
Learning a Graph Neural Network with Cross Modality
Interaction for Image Fusion

Jiawei Li

University of Science and Technology Beijing

Beijing, China

ljw19970218@163.com

Jiansheng Chen
∗

University of Science and Technology Beijing

Beijing, China

jschen@ustb.edu.cn

Jinyuan Liu

Dalian University of Technology

Dalian, China

atlantis918@hotmail.com

Huimin Ma

University of Science and Technology Beijing

Beijing, China

mhmpub@ustb.edu.cn

DIDFuse 
(IJCAI’20)
U2Fusion 
(TPAMI’20)

SDNet 
(IJCV’21)
TarDAL 

(CVPR’22)
UMFusion 
(IJCAI’22)
DeFusion 
(ECCV’22)
ReCoNet 
(ECCV’22)

IGNet 
(Ours)

Dataset: M3FD 

Fusion Detection

DIDFuse

TarDAL

IGNet

mAP@.5: 0.772

mAP@.5: 0.799

mAP@.5: 0.808

Fusion

Dataset: MFNet

Segmentation

DIDFuse

TarDAL

IGNet

mIoU: 0.603

mIoU: 0.591

mIoU: 0.625

Fig. 1. Fusion, detection and segmentation comparisons with state-of-the-art methods onM3FD and MFNet datasets. We can
obviously notice the superiority of our IGNet in the zoomed-in patches and radar plots.

ABSTRACT
Infrared and visible image fusion has gradually proved to be a vital

fork in the field of multi-modality imaging technologies. In recent

developments, researchers not only focus on the quality of fused

images but also evaluate their performance in downstream tasks.

Nevertheless, the majority of methods seldom put their eyes on

mutual learning from different modalities, resulting in fused images

lacking significant details and textures. To overcome this issue, we

propose an interactive graph neural network (GNN)-based architec-

ture between cross modality for fusion, called IGNet. Specifically,

we first apply a multi-scale extractor to achieve shallow features,

which are employed as the necessary input to build graph structures.

Then, the graph interaction module can construct the extracted

intermediate features of the infrared/visible branch into graph struc-

tures. Meanwhile, the graph structures of two branches interact

for cross-modality and semantic learning, so that fused images

can maintain the important feature expressions and enhance the

performance of downstream tasks. Besides, the proposed leader

nodes can improve information propagation in the same modality.

Finally, we merge all graph features to get the fusion result. Ex-

tensive experiments on different datasets (𝑖 .𝑒 ., TNO, MFNet, and

M
3
FD) demonstrate that our IGNet can generate visually appealing

fused images while scoring averagely 2.59% mAP@.5 and 7.77%

mIoU higher in detection and segmentation than the compared

∗
Corresponding author: Jiansheng Chen.

state-of-the-art methods. The source code of the proposed IGNet

can be available at https://github.com/lok-18/IGNet.

KEYWORDS
Image fusion, graph neural network, cross-modality interaction,

leader node

1 INTRODUCTION
Due to the inadequacy of single-modality imaging, the resulting

images are commonly defective in complex scenes [22], [21]. As

a representative, Visible images are more in line with the human

visual system (HVS), but susceptible to environmental factors. In

this case, researchers attempt to fuse visible images with ones of an-

other modality to counteract the disadvantages of single-modality

imaging. Complementarily, infrared images can capture salient tar-

gets with thermal radiation sensors. Texture details and resolution

of them often perform undesirably. Therefore, infrared and visible

image fusion (IVIF) emerges as the times require, which can possess

information from different modalities simultaneously. Acting as an

indispensable part of multi-modality imaging technology, IVIF has

drawn extensive attention to computer vision tasks, 𝑒.𝑔., vehicle

detection [32], video surveillance [27] and image stitching [8].

For the past decade, deep learning networks have been intro-

duced to explore the IVIF task [43], which mainly contains con-

volution neural network (CNN)-based [19] and transformer-based

methods [25]. These methods focus on accurate feature extraction
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for inputs while promoting the fusion efficiency significantly. Com-

pared with previous traditional approaches, deep learning-based

methods can utilize more efficient feature extraction capabilities

to obtain fusion results with higher efficiency. With further de-

velopment, researchers also pay attention to the performance of

down-stream tasks after fusion [33]. That is to say the results of

down-stream tasks are closely related to the fusion images.

Existing mainstream IVIF methods have reached a certain height,

nevertheless, there are still several drawbacks: (i) the uneven distri-

bution of infrared and visible information extracted from networks

causes fusion results only to be biased towards one modality [14],

which can not perform the prominent regions of source images

well. (ii) since feature learning often acts separately on each sin-

gle branch, the information contained in networks may lack the

communication of cross modalities [34]. (iii) the internal design

of message delivery is not well taken into account in several net-

works [44], so some significant details of source images can not be

displayed in fused results.

To alleviate the drawbacks mentioned above, in this paper, we

propose an interactive GNN-based architecture between crossmodal-

ity for the IVIF task, termed as IGNet. Concretely, multi-scale shal-

low features are first extracted by convolutions and the proposed

structure salience module (SSM). Then, we construct a graph inter-

actionmodule (GIM) to obtain graph structures of different branches

for feature learning. Note that the interaction of cross-modality

graph features enables the proposed IGNet to achieve more se-

mantic information, which can improve the performance of down-

stream tasks, 𝑒.𝑔., object detection, and image segmentation. In

addition, the establishment of leader nodes guides the message

propagation effectually to avoid image quality degradation caused

by feature loss. Fig. 1 proves that our proposed IGNet maintains the

superior position regardless of subjective visual results or objective

marks compared with state-of-the-art methods.

In brief, the contributions can be divided into the following

aspects:

• For optimizing the internal relationship of fusion and down-

stream (𝑖 .𝑒 ., object detection and image segmentation) tasks,

to the best of our knowledge, we are the first to apply GNN

into the IVIF method. To this end, the fused results can con-

tain faithful visual representation and feature comprehen-

sion abilities.

• We propose a graph interaction module (GIM) for getting

graph structures. It can proceed cross-modality communi-

cation through graph features, which highlight the desired

details of fusion results. Furthermore, the semantic-wise

information can also be extracted by GIM for improving

down-stream results.

• Unlike the common GNN, the leader nodes are employed for

information delivery after achieving graphs. Accompanied

by a leader node as a pioneer, fusion images can maintain

abundant textures from source inputs.

• We conduct image fusion, detection, and segmentation exper-

iments on TNO, M
3
FD, and MFNet datasets. Compared with

the other seven state-of-the-art approaches, our proposed

IGNet performs foremost in all tasks.

2 RELATEDWORKS
2.1 Infrared and Visible Image Fusion
Deep learning has promoted rapid development in the field of im-

age fusion [12], [20], [9], [13]. In early stages, researchers are dedi-

cated to improving the performance of fused images by CNN-based

methods, which are mainly divided into three classes, 𝑖 .𝑒 ., End-to-

End-based models [19], [23], Encoder-Decoder models [10], and

generative adversarial network (GAN)-based models [26].

More specifically, End-to-End models preset parameters before

unsupervised training [14]. Liu 𝑒𝑡 𝑎𝑙 . [19] proposed a coarse-to-fine

deep network with an end-to-end manner to learn multi-scale fea-

tures from infrared and visible images. The structure details were

also refined by the proposed edge-guided attention mechanism. The

Encoder-Decoder models need to design a fusion rule to integrate

features extracted from the encoder, and then output the fusion

results from the decoder [39]. Zhao 𝑒𝑡 𝑎𝑙 . [47] conducted a novel

encoder to decompose source images into background and detail

feature maps, which can highlight targets, especially in the dark.

The GAN-based models require a generator and a discriminator

for adversarial learning. Li 𝑒𝑡 𝑎𝑙 . [11] effectively combined the at-

tention mechanism with GAN, namely AttentionFGAN. Moreover,

extensive transformer-based models have also received much atten-

tion in the IVIF task [25]. Tang 𝑒𝑡 𝑎𝑙 . [25] utilized Swin Transformer

and cross-domain long-range learning into the IVIF task, which

connected local features with global representation.

To further explore the performance of fusion images, researchers

have introduced down-stream tasks 𝑒.𝑔., object detection and image

segmentation, into the IVIF task. As a representative, Liu 𝑒𝑡 𝑎𝑙 .

[18] proposed a unified architecture and built a multi-modality

dataset for image fusion and detection. Sun 𝑒𝑡 𝑎𝑙 . [31] employed

the information back-propagated by detection loss in the proposed

network to obtain fused images with excellent detection results.

For getting more semantic features, Tang 𝑒𝑡 𝑎𝑙 . [34] proposed a

cascaded structure called SeAFusion, which connects the fusion

network with a pretrained segmentation module. Zhao 𝑒𝑡 𝑎𝑙 . [46]

conducted a novel two-stage trainingmode for fusion. The detection

and segmentation results also performed well in this benchmark.

2.2 Graph Neural Network
In recent years, GNN-based approaches have become increasingly

popular in computer vision. Different from traditional CNN-based

methods, the unique structure of GNN enables to extract and trans-

fer more efficient features. Therefore, GNN is commonly imple-

mented in the feature-wise tasks. As a representative, Xie 𝑒𝑡 𝑎𝑙 .

[38] proposed a scale-aware networkwith GNN to conduct few-shot

semantic segmentation. In the medical field, Huang 𝑒𝑡 𝑎𝑙 . [6] em-

ployed a semi-supervised network for medical image segmentation,

which could help doctors diagnose diseases better. Recently, GNN

becomes popular in the field of saliency detection. It can effectively

highlight the salient mask of measured targets. Specifically, Luo 𝑒𝑡

𝑎𝑙 . [24] tried to cascade graph structures for salient object detection

(SOD) with RGB-D images. Song 𝑒𝑡 𝑎𝑙 . [30] devised a multiple graph

module to realize the RGB-T SOD task. GNN can be also applied in

Co-Saliency Detection (CSD) and Instance Co-Segmentation (ICS).

Li 𝑒𝑡 𝑎𝑙 . [15] presented a general adaptive GNN-based module to

deal with CSD and ICS. In addition, some low-level tasks can also
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Fig. 2. Pipeline of the proposed IGNet. Specifically, we feed multi-scale features into the graph interaction module (GIM) for
generating graph structures in different modalities. The cross-modality interaction between graphs is depicted in detail. The
leader nodes guide the information delivery from one graph to the latter. Note that we construct graphs in the infrared/visible
branch with three loops, respectively. The bottom row represents the legend of the component.

perform well by using GNN as their benchmark. Li 𝑒𝑡 𝑎𝑙 . [16] pro-

posed a novel GNN-based method for image denoising. In summary,

GNN maintains sensitivity to semantic information, while handling

pixel-level tasks well. Hence, our proposed IGNet can exploit the

advantages of GNNs for deeper exploration of IVIF tasks, which

can simultaneously improve the quality of fused images and the

performance of corresponding downstream tasks.

3 METHOD
3.1 Motivation
In the IVIF task, networks often extract features in infrared and

visible branches separately, while ignoring the interaction between

modalities. It may cause textures of source images can not be com-

pletely displayed in fusion results. With the information delivery

during training, the occurrence of feature forgetting is inevitable

as well. Besides, the fused images will directly affect the perfor-

mance of the down-stream results. There is no doubt that applying

an effective architecture to achieve visually appealing images can

improve the accuracy of detection and segmentation. Significantly,

how to obtain fused images with prominent targets, fine textures,

and rich semantic information is the key to handling the above

issues. Hence, it is our motivation to realize a general IVIF frame-

work, which can obtain fusion and semantic information in pixel

and feature domains concurrently.

3.2 Overall Workflow
The proposed IGNet adopts a dual-branch framework in the feature

learning stages. Subsequently, we aggregate the infrared and visible

branches to achieve fusion images. The overall pipeline is illustrated

in Fig. 2. To be specific, two different-scale features (𝑖 .𝑒 ., f∗
1
and

f
∗
2
) can be generated by the first two convolutional layers, where ∗

denotes the infrared/visible branch. Then, we modify f
∗
2
through

the SSM for getting the salient-structure feature f
∗
3
. It is formulated

as follow:

f
∗
3
= S(f∗

2
), (1)

where S means the SSM. For constructing connections between

source images, f
∗
𝑖
is fed into the GIM to build a learnable graph

structure with three loops. We define this process as follows:

g∗ =
3∑︁

𝑖=1

G(f∗𝑖 ), (2)

where 𝑖 ∈ {1, 2, 3}, g∗ denotes graph features and G is the GIM. At

last, we combine decorated features to achieve final fusion results:

I𝑓 = 𝐶𝑜𝑛𝑣
(
𝐶𝑜𝑛𝑐𝑎𝑡 (g𝑖𝑟 , g𝑣𝑖𝑠 )

)
, (3)

where I𝑓 means fused images. 𝐶𝑜𝑛𝑣 (·) and 𝐶𝑜𝑛𝑐𝑎𝑡 (·) represent
convolution and concatenate operations, respectively. Moreover,

the employed loss function can effectively transfer information

through back-propagation, which is also explicated in Section. 3.5.

3.3 Structure Salience Module
As shown in Fig. 2, we use the SSM to optimize f

∗
2
, deepening the

expression of deep structure features. After passing through a con-

volutional layer, the SSM conducts Maxpooling and Avgpooling to

coordinate detailed patches and global information simultaneously.

We use Element-wise Multiplication to deal with the two pooling

information, which can excavate more salient contents from in-

frared images. Since more detailed textures are contained in the

visible branch, Element-wise Addition is exploited to enrich the

overall perception instead.

Inspired by SENet [5], we also introduce attention to the SSM.

Firstly, the aforementioned feature is flattened by Global Average

Pooling (GAP). Secondly, we assign two Fully Connected Layers and

Sigmoid to generate the corresponding channel weight. It can not

only increase the salience of feature representation but also high-

light parts that conform toHVS in fused images. Finally, wemultiply

the feature with channel weight to achieve salient-structure feature

f
∗
3
.
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Fig. 3. Specific illustration of (a) node generation and (b) edge
generation.

3.4 Graph Interaction Module
We design a graph structure for information learning and interac-

tion between different modalities in GIM, which can improve the

quality of fusion results. Furthermore, it enables images to con-

tain more high-level information, so that the down-stream tasks

(𝑖 .𝑒 ., object detection, image segmentation) also perform well. The

middle of Fig. 2 shows the specific workflow of the GIM.

As the infrared branch an example, we provide the former fea-

tures f
𝑖𝑟
𝑖

with different scales acting as pioneer factors to the GIM

for graph generation. Note that the GIM implements three loops

of graph structures with three nodes in each branch to balance the

performance of fusion results and operational efficiency. Detailed

ablation experiments are conducted in Section. 4.6. In the process of

creating graphs, we connect nodes of different scales from the same

modality and nodes of the same scale from different modalities con-

currently. The interactive way can restrict information imbalance

while enhancing the representation of each input in fused images.

After obtaining a graph, nodes constitute a corresponding leader

node g
𝑖𝑟
𝑖
to guide information delivery for the latter graph. Owing

to the assistance of leader nodes, the GIM can resist information

loss, improving the capability of feature learning. The leader nodes

g
𝑖𝑟
1
, g

𝑖𝑟
2

and g
𝑖𝑟
3

are finally mixed together to achieve the graph

feature g𝑖𝑟 .

3.4.1 Node and Edge Generation. Aimed at ensuring the diversity

of features, we divide them into nodes of different scales through

the pyramid pooling module (PPM) [45]. Fig. 3 (a) describes the

detailed process of node generation. We employ pyramid pooling,

convolution, and upsample operations to split f
∗
𝑖
intomultiple scales

to obtain the nodes in the graph, respectively. Note that the nodes

and f
∗
𝑖
keep consistent except for the number of channels. This

process can be proved as follow:

(g∗𝑖 )𝑜 = 𝑈𝑝

(
𝐶𝑜𝑛𝑣

(
P(f∗𝑖 )

) )
, (4)

where (g∗
𝑖
)𝑜 represents the 𝑜-th ( 𝑗 ∈ {1, 2, 3}) node of the 𝑖-th

(𝑖 ∈ {1, 2, 3}) graph in * (infrared/visible) modality.𝑈𝑝 andP denote

the upsample and pyramid pooling operations.

The production of edges in Fig. 3 (b) also stands an essential role

of the graph generation, which carries the information transmis-

sion between nodes. We build edges in different-scale nodes from

the same modality. Distinctively, nodes with the same scale from

different modalities are linked for learning more semantic-level

relations. The edge generation in g𝑗 and g𝑘 is bidirectional and

defined as:

e𝑗,𝑘 = 𝐶𝑜𝑛𝑣 (g𝑗 − g𝑘 ), (5)

Fig. 4. Specific illustration of (a) leader node generation and
(b) information delivery.

e𝑘,𝑗 = 𝐶𝑜𝑛𝑣
(
N(g𝑗 − g𝑘 )

)
, (6)

where N means the negation operation. e𝑗,𝑘 (e𝑘,𝑗 ) is the edge em-

bedded from g𝑗 (g𝑘 ) to g𝑘 (g𝑗 ). In addition, the message passing

m𝑗,𝑘 can be formulated as:

m𝑗,𝑘 = 𝑆𝑖𝑔𝑚𝑜𝑖𝑑 (e𝑗,𝑘 ) · g𝑗 , (7)

where 𝑆𝑖𝑔𝑚𝑜𝑖𝑑 denotes the Sigmoid operation.

3.4.2 Leader Node and Information Delivery. In Fig. 4 (a), the intro-

duction of leader nodes makes the delivery of semantic information

between nodes in the graph more effectively, which can be repre-

sented as follow:

g
∗
𝑖 = 𝐶𝑜𝑛𝑣

(
𝐶𝑜𝑛𝑐𝑎𝑡

(
(g∗𝑖 )1, (g

∗
𝑖 )2, (g

∗
𝑖 )3

) )
(8)

In the process of information delivery as shown in Fig. 4 (b), the

leader node generates the corresponding leader weight by the GAP

and Sigmoid operation. After three former nodes pass through the

convolutions, we multiply them with the leader weight in channel

domain. Finally, the extracted multi-level features are propagated

into the latter nodes, which can embody both details and targets

clearly in fused images.

3.5 Loss Function
To guarantee that more meaningful information can be learned

during the training phase, we introduce three varieties of loss func-

tions, 𝑖 .𝑒 ., the pixel lossLMSE, the edge lossLedge
and the structure

loss LSSIM. The combined L
total

can be shown as follow:

L
total

= LMSE + 𝛼L
edge

+ 𝛽LSSIM, (9)

where 𝛼 and 𝛽 are preset hyperparameters with the value of 10 and

0.5. Specifically, mean squared error (MSE) can measure the pixel

intensity between source images and the fusion result. Note that

we conduct weighted average to source images before calculating.

It can be defined as:

LMSE = MSE

(
(I𝑖𝑟 + I𝑣𝑖𝑠 )/2, I𝑓

)
, (10)

where I𝑖𝑟 and I𝑣𝑖𝑠 mean infrared and visible images, respectively.

To highlight edge details, L
edge

selects the infrared/visible image

with a larger gradient value to achieve the edge gradient:

L
edge

=∥ ▽I𝑓 −𝑚𝑎𝑥 (▽I𝑖𝑟 , ▽I𝑣𝑖𝑠 ) ∥21, (11)

where ▽ is the gradient operator and ∥ · ∥1 is the 𝑙1-norm. Besides,

structural similarity index measure (SSIM) [37] can calculate the

similarity between source images and the fusion image, which is

expressed as follow:

LSSIM =
(
1 − SSIM(I𝑓 , I𝑖𝑟 )

)
+
(
1 − SSIM(I𝑓 , I𝑣𝑖𝑠 )

)
. (12)
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With the help of the above loss function, the pixel and structural

level information can be fully retained, which makes the fusion and

down-stream results perform well.

4 EXPERIMENTS
In this section, we first introduce the experimental setup, compari-

son approaches and dataset selection. Then, we analyze the fusion,

detection, and segmentation results separately to verify the superi-

ority of our proposed method. Furthermore, ablation experiments

are mentioned to demonstrate the effectiveness of the proposed

modules.

4.1 Experimental Implementation
In the training phase, we choose Adam optimizer to adjust the

training parameters, where the stride and bitch size are set to 8 and

2. The initial learning rate of the network is 1e
−3

with a decay rate

of 2e
−4
. The total epoch is 100. In the loss function, the hyperpa-

rameters 𝛼 and 𝛽 are set to 10 and 0.5, respectively. The selection

of training datasets is presented in Section. 4.2. All experiments are

implemented on an NVIDIA GeForce 3070Ti GPU with PyTorch

framework.

4.2 Dataset Selection and Comparison
Approaches

The TNO [35], M
3
FD [18] and MFNet [3] datasets contain plenty of

infrared and visible image pairs. Moreover, the M
3
FD and MFNet

datasets also have image pairs that have been labeled for detection

and segmentation. Before training, we combine 15 TNO pairs, 150

M
3
FD pairs and 1083 MFNet pairs as the training set of our IGNet.

The testing set consists of 10 TNO pairs, 150 M
3
FD pairs, and 361

MFNet pairs. Note that the division of the TNO and M
3
FD datasets

is random, the MFNet dataset is based on [34].

We select seven state-of-the-art methods including DIDFuse [47],

U2Fusion [40], SDNet [42], TarDAL [18], UMFusion [36], DeFusion

[17] and ReCoNet [7], to compare with our proposed IGNet in

qualitative and quantitative results. During the fusion task, we apply

six evaluation metrics, 𝑖 .𝑒 ., entropy (EN), visual information fidelity

(VIF) [4], average gradient (AG), correlation coefficient (CC) [29],

the sum of the correlations of differences (SCD) [1] and edge-based

similarity measure (Q
ab/f ) [41], for objective estimation. Larger

values of the above-mentioned metrics mean the image quality

performs better.

In the detection task, 4200 pairs of labeled images are employed

as training, validation, and testing sets in a ratio of 8:1:1. The la-

bels are marked into six categories, 𝑖 .𝑒 ., people, bus, car, motor-

cycle, truck, and lamp. A mainstream detector, YOLOv5 [28], is

conducted for detection. We set the optimizer, learning rate, epoch,

and batch size as SGD optimizer, 1e
−2

, 400, and 8, respectively. The

mAP@.5 is measured for quantitative comparison. Moreover, we

utilize DeepLabV3+ [2] to segment fusion results, which choose the

MFNet dataset as training and testing sets. There are nine labels in

the sets, including background, car, person, bike, curve, car stop,

guardrail, color cone, and bump. The training epoch and bitch size

are set as 300 and 8, while other parameters keep the same as in the

original experiment. The mIoU is selected for objective evaluation.

In summary, we realize fusion images of each comparison approach

to retain down-stream tasks, then analyze their corresponding per-

formance.

4.3 Analysis for Fusion Results
4.3.1 Qualitative Analysis. We depict qualitative results on TNO,

MFNet, and M
3
FD datasets in Fig. 5. Obviously, our results out-

perform other state-of-the-art methods. For instance, targets and

surrounding scenes obscured by smoke can be clearly displayed on

the TNO dataset. In the second illustration, TarDAL and ReCoNet

occur over-exposed regions, while U2Fusion, SDNet and UMFu-

sion remain low-contrast performance. Although DIDFusion can

highlight luminance information (𝑒.𝑔., car lights), its background

abandons many texture details, which is unfriendly to HVS. In ad-

dition, benefiting from the cooperation of GNN, blur artifacts can

be effectively mitigated as shown in the green enlarged patch of

the third row.

4.3.2 Quantitative Analysis. In Table. 1, we enumerate the mean

scores for the six metrics in the three testing sets. From an overall

perspective, the quantitative results of our method stand in the

lead position. Specifically, CC and SCD achieve the highest scores,

which indicates the mutual connection between our fusion images

and source inputs is the tightest. The highest value of Q
ab/f reflects

that the edge contours of targets can be well represented. Moreover,

the higher performance of EN and AG demonstrates that a large

amount of information is preserved in our fusion results. Since our

approach pays greater emphasis on information delivery, the VIF

value also keeps at a higher level.

4.4 Analysis for Detection Results
4.4.1 Qualitative Analysis. As shown in Fig. 6, the disturbance

of environmental factors causes the detection results of single-

modal images to be generally weaker than those of fusion results.

However, the sensitivity of different fusion results to detection

is also varied. In the first row of examples, SDNet and DeFusion

present significantly low confidence and error detection regions,

which may mislead observers. Moreover, "Truck" is detected as

"Car" in the second set, while missing detection of cars in the corner

also occurs. As a representative, our fusion results contain rich

advanced features, so that the corresponding detection results can

avoid the above phenomena. We can also notice that our detection

results achieve high-confidence scores on all labeled categories.

4.4.2 Quantitative Analysis. Table. 2 exhibits the AP@.5 of each

label and matching total mAP@.5 measured by detection results

of fused images, which can obtain higher indicators than single

infrared or visible images. Under the comparison of fusion methods,

our proposed IGNet performs 2.59% higher than others in detec-

tion. It is worth noting that IGNet can not only achieve excellent

detection results but also take into account the quality of fusion

images.

4.5 Analysis for Segmentation Results
4.5.1 Qualitative Analysis. Visual results of the segmentation on

the MFNet dataset are presented in Fig. 7. Similarly, we also employ

fusion results of each method as the input to obtain segmenta-

tion results. Due to less semantic information contained in images,
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Infrared image Visible image DIDFuse U2Fusion SDNet TarDAL UMFusion DeFusion ReCoNet IGNet

Fig. 5. Visual comparisons of different approaches on TNO, MFNet and M3FD datasets. Our proposed IGNet can achieve notable
targets and fine background details. The enlarged red and green circles are detailed patches of fusion results.

Table 1
Quantitative comparisons of our IGNet with seven state-of-the-art methods on TNO, MFNet and M

3
FD datasets. Optimal and

suboptimal results are bolded in red and blue, respectively.

Dataset:TNO Dataset:MFNet Dataset:M3FDMethod
EN VIF AG CC SCD Q

ab/f EN VIF AG CC SCD Q
ab/f EN VIF AG CC SCD Q

ab/f

DIDFuse 7.066 0.738 5.150 0.503 1.726 0.413 2.695 0.277 2.005 0.526 1.007 0.176 7.108 0.879 5.663 0.558 1.666 0.482

U2Fusion 6.844 0.663 5.062 0.242 1.739 0.444 4.612 0.503 2.899 0.627 1.262 0.364 7.090 0.831 5.546 0.569 1.753 0.524

SDNet 6.682 0.661 5.059 0.501 1.562 0.450 5.428 0.474 3.054 0.642 1.111 0.410 7.013 0.729 5.514 0.500 1.544 0.525
TarDAL 7.163 0.800 4.789 0.484 1.670 0.412 6.478 0.699 3.140 0.628 1.526 0.420 7.126 0.812 4.140 0.510 1.450 0.407

UMFusion 6.699 0.673 3.710 0.516 1.677 0.409 5.761 0.488 2.442 0.597 1.077 0.299 6.881 0.771 3.420 0.546 1.618 0.470

DeFusion 6.724 0.712 2.996 0.493 1.592 0.325 5.950 0.759 2.855 0.589 1.339 0.471 6.634 0.740 3.027 0.513 1.366 0.412

ReCoNet 6.682 0.728 3.674 0.481 1.732 0.340 3.894 0.544 3.105 0.544 1.190 0.365 6.740 0.867 4.557 0.515 1.495 0.499

IGNet 7.099 0.764 5.247 0.521 1.756 0.459 6.124 0.762 3.290 0.655 1.562 0.485 7.140 0.882 5.615 0.575 1.762 0.539

Infrared image Visible image DIDFuse U2Fusion SDNet TarDAL UMFusion DeFusion ReCoNet IGNet

Fig. 6. Detection visual comparisons of different fusion images on M3FD dataset. Our proposed IGNet can generate high-
confidence detection results with visually appealing performance. The red, green, and yellow regions represent error, missing,
and low-confidence detection, respectively. The blue areas denote our outstanding details.

DIDFuse, U2Fusion, SDNet, and ReCoNet appear some missing seg-

mentation areas in the first sample. In addition to the segmentation

results of IGNet, the "Color cone" in the second example cannot

be accurately segmented. It is appropriate to mention that our pro-

posed method can exploit cross-modality interaction features to

efficiently segment the contours of labeled objects.

4.5.2 Quantitative Analysis. Table. 3 depicts the segmentation quan-

titative metric IoU for different categories, which presents IGNet

outperforms other fusion methods in the segmentation task. Com-

pared with the second-ranked method, our method improves mIoU

in the ratio of 4.87%. For some infrared-sensitiveness labels, 𝑒.𝑔.,

person, higher scores indicated that our method can more easily

highlight thermal targets. Due to the high fidelity of fused images,

the IoU of some visually appealing labels, 𝑒.𝑔., car and bike, still

keeps high performance. Note that the proposed IGNet can also gen-

erate vivid fusion images while achieving accurate segmentation

results.

4.6 Ablation Experiments
4.6.1 Study on Modules. The proposed SSM and GIM play a key

role in improving the fusion effect. It is obvious that fusion results

perform poorly in luminance without SSM as shown in Fig. 8. Also,

the cross-modality features of infrared and visible branches can not
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Background Car Person Bike Curve Car stop Guardrail Color cone Bump
Ground Truth DIDFuse U2Fusion SDNet TarDAL

DeFusionUMFusion ReCoNet IGNet

Ground Truth DIDFuse U2Fusion SDNet TarDAL

DeFusionUMFusion ReCoNet IGNet

Fig. 7. Segmentation visual comparisons of different fusion images on MFNet dataset. Our proposed IGNet can get the most
accurate segmentation results compared to the ground truth. The red and green regions represent the error and missing
segmentation, respectively.

Table 2
Detection qantitative comparisons of our IGNet with

seven state-of-the-art methods on M
3
FD dataset. Optimal

and suboptimal results are bolded in red and blue,

respectively.

AP@.5Method
People Bus Car Motor Truck Lamp

mAP@.5

Infrared 0.807 0.782 0.888 0.640 0.652 0.703 0.745

Visible 0.708 0.780 0.911 0.702 0.697 0.865 0.777

DIDFuse 0.800 0.798 0.924 0.681 0.692 0.843 0.790

U2Fusion 0.793 0.785 0.916 0.663 0.710 0.872 0.789

SDNet 0.790 0.811 0.920 0.670 0.689 0.838 0.786

TarDAL 0.817 0.815 0.948 0.696 0.687 0.873 0.806
UMFusion 0.790 0.783 0.920 0.728 0.691 0.847 0.793

DeFusion 0.805 0.827 0.921 0.689 0.714 0.876 0.805

ReCoNet 0.792 0.784 0.915 0.693 0.698 0.873 0.792

IGNet 0.816 0.824 0.928 0.730 0.721 0.869 0.815

interact with each other without the decoration of the GIM, which

causes the low contrast and halo artifacts of images. Furthermore,

Fig. 9 reports the results of down-stream tasks. Due to the abundant

semantic information extracted by the proposed module, the full

modal can simultaneously obtain high-confidence detection and

accurate segmentation results. The quantitative comparisons are

depicted in Table. 4. It is not difficult to prove that the utilization

of our proposed modules can bridge fusion and downstream tasks

with a mutually beneficial situation.

4.6.2 Study on Leader Node. In order to avoid intermediate feature

loss, we use leader nodes to guide the information delivery. Without

the help of leader nodes, fused images often appear distorting in

color. Meanwhile, somewrong regions may emerge in detection and

segmentation results. In contrast, IGNet makes full use of feature

maps delivered by the leader nodes inside graphs, enabling semantic

information to be revealed in fused images. Fig. 10 performs the

superiority of our proposed method on two different datasets.

4.6.3 Study on Parameters of Graph. We select one, three and five

nodes to conduct each graph structure, aiming at verifying how

the number of nodes N influence results. Except for the number of

nodes, other parameters remain unchanged. It can be seen from

Table 3
Segmentation qantitative comparisons of our IGNet with

seven state-of-the-art methods on MFNet dataset. Optimal

and suboptimal results are bolded in red and blue,

respectively.

IoUMethod
Bac Car Per Bik Cur C S Gua C C Bum

mIoU

Infrared 0.821 0.663 0.592 0.513 0.347 0.398 0.422 0.414 0.479 0.516

Visible 0.899 0.774 0.482 0.586 0.372 0.517 0.451 0.432 0.506 0.558

DIDFuse 0.971 0.790 0.582 0.599 0.358 0.526 0.619 0.442 0.557 0.604

U2Fusion 0.974 0.817 0.631 0.625 0.408 0.523 0.520 0.448 0.593 0.615
SDNet 0.973 0.782 0.614 0.618 0.361 0.500 0.527 0.425 0.527 0.591

TarDAL 0.970 0.795 0.563 0.591 0.342 0.497 0.553 0.425 0.538 0.586

UMFusion 0.972 0.787 0.607 0.616 0.364 0.493 0.479 0.447 0.485 0.583

DeFusion 0.975 0.820 0.609 0.623 0.401 0.488 0.482 0.471 0.548 0.601

ReCoNet 0.973 0.813 0.598 0.610 0.413 0.519 0.544 0.476 0.552 0.610

IGNet 0.976 0.838 0.639 0.667 0.435 0.532 0.626 0.511 0.586 0.645

Source images w/o w/o Ours

Fig. 8. Visual ablation comparisons of the SSM (S) and GIM
(G) about fusion. The enlarged red and green circles are de-
tailed patches of fusion results.

Table. 5 that when there is only a single node in a graph, the quan-

titative indicators perform undesirably. As the number increases to

five, its performance is almost indistinguishable from our results (N

= 3). However, the operating efficiency of the network will decrease

with N rising. Considering this issue, we employ three nodes in

each graph, which can balance the quality of images and inference

speed. Similarly, the number of loop L are preset to three for a

trade-off.
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Table 4
Quantitative ablation results of modules on two different datasets. Optimal and suboptimal results are bolded in red and

blue, respectively.

Dataset:M3FD Dataset:MFNetModel S G
EN VIF AG CC SCD Q

ab/f mAP@.5 EN VIF AG CC SCD Q
ab/f MIoU

M1 7.052 0.873 5.608 0.570 1.699 0.504 0.801 6.045 0.751 3.187 0.633 1.549 0.470 0.624
M2 7.009 0.735 5.536 0.507 1.574 0.515 0.791 5.443 0.498 3.091 0.642 1.551 0.426 0.587

M3 7.140 0.882 5.615 0.575 1.762 0.539 0.815 6.124 0.762 3.290 0.655 1.562 0.485 0.645

w/o w/o OursSource images

Missing segmentation Missing segmentation

Fig. 9. Visual ablation comparisons of the SSM (S) and
GIM (G) about down-stream tasks. The detailed regions are
marked.

Table 5
Quantitative ablation results about the number of nodes

(N) and loops(L) in the graph. Optimal and suboptimal

results are bolded in red and blue, respectively.

Model N L EN VIF AG CC SCD Q
ab/f

M1 1 3 6.032 0.751 3.289 0.647 1.553 0.480

M2 3 3 6.124 0.762 3.290 0.655 1.562 0.485
M3 5 3 6.125 0.762 3.289 0.657 1.563 0.485

M1 3 1 6.111 0.744 3.277 0.641 1.559 0.476

M2 3 3 6.124 0.762 3.290 0.655 1.562 0.485
M3 3 5 6.124 0.764 0.291 0.655 1.564 0.487

5 CONCLUSION
In this paper, an interactive cross-modality framework based on

graph neural network was proposed for infrared and visible image

fusion. We presented a graph interaction module to learn mutual

features from different branches, which can emphasize outstanding

textures in source images. Aiming at preventing information from

missing, the leader nodes were proposed to guide the feature prop-

agation between adjacent graphs. In addition, abundant semantic

information was also extracted by our proposed method, thus we

could achieve well-performance detection and segmentation results.

Extensive experiments proved our method is advanced in IVIF and

down-stream tasks.

In the future, we tend to bridge multi-modality fusion, target

detection, and image segmentation in a unified framework. In other

words, it is worth further exploiting how to generate a fusion image

that can also perform well in detection and segmentation tasks.

Source images Infrared Visible w/o Ours

Fig. 10. Visual ablation comparisons of the leader nodes (g∗
𝑖
)

about fusion, detection and segmentation. With the help of
leader nodes, the image details and down-stream results can
perform more vividly and accurately. The enlarged red and
green boxes are detailed patches of corresponding results.
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