) inherently reveal seman-
tic relationships among images, which have been used to define
positive pairs in previous work. However, the multi-perspective
semantics revealed by various meta labels are usually incompati-
ble and can incur intractable “semantic contradiction" when com-
bining different meta labels. In this paper, we tackle the issue of
“semantic contradiction" in a gradient-guided manner using our

∗Co-corresponding authors.

proposed Gradient Mitigator method, which systematically unifies
multi-perspective meta labels to enable a pre-trained model to at-
tain a better high-level semantic recognition ability. Moreover, we
emphasize that the fine-grained discrimination ability is vital for
segmentation-oriented pre-training, and develop a novel method
called Gradient Filter to dynamically screen pixel pairs with the
most discriminating power based on the magnitude of gradients.
Comprehensive experiments on four medical image segmentation
datasets verify that our new method GCL: (1) learns informative
image representations and considerably boosts segmentation perfor-
mance with limited labels, and (2) shows promising generalizability
on out-of-distribution datasets.

KEYWORDS
medical pre-training; multi-perspective meta labels; optimization
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1 INTRODUCTION
Cutting-edge medical image segmentation methods usually follow
the paradigm of deep learning (DL) based semantic segmentation
with a pixel-wise classification process. In this paradigm, pixel-wise
annotation is still a big bottleneck due to the labor-intensive and
time-consuming burden onmedical experts. Moreover, the semantic
class of each pixel is predicted independently and pixel correlation
is not explicitly specified, and thus a large amount of annotations
may be needed to train a comparable model [13].

To reduce the reliance on labeled data, in this paper, we focus on
contrastive learning to exploit underlying information of unlabeled
data and facilitate informative model initialization for medical im-
age segmentation with limited labels. For better segmentation, in
model pre-training, we empower the model with not only recogni-
tion ability of high-level semantics (i.e., semantic similarity across
the dataset) but also fine-grained discrimination ability for pixel-
wise correlation.

For recognition ability, ready-mademeta labels (e.g., Patient_ID,
Organ_state) – specific attribute information of different images –
are inherently a good source for models to identify semantic sim-
ilarities between images and learn high-level semantics across a
dataset. It was shown [7] that by leveraging the meta labels of slice
positions as auxiliary information, contrastive learning could gain
more clues to define additional positive pairs. It was verified [38]
that the underlying pathology contained in meta labels helps learn
image representations in pre-training. However, existing work fo-
cused only on utilizing a single meta label while the relationships
between different meta labels were not systematically considered
and the effects of them were not effectively unified.

When combining multi-perspective meta labels, a natural idea
is to treat each meta label independently and sum up the effects
of different meta labels directly. But, we observe in preliminary
experiments (e.g., see Fig. 1(b)) that combining multiple meta la-
bels without any additional processing may result in worse perfor-
mance than using a single meta label (𝑚=2). Based on this obser-
vation, we formulate the “semantic contradiction" problem which
is caused by incompatible semantics revealed by different meta
labels. For example, as shown in Fig. 1(a), images 𝐴 and 𝐵 both
are from the same patient but present different organ states (i.e.,
𝐴Patient_ID = 𝐵Patient_ID, 𝐴Organ_state ≠ 𝐵Organ_state). Inspired
by multi-objective optimization theory [12, 15, 44, 55], we hypoth-
esize that the contradictory semantics revealed by different meta
labels can lead to divergence of model optimization and also to
inferior pre-trained representations. In this work, we tackle the
issue of “semantic contradiction" in a gradient-guided manner us-
ing our proposed GradientMitigator (GradMitigator), a gradient
modifying method that systematically unifies positive effects of
various meta labels and hence improves the model’s optimization
trajectory.

On the other hand, for a better pixel-level discrimination ability,
the pre-training should be conducted to distinguish pixel-wise cor-
relation for better detail-aware representations. Deviating from the
common practice of pre-defining sub-image positive pairs based on
physical coordinates or additional annotations, we utilize high-level
semantics (i.e., image-wise semantic similarities) to first initialize a
pool of positives for reserving potential positive pixels, from which

optimal positives are dynamically screened to update the model
with our proposed Gradient Filter (GradFilter) method. Specifi-
cally, we define uncertainty and hardness as two sampling criteria,
which are both characterized based on the magnitude of gradients.
In this way, it is only the reliable and discriminating pixel pairs that
are included for optimizing the pre-trained model.

Based on the above key components, we develop a new overall
method GCL (Gradient-guided Contrastive Learning). The main
contributions of this work are as follows.
• We exploit multi-perspective meta labels to empower the
model with recognition ability for high-level semantics, by
mitigating the “semantic contradiction" between meta labels
in a gradient-guided fashion.
• We extend the operating granularity of pre-training to the
pixel level, where pixel-wise correlation is utilized to increase
the model’s fine-grained discrimination ability. Specifically,
we develop a new GradFilter method to dynamically screen
discriminating pixel pairs.
• Our experiments on various medical image segmentation
tasks show that, by focusing on both high-level semantics
and fine-grained details, our GCL method effectively reduces
the downstream model’s reliance on labeled data and out-
performs known related methods.

2 RELATEDWORKS
2.1 Contrastive Learning
Contrastive learning was first proposed as an instance discrimina-
tion task [45], which aims to learn a representation space where
similar instances (e.g., images) are pulled closer and different in-
stances are pushed away. In [10, 11, 14, 16, 18, 42, 56], a positive
pair was constructed by two augmented versions of one image
using transformations (e.g., crop, blur, and color transformations),
while a negative pair was constructed by any two different im-
ages. To construct suitable positive and negative pairs for better
representation learning, some recent work explored optimal com-
binations of transformations [35, 36, 42] for positive pairs, while
other work designed interesting sampling [32] or generating [21]
strategies for negative pairs. In [39], alignment and uniformity were
identified as two key properties relevant to contrastive learning,
and considerable work sought to optimize these two properties.
However, mainstream contrastive formulations share two common
drawbacks: (1) the criterion for positives and negatives is one-sided,
which ignores semantic relationships between images, resulting
in models’ poor recognition ability for high-level semantics across
the dataset; (2) the contrasting granularity is usually restricted to
the image level while pixel correlations are overlooked, leading to
inferior fine-grained discriminating ability of pre-trained models.

2.2 Contrastive Learning for Medical Data
Prior work tried to use domain-specific knowledge to construct
better image representations when applying contrastive learning
to medical scenarios [7–9, 17, 20, 29, 38, 40, 46, 48, 50–54]. Ra-
diomics features were exploited as knowledge-augmentation to
construct additional positive pairs for abnormality classification
and localization in chest X-ray images [17]. In [7], it was shown
that by leveraging 2D slice positions, contrastive learning based
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pre-training could gain more clues to define additional positive
pairs and the encoded image representations performed better on
downstream tasks. The importance of individual images was dy-
namically adapted in the contrastive loss to boost performance [29].
In [38], it verified that the underlying pathology contained in meta
labels helps learn pre-trained representations, and also compared
the effects of different meta labels. However, the utilized domain-
specific knowledge focuses only on specific features of medical
datasets in a one-sided manner, while information from different
perspectives is not systematically combined to characterize the
overall dataset.

2.3 Pixel-wise Contrastive Learning
Some recent work realized that image-wise contrastive learning is
classification-oriented, and extended the operating granularity from
the original image level to sub-image level. Different ways to define
positive pairs have been proposed. In [7], the same pixel entity after
different augmentations is used to form positive pairs. Spatial trans-
formations were leveraged as a prior to deduce location relations
between two augmented views, and then matched pixel pairs were
formed [46]. In [47], positive pixel pairs were selected based on
spatial proximity of physical coordinates. In [31], an information-
guided pixel augmentation strategy was proposed to achieve un-
supervised local feature matching. Besides, fully-supervised [41]
and semi-supervised [1, 8, 19, 25, 40, 52, 53, 60] settings were con-
sidered respectively, and external ground truth labels were utilized
to construct positive pairs.

3 METHODOLOGY
3.1 Contrastive Learning with Meta Labels
Given a mini-batch of 𝑁 unlabeled 2D images, contrastive learning
aims to learn a feature extractor 𝑓 (·) and a projection head ℎ(·)
to yield an image-wise representation 𝑧 = ℎ(𝑓 (𝑥)) for each 2D
image 𝑥 , by pulling the representations of similar image pairs (i.e.,
positive pairs) together. In vanilla contrastive learning [10], only
two augmented versions of an image are regarded as a positive pair,
while any two different images are taken as a negative pair even if
they are semantically similar.

In order to empower a pre-trained model with recognition abil-
ity for high-level semantics, inspired by [7], we leverage the pre-
specified meta labels of medical images to define additional positive
pairs. Note that such meta labels are given for free during
the acquisition process of medical datasets, which reveal
specific attribute information of the images (see Sec. 4.2 for
illustrations). Specifically, assume that each 2D image 𝑥𝑖 has 𝑀
kinds of meta labels (e.g., Patient_ID, Organ_state), denoted as
𝑦𝑚
𝑖
∈ {1, . . . ,𝐶𝑚}, where 𝐶𝑚 is the class number of the meta label

𝑚 ∈ {1, . . . , 𝑀}. Correspondingly, the image-wise contrastive loss
guided by meta label𝑚 is defined as:

L𝑚img = − 1
|P𝑚

𝑖
|

∑︁
𝑗∈P𝑚

𝑖

log
exp

(
𝑧𝑖 · 𝑧 𝑗/𝜏

)∑2𝑁
𝑎=1 I𝑖≠𝑎 exp (𝑧𝑖 · 𝑧𝑎/𝜏)

, (1)

where 𝑧𝑖 and 𝑧 𝑗 are the representations of the anchor image and its
positive respectively in the image-wise representation space (𝑧𝑖 =
ℎimg (𝑓 (𝑥𝑖 )), ℎimg projects features to image-wise representation
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Figure 2: The pipeline of GCL. For two images sharing the
samemeta label𝑚, image headℎ𝑖𝑚𝑔 and pixel headℎ𝑝𝑖𝑥 adopt
the output from the same encoder as input and project it to
their own representation spaces. Image-wise branch employs
global average pooling (GAP) to get global features and con-
trasts them to learn the high-level semantics. GradFilter in
pixel-wise branch utilizes the learned high-level semantics
from image-wise branch and dynamically screens discrimi-
nating pixel pairs. GradMitigator is applied for both image-
wise and pixel-wise contrasts to alleviate conflicts between
different meta labels (only one meta label is illustrated in
figure for simplicity).

space), P𝑚
𝑖

is the set of indices 𝑗 of positives 𝑧 𝑗 , 𝑧𝑎 denotes each
representation of all augmented images in the current mini-batch
except the anchor itself (including positives and negatives), and 𝜏
is a temperature parameter.

Thus, the positives come from two sources: (1) the augmented
versions of the same image; (2) the different images that have the
same class of the meta label𝑚 considered.

3.2 Gradient Mitigator
To combine the multi-perspective meta labels, a direct way is to
simply sum up the contrastive losses guided by all the 𝑀 meta
labels, training jointly to minimize the average loss and update
model parameters 𝜃 by:

𝜃∗ = argmin
𝜃 ∈R

( 1
𝑀

𝑀∑︁
𝑚=1
L𝑚 (𝜃 )) . (2)

But, this can incur the “semantic contradiction" issue since high-
level semantics revealed by different meta labels may be incompati-
ble. In Fig. 1(a), images𝐴 and 𝐵 are taken from the same patient but
present different organ states, and thus are regarded as a positive
pair and a negative pair in computing contrastive losses guided by
Patient_ID and Organ_state, respectively. We hypothesize that
such contradiction can lead to divergence of model optimization and
also to inferior pre-trained representations. Poor performance when
combining multiple meta labels without any additional processing
in preliminary experiments (see Fig. 1(b)) verifies our hypothesis.

We aim to tackle the issue of “semantic contradiction" in
a gradient-guided manner, given the learning process of DL net-
works is dictated by gradients with respect to network parameters
(𝜃 ) – usually back-propagated in the network during gradient de-
scent [34, 49]. Specifically, let g𝑚 =∇𝜃L𝑚 (𝜃 ) denote an individual
gradient guided by meta label𝑚, and g=∇𝜃L(𝜃 )= 1

𝑀

∑𝑀
𝑚=1 g𝑚 be

the average gradient. With a learning rate 𝛼 , 𝜃←𝜃 − 𝛼g gives the
steepest descent update when optimizing Eq. (2). However, if the
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individual gradient g𝑚 conflicts with g, following Eq. (2) directly
will interfere the optimization trajectory guided by meta label𝑚.

Thus, we propose the novel GradMitigator method to mitigate
the gradient interference by modifying conflicting gradients of
different meta-level contrastive losses. As shown in Fig. 3, we study
three types of gradient relationships based on cosine similarity 𝜔𝑖 𝑗
between meta-level gradients g𝑖 and g𝑗 : (a) non-conflicting (i.e.,
𝜔𝑖 𝑗 =1); (b) slightly-conflicting (i.e., 0≤𝜔𝑖 𝑗 <1); (c) conflicting (i.e.,
𝜔𝑖 𝑗 <0).

Algorithm 1 The updating process with Gradient Mitigator

Require: Model parameters 𝜃 , meta labels 𝑚 ∈ {1, . . . , 𝑀}, loss
functions L𝑚 (𝜃 ), and EMA weight 𝛽

1: Initialize time-step 𝑡 = 0, EMA variable 𝜔̂ (0)
𝑖 𝑗

= 0,∀𝑖, 𝑗
2: Compute g𝑚 ← ∇𝜃L𝑚 (𝜃 ),∀𝑚
3: for 𝑖 ∈ {1, . . . , 𝑀} do
4: Set g′

𝑖
← g𝑖

5: for 𝑗 ∈ {1, . . . , 𝑀} \ {𝑖} do
6: Compute 𝜔 (𝑡 )

𝑖 𝑗
← g′𝑖 ·g𝑗
∥g′

𝑖
∥ ∥g𝑗 ∥

7: Update 𝜔̂ (𝑡 )
𝑖 𝑗
← (1 − 𝛽)𝜔̂ (𝑡−1)

𝑖 𝑗
+ 𝛽𝜔 (𝑡 )

𝑖 𝑗

8: if 𝜔 (𝑡 )
𝑖 𝑗

< 𝜔̂
(𝑡 )
𝑖 𝑗

then

9: g′
𝑖
=g′

𝑖
+
∥g′𝑖 ∥ (𝜔̂

(𝑡 )
𝑖 𝑗

√︂
1−

(
𝜔
(𝑡 )
𝑖 𝑗

)2
−𝜔 (𝑡 )

𝑖 𝑗

√︂
1−

(
𝜔̂
(𝑡 )
𝑖 𝑗

)2
)

∥g𝑗 ∥
√︂
1−

(
𝜔̂
(𝑡 )
𝑖 𝑗

)2 ·g𝑗

10: end if
11: end for
12: end for
13: Update Δ𝜃 ← g′ = 1

𝑀

∑𝑀
𝑖=1 g

′
𝑖

14: Update time-step 𝑡 ← 𝑡 + 1

The goal of GradMitigator is to softly eliminate conflicting
components of gradients, seeking agreement between the
individual meta-level gradients. Alg. 1 presents the updating
process. We first initialize the target cosine similarity 𝜔̂ (0)

𝑖 𝑗
as 0, and

pre-compute all the gradients g𝑚 of contrastive functions L𝑚 (𝜃 )
guided by different meta labels𝑚. We use 𝑖, 𝑗 as two meta labels
for illustrating an updating process: At the current time-step 𝑡 , if
the computed cosine similarity between two gradients, i.e., 𝜔 (𝑡 )

𝑖 𝑗
=

g𝑖 ·g𝑗
∥g𝑖 ∥ ∥g𝑗 ∥ , is smaller than the target value 𝜔̂ (𝑡 )

𝑖 𝑗
, we modify one

gradient g𝑖 by injecting a weighted component of the other gradient
g𝑗 , i.e., g′𝑖 = g𝑖 + 𝜇 · g𝑗 , such that the resulting cosine similarity
softly matches the target value 𝜔̂ (𝑡 )

𝑖 𝑗
. Based on the Law of Sines, the

weight 𝜇 is computed. This modifying process is described as:

g′𝑖 =g𝑖+
∥g𝑖 ∥(𝜔̂ (𝑡 )𝑖 𝑗

√︂
1 −

(
𝜔
(𝑡 )
𝑖 𝑗

)2
−𝜔 (𝑡 )

𝑖 𝑗

√︂
1 −

(
𝜔̂
(𝑡 )
𝑖 𝑗

)2
)

g𝑗 

√︂1 −

(
𝜔̂
(𝑡 )
𝑖 𝑗

)2 ·g𝑗 . (3)

Note that the value of the target cosine similarity is not fixed.
Instead, we use the exponential moving average (EMA) for: (1)
avoiding drastic change of the target value during training, and (2)

(a) non-conflicting (b) slightly-
conflicting
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Figure 3: Diagrams for illustrating conflicting gradients and
our proposed GradMitigator method. Blue, black, and red
arrows represent meta-level gradients g𝑖 , g𝑗 , and averaged
gradient g, respectively. (a)-(c) Three types of gradient re-
lationships. (d) Our GradMitigator method aims to modify
gradient g𝑖 by injecting a weighted component of g𝑗 to miti-
gate the gradient interference.

bootstrapping for a potentially better target value in a self-adapting
manner. This is why we call it ‘softly’, as:

𝜔̂
(𝑡 )
𝑖 𝑗

= (1 − 𝛽)𝜔̂ (𝑡−1)
𝑖 𝑗

+ 𝛽𝜔 (𝑡 )
𝑖 𝑗
. (4)

In this manner, a new average gradient g′ is obtained to update the
model parameters 𝜃 in practice.

3.3 Gradient Filter
It is important to note that the image-level contrastive learning
mentioned above is classification task-oriented, which often uses a
pooling-like operation to aggregate features from all spatial loca-
tions to obtain an image-wise representation. In such a situation,
pixel correlation is not explicitly concerned, restricting the pre-
trained model’s fine-grained discrimination ability, especially for
segmentation tasks. In this work, we extend the operating granu-
larity to the pixel level. Existing work usually defines pixel-wise
positive pairs based on: (i) the same pixel entity (after different
augmentations), (ii) corresponding physical coordinates, and (iii)
additional ground truth labels. However, (i) restricts the source
of positive pairs to the same image; (ii) largely relies on the as-
sumption that different images in the dataset are well aligned and
registered; (3) requires a large number of pixel-wise annotations.
All these are not practical in real medical scenarios.

Instead, we propose to utilize the learned high-level semantics
between images to pre-define a pool of positives, and dynamically
introduce optimal positives from this pool to update the model with
our devised Gradient Filter method.

First, for each pixel, we build its pool of positives based on pixel
affinity. The pixel affinity A is computed based on corresponding
features in the image-wise representation space (before the pooling-
like operation). Suppose pixel 𝑖 (𝑢) in image 𝑥𝑖 is an anchor pixel,
its Top-𝐾 similar pixels 𝑗 (𝑣) in image 𝑥 𝑗 are formed as the positive
pool P𝑢 for pixel 𝑖 (𝑢), and all the remaining pixels in image 𝑥 𝑗
are regarded as negatives N𝑢 . Note that the anchor pixel and its
positives/negatives are not restricted to being from the same image
(after various augmentations); instead, image 𝑥 𝑗 provides all the
image-wise positives of 𝑥𝑖 defined in Sec. 3.1 guided by a meta label
𝑚. Our pixel-wise contrastive loss is defined as:

L𝑚pix = − 1
|P𝑢 |

∑︁
𝑢+∈P𝑢

log
exp

(
𝑢 · 𝑢+/𝜏

)
exp(𝑢·𝑢+/𝜏)+ ∑

𝑢−∈N𝑢

exp(𝑢·𝑢−/𝜏) , (5)
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Figure 4: Examples of 2D slices taken fromdifferent quantiles
(𝑞 = 1, 2, 3, 4) for four patients on Prostate dataset. One can see
that the slices with the same quantile from different patients
contain relatively similar anatomical structures.

A𝑖 (𝑢 ) 𝑗 (𝑣) =
𝑧𝑖 (𝑢 ) · 𝑧 𝑗 (𝑣)
∥𝑧𝑖 (𝑢 ) ∥ ∥𝑧 𝑗 (𝑣) ∥

, (6)

where 𝑢,𝑢+, and 𝑢− denote respectively the anchor pixel, its posi-
tive and negative in the pixel-wise representation space (i.e., 𝑢 =

ℎPix (𝑓 (𝑥𝑖 (𝑢 ) )), where ℎPix projects features to the pixel-wise rep-
resentation space), and 𝑧𝑖 (𝑢 ) and 𝑧 𝑗 (𝑣) are corresponding features
of pixels 𝑖 (𝑢) and 𝑗 (𝑣) in the image-wise representation space (e.g.,
𝑧𝑖 (𝑢 ) = ℎimg (𝑓 (𝑥𝑖 (𝑢 ) ))).

Next, to further enhance the effectiveness of the defined positives,
we consider that an “ideal” positive should both be reliable (i.e., with
a low uncertainty) for the right optimization direction of the model
and have a certain degree of hardness for constantly optimizing the
model’s decision boundary [32]. Hence, we propose GradFilter for
screening positive pixels with a high discriminating power based
on two criteria, uncertainty and hardness, from the pre-defined
positive pool to update the model. Since DL networks are optimized
using gradient-based methods, we characterize these two criteria by
gradient magnitudes induced by different positives. The gradient of
the pixel-wise contrastive loss w.r.t. the anchor pixel representation
can be described as:

𝜕L𝑚pix
𝜕𝑢

=− 1
𝜏 |P𝑢 |

∑︁
𝑢+∈P𝑢

©­­«
(𝑢+−𝑢−) ∑

𝑢−∈N𝑢

exp(𝑢·𝑢−/𝜏)

exp(𝑢·𝑢+/𝜏)+ ∑
𝑢−∈N𝑢

exp(𝑢·𝑢−/𝜏)
ª®®¬. (7)

One may see that a harder positive usually has a smaller dot
product with the anchor, which brings more gradient contribution
than easier positives. Conversely, we consider that the model is
more certain about a positive if a smaller gradient is induced and
hence a little update is performed at the current optimization di-
rection [3]. With these two criteria, we aim to make reconciliation
inspired by Self-Pace Learning [24], following the learning pro-
cess of humans, so that the model learns better when feeding
samples from easy to hard to it.

systole

diastole

ID=1

q=1

q=3

q=2

q=4

ID=3 ID=4ID=2

ID=1 ID=3 ID=4ID=2

Figure 5: Examples of 2D slices taken in different organ states
(i.e., systole and diastole) from four different patients on the
ACDC dataset. It can be seen that the appearances of the
heart in different states are different.

Specifically, at time-step 𝑡 , for each positive 𝑢+ ∈ P𝑢 , we com-
pute the corresponding gradient with respect to the parameters
of the last layer of the encoder. A pace function 𝑔(𝑡) is defined to
specify the positive pool size so that only positives with the 𝑔(𝑡)
lowest gradients are actually used, as:

𝑔(𝑡) = [1 + 1
4
log( 𝑡

𝑇
+ 𝑒−4)] · |P𝑢 | , (8)

where 𝑇 denotes the total number of training steps. This scheme
schedules how the positives are introduced to the training process:
At the beginning, positives with high certainty are preferred, and
as the training progresses, more harder positives are introduced.

3.4 Training Objective
As shown in Fig. 2, we jointly perform image-wise contrastive
learning (Sec. 3.1) and pixel-wise contrastive learning (Sec. 3.3)
under the guidance of a meta label𝑚. The effects of all the𝑀 multi-
perspective meta labels are dynamically unified to optimize the
model with modified gradients using our GradMitigator method
(Sec. 3.2), by:

LGCL =

𝑀∑︁
𝑚=1

(
L𝑚img + L

𝑚
pix

)
. (9)

4 EXPERIMENTS
4.1 Experimental Setup
We conduct four sets of experiments, investigating: (1) the infor-
mativeness of learned representations compared with other pre-
training methods; (2) the effectiveness to reduce downstream task’s
reliance on labeled data compared with other semi-supervisedmeth-
ods; (3) the generalizability on out-of-distribution datasets; and (4)
the effects of each designed components.

4.2 Implementations
Training and Evaluation. Note that our proposed GCL is a pre-
training method. Following [7, 20, 29], the performance of our GCL
method is evaluated in a “pre-training and fine-tuning" paradigm:
(1) GCLmethod is used to pre-train a U-Net encoder; and (2) the pre-
trained weights are regarded as initialization for the downstream
segmentation network to be fine-tuned with limited labels. The per-
formance of our method is indicated by the segmentation accuracy.
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Table 1: Comparison of our proposed GCL method and related pre-training methods on four datasets in DSC performance. 𝐿
denotes the number of provided labeled samples in fine-tuning. The best results are marked in bold.

Method ACDC Prostate MMWHS ACDC −→ HVSMR
𝐿=1 𝐿=2 𝐿=8 𝐿=1 𝐿=2 𝐿=8 𝐿=1 𝐿=2 𝐿=8 𝐿=2 𝐿=4 𝐿=6

Baseline
Random Init. 0.598±.023 0.682±.012 0.847±.008 0.477±.039 0.547±.027 0.645±.013 0.443±.017 0.623±.012 0.792±.008 0.743±.037 0.817±.025 0.847±.017

Image-level Contrastive Learning
SimCLR 0.629±.037 0.731±.022 0.853±.017 0.519±.049 0.578±.033 0.663±.022 0.489±.022 0.667±.018 0.799±.009 0.737±.047 0.807±.022 0.842±.023
MoCo 0.623±.032 0.723±.024 0.851±.012 0.503±.047 0.577±.032 0.660±.027 0.501±.018 0.652±.020 0.787±.012 0.733±.048 0.809±.029 0.840±.025

Pixel-level Contrastive Learning
PixPro 0.642±.025 0.754±.022 0.863±.020 0.544±.029 0.597±.024 0.670±.022 0.519±.024 0.672±.017 0.798±.017 0.753±.033 0.821±.033 0.849±.018
DenseCL 0.633±.027 0.742±.021 0.859±.020 0.537±.029 0.589±.024 0.668±.022 0.514±.027 0.688±.018 0.797±.023 0.752±.032 0.817±.037 0.842±.022
PointRC 0.647±.023 0.760±.017 0.867±.013 0.552±.028 0.601±.022 0.673±.018 0.524±.025 0.677±.010 0.799±.014 0.750±.038 0.820±.031 0.848±.012

Medical Pre-training
GLCL 0.702±.020 0.783±.015 0.881±.011 0.572±.029 0.612±.018 0.687±.022 0.557±.015 0.689±.014 0.801±.005 0.778±.033 0.825±.023 0.852±.022
PosiCL 0.688±.021 0.803±.018 0.886±.012 0.554±.031 0.606±.017 0.689±.017 0.533±.012 0.692±.011 0.814±.003 0.780±.029 0.827±.020 0.855±.018
SSCL 0.697±.017 0.785±.011 0.892±.009 0.587±.023 0.621±.012 0.692±.009 0.547±.017 0.694±.009 0.812±.004 0.779±.030 0.839±.022 0.859±.019
SPL 0.699±.023 0.801±.012 0.889±.014 0.588±.023 0.624±.017 0.688±.023 0.560±.014 0.694±.013 0.814±.009 0.782±.030 0.827±.022 0.857±.019

Pretext task Pre-training
Rotation 0.592±.037 0.689±.022 0.852±.014 0.508±.043 0.562±.037 0.659±.029 0.447±.020 0.635±.019 0.787±.012 0.752±.044 0.819±.024 0.847±.022
Inpainting 0.605±.025 0.701±.018 0.863±.005 0.503±.033 0.557±.020 0.668±.013 0.463±.018 0.650±.010 0.792±.008 0.757±.023 0.820±.017 0.849±.009
Jigsaw 0.595±.028 0.712±.015 0.874±.010 0.501±.038 0.570±.023 0.667±.012 0.437±.044 0.642±.012 0.793±.007 0.748±.038 0.823±.020 0.852±.012
GCL (ours) 0.729±.014 0.812±.009 0.905±.007 0.606±.019 0.631±.013 0.701±.012 0.572±.010 0.709±.008 0.819±.005 0.797±.022 0.849±.017 0.870±.007

All the fine-tuning experiments are repeated 5 times. Segmentation
results are reported in the form of mean (standard deviation) with
the dice similarity coefficient (DSC).
Data.We evaluate the performance of our GCLmethod on four pub-
lic medical image datasets: ACDC [5], Prostate [2], MMWHS [61,
62], and HVSMR [27]. These four datasets have different anatom-
ical structures (i.e., cardiac, prostate), modalities (i.e., MRI, CT),
resolutions, and sizes, allowing comprehensive evaluation of our
method. For ACDC, we leverage the meta labels of Patient_ID
(𝑚=1), Slice_quantile (𝑚=2) (i.e., the quantile of a 2D image along
one axis), and Organ_state (𝑚=3) (i.e., systole or diastole). For the
other datasets, the meta labels of Patient_ID and Slice_quantile
are used. Each dataset is split into a pre-training set 𝑋𝑝𝑡𝑟 and a
fine-tuning set 𝑋𝑓 𝑡 ; the fine-tuning set 𝑋𝑓 𝑡 is further split into a
training set𝑋𝑡𝑟 , a validation set𝑋𝑣𝑎𝑙 , and a test set𝑋𝑡𝑠 . We use𝑋𝑝𝑡𝑟
to pre-train the GCL model without ground truth labels, and use
𝑋𝑓 𝑡 to fine-tune the pre-trained encoder on the downstream task
and report segmentation performance. A small number of samples
in 𝑋𝑡𝑟 are randomly chosen as labeled samples (e.g., 𝐿 = 1, 2, 8).
Illustration of Meta Labels. We show 2D images (or slices) with
their meta labels in Figs. 4 and 5, in order to provide intuitive
illustrations of the usage of different meta labels. Slice_quantile
represents the quantile of a 2D image/slice along one axis (i.e.,
the 𝑧-axis for the Prostate, MMWHS, and HVSMR datasets, and
the short axis for the ACDC dataset). Thus, all the slices in a 3D
image are divided into four parts, and the corresponding quantile is
indicated by 𝑞 (𝑞=1, 2, 3, 4). In Fig. 4, we illustrate slices taken from
different quantiles, for four different patients. One can see that the
slices with the same quantile from different patients contain similar
anatomical structures. Besides, Organ_state indicates the state of
a target organ at the time of scanning (e.g., the systole or diastole
state of the heart). It can be seen from Fig. 5 that the appearances
of the heart in different states show considerable differences.

Model Details. Our contrastive formulation follows [10]. The ar-
chitecture of the encoder follows U-Net [33]. The two projection
heads ℎimg and ℎpix share the same design, which consists of 1 × 1
convolution, ReLU, and 1 × 1 convolution. The hidden layer’s di-
mension of the projection head is 512, keeping the same as its input
channels, and the final output dimension is 128, the same as [10].
In the fine-tuning stage, we employ U-Net as our segmentation
network.
Training Details. The GCL pre-training is performed on four
NVIDIA GeForce RTX 3090 GPUs. We train with the SGD opti-
mizer [6] for 300 epochs, and the cosine learning rate scheduler is
adopted, with a batch size of 48 and a learning rate of 0.1. In the
fine-tuning stage, we train the segmentation network with limited
labels for 300 epochs. The Adam optimizer [22] and cosine learning
rate scheduler are used, with a batch size of 5 and a learning rate
of 10−4. The temperature 𝜏 is set to 0.1 following [10]. 𝐾 is set to
0.3 when defining the positive pool. The EMA weight 𝛽 is set to
10−2. All the parameters 𝜃 of the encoder are updated individu-
ally based on the modified gradients when applying the proposed
GradMitigator method.

4.3 Comparison with Pre-training Methods
To evaluate the informativeness of learned image representations,
we compare our GCL with several groups of pre-training meth-
ods. (1) Image-level contrastive learning, including SimCLR [10],
MoCo [18]. (2) Pixel-level contrastive learning, including PixPro [47],
DenseCL [43], and PointRC [4]. (3) Medical pre-training, including
GLCL [7], PosiCL [57], SSCL [20], and SPL [29]. (4) Pretext task pre-
training, including Rotation [23], Inpainting [28], and Jigsaw [26].
Results. Table 1 summarizes the results on four downstream seg-
mentation tasks, which are used to indicate the pre-training per-
formance. 𝐿 denotes the number of provided labeled samples in
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Table 2: Comparison of our proposed GCL method and semi-supervised methods on three datasets with limited labeled data
provided in DSC performance. 𝐿 denotes the number of provided labeled samples. The best results are marked in bold.

Method ACDC Prostate MMWHS
𝐿=1 𝐿=2 𝐿=8 𝐿=1 𝐿=2 𝐿=8 𝐿=1 𝐿=2 𝐿=8

Baseline 0.598±.023 0.682±.012 0.847±.008 0.477±.039 0.547±.027 0.645±.013 0.443±.017 0.623±.012 0.792±.008
Adv. Training 0.662±.012 0.749±.013 0.849±.007 0.544±.023 0.587±.020 0.681±.010 0.531±.018 0.679±.012 0.790±.007
Mean Teacher 0.674±.012 0.771±.007 0.857±.004 0.526±.014 0.557±.008 0.657±.004 0.538±.012 0.692±.008 0.809±.004
Mixup 0.667±.009 0.773±.010 0.862±.005 0.531±.017 0.598±.012 0.677±.008 0.549±.014 0.683±.013 0.797±.009
GCL (ours) 0.729±.014 0.812±.009 0.905±.007 0.606±.019 0.631±.013 0.701±.012 0.572±.010 0.709±.008 0.819±.005
Ours + Mixup 0.754±.007 0.833±.008 0.911±.002 0.612±.012 0.633±.014 0.713±.002 0.621±.007 0.722±.008 0.822±.003
Ours + M.T. 0.762±.010 0.842±.008 0.913±.002 0.614±.014 0.643±.008 0.711±.005 0.628±.008 0.731±.005 0.828±.005
Fully Superv. 0.914±.003 (𝐿=50) 0.703±.005 (𝐿=18) 0.812±.009 (𝐿=10)

Table 3: Ablation study with different components of our GCL method on three datasets in DSC performance. 𝐿 denotes the
number of labeled samples in fine-tuning. The best results are marked in bold.

Method ACDC Prostate MMWHS
𝐿=1 𝐿=2 𝐿=8 𝐿=1 𝐿=2 𝐿=8 𝐿=1 𝐿=2 𝐿=8

Base 0.629±.037 0.731±.022 0.853±.017 0.519±.049 0.578±.033 0.663±.022 0.489±.022 0.667±.018 0.799±.009
Base + single meta label (𝑚=1) 0.631±.024 0.747±.019 0.863±.018 0.527±.032 0.589±.020 0.678±.022 0.529±.020 0.684±.012 0.799±.002
Base + single meta label (𝑚=2) 0.688±.020 0.784±.013 0.880±.012 0.573±.027 0.617±.019 0.688±.024 0.549±.013 0.683±.014 0.801±.007
Base + single meta label (𝑚=3) 0.672±.018 0.783±.018 0.873±.009 / /
Base + multi-meta labels 0.681±.022 0.784±.020 0.878±.017 0.574±.023 0.614±.018 0.685±.012 0.548±.023 0.684±.021 0.802±.014
Base + multi-meta labels + GradMiti. 0.709±.019 0.804±.018 0.894±.012 0.592±.030 0.623±.028 0.692±.014 0.559±.017 0.697±.013 0.811±.008
Base + PixCL 0.635±.024 0.747±.022 0.860±.018 0.545±.028 0.593±.027 0.663±.019 0.513±.022 0.685±.017 0.793±.014
Base + PixCL + GradFilter 0.652±.020 0.775±.019 0.871±.014 0.562±.024 0.612±.028 0.679±.017 0.536±.019 0.694±.016 0.803±.009
Full model (frozen) 0.709±.011 0.797±.007 0.882±.006 0.593±.014 0.617±.012 0.684±.008 0.563±.011 0.694±.008 0.809±.006
Full model (ours) 0.729±.014 0.812±.009 0.905±.007 0.606±.019 0.631±.013 0.701±.012 0.572±.010 0.709±.008 0.819±.005
Full model (merged data) 0.734±.012 0.817±.009 0.908±.004 0.614±.014 0.634±.016 0.702±.009 0.579±.008 0.714±.007 0.822±.005

fine-tuning. As baselines, we train the downstream segmentation
network with random initialization (train from scratch). One can
see that the pretext task pre-training (i.e., Rotation, Inpainting, and
Jigsaw) provides less informative initialization, which shows worse
performance when labeled data is extremely limited (i.e., 𝐿 = 1, 2).
Besides, the general image-level contrastive learning methods (i.e.,
SimCLR and MoCo) provide useful initialization to some extent.
And when extending the contrasting granularity to the pixel level
(i.e., PixPro, DenseCL, and PointRC), the pre-training performance
gets further boosted. In addition, the pre-training methods designed
in medical scenarios (i.e., GLCL, PosiCL, SSCL, and SPL) perform
better than those general pre-training methods, suggesting that
single-source domain-specific information in medical images pro-
vides useful clues to some extent. Yet, our GCL still boosts the
downstream segmentation accuracy to a large extent (e.g., 0.131,
0.129, 0.129, and 0.054 in DSC on the ACDC, Prostate, MMWHS, and
HVSMR dataset, when 𝐿=1, respectively). This is because our GCL
method effectively unifies the information from multi-perspective
meta labels. Beyond that, it can be seen that the fewer labeled sam-
ples (i.e., 𝐿 = 1, 2) provided in fine-tuning, the more significant
the superiority of our GCL pre-training method. This validates the
necessity of pre-training for segmentation in medical scenarios
where limited labeled data can be provided.

4.4 Comparison with Semi-supervised Methods
To further investigate the effectiveness of our GCL to reduce down-
stream task’s reliance on labeled data, we compare it with semi-
supervisedmethods, includingAdv. Training [59],Mean Teacher [30],
and Mixup [58].

Results. In Table 2, the baseline is trained from scratch without
other designs, and the segmentation results under full supervision
(i.e., all labeled samples in the training set are provided). The im-
provements of semi-supervised methods (i.e., Adv. Training, Mean
Teacher, and Mixup) are limited and largely depend on specific
datasets. For example, Adv. Training performs worse on the ACDC
dataset but performs better on the Prostate dataset. In contrast,
our GCL method performs well on all the datasets (e.g., 0.131,
0.129, 0.129, and 0.054 in DSC on the ACDC, Prostate, MMWHS,
and HVSMR dataset, when 𝐿=1, respectively). Moreover, it can be
seen that our method shows promising compatibility with semi-
supervised methods (e.g., Mixup and Mean Teacher), leading to
further performance gains (e.g., 0.164, 0.137, and 0.185 in DSC
on the ACDC, Prostate, and MMWHS dataset, when 𝐿=1, respec-
tively), and even surpassing the results under full supervision on
the Prostate and MMWHS datasets.

4.5 Generalizability
To further examine whether the image representations learned
by our GCL method have good generalizability, we conduct pre-
training and fine-tuning on different datasets. Specifically, our pro-
posed GCL is used to pre-train an encoder on ACDC dataset, and
the downstream segmentation network is fine-tuned on HVSMR.
Results. The last column of Table 1 presents the segmentation
performance on the out-of-distribution dataset. The image-level
and pixel-level contrastive learning (i.e., SimCLR, MoCo, PixPro,
DenseCL, and PointRC) and pretext task pre-training (i.e., Rota-
tion, Inpainting, and Jigsaw) give little performance gain for the
downstream task. In contrast, our GCL method shows superiority
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Figure 6: Some t-SNE visualization examples of the learned representations on the ACDC dataset. (a) No meta label is used, and
the pre-trained model is degraded to the vanilla contrastive learning, where the learned representations are evenly distributed.
(b) Multiple meta labels are simultaneously used without any additional processing, where the learned representations are
excessively diffused. (c) With our proposed GradMitigator method, obvious semantic separation is formed.

compared with the other pre-training methods. This is partially due
to the multi-perspective meta labels that are unified to empower
the model with recognition ability for high-level semantics, which
are commonly found in different medical image datasets.

4.6 Ablation Study
The results of ablation study are presented in Table 3. The base
model refers to the results that all designs in our GCL method are
removed, with vanilla image-level contrastive learning retained.
Effects of Introducing Meta Labels. We compare the perfor-
mance pre-trained with different meta labels one-by-one. The meta
labels of Patient_ID (𝑚=1), Slice_quantile (𝑚=2), and Organ_state
(𝑚=3, only for the ACDC dataset) are included. One can see that by
introducing the meta labels as additional clues, the segmentation
performance gets well improved. In particular, the meta label of
Slice_quantile (𝑚=2) provides more gains on all the datasets.
Effects of Our Gradient Mitigator. We further investigate the
effect of simultaneously using multiple meta labels. It can be seen
that when combine all meta labels without any additional process-
ing, the performance is poor and is even worse than using a single
meta label (𝑚=2). This verifies our hypothesis that the “semantic
contradiction” between different meta labels can incur divergence
of model optimization. Further, only by modifying the conflicting
gradients with our proposed GradMitigator can multi-perspective
meta labels be unified to synergistically optimize the pre-training
process. Meanwhile, in Fig. 6, we utilize t-SNE [37] to visualize the
learned representations on the ACDC dataset. In Fig. 6(b), when
introducing multiple meta labels without any additional processing,
the learned representations are excessively diffused. Instead, in
Fig. 6(c), when applying our proposed GradMitigator, the obvious
semantic separation is formed, suggesting the effectiveness of our
GCL on exploring the semantic similarity between images and thus
capturing high-level semantics across the dataset.
Effects of Pixel-wise Contrastive Learning and Gradient Fil-
ter. To explore the effects of fine-grained contrasting granularity,
we add the pixel-wise contrastive learning (PixCL) component to
our base model, where the GradFilter strategy is not applied first
(remove the pace function 𝑔(𝑡) (cf. Eq. (8)), and use all the positives
in the pre-defined positive pool to update the model). It can be seen
that the PixCL boosts the downstream performance to some extent,
indicating that fine-grained contrast is necessary to segmentation-
oriented pre-training, which do contribute to the model’s recogni-
tion ability for segmentation details. Moreover, when further adding

our proposed GradFilter method, the downstream segmentation
accuracy gets largely boosted. Therefore, by considering both un-
certainty and hardness to screen optimal pixel-wise positives, our
pixel-wise contrastive learning exert its substantial effectiveness.
The scope of pre-training set. To further explore the extensibility
of our GCL, we merge the pre-training sets of all used datasets (i.e.,
ACDC, Prostate, and MMWHS) to pre-train the encoder with our
full GCL model. The results are shown in the last row of Table 3
(denoted as “merged data"). Compared with using the single dataset
to pre-train (denoted as “ours"), incorporating more pre-training
data from other datasets (even from different organs and modalities)
does contribute to the pre-training performance.
Effects of fine-tuning the pre-trained parameters. During the
fine-tuning process, we freeze the entire pre-trained encoder and
only fine-tune the decoder. The results in Table 3 suggest that the
pre-trained encoder has certain feature extraction capability, while
fine-tuning can further enhance the performance. Moreover, when
an extremely limited number of labeled samples (𝐿=1) is provided,
our GCL pre-training method plays a more significant role.

5 CONCLUSIONS
In this paper, we proposed to systematically unify multi-perspective
meta labels without incurring the “semantic contradiction” issue by
modifying their corresponding gradients. Further, when extending
the contrast granularity to the pixel level, our new Gradient Filter
method helps dynamically screen positive pixel pairs with the most
discriminating power. Compared to other contrastive formulations,
our method empowers the pre-trained model with both recogni-
tion ability for high-level semantics and discrimination ability for
pixel-wise correlation in a gradient-guided manner. Extensive ex-
periments on four public datasets verified that our GCL method not
only learns informative image representations for downstream seg-
mentation with extremely limited labels, but also shows promising
generalizability on out-of-distribution datasets.
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