
Sketch Input Method Editor: A Comprehensive Dataset and
Methodology for Systematic Input Recognition

Guangming Zhu
Xidian University

Xi’an, China
gmzhu@xidian.edu.cn

Siyuan Wang
Xidian University

Xi’an, China
siyuanwang@stu.xidian.edu.cn

Qing Cheng
National University of Defense

Technology
Changsha, China
sgggps@163.com

Kelong Wu
Xidian University

Xi’an, China
22031212500@stu.xidian.edu.cn

Hao Li
Xidian University

Xi’an, China
xdulihao@stu.xidian.edu.cn

Liang Zhang
Xidian University

Xi’an, China
liangzhang@xidian.edu.cn

ABSTRACT
With the recent surge in the use of touchscreen devices, free-
hand sketching has emerged as a promising modality for human-
computer interaction. While previous research has focused on tasks
such as recognition, retrieval, and generation of familiar everyday
objects, this study aims to create a Sketch Input Method Editor
(SketchIME) specifically designed for a professional C4I system.
Within this system, sketches are utilized as low-fidelity prototypes
for recommending standardized symbols in the creation of com-
prehensive situation maps. This paper also presents a systematic
dataset comprising 374 specialized sketch types, and proposes a
simultaneous recognition and segmentation architecture with mul-
tilevel supervision between recognition and segmentation to im-
prove performance and enhance interpretability. By incorporat-
ing few-shot domain adaptation and class-incremental learning,
the network’s ability to adapt to new users and extend to new
task-specific classes is significantly enhanced. Results from ex-
periments conducted on both the proposed dataset and the SPG
dataset illustrate the superior performance of the proposed ar-
chitecture. Our dataset and code are publicly available at https:
//github.com/Anony517/SketchIME.

CCS CONCEPTS
• Human-centered computing→ Interaction techniques.

KEYWORDS
sketch, datasets, recognition, segmentation

ACM Reference Format:
Guangming Zhu, Siyuan Wang, Qing Cheng, Kelong Wu, Hao Li, and Liang
Zhang. 2018. Sketch Input Method Editor: A Comprehensive Dataset and
Methodology for Systematic Input Recognition. In Proceedings of the 31st

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
MM ’23, October 29–November 3, 2023, Ottawa, Canada
© 2018 Association for Computing Machinery.
ACM ISBN 978-1-4503-8651-7/21/10. . . $15.00
https://doi.org/XXXXXXX.XXXXXXX

ACM International Conference on Multimedia (MM ’23). ACM, New York,
NY, USA, 10 pages. https://doi.org/XXXXXXX.XXXXXXX

1 INTRODUCTION
Free-hand sketching is a communication modality that transcends
barriers and connects human societies [39]. Despite its abstract and
concise nature, it can be illustrative, making it useful in various
scenarios such as communication and design. It has been exten-
sively studied in fields such as computer vision [9, 35, 43], computer
graphics [26], human-computer interaction [8, 14] fields. Many re-
lated tasks have also been researched, including recognition [43],
retrieval [2], generation [5], grouping [17], segmentation [38], and
sketch-based image retrieval [13].

In the era after WIMP (Windows, Icons, Menus, Pointer), there
is a growing interest in using multi-touch, hand gesture, speech,
and gaze analysis to achieve more intelligent and natural human-
computer interaction [1].Free-hand sketching is another natural
form of interaction that has been used since ancient times and is
even learned by children before they start writing. Its universal
nature allows it to transcend language barriers [39]. While the
nature of free-hand sketching limits its usage in standardizedWIMP-
based Graphical User Interfaces (GUIs), the increasing prevalence of
touchscreen devices has made it a highly promising input modality
that allows users to quickly sketch their concepts as low fidelity
prototypes[29].

Imagine drawing a flow chart using software like Visio or Pow-
erPoint. You would need to select or drag the operational symbols
from the toolbars to the drawing area before adjusting and edit-
ing them. However, this process can be time-consuming when
the hierarchical toolbars contain a large number of operational
symbols, especially for systems like the professional Command,
Control, Communications, Computer, and Intelligence (C4I) system
that contains over a thousand types of operational symbols. Our
proposed solution is the Sketch Input Method Editor (SketchIME)
system, which allows users to first sketch their desired symbols as
low-fidelity prototypes. The system then automatically recognizes
the symbols and their categories, replaces the sketches with corre-
sponding standardized symbols at the correct positions, size, and
orientation. This improves the overall efficiency of the interaction.

A SketchIME system should be designed in a way that enables
it to recognize sketches and segment them into different semantic

ar
X

iv
:2

31
1.

18
25

4v
2

 [
cs

.C
V

]
 3

1
M

ar
 2

02
4

https://github.com/Anony517/SketchIME
https://github.com/Anony517/SketchIME
https://doi.org/XXXXXXX.XXXXXXX
https://doi.org/XXXXXXX.XXXXXXX

MM ’23, October 29–November 3, 2023, Ottawa, Canada Anonymous et al.

Figure 1: Examples of the sketched symbols in our dataset. These sketches have different sketching styles, large diversity on
stroke length and count, and subtle differences between some categories.

components. This will allow standardized symbols to be selected as
replacements and adjusted according to the control points obtained
from the segmentation results. Additionally, given the nature of
free-hand sketch and the diversity of sketching styles among users,
a well-designed SketchIME should be able to adapt to various styles
online. Moreover, the system’s ability to extend to new task-specific
classes can make it even more attractive to users.

Using the aforementioned motivation and analysis, we collected
and annotated a sketch dataset based on the public standard of the
APP-6(B) joint military symbolism for C4I systems 1. This standard
outlines common operational symbols and their display/plotting
details. We recruited a total of 67 participants to sketch the selected
374 types of symbols, as shown in Fig. 1. This is the first large-scale
and systematic dataset to feature sketch categories from a profes-
sional C4I system, as opposed to familiar everyday objects. Our
proposed network is a simultaneous recognition and segmentation
architecture, with the recognition stream providing supervision
to the segmentation stream based on prior knowledge. The incor-
poration of multilevel supervision enhances the interpretability
of the network. Additionally, the utilization of domain adaptation
techniques enhances the network’s ability to adapt to new per-
sonal sketching styles at the application level. In addition, we have
also explored a few-shot class-incremental learning mechanism to
improve the network’s ability to extend to new task-specific classes.

Our contributions are summarized as follows:
• The SketchIME dataset is the first of its kind, consisting of
a large and systematic collection of sketches from a pro-
fessional C4I system, rather than from familiar everyday
objects. It is also annotated for easy reference.

• Our proposed approach is a simultaneous recognition and
segmentation network that improves performance by incor-
porating multilevel supervision between recognition and
segmentation tasks, while also enhancing interpretability.

• The incorporation of few-shot domain adaptation and class-
incremental learning enhances the network’s practicality by
improving its adaptability to new users and extendibility to
new task-specific classes

1https://www.scribd.com/document/314367702/APP-6-B-Joint-Symbology-pdf

2 RELATEDWORKS
2.1 Sketch Dataset
This paper focuses on the uni-modal free-hand sketch datasets.
The widely used sketch datasets for recognition are TU-Berlin [7]
and QuickDraw [9], which contain 250 and 345 object categories,
respectively. Based on the QuickDraw dataset, some sketch datasets
for grouping or segmentation are constructed, such as SPG [17] and
SketchSeg-150K [25]. SketchSeg-10K [36] is another segmentation
dataset, which consists of 10 categories and 24 semantic labels.
These datasets contains a lot of familiar everyday objects.

In this study, we construct a large-scale and systematic dataset
whose sketch categories come from a professional C4I system. In
contrast to the large inter-category differences in the reviewed
datasets, the difference between two categories in our dataset may
be a single short line. Therefore, effective recognition and segmen-
tation methods must learn the subtle differences.

2.2 Sketch Recognition and Segmentation
Sketch recognition aims to predict the class label of a given sketch.
Sketch-a-Net [44] is the first Convolutional Neural Network (CNN)
based sketch recognition model that beats the human performance.
Since a sketch is plotted as a continuous sequence of stroke points,
Recurrent Neural Network (RNN) based models are also proposed
in the literature. Stroke vectors or CNN features of strokes are
fed to these models for sketch recognition [10, 15, 23, 27, 40]. In
contrast to the above models which exploit either the static nature
of sketches with CNNs or the temporal sequential property with
RNNs, sketches are represented as multiple sparsely connected
graphs in [41], and the global and local geometric stroke structures
as well as temporal information are simultaneously captured in the
multi-graph transformer.

Compared to sketch recognition, segmentation is a more fine-
grained analysis task. CNN, RNN, and Graph Convolutional Net-
work (GCN) based models have been proposed for stroke-level
analysis. CNN-based network in [18] takes the binary image of a

Sketch Input Method Editor: A Comprehensive Dataset and Methodology for Systematic Input Recognition MM ’23, October 29–November 3, 2023, Ottawa, Canada

Table 1: Comparison between uni-modal sketch datasets. Our
SketchIME dataset contains the largest number of classes for
recognition and the largest number of semantic components
for segmentation. “seg” denotes the segmentation annota-
tion, and “SC-Count” denotes the type count of semantic
components in each dataset.

Datasets Amount Category Stroke Annotations SC-Count

TU-Berlin[7] 20K 250 ✓ class -
QuickDraw[9] 50M+ 345 ✓ class -

QuickDraw-5-step[3] 38M+ 345 - class -
SketchFix-160[28] 3904 160 ✓ class -

COAD[33] 620 20 ✓ class -
SPG[17] 20K 25 ✓ class, grouping 86

SketchSeg-150K[25] 150K 20 ✓ class, seg 57
SketchSeg-10K[36] 10K 10 ✓ class, seg 24

SketchIME(Our) 56K 374 ✓ class, seg 139

sketched object as input and produces a corresponding segmenta-
tion map with per-pixel labels. The SketchSegNet [38] and Sketch-
SegNet+ [25] work in a RNN-based Variational Auto Encoder (VAE)
pipeline. SPFusionNet [36] uses late fusion of CNN-RNN branches
to represent sketches for segmentation. SketchGNN [42] uses a
convolutional Graph Neural Network (GNN) for semantic segmen-
tation and uses a mixed pooling block to fuse the intra-stroke and
inter-stroke features.

2.3 Adaptability and Extendibility
Users may have their own personal sketching styles, similar to
handwriting. A trained model may not work well for a new user
who has a different sketching style. This means that the training
data and the new users’ data have different underlying distributions.
Domain Adaptation (DA) is therefore needed to reduce the effect of
domain shift [22] for SketchIME applications. There are different
types of DA techniques [24]. For instance, DeepCORAL [31] is a
DA method based on correlation alignment [30]. The Deep Domain
Confusion (DDC) [34] uses an additional domain confusion loss to
learn a domain invariant representation. The Conditional Domain
Adversarial Network (CDAN) and its variant CDAN+E [19] use an
adversarial DA technique, motivated by the conditional generative
adversarial networks [20], and make use of the discriminative infor-
mation obtained from a deep classifier network. Based on CDAN,
DA-FSL [46] further poses an additional challenge of DA with few
training samples. These methods can be explored to ensure the
adaptation ability of SketchIME.

The ability to incrementally learn new sketch classes is crucial
for SketchIME, particularly in cases where additional task-specific
sketches were not included in the original training. Users are not
obliged to capture large data for the evolution of trained models.
Therefore, it is crucial to apply Few-Shot Class-Incremental Learn-
ing (FSCIL) [32] technique to SketchIME. FSCIL is widely studied
for image classification. Zhang [45] proposed a Continually Evolved
Classifier (CEC) to update the classifier only in each incremental
session to avoid knowledge forgetting. Zhu [49] proposed an incre-
mental prototype learning scheme that consists of a random episode
selection strategy and a Self-Promoted Prototype Refinement (SPPR)
mechanism. CEC [45] and SPPR [49] only consider extending the
model in a single phase, while LIMIT [48] considers extension in

Figure 2: Semantic components of sketches in our dataset.
The last semantic component denotes blank filling which
may be done arbitrarily and result in a large diversity on
stroke length and count.

multiple phases. In contrast to the above fake-task based training
methods, C-FSCIL [12] relies on the hyper-dimensional embedding
space to incrementally create maximally separable classes. The For-
wArd Compatible Training (FACT) [47] assigns virtual prototypes
to squeeze embeddings of known classes and reserve for new ones.

3 DATASET CONSTRUCTION
3.1 Category Selection
Total 374 categories of symbols are selected from the public standard
of the APP-6(B) joint military symbology for our sketch collection.
Fig.1 displays some sketched symbols, and all the 374 standardized
symbols and their sketches are shown in the supplementary materi-
als. Our dataset is different from the existing ones in several ways:
(a) The sketch categories come from a professional C4I system, (b)
Only subtle differences exist between some sketch categories, such
as a single short line, (c) Blanks in some sketches need to be filled,
and this results in a large diversity on stroke length and count,
(d) The subtle differences between sketch categories and the large
diversity of different personal sketching styles bring challenges to
universal recognition and segmentation networks.

3.2 Data Collection and Annotation
Total 67 participants were recruited to sketch the 374 categories
of symbols using the Concepts Application 2. Phones or Pads with
the Android or iOS operating systems were used to sketch. A touch
pen was either used or not by participants, according to their per-
sonal preference. This also results in different sketching styles. The
Scalable Vector Graphics (SVG) format was used to store sketches.

Besides the class labels for each sketch sample, semantic labels
are assigned to strokes of sketches of all the categories. The seman-
tic labels are obtained according to the principle, “If the increase or
decrease of a stroke (or multiple consecutive strokes) will change one
sketch’s category, or a stroke (or multiple consecutive strokes) consti-
tutes some class-specific component, the stroke (or strokes) is viewed
2https://concepts.app/en/

MM ’23, October 29–November 3, 2023, Ottawa, Canada Anonymous et al.

as a semantic component.” It means that different categories may
share semantic components. We numbered the semantic compo-
nents of all categories uniformly and obtained 139 semantic labels,
as displayed in Fig. 2. Our work aims to recognize the categories
and semantic components simultaneously. This is different from
the grouping or segmentation tasks [17, 42].

3.3 Data Statistics
Total 209K samples of the 374 categories were drawn. The publicly
released version of the SketchIME dataset contains 56K samples,
sketched by 8 participants for training and 10 participants for test-
ing. Different participants may draw the same symbol using dif-
ferent stroke orders. Each participant only drew no more than 187
categories, and at most 25 samples were drawn for each category.
Table 1 illustrates the comparison of our SketchIME dataset and
popular uni-modal sketch recognition and segmentation datasets.
For different specific tasks, the dataset is divided into different train-
ing and testing sets, and the numbers of sketches in the training
and testing sets are illustrated in Table 2. Our SketchIME dataset is
constructed and annotated from scratch, and contains the largest
number of classes for recognition (i.e., 374 categories) and segmen-
tation (i.e., 374 categories and 139 semantic labels).

4 METHODS
The black-box properties of deep learning restrict its applications
in professional fields. The interpretability of neural networks can
make them reliable. In this study, we propose a simultaneous recog-
nition and segmentation network, whose multilevel supervision
between recognition and segmentation based on prior knowledge
makes the inference more interpretable. In addition, the use of few-
shot domain adaptation improves the network’s adaptability to new
users’ sketch styles, and the use of few-shot class-incremental learn-
ing enhance its extendibility to new task-specific classes. These
features enhance the network’s practicality.

4.1 Recognition and Segmentation
Our study suggests that, CNNs are effective for sketch-level recogni-
tion on images, and GNNs are better for stroke-level segmentation
on SVG format. CNNs can learn sketch-level features effectively,
while GNNs can take full use of stroke-level and point-level rela-
tionships between stroke points for segmentation. Furthermore,
the prior knowledge about semantic components which should
be contained in each sketch category, can also be used. Therefore,
a simultaneous Sketch Recognition and Segmentation network
(SketchRecSeg) is proposed in this study, whose recognition stream
supervises the segmentation stream based on the prior knowledge.
This allows the network to not only inference the sketch category,
but also explain how the category is predicted based on the semantic
component recognition.

The two-stream architecture of our SketchRecSeg is illustrated
in Fig.3. The recognition stream uses a CNN network for feature
learning and sketches are fed as images to this network. The seg-
mentation stream uses a dynamic graph convolution unit and takes
stroke points of SVG-format sketches as input. The features of the
CNN network are taken as sketch-level features to augment the
node features of the GNN block for segmentation. The recognition

Figure 3: The proposed simultaneous sketch recognition and
segmentation architecture. The top half denotes the two-
stream architecture for simultaneous recognition and seg-
mentation. The bottom half denotes the domain adaptation
architecture using conditional domain adversarial. RClassi-
fier and SClassifier denotes classifiers of categories and se-
mantic components. The SPooling, CFA and RSM denotes the
Stroke-level Pooling, the CNN Feature Augmentation, and
the Recognition Supervision Module, respectively. KLD de-
notes the Kullback–Leibler divergence loss.© denotes feature
concatenation operation, and ⊚ denotes Hadamard product.
𝑓 𝑠 and 𝑓 𝑡 denote the domain-specific feature representation,
𝑔𝑠 and 𝑔𝑡 denote the classifier predictions, D denotes the
domain discriminator, and ⊗ denotes multilinear map opera-
tion.

stream provides multilevel supervision (i.e., feature-level supervi-
sion using CFA, prediction-level supervision using RSM, and loss-
level supervision using KLD) on segmentation. Besides, a domain
adaptation mechanism [19] is equipped to support SketchRecSeg’s
adaptability to new users.

Feature Extraction.We use ResNet18 [11] to learn sketch-level
features, and use the dynamic graph convolution unit [42] to learn
point-level features. ResNet18 takes three-channel images trans-
formed from the original SVG sketches as input, and outputs 128-
dimensional sketch-level features by stacking an extra linear layer.
The dynamic graph convolution units take a graph G = (V, E) as
input.V represents the 𝑁 -point set P = {𝑝𝑖 = (𝑝𝑥

𝑖
, 𝑝

𝑦

𝑖
)}𝑖=1,2,...,𝑁 ,

where 𝑝𝑥
𝑖
and 𝑝

𝑦

𝑖
are the 2D absolute coordinates of point 𝑖 in

strokes of a given sketch. E represents the edges that connect adja-
cent points in each single stroke. The graph convolution operation
in [37] is used, and E is updated layer-by-layer using the Dilated
k-NN [16]. The dynamic graph convolution unit contains four con-
volution blocks, each block outputs a 32-dimensional feature vector
for each node, and a 128-dimensional feature vector is finally ob-
tained by concatenating the four 32-dimensional vectors.

Sketch Input Method Editor: A Comprehensive Dataset and Methodology for Systematic Input Recognition MM ’23, October 29–November 3, 2023, Ottawa, Canada

Stroke-level Pooling (SPooling). Each stroke contains several
points, and all stroke points constitute the graph nodes. Although
the dynamic graph convolution units have evolved the node fea-
tures based on the updated neighborhood, using the node features
alone still cannot achieve a satisfactory segmentation performance.
The information about stroke and its relevant points can be ob-
tained, and a stroke-level pooling strategy can be applied to aug-
ment the node features in stroke-level. Given the node features
F𝑔 = {𝑓 𝑖𝑔 }𝑖=1,2,...,𝑁 , SPooling can be implemented as:

𝑓
𝑗
𝑠 = max

𝑖∈V𝑗

MLP(𝑓 𝑖𝑔), (1)

𝑓 𝑖𝑠𝑔 = concat𝑖∈V𝑗
(𝑓 𝑗𝑠 , 𝑓 𝑖𝑔), (2)

whereV𝑗 denotes the node subset belonging to stroke 𝑗 , 𝑓
𝑗
𝑠 and 𝑓 𝑖𝑠𝑔

denote the stroke-level and the augmented features, respectively.
CNN Feature Augmentation (CFA). A simple global pooling

on all graph nodes cannot provide effective sketch-level features.
In contrast, the features of ResNet18 used for sketch recognition
are the ideal representation of the whole sketch. Therefore, given
the CNN feature 𝑓𝑐 , the node features can be augmented further as:

𝑓 𝑖𝑐𝑠𝑔 = concat𝑖∈V (𝑓𝑐 , 𝑓 𝑖𝑠𝑔) . (3)

Recognition Supervision Module (RSM). This RSM module
aims to use the sketch recognition probability to supervise the seg-
mentation task. If a sketch is recognized belonging to some specific
category, the semantic components making up the sketch category
should also be predicted with high probability for segmentation
task. Given the prior knowledge about semantic components, which
sketch category contains, a translation matrix C𝑟2𝑠 ∈ R𝐶𝑅×𝐶𝑆 is
constructed where 𝑐𝑖 𝑗 = 𝛾𝑟 , when the 𝑖-th sketch category contains
the 𝑗-th semantic component and otherwise 𝑐𝑖 𝑗 = 1 − 𝛾𝑟 . 𝐶𝑅 and
𝐶𝑆 are the counts of sketch categories and semantic components.
Given the sketch prediction probability 𝑃𝑟 ∈ R1×𝐶𝑅 and the indices
𝐼𝑑𝑥𝑃 of top-𝑘 of 𝑃𝑟 , a probability vector that enhances the cor-
rect prediction of semantic components and suppresses the wrong
prediction can be calculated as:

Γ𝑟𝑠𝑐 = 𝑀𝑎𝑥𝑃𝑜𝑜𝑙𝑖𝑛𝑔(𝑖𝑛𝑑𝑒𝑥_𝑠𝑒𝑙𝑒𝑐𝑡 (C𝑟2𝑠 , 𝐼𝑑𝑥𝑃)). (4)

Then, given the output 𝑃𝑠 ∈ R𝑁×𝐶𝑆 of the semantic component
classifier in segmentation stream, the final semantic component
prediction for point 𝑖 can be calculated as:

𝑃𝑖𝑠 = 𝑃𝑖𝑠 ◦ Γ𝑟𝑠𝑐 , (5)

where ◦ denotes the Hadamard product. Specifically, Eq. (5) is only
applied when the confidence level of the category recognition ex-
ceeds a threshold.

Kullback-Leibler Divergence (KLD) Loss. The total loss of
SketchRecSeg can be represented as:

𝐿 = 𝐿𝑠 + 𝜆1𝐿𝑟 + 𝜆2𝐿𝑘𝑙 , (6)

where 𝐿𝑠 is the point-level segmentation loss, 𝐿𝑟 is the recognition
loss, 𝜆1 is the coefficient to balance recognition and segmentation,
and 𝜆2 is an indicator of whether 𝐿𝑘𝑙 is used or not. 𝐿𝑠 and 𝐿𝑟 use
cross-entropy loss. 𝐿𝑘𝑙 is the KL-divergence loss that represents the
recognition’s supervision on segmentation, and can be denoted as:

𝐿𝑘𝑙 = KL[𝑃𝑟𝑠𝑐 | |𝑃𝑠𝑠𝑐], (7)

where 𝑃𝑟𝑠𝑐 and 𝑃𝑠𝑠𝑐 denote the probability distributions of semantic
components derived from the recognition and segmentation results,
respectively. 𝑃𝑟𝑠𝑐 can be calculated as:

𝑃𝑟𝑠𝑐 = 𝑃𝑟 ∗ C𝑟2𝑠 . (8)

The stroke-level semantic component prediction can be obtained by
pooling on the point-level prediction results, and it also represents
how much each semantic component should exist in this sketch.
Therefore, 𝑃𝑠𝑠𝑐 can be calculated as:

𝑃𝑠𝑠𝑐 = max
𝑗=1,...,𝐽

(1
|V𝑗 |

∑︁
𝑖∈V𝑗

𝑃𝑖𝑠), (9)

where 𝐽 is the stroke count of one sketch.
Domain Adaptation (DA). Users may have their own personal

and preferred sketching styles. A trained model may not work well
for a new user who has a different sketching style. This is because
of the domain shift between the training data (source domain) and
the new user’s data (target domain). If using few samples of new
users to fine-tune the trained model can improve the performance
significantly, it can enhance SketchIME’s practicality. It is reason-
able to assume that few samples (e.g., empirically selected five
per category) in the large-scale training data can be used as the
source domain data for fine-tuning our model. These samples can
be considered as typical examples of each category for user refer-
ence. Similar to using common input method editors, when users
are using SketchIME, they will select the right symbol from the
categories recommended by the recognition results. This process
provides some labeled data as the target domain data. Given a small
training data and new user’s data, few-shot domain adaptation can
enhance SketchIME’s practicality.

CDAN [19] can be used to enhance the network’s adaptability
to new users. Given the source classifier 𝐺 (including the feature
extractor and the classifier in each stream of SketchRecSeg) and the
domain discriminator𝐷 (for each stream), the optimization problem
of supervised domain adaptation for the recognition stream (or the
segmentation stream) can be denoted as:

min
𝐺

𝐸 (𝐺) − 𝜆𝐸 (𝐷,𝐺) 𝑎𝑛𝑑 min
𝐷

𝐸 (𝐷,𝐺), (10)

𝐸 (𝐺) = E(𝑥𝑠
𝑖
,𝑦𝑠

𝑖
)∼𝐷𝑠

𝐿(𝐺 (𝑥𝑠𝑖), 𝑦
𝑠
𝑖)

+E(𝑥𝑡
𝑗
,𝑦𝑡

𝑗
)∼𝐷𝑡

𝐿(𝐺 (𝑥𝑡𝑗), 𝑦
𝑡
𝑗),

(11)

𝐸 (𝐷,𝐺) = −E𝑥𝑠
𝑖
∼𝐷𝑠

𝑙𝑜𝑔[𝐷 (𝑓 𝑠𝑖 , 𝑔
𝑠
𝑖)]

−E𝑥𝑡
𝑗
∼𝐷𝑡

𝑙𝑜𝑔[1 − 𝐷 (𝑓 𝑡𝑗 , 𝑔
𝑡
𝑗)] .

(12)

where 𝑓 𝑠
𝑖
and 𝑓 𝑡

𝑗
are the feature representation of the CNN (or

GNN) stream, 𝑔𝑠
𝑖
and 𝑔𝑡

𝑗
are the classifier predictions, 𝑥𝑠

𝑖
and 𝑥𝑡

𝑗
are

sketch images (or strokes), 𝑦𝑠
𝑖
and 𝑦𝑡

𝑗
are ground-truth category (or

semantic component) labels, and 𝐷𝑠 and 𝐷𝑡 are the source (few
training data) and target (new users’ data) domains.

4.2 Extendibility Enhancement
In a professional C4I system, there are more than one thousand
types of sketches. Each sketch consists of basic semantic compo-
nents, and new task-specific sketch categories (even new semantic
components) may be derived from combinations of multiple seman-
tic components. It means that, in order to enhance the SketchRecSeg

MM ’23, October 29–November 3, 2023, Ottawa, Canada Anonymous et al.

network’s forward compatibility to ensure its extendibility, we can
pre-assign several virtual prototypes in the embedding space, and
treat them as ‘virtual classes’. Therefore, the ForwArd Compatible
Training (FACT) [47], which assigns virtual prototypes to squeeze
the embedding of known classes and reserves for new ones, can be
used for class-incremental learning.

Figure 3 shows that we need forward compatible training for
recognition and segmentation streams simultaneously. The loss for
each stream can be given as 𝐿 = 𝐿𝑣 + 𝐿𝑓 :

𝐿𝑣 (x, 𝑦) = 𝑙 (𝑓𝑣 (x), 𝑦) + 𝛾𝑙 (Mask(𝑓𝑣 (x), 𝑦), 𝑦), (13)

𝐿𝑓 (z, 𝑦) = 𝑙 (𝑓𝑣 (z), 𝑦) + 𝛾𝑙 (Mask(𝑓𝑣 (z), 𝑦), ˆ̂𝑦), (14)

Mask(𝑓𝑣 (x), 𝑦) = 𝑓𝑣 (x) ⊗ (1 − OneHot(𝑦)), (15)
where x and 𝑦 are the data and label of known classes, 𝑙 is the
cross-entropy loss, 𝛾 is the trade-off parameter, 1 is an all-ones
vector, and ⊗ is Hadamard product. The cosine classifier can be
abbreviated as 𝑓𝑣 (x) = [𝑊, 𝑃𝑣]⊤𝜙 (x), where 𝑊 and 𝑃𝑣 are the
prototypes of known and virtual classes, and 𝜙 (·) is the feature
extractor. 𝑃𝑣 = [𝑝1, · · · , 𝑝𝑉] ∈ 𝑅𝑑×𝑉 denotes the prototypes of
𝑉 virtual classes. 𝑦 = argmax𝑣𝑝⊤𝑣 𝜙 (x) + |𝑌0 | is the virtual class
with maximum logit, acting as the pseudo label, where |𝑌0 | is the
class count of known classes. z is virtual instance obtained by
fusing the embeddings of two instances by manifold mixup. ˆ̂𝑦 =

argmax𝑘𝑤⊤
𝑘
z is the pseudo label among current known classes.

The hyper-parameters have same values as in [47]. The forward
compatible training is implemented simultaneously for incremental
learning of new classes and semantic components.

5 EXPERIMENTAL STUDIES
5.1 Datasets
Three datasets are constructed from the collected data, as illustrated
in Table 2. SketchIME-SRS contains data of 8 participants for train-
ing and data of another 10 participants for testing. On the one hand,
SketchIME-SRS is used for common evaluations based on the train
and test subset. On the other hand, one or two samples from the 10
participants in the test subset can also be used for domain adapta-
tion training when SketchRecSeg is equipped with DA, and another
five samples from each category sketched by 10 participants are
used for testing.

SketchIME-CIL1 and SketchIME-CIL2 are constructed for the
extendibility evaluation. The former is used for the situation where
both new sketch categories and new semantic components are
expected to emerge in incremental sessions. The latter is used for
the situation where all semantic components already exist in the
base session and only new sketch categories emerge in incremental
sessions. Each sketch category only has five samples in incremental
sessions. We cannot design all the incremental sessions with the
same count of new sketch categories and new semantic components.
Therefore, 16 new sketch categories emerge in each incremental
session first, and then the incremental semantic components in
this session are extracted from the 16 new sketch categories. This
results in different increment counts of semantic components in
each incremental session. The details about the sketch categories
and semantic components in base and incremental sessions are
visualized in the supplementary materials.

Table 2: Three datasets constructed from the collected data
for three tasks. The numbers in square brackets denote the
sketch category count, the semantic component category
count, and the sample count in each subset, respectively.
The numbers in the ‘Incremental’ column denote the total
counts of new sketches and semantic components emerging
in incremental sessions.

Datasets Train/Base Incremental Test

SketchIME-SRS [374,139,36693] - [374,139,19781]
SketchIME-CIL1 [214,98,20904] [160,41,800] [374,139,19781]
SketchIME-CIL2 [214,139,21077] [160,0,800] [374,139,18986]

Table 3: Comparison results between the proposed SketchRec-
Seg and the state-of-the-art methods of sketch recognition
and segmentation on SketchIME-SRS dataset.

Networks P-Metric C-Metric Acc@1

Vision Transformer[6] - - 31.66
MultiGraph Transformer [41] - - 32.63
ResNet18 [39] - - 59.10
SketchSegNet [38] 44.86 25.44 -
MultiGraph Transformer [41] 51.09 27.81 -
SketchGNN [42] 77.96 76.65 -
SketchRecSeg(CFA) 84.18 83.56 76.48
SketchRecSeg(CFA+RSM) 84.96 84.37 76.48
SketchRecSeg(CFA+KLD) 85.45 84.87 77.21
SketchRecSeg(CFA+KLD+RSM) 86.14 85.58 77.21
SketchRecSeg+DA1 94.82 95.01 89.50
SketchRecSeg+DA2 96.16 96.31 92.85
SketchRecSeg+DA5 97.01 97.13 96.21

Besides, the SPG dataset [17] is also used to verify the advantages
of the proposed networks. SPG has 25 categories and 800 sketches
per category. Similar to SketchGNN [42], only 20 categories are used
for evaluation. However, this study not only focuses on grouping
strokes of one sketch into semantic parts, but also to recognize the
semantic parts without knowing ahead the sketch’s category label.

5.2 Recognition and Segmentation
Training Details. Image- and SVG-format sketches in SketchIME-
SRS are fed to our SketchRecSeg network simultaneously. 𝑁 = 300
points are sampled from each sketch. The learning rate is initialized
to 2 × 10−3 with a batch size of 256. Adam optimizer is used for
optimization. Total 100 epochs are implemented. Since the segmen-
tation stream has 𝑁 = 300 prediction outputs, 𝜆1 is set to 150 to
balance recognition and segmentation losses. 𝜆2 is set to 1 or 0
depending on whether KL-divergence loss is used or not. The two-
streams of SketchRecSeg are simultaneously trained from scratch.
Our network is implemented in Pytorch and trained on a single
NVIDIA GeForce GTX 3090.

Evaluation Metrics. Sketch recognition is a typical classifica-
tion problem, therefore Top-1 accuracy (Acc@1) is used as the
evaluation metric. Similar to [38] and [42], two metrics are selected

Sketch Input Method Editor: A Comprehensive Dataset and Methodology for Systematic Input Recognition MM ’23, October 29–November 3, 2023, Ottawa, Canada

Figure 4: The interpretability analysis of the proposed
SketchRecSeg. Rec.N and Rec.P denote the situations where
the recognition network wrongly and correctly recognize
sketches’ categories, respectively. “Independent Rec-Seg” de-
notes the separate training of ResNet18 and SketchGNN
networks. “Simultaneous Rec-Seg” denotes the proposed
SketchRecSeg network. SketchRecSeg also achieves high
segmentation performances when it correctly recognize
sketches’ categories.

for segmentation evaluation, including (a) Point-based accuracy
(P_Metric) which evaluates the percentage of the correctly pre-
dicted stroke points in all sketches, and (b) Component-based accu-
racy (C_Metric) which evaluates the percentage of the correctly
predicted strokes. A stroke is considered to be correctly predicted
if more than 75% of its points are correctly predicted.

Benchmark Methods. To the best of our knowledge, the pro-
posed SketchRecSeg is the first network that simultaneously rec-
ognizes and segments sketches. Therefore, some popular sketch
recognition methods, e.g., CNN- [39] and Transformer-based [41]
methods, are used for comparison. RNN-based recognition methods
are not used in our experiments due to their sensitiveness to stroke
orders. For segmentation, SketchSegNet [38] and SketchGNN [42]
are evaluated for comparison. Besides, the multigraph Transformer
[41] can easily be modified to support sketch segmentation, there-
fore it is also evaluated.

Performance Analysis. Table 3 illustrates the evaluation re-
sults. Firstly, the proposed simultaneous recognition and segmenta-
tion network achieves significant performance improvement, com-
pared with the state-of-the-art methods. Vision Transformer [6]
splits the image into multiple patches and uses linear layers to
extract features from patches before inputting them to Transformer.
The linear layers are not effective to learn two-dimensional features
from images. Multigraph Transformer’s positional embedding uses
stroke orders [41], therefore it cannot achieve good performance
when samples in the test subset have different stroke orders com-
pared to the ones in the train subset. SketchSegNet [38] uses LSTM
layers, and thus does not achieve good segmentation performance.

Secondly, the proposed SketchRecSeg uses ResNet18 and dy-
namic graph convolutions for feature learning. It achieves signif-
icant improvement both for recognition and segmentation tasks,

compared with ResNet18 for recognition and SketchGNN for seg-
mentation separately, even when SketchRecSeg only uses feature-
level supervision by CFA. This demonstrates that the two-stream
network and the supervision can improve the recognition and seg-
mentation performance simultaneously.

Thirdly, the use of the prior knowledge by the RSM module
and KLD loss brings considerable performance improvement on
the segmentation stream, without affecting the recognition perfor-
mance. The computational and memory consumption by RSM and
KLD is very little. The multilevel supervision takes full use of the
prior knowledge and the advantages of CNN and GNN, and thus
results in better performance.

Fourthly, Fig. 4 illustrates our analysis about the mutual effects
of recognition and segmentation. The left two groups show the seg-
mentation performance of SketchGNN on the samples for which the
recognition network (i.e., ResNet18) makes the wrong (i.e., shown
in the Rec.N bars under the scenario of independent Rec-Seg) and
the right (i.e., shown in the Rec.P bars under the scenario of inde-
pendent Rec-Seg) predictions. Note that ResNet18 and SketchGNN
are trained independently. The right two groups give the perfor-
mance of our simultaneous recognition and segmentation network.
It can be seen that our network has very high segmentation accu-
racy when it correctly recognizes the sketch categories. While, it
performs poorly for segmentation task when it cannot recognize
the sketch correctly. This implies that it can recognize the sketch
correctly because it can correctly segment the sketch’s semantic
components, and vice versa. This makes the network reliable due
to its interpretability. In conclusion, the proposed SketchRecSeg
achieves better and balanced recognition and segmentation perfor-
mance simultaneously. Simultaneous recognition and segmentation
shows its superiority compared to independent implementations.

Lastly, the bottom three rows of Table 3 show that supervised
CDAN domain adaptation training using only one, two, five samples
(corresponding to the cases of SketchRecSeg+DA1/DA2/DA5) per
category of new users can significantly improve the performance
to an application-level. It is reasonable to use few samples of the
base training data for domain adaptation, since they can be viewed
as the typical examples of each category for user reference. It is
also reasonable to use few labeled samples of new users, since the
labels can be obtained online when users select the right symbols
from the recommended ones while using SketchIME. This provides
us a few-shot domain adaptation method for personal sketching
style learning, and ensures the adaptability of SketchIME. This
also provides us a novel personal sketch style learning strategy
to transfer the offline trained model to each new user’ data for
high-precision sketch recognition and segmentation.

Figure 5 shows some segmentation results on our SketchIME-SRS
dataset. It visually shows the composition of a sketch’s semantic
component. It also demonstrates the advantages of the proposed
SketchRecSeg.

5.3 Extendibility Analysis
Experimental Setup. Two experiments are performed on the
SketchIME-CIL1 and SketchIME-CIL2 datasets. The former deals
with the situation where both new sketch categories and new se-
mantic components emerge in the incremental sessions, while the

MM ’23, October 29–November 3, 2023, Ottawa, Canada Anonymous et al.

Figure 5: Visualization of some segmentation results on the
SketchIME-SRS dataset. The numbers under the sketch sam-
ples denote the C-Metric values of each sample obtained by
each method. It means correct segmentation only if the color
of a stroke in each sample in the bottom-four rows matches
the color of the same stroke in the top row.

Table 4: Comparison with state-of-the-art methods on SPG.

Networks P-Metric C-Metric Acc@1

Vision Transformer[6] - - 76.21
BiGRU[4] - - 79.10
ResNet18 [39] - - 80.66
MultiGraph Transformer [41] - - 91.05
SketchSegNet [38] 56.22 45.46 -
SketchGNN [42] 91.26 87.86 -
SketchRecSeg(CFA) 93.18 90.86 97.37
SketchRecSeg(CFA+KLD) 93.83 91.25 97.47
SketchRecSeg(CFA+KLD+RSM) 94.09 91.65 97.47

latter deals with the situation where only new sketch categories
emerge in the incremental sessions. The forward compatible train-
ing [47] of the recognition (i.e., ResNet18) and segmentation (i.e.,
SketchGNN) networks is performed separately as the baseline, and
the results are illustrated in Fig. 6 as “Recognition Only” and “Seg-
mentation Only”. We also applied the forward compatible training
[47] to support our two-stream network to incrementally learn new
sketch categories and new semantic components simultaneously,
and the results on recognition and segmentation are illustrated in
Fig. 6 as “SketchRecSeg-Rec” and “SketchRecSeg-Seg” respectively.

Figure 6: Experimental results of class-incremental learning.
The proposed SketchRecSeg using forward compatible train-
ing has a good extendibility to new task-specific classes.

Performance Analysis. It can be seen from Fig.6 that: (a)When
dealing with the class-increment on both the sketch categories and
semantic components, the joint optimization on the embedding
spaces of categories and components can improve both recogni-
tion and segmentation performance (see Fig. 6(a)), and the recog-
nition’s supervision on segmentation significantly improves the
segmentation performance, (b)When only dealing with the class-
increment on the sketch categories, the joint optimization on the
embedding spaces of categories and components can force the seg-
mentation stream to learn how the existing semantic components
constitute new categories and benefit from the learning process,
(c) Fig. 6 reports slight performance reduction for both recognition
and segmentation in incremental sessions. This means that apply-
ing the forward compatible training strategy of FACT [47] on our
SketchRecSeg network can effectively enhance its extendibility to
new task-specific sketches.

In conclusion, given the analysis in Section 5.2 and 5.3, con-
clusions can be obtained: (a) the two-stream architecture and the
supervision between two streams can benefit recognition and seg-
mentation simultaneously. (b) Applying the training strategies of
few-shot domain adaptation and class-incremental learning can
enhance the network’s adaptability to new users and extendibility
to new task-specific sketches, and enhance its practicality.

5.4 Comparison on Other Dataset
Table 4 illustrates the comparison results of our methods and state-
of-the-art methods on the SPG dataset. SketchRecSeg outperforms
both the recognition networks and the segmentation networks.
Only subtle performance difference exists when SketchRecSeg uses
a different supervision. This is because SketchRecSeg has already
achieved excellent performance with CFA only.

6 DISCUSSION AND CONCLUSION
The traditional “Search and Select” input styles may be time con-
suming when frequent inputs are needed, especially when a large
number of operational symbols are contained in hierarchical tool-
bars. Sketch input method editor (SketchIME) is a professional and
promising system which can provide user-friendly and efficient
input experience. Beyond the base recognition and segmentation

Sketch Input Method Editor: A Comprehensive Dataset and Methodology for Systematic Input Recognition MM ’23, October 29–November 3, 2023, Ottawa, Canada

functions, the adaptability and extendibility are also the key fea-
tures to ensure SketchIME can be used by different users for various
tasks. This study constructed datasets from scratch, proposed the
simultaneous recognition and segmentation network, and explored
the few-shot domain adaptation and class-incremental learning
mechanism to improve the network’s adaptability to new users and
extendibility to new task-specific sketches. This study verifies the
feasibility to use few samples to adapt to new users and tasks, and
this paper provides systematic data and methods for SketchIME.

For an excellent sketch input method editor, online recognition
and recommendation are more important. The unused parts of our
collected data contains different stroke orders of each sketch. These
can be used for online sketch recognition and personal identification
based on sketching styles and will be released in our future works.

MM ’23, October 29–November 3, 2023, Ottawa, Canada Anonymous et al.

REFERENCES
[1] Andreas Bulling, Raimund Dachselt, Andrew Duchowski, Robert Jacob, Sophie

Stellmach, and Veronica Sundstedt. 2012. Gaze interaction in the post-WIMP
world. In CHI. 1221–1224.

[2] Jungwoo Choi, Heeryon Cho, Jinjoo Song, and SangMin Yoon. 2019. Sketchhelper:
Real-time stroke guidance for freehand sketch retrieval. IEEE TMM 21, 8 (2019),
2083–2092.

[3] Jungwoo Choi, Heeryon Cho, Jinjoo Song, and Sang Min Yoon. 2019. Sketch-
Helper: Real-Time Stroke Guidance for Freehand Sketch Retrieval. IEEE Transac-
tions on Multimedia 21, 8 (2019), 2083–2092. https://doi.org/10.1109/TMM.2019.
2892301

[4] Junyoung Chung, Caglar Gulcehre, KyungHyun Cho, and Yoshua Bengio. 2014.
Empirical Evaluation of Gated Recurrent Neural Networks on SequenceModeling.
(2014). arXiv:1412.3555 [cs.NE]

[5] Ayan Das, Yongxin Yang, Timothy M Hospedales, Tao Xiang, and Yi-Zhe Song.
2021. Cloud2curve: Generation and vectorization of parametric sketches. In
CVPR. 7088–7097.

[6] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xi-
aohua Zhai, Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg
Heigold, Sylvain Gelly, Jakob Uszkoreit, and Neil Houlsby. 2021. An Image
is Worth 16x16 Words: Transformers for Image Recognition at Scale. (2021).
arXiv:2010.11929 [cs.CV]

[7] Mathias Eitz, James Hays, and Marc Alexa. 2012. How do humans sketch objects?
ACM TOG 31, 4 (2012), 1–10.

[8] Danilo Gasques, Janet G Johnson, Tommy Sharkey, and Nadir Weibel. 2019. What
you sketch is what you get: Quick and easy augmented reality prototyping with
pintar. In CHI. 1–6.

[9] David Ha and Douglas Eck. 2018. A Neural Representation of Sketch Drawings.
In ICLR.

[10] Jun-Yan He, Xiao Wu, Yu-Gang Jiang, Bo Zhao, and Qiang Peng. 2017. Sketch
recognition with deep visual-sequential fusion model. In ACM MM. 448–456.

[11] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2016. Deep residual
learning for image recognition. In CVPR. 770–778.

[12] Michael Hersche, Geethan Karunaratne, Giovanni Cherubini, Luca Benini, Abu
Sebastian, and Abbas Rahimi. 2022. Constrained Few-shot Class-incremental
Learning. In CVPR. 9057–9067.

[13] Rui Hu and John Collomosse. 2013. A performance evaluation of gradient field
hog descriptor for sketch based image retrieval. CVIU 117, 7 (2013), 790–806.

[14] Forrest Huang, John F Canny, and Jeffrey Nichols. 2019. Swire: Sketch-based
user interface retrieval. In CHI. 1–10.

[15] Qi Jia, Meiyu Yu, Xin Fan, and Haojie Li. 2017. Sequential dual deep learning with
shape and texture features for sketch recognition. arXiv preprint arXiv:1708.02716
(2017).

[16] Guohao Li, Matthias Muller, Ali Thabet, and Bernard Ghanem. 2019. Deepgcns:
Can gcns go as deep as cnns?. In CVPR. 9267–9276.

[17] Ke Li, Kaiyue Pang, Jifei Song, Yi-Zhe Song, Tao Xiang, Timothy M Hospedales,
and Honggang Zhang. 2018. Universal sketch perceptual grouping. In ECCV.
582–597.

[18] Lei Li, Hongbo Fu, and Chiew-Lan Tai. 2018. Fast sketch segmentation and
labeling with deep learning. IEEE CG&A 39, 2 (2018), 38–51.

[19] Mingsheng Long, Zhangjie Cao, Jianmin Wang, and Michael I Jordan. 2018.
Conditional adversarial domain adaptation. In NeurIPS. 1647–1657.

[20] Mehdi Mirza and Simon Osindero. 2014. Conditional generative adversarial nets.
arXiv preprint arXiv:1411.1784 (2014).

[21] Ferran Naya, Manuel Contero, Nuria Aleixos, et al. 2007. ParSketch: a sketch-
based interface for a 2D parametric geometry editor. In ICHCI. 115–124.

[22] Sinno Jialin Pan and Qiang Yang. 2009. A survey on transfer learning. IEEE TKDE
22, 10 (2009), 1345–1359.

[23] Ameya Prabhu, Vishal Batchu, Sri Aurobindo Munagala, Rohit Gajawada, and
Anoop Namboodiri. 2018. Distribution-aware binarization of neural networks
for sketch recognition. In WACV. 830–838.

[24] Alan Preciado-Grijalva and Venkata Santosh Sai Ramireddy Muthireddy. 2021.
Evaluation of Deep Neural Network Domain Adaptation Techniques for Image
Recognition. arXiv preprint arXiv:2109.13420 (2021).

[25] Yonggang Qi and Zheng-Hua Tan. 2019. SketchSegNet+: An end-to-end learning
of RNN for multi-class sketch semantic segmentation. IEEE Access 7 (2019),
102717–102726.

[26] Patsorn Sangkloy, Nathan Burnell, Cusuh Ham, and James Hays. 2016. The
sketchy database: learning to retrieve badly drawn bunnies. ACM TOG 35, 4
(2016), 1–12.

[27] Ravi Kiran Sarvadevabhatla and Jogendra Kundu. 2016. Enabling my robot to
play pictionary: Recurrent neural networks for sketch recognition. In ACM MM.
247–251.

[28] Ravi Kiran Sarvadevabhatla, Sudharshan Suresh, and R. Venkatesh Babu. 2017.
Object Category Understanding via Eye Fixations on Freehand Sketches. IEEE
Transactions on Image Processing 26, 5 (2017), 2508–2518. https://doi.org/10.1109/
TIP.2017.2675539

[29] Sarah Suleri, Vinoth Pandian Sermuga Pandian, Svetlana Shishkovets, and
Matthias Jarke. 2019. Eve: A sketch-based software prototyping workbench.
In CHI. 1–6.

[30] Baochen Sun, Jiashi Feng, and Kate Saenko. 2017. Correlation alignment for
unsupervised domain adaptation. In Domain Adaptation in Computer Vision
Applications, Gabriela Csurka (Ed.). Springer, 153–171.

[31] Baochen Sun and Kate Saenko. 2016. Deep coral: Correlation alignment for deep
domain adaptation. In ECCV. Springer, 443–450.

[32] Xiaoyu Tao, Xiaopeng Hong, Xinyuan Chang, Songlin Dong, Xing Wei, and
Yihong Gong. 2020. Few-shot class-incremental learning. In CVPR. 12183–12192.

[33] Caglar Tirkaz, Berrin Yanikoglu, and T. Metin Sezgin. 2012. Sketched symbol
recognition with auto-completion. Pattern Recognition 45, 11 (2012), 3926–3937.
https://doi.org/10.1016/j.patcog.2012.04.026

[34] Eric Tzeng, Judy Hoffman, Ning Zhang, Kate Saenko, and Trevor Darrell. 2014.
Deep domain confusion: Maximizing for domain invariance. arXiv preprint
arXiv:1412.3474 (2014).

[35] Fang Wang, Le Kang, and Yi Li. 2015. Sketch-based 3d shape retrieval using
convolutional neural networks. In CVPR. 1875–1883.

[36] Fei Wang, Shujin Lin, Hefeng Wu, Hanhui Li, Ruomei Wang, Xiaonan Luo, and
Xiangjian He. 2019. Spfusionnet: Sketch segmentation using multi-modal data
fusion. In ICME. 1654–1659.

[37] Yue Wang, Yongbin Sun, Ziwei Liu, Sanjay E Sarma, Michael M Bronstein, and
Justin M Solomon. 2019. Dynamic graph cnn for learning on point clouds. ACM
TOG 38, 5 (2019), 1–12.

[38] Xingyuan Wu, Yonggang Qi, Jun Liu, and Jie Yang. 2018. Sketchsegnet: A rnn
model for labeling sketch strokes. In MLSP. 1–6.

[39] Peng Xu, Timothy M Hospedales, Qiyue Yin, Yi-Zhe Song, Tao Xiang, and Liang
Wang. 2022. Deep learning for free-hand sketch: A survey. IEEE TPAMI (2022).

[40] Peng Xu, Yongye Huang, Tongtong Yuan, Kaiyue Pang, Yi-Zhe Song, Tao Xiang,
Timothy M Hospedales, Zhanyu Ma, and Jun Guo. 2018. Sketchmate: Deep
hashing for million-scale human sketch retrieval. In CVPR. 8090–8098.

[41] Peng Xu, Chaitanya K Joshi, and Xavier Bresson. 2021. Multigraph transformer
for free-hand sketch recognition. IEEE TNNLS (2021).

[42] Lumin Yang, Jiajie Zhuang, Hongbo Fu, Xiangzhi Wei, Kun Zhou, and Youyi
Zheng. 2021. Sketchgnn: Semantic sketch segmentation with graph neural
networks. ACM TOG 40, 3 (2021), 1–13.

[43] Qian Yu, Yongxin Yang, Feng Liu, Yi-Zhe Song, Tao Xiang, and Timothy M
Hospedales. 2017. Sketch-a-net: A deep neural network that beats humans. IJCV
122, 3 (2017), 411–425.

[44] Qian Yu, Yongxin Yang, Yi-Zhe Song, Tao Xiang, and Timothy Hospedales. 2015.
Sketch-a-Net that Beats Humans. In BMVC. 1–12.

[45] Chi Zhang, Nan Song, Guosheng Lin, Yun Zheng, Pan Pan, and Yinghui Xu. 2021.
Few-shot incremental learning with continually evolved classifiers. In CVPR.
12455–12464.

[46] An Zhao, Mingyu Ding, Zhiwu Lu, Tao Xiang, Yulei Niu, Jiechao Guan, and
Ji-Rong Wen. 2021. Domain-adaptive few-shot learning. In WACV. 1390–1399.

[47] Da-Wei Zhou, Fu-Yun Wang, Han-Jia Ye, Liang Ma, Shiliang Pu, and De-Chuan
Zhan. 2022. Forward compatible few-shot class-incremental learning. In CVPR.
9046–9056.

[48] Da-Wei Zhou, Han-Jia Ye, Liang Ma, Di Xie, Shiliang Pu, and De-Chuan Zhan.
2022. Few-shot class-incremental learning by sampling multi-phase tasks. IEEE
TPAMI (2022).

[49] Kai Zhu, Yang Cao, Wei Zhai, Jie Cheng, and Zheng-Jun Zha. 2021. Self-promoted
prototype refinement for few-shot class-incremental learning. In CVPR. 6801–
6810.

https://doi.org/10.1109/TMM.2019.2892301
https://doi.org/10.1109/TMM.2019.2892301
https://arxiv.org/abs/1412.3555
https://arxiv.org/abs/2010.11929
https://doi.org/10.1109/TIP.2017.2675539
https://doi.org/10.1109/TIP.2017.2675539
https://doi.org/10.1016/j.patcog.2012.04.026

	Abstract
	1 Introduction
	2 Related Works
	2.1 Sketch Dataset
	2.2 Sketch Recognition and Segmentation
	2.3 Adaptability and Extendibility

	3 Dataset Construction
	3.1 Category Selection
	3.2 Data Collection and Annotation
	3.3 Data Statistics

	4 Methods
	4.1 Recognition and Segmentation
	4.2 Extendibility Enhancement

	5 Experimental Studies
	5.1 Datasets
	5.2 Recognition and Segmentation
	5.3 Extendibility Analysis
	5.4 Comparison on Other Dataset

	6 Discussion and Conclusion
	References

