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ABSTRACT
Relying on large-scale training data with pixel-level labels, previous
edge detection methods have achieved high performance. However,
it is hard to manually label edges accurately, especially for large
datasets, and thus the datasets inevitably contain noisy labels. This
label-noise issue has been studied extensively for classification,
while still remaining under-explored for edge detection. To address
the label-noise issue for edge detection, this paper proposes to learn
Pixel-level Noise Transitions to model the label-corruption process.
To achieve it, we develop a novel Pixel-wise Shift Learning (PSL)
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module to estimate the transition from clean to noisy labels as a
displacement field. Exploiting the estimated noise transitions, our
model, named PNT-Edge, is able to fit the prediction to clean labels.
In addition, a local edge density regularization term is devised to ex-
ploit local structure information for better transition learning. This
term encourages learning large shifts for the edges with complex
local structures. Experiments on SBD and Cityscapes demonstrate
the effectiveness of our method in relieving the impact of label noise.
Codes will be available at github.com/DREAMXFAR/PNT-Edge.
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1 INTRODUCTION
Edges can provide useful cues like object shapes and boundaries
for high-level vision tasks including semantic segmentation [7], im-
age generation [16], etc. Current methods like [19, 26, 30, 39] have
shown remarkable capability in detecting edges, but they rely on
large-scale pixel-level annotated training samples. However, obtain-
ing high-quality edge annotations is challenging in real-life scenes.
For example, benchmark datasets such as BSDS500 [2], SBD [11],
and Cityscapes [8] contain different levels of label noise, i.e., mis-
aligned edge annotations, as shown in Fig. 1(a). This issue causes
an under-explored challenge in the edge detection community.

In Fig. 1(c), we calculate pixel-wise shifts between noisy and
clean edge labels by minimum-distance matching on an almost
clean subset of SBD provided by SEAL [37]. Noisy labels shifting
more than 2 pixels are visually perceptive, occupying over 15%.
The imprecise localization of edge pixels, i.e., noisy labels would
cause negative impacts on edge detector learning. For example, as
shown in Fig. 1(b), we can observe CASENet-S trained with noisy
labels produces more blurred edges than SEALwith corrected labels.
Therefore, it is necessary to develop an effective learning strategy
for training robust edge detectors with noisy labels.

To our knowledge, few works focus on label noise in edge de-
tection. The seminal attempt is SEAL and following it STEAL [1]
was proposed. To address the label noise, both methods decouple
each training step into two stages: 1) edge alignment and label cor-
rection, and 2) model training with corrected labels. They achieve
edge alignment via solving min-cost graph assignments or level
set evolution as an additional optimization step. Better alignment
with real edges leads to higher performance. In comparison, this
paper considers this label-noise issue from another perspective.
For edge detection, label noise mainly results from the trade-off
between label quality and efficiency. Therefore, the misaligned noisy
labels are not far away from the real edges. Based on this fact, we
wonder whether we can implicitly learn clean labels by modeling
label corruption. In fact, learning noise transitions has been proven
to be an effective way for label-noise learning in classification [10].
Previous works [10, 18] show that when noise transition is given,
the model trained on noisy samples converges to the optimal one
trained on clean samples with increasing sample size. This paper
explores learning noise transitions at pixel level for edge detection.

To arrive at it, we propose PNT-Edge towards robust edge
detection with noisy labels through learning Pixel-level Noise
Transitions. This transition function describes the label corrup-
tion process, i.e., noise transitions. And we achieve it by developing
a novel Pixel-wise Shift Learning (PSL) module, which estimates the
displacement field of noisy labels via a differentiable STN [13] struc-
ture. Since clean labels are unavailable, it is hard to identify noise
transitions merely through noisy labels [10]. A common solution is
exploiting prior knowledge like “instances of similar appearance
probably have similar transitions" [6] to help learn noise transition
functions. Since labeling complex edge structures are much harder,
such edges tend to contain more label noise as Fig. 3 shows. Con-
sidering this fact, we design a local edge density regularization to

(c)

(a)

BSDS500 SBD

CASENet-S

(b)

SEALCASENet-SSEAL

Figure 1: (a) Examples of noisy edge labels. Red for noisy la-
bels, and green for clean. BSDS500 only provides noisy labels.
(b) Illustration of the impact of label noise. CASENet-S pro-
duces more blurred edges than SEAL, especially on detailed
structures. (c) Distribution of noisy-label shifts on SBD.

constrain the structure of the pixel-level noise transitions. Our aim
is to encourage large shifts on latent clean edges with complicated
local structures. Taking advantage of the designed PSL and the local
edge density regularization, our PNT-Edge is able to fit the clean
labels implicitly and thus yield thinner and more precise edge maps.

Experiments prove the effectiveness of PNT-Edge, which im-
proves the ODS-F by 2.4% and mAP by 4.7% of the baseline on the
re-annotated SBD test set with almost clean labels. We also surpass
SEAL ODS-F by 1.3% and mAP by 1.6% on SBD. While Cityscapes
contains low-level label noise, our method also achieves competi-
tive ODS-F and better mAP compared with existing methods, i.e.,
0.1% higher ODS-F and 4.3% higher mAP than SEAL. The proposed
PNT-Edge can produce visually more precise edge maps than other
methods. Our main contributions are summarized as follows:

• We propose a PNT-Edge model to train robust edge de-
tectors with noisy labels by modeling the process of label
corruption, i.e., pixel-level noise transition functions.

• We develop a novel PSL module to learn pixel-level noise
transitions as a displacement field. And we design a local
edge density regularization via prior knowledge to guide the
estimation of noise transitions.

• Our PNT-Edge outperforms the SEAL by 1.3% ODS-F and
1.6% mAP on SBD. It also obtains competitive ODS-F and
4.3% higher mAP on Cityscapes than SEAL. Experiments on
SBD and Cityscapes validate that our method can relieve the
impact of label noise and produce more precise edges.

2 RELATEDWORKS
Learning with Noisy Labels. Since collecting clean labels for large

datasets is expensive, label-noise learning is proposed to train ro-
bust models with label noise, especially for classification. Existing
methods are generally divided into two categories: (1) Statistically-
inconsistent methods employ heuristics like memorization effect [3]
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Figure 2: The architecture of PNT-Edge for edge detection with label noise. It contains an edge detector for edge detection and a
PSL module for learning pixel-level noise transitions. We first train edge detector with noisy labels 𝑌 . Then PSL learns 𝜙 for
modeling label corruption and adapts prediction 𝑌 to ˆ̄𝑌 . Through training edge detector with PSL, 𝑌 would finally approximate
clean labels. Details refer to Sec. 3.2. Note that only the edge detector is required for producing the final edge maps.

to extract reliable examples [14, 22], correct noisy labels [34] or
design noise-robust loss functions [25]. (2) Statistically-consistent
methods are proven to approximate the optimal classifiers trained
on clean data [25] if given enough data. But the key challenge for
statistically-consistent methods is how to estimate noise transition
matrices [33] accurately. Though estimating instance-independent
transition matrices has been well-studied under assumptions like
anchor points [18], real-life label noise is instance-dependent and
more challenging to identify. Recent works like [6, 32] incorpo-
rated prior knowledge and designed regularization to help identify
instance-dependent noise transitions.

Segmentation with Noisy Labels. Semantic Segmentation also
suffers from label noise, especially in semi-supervised learning and
medical scenarios. Inspired by the success of label-noise learning in
classification, researchers took similar heuristics such as proposing
robust loss functions [28] or algorithms for noisy label detection
and correction [23, 27]. Specifically, suchmethods assumed adjacent
pixels with similar features share the same label and captured local
relationships by dense-CRF [15], random walk [4], etc. For instance,
Yi et al. [35] proposed a graph-based framework to correct noisy
labels. Recently, ADELE [17] verified the memorization effect for
segmentation and proposed a strategy to detect the memorization
of each category for label correction.

Edge detection, commonly treated as a segmentation task, is
vulnerable to noisy labels because of fine edge structures. Prior
methods [9] considered label noise during evaluation by setting a
tolerance for matching edges. Later, to deal with multi-annotator
bias, RDS [21] proposed to relax labels with Canny [5], and RCF [20]
designed an annotator-robust loss. Yang et al. [31] refined noisy
edges by dense-CRF as pre-processing but it was sensitive to back-
ground textures. SEAL [37] first employed a probabilistic model to
align noisy labels via min-cost graph assignment and simultane-
ously trained the detector on refined labels. Similarly, STEAL [1]
utilized a level-set formulation to reason about real edges during
training. From a different perspective from SEAL and STEAL, we
handle noisy labels by estimating the transitions of noisy labels,
so the edge detector can learn real edges implicitly. Thus, we can
train robust edge detectors with noisy labels efficiently, without
additional individual discrete optimization steps.

3 METHODOLOGY
3.1 Problem Setup
Following SEAL, this paper focuses on semantic edge detection with
𝐶 categories, which is commonly treated as a multi-label semantic
segmentation task [36]. Let (𝑋,𝑌 ) ∈ X × Y denote an example
drawing from the ideal dataset with clean labels, where the image
𝑋 = (𝑥𝑖 𝑗 ·) ∈ 𝑅𝐻×𝑊 ×3 and the ground-truth 𝑌 = {𝑌𝑘 = (𝑦𝑘

𝑖 𝑗
) ∈

𝑅𝐻×𝑊 |𝑘 = 1, 2, · · · ,𝐶}, 𝑦𝑘
𝑖 𝑗

∈ {0, 1}. Supposing the probabilities of
different categories are independent following [1, 19, 37], the goal
of semantic edge detection formulates as:

max
𝜃

𝑃 (𝑌 |𝑋 ;𝜃 ) = max
𝜃

∏
𝐶

𝑃 (𝑌𝑘 |𝑋 ;𝜃 ), (1)

where 𝑌 and 𝑌𝑘 denote the network predictions, and 𝜃 is the pa-
rameter of the semantic edge detector.

However, in real-life scenarios, we can only access a noisy ob-
servation 𝑌 of the ideal clean label 𝑌 . Therefore, if we train the
network with 𝑌 , the detector would eventually fit the noisy poste-
rior. To separate the clean posterior 𝑃 (𝑌𝑘 |𝑋 ), we rewrite Eq. 1 as
conditional probability as follows,

max
𝜃

𝑃 ( ˆ̄𝑌 |𝑋 ;𝜃 ) = max
𝜃1,𝜃2

∏
𝐶

𝑃 ( ˆ̄𝑌𝑘 |𝑌𝑘 , 𝑋 ;𝜃1)𝑃 (𝑌𝑘 |𝑋 ;𝜃2), (2)

where ˆ̄𝑌 and ˆ̄𝑌𝑘 denote the prediction of noisy labels, and 𝜃1, 𝜃2
are model parameters. According to Eq. 2, if we can estimate the
noise transition function 𝑃 ( ˆ̄𝑌𝑘 |𝑌𝑘 , 𝑋 ), the clean posterior can be
inferred from the noise transition and the noisy posterior. Thus, it
is possible to train robust edge detectors implicitly by exploring
noise transitions. For label-noise learning in classification, the noise
transition matrix between different semantic categories has been
widely discussed [10]. Here, for studying pixel-level label noise, we
define a pixel-level transition function by the displacement field𝜙 =

(Δ𝐼 ,Δ𝐽 ) ∈ 𝑅𝐻×𝑊 ×2 for learning pixel-wise shifts of noisy labels in
edge detection, where Δ𝐼 = {Δ𝑖}𝐻×𝑊 ,Δ𝐽 = {Δ 𝑗}𝐻×𝑊 represent
the pixel-wise shifts of noisy labels along the horizontal and vertical
direction, respectively. Here 𝜙 is defined in Euler coordinates [24].
The relationship between clean and noisy labels formulates as:

𝑌𝑘 (𝑖, 𝑗) = 𝑌𝑘 (𝑖 + Δ𝑖, 𝑗 + Δ 𝑗) . (3)
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Therefore, the key challenge is how to accurately estimate the
displacement field𝜙 . Ideally, if both real and noisy labels are accessi-
ble, we can identify the displacement field 𝜙 by minimum-distance
matching approximately. Because noisy edge labels would not move
too far from real edge pixels. However, under the label-noise setting,
clean edges are unknown. Fortunately, considering noisy labels only
occupy a small part of the dataset, existing works have provided
useful methods for extracting confident examples, i.e., probably
clean examples, through heuristics like the memorization effect [3].
Therefore, we first check the memorization effect for edge detectors.
Similar to ADELE [17], we select the warm-up model with rapid
increments of metrics on the training set and extract confident
examples with high confidence [14] (refer to Sec. 4.4). Then we
can approximate the offsets from noisy labels to confident exam-
ples by minimum-distance matching. For the other latent clean
edges, we can infer their offsets based on the continuity of edges
and adjacent confident examples. Moreover, given the fact that
complex edges are much harder to label correctly than those with
simple structures, we design a local edge density regularization to
encourage large shifts on latent clean edges with complicated local
structures, which helps constrain the structure of noise transitions.
The detailed instructions for the PNT-Edge model are as follows.

3.2 PNT-Edge
As shown in Fig. 2, our PNT-Edge model consists of two parts: 1)
An edge detector 𝑓 (·) for detecting edges or semantic edges; 2) A
PSL module 𝑔(·) for estimating pixel-level noise transitions.

Edge Detector. While recent works [12, 39] have set new SOTA
for semantic edge detection, we employ CASENet [36] as our se-
mantic edge detector 𝑓 (𝑋 ;𝜃 ) following SEAL for fair comparison.
The edge detection process is expressed as:

𝑌 = 𝑓 (𝑋 ;𝜃 ). (4)

Note that CASENet can be replaced by other FCN-based edge
detectors, and our PNT-Edge is edge-detector-agnostic.

Pixel-wise Shift Learning Module. To model label corruption ac-
cording to Eq. 2, PSL module takes the image 𝑋 , confident labels
𝑌𝑆 , and noisy label 𝑌 to estimate the pixel-level transitions of noisy
labels, where 𝑌𝑆 is computed by a confidence threshold 𝜏 as:

𝑌𝑆 = {𝑦𝑠𝑖 𝑗 | 𝑝 (𝑦𝑖 𝑗 ) > 𝜏, 𝑠 = 1, 2, · · · , |𝑆 |}. (5)

The PSL module 𝑔(𝑋,𝑌𝑆 , 𝑌 ;𝜓 ) comprises a localizer and a sam-
pler, where𝜓 denotes model parameters. The localizer is a 4-layer
FCN with shortcuts and outputs displacement field 𝜙 . Then the
sampler transforms original prediction 𝑌 of edge detector to ˆ̄𝑌
according to the field 𝜙 by sampling as:

ˆ̄𝑌 = 𝑆𝑎𝑚𝑝𝑙𝑒𝑟 (𝑌, 𝜙), 𝜙 = 𝑔(𝑋,𝑌𝑆 , 𝑌 ;𝜓 ). (6)

Local Edge Density Regularization. Since the edge-label noise
is class- and instance-dependent, it is hard to identify the noise
transitions without prior knowledge. Generally, complicated edge
structures are harder to label correctly because labeling such edges
is more costly. This indicates such complex edges are prone to label
noise. As a trade-off between label quality and efficiency, noisy
labels are mostly over-smoothed. This is a common phenomenon

Figure 3: Clean and noisy labels, and distribution of noisy-
label shifts and edge complexity measured by local edge den-
sity. Noisy labels show large offsets on complex structures.

among existing datasets. We verify this fact on SBD by calculating
the density of real edges and the magnitude of corresponding shifts.
In Fig. 3, large shifts tend to happen on edges with complicated local
structures, i.e., high local edge density, and vice versa. Therefore,
to help identify pixel-level noise transitions and guide pixel-wise
shift estimation, we utilize this prior knowledge as a structural
constraint on the displacement field 𝜙 . The proposed local edge
density regularization term is defined as:

𝐿𝑑𝑛𝑠 (𝐷,𝐶) =
1

𝐻𝑊

∑︁
𝑖, 𝑗

(𝑑𝑖 𝑗 − 𝑐𝑖 𝑗 )2, (7)

where local edge density 𝐶 = {𝑐𝑖 𝑗 }𝐻×𝑊 , 𝑐𝑖 𝑗 =

∑
I(𝑦=1)
𝑁×𝑁 is defined

as the number of edge pixels at an 𝑁 × 𝑁 window centered at
(𝑖, 𝑗). Since clean labels are unavailable, we estimate the local edge

density with Canny [5]. 𝐷 = {𝑑𝑖 𝑗 }𝐻×𝑊 , 𝑑𝑖 𝑗 =

√
(Δ𝑖 )2+(Δ 𝑗 )2

𝑑𝑚𝑎𝑥
is the

normalized offsets measured by Euler distance, where 𝑑𝑚𝑎𝑥 is the
maximum offset of each image. Notice that Eq. 7 does not strictly
force 𝑑𝑖 𝑗 = 𝑐𝑖 𝑗 , but encourages learning large shifts on latent clean
edges with complicated edge structure and vice versa.

Training Strategy. The whole training pipeline consists of three
steps. First, we train the edge detector with noisy labels and select
the warm-up model by observing learning curves similar to [17].
Second, we extract reliable examples with high confidence and
train the PSL module to estimate the displacement field of noisy
labels for modeling label corruption. Third, we append the PSL
module to the edge detector for joint training. As expressed in
Eq. 2, since PSL bridges the latent clean labels and noisy labels by
the estimated pixel-level transitions, if the noise transitions are
estimated accurately, the edge detector 𝑓 (𝑋 ;𝜃 ) would eventually
fit clean labels. The training pipeline also refers to our Appendix.

To train the whole model effectively, carefully designed loss
functions are essential. In general, we put constraints on the original
edge prediction 𝑌 , displacement field 𝜙 and transformed output
ˆ̄𝑌 , abbreviated as 𝐿𝑦 , 𝐿𝜙 and 𝐿𝑦 in Fig. 2. In detail, for warm-up
training, since SEAL has validated that unweighted loss could bring
thinner edge maps and better performance, we employ a multi-label
loss without class-balance weight to train CASENet, commonly
denoted as CASENet-S, which is computed as:

𝐿𝑒𝑑𝑔𝑒 (𝑌,𝑌 ) =
∑︁
𝑘

∑︁
𝑖, 𝑗

−𝑦𝑘𝑖 𝑗 𝑙𝑜𝑔(𝑦
𝑘
𝑖 𝑗 ) − (1 − 𝑦𝑘𝑖 𝑗 )𝑙𝑜𝑔(1 − 𝑦𝑘𝑖 𝑗 ). (8)
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෡ഥ𝒀ഥ𝒀
𝝓 = (∆𝑰, ∆𝑱)

𝑎 𝑏

𝑐 𝑑

𝑎´ 𝑏´

𝑐´ 𝑑´

𝝓−𝟏: 𝑎，𝑎´→

𝑐，𝑏´→

𝑐´→ 𝑎，

𝑑´→ 𝑐，

𝑏，𝑑 are unmatched.

Figure 4: Illustration of unmatched pixels and 𝜙−1 in Eq.14.

For training the PSL module, we employ three kinds of losses.
First, we directly employ the mean squared error to supervise the
shifts on confident examples as follows,

𝐿𝑠𝑢𝑝 (𝜙𝑆 , 𝜙∗𝑆 ) =
1
|𝑆 |

∑︁
𝑆

(𝜙 (𝑦𝑠 ) − 𝜙∗ (𝑦𝑠 ))2, (9)

where the ground-truth shifts𝜙∗
𝑆
are produced byminimum-distance

matching between confident labels and noisy labels. Second, since
the ideal displacement field would produce 𝑌 after transformation,
we employ a similarity constraint on ˆ̄𝑌 . We empirically find that
MSE loss works better than CE in predicting the displacement field,
and the similarity loss is formulated as:

𝐿𝑠𝑖𝑚 ( ˆ̄𝑌,𝑌 ) = 1
𝐻𝑊

∑︁
𝑖, 𝑗

( ˆ̄𝑦𝑖 𝑗 − 𝑦𝑖 𝑗 )2 . (10)

Third, given both clean and noisy edge labels are continuous, the
displacement field should be smooth as well. This property helps
to infer pixel-wise shifts of edges around confident ones. So, we
regularize the field with an L2-loss to encourage smoothness as,

𝐿𝑠𝑚𝑡ℎ (𝜙) = | |∇(Δ𝐼 ) | |2 + ||∇(Δ𝐽 ) | |2 . (11)

To help identify the noise transition function, our local edge
density regularization is added and implemented as Eq. 7. When
conducting experiments, we find the proposed 𝐿𝑑𝑛𝑠 also regularizes
the smoothness of the displacement field. Details refer to Sec. 4.6.
Therefore, the overall loss for PSL training is formulated as follows,
where {𝛼𝑖 }4

𝑖=1 are loss weights.

𝐿𝑃𝑆𝐿 = 𝛼1𝐿𝑠𝑢𝑝 + 𝛼2𝐿𝑠𝑖𝑚 + 𝛼3𝐿𝑠𝑚𝑡ℎ + 𝛼4𝐿𝑑𝑛𝑠 . (12)

For the joint training of edge detector and PSL, we first intuitively
supervise the final output ˆ̄𝑌 by the noisy label 𝑌 as follows,

𝐿𝑒𝑑𝑔𝑒 ( ˆ̄𝑌,𝑌 ) =
∑︁
𝑘

∑︁
𝑖, 𝑗

−𝑦𝑘𝑖 𝑗 𝑙𝑜𝑔( ˆ̄𝑦𝑘𝑖 𝑗 ) − (1 − 𝑦𝑘𝑖 𝑗 )𝑙𝑜𝑔(1 − ˆ̄𝑦𝑘𝑖 𝑗 ) . (13)

Additionally, we force the predictions of unmatched pixels to be
zero. Because 𝜙 is defined as a many-to-one mapping, there exist
unmatched pixels in the output 𝑌 as illustrated in Fig.4. If only the
final output ˆ̄𝑌 is supervised, the predictions of such unmatched
pixels will be uncontrolled, which is undesirable. Experimental
evidence refers to Sec. 4.6. The unmatched loss is computed as:

𝐿𝑢𝑚 =
∑︁
𝑘

∑︁
(𝑖, 𝑗 )∉𝜙−1

−𝑙𝑜𝑔(1 − 𝑦𝑘𝑖 𝑗 ), (14)

where 𝜙−1 denotes the generalized inverse of 𝜙 . Thus, the overall
loss for joint training is as follows:

𝐿𝑗𝑜𝑖𝑛𝑡 = 𝛽1𝐿𝑒𝑑𝑔𝑒 + 𝛽2𝐿𝑢𝑚, (15)

where {𝛽𝑖 }2
𝑖=1 are weights. Since both losses are equally important,

we empirically set 𝛽1 = 𝛽2 = 1 for simplicity.

3.3 Discussion
In this part, we further analyze our work by making comparisons
with some previous related works.

First, our method differs from label-noise learning for classifica-
tion [10], where statistically-consistent methods [25] proposes to
estimate the noise transitions between categories. In comparison,
aiming at edge detection with label noise, this paper explores noise
transition functions at pixel level through the displacement field.
We also incorporate prior knowledge of edge-label noise and design
a regularization term for learning noise transitions better.

Second, it is worth noting that our method varies from current
works on addressing label noise in segmentation. These methods at-
tempt to alleviate the issue through early stopping [17], prediction
consistency [23], modeling local affinity by GAT [35], low-level
cues [27], etc. Such methods rely on the affinity between boundary
and interior pixels for label correction, but it is unavailable in edge
detection. Moreover, noise transition is rarely explored in segmen-
tation. This paper aims to implicitly learn clean labels by modeling
noisy label corruption, rather than label refinements.

Third, learning pixel offsets is often exploited to refine predic-
tions. For example, SharpContour [40] proposed a contour-based
model to improve boundary quality for instance segmentation as
post-processing. Recent E2EC [38] proposed a global contour defor-
mation module and a multi-direction alignment scheme to optimize
boundaries for contour-based instance segmentation. DELSE [29]
predicted pixel motions and deformed the contour by curve evolu-
tion for interactive object segmentation. Different from these efforts,
we attempt to implicitly learn robust edge detectors by employing
pixel offsets as transitions between clean and noisy labels.

4 EXPERIMENTS
4.1 Datasets

Semantic Boundary Dataset (SBD). It contains 11,355 images from
the PASCAL VOC 2011 trainval set with category- and instance-
level semantic edges of 20 classes. There are 8,498 images for train-
ing and 2,857 images for testing. SEAL provided a re-annotated
sub-test set of 1,059 images with almost clean labels for evaluation.
We randomly sample 1,000 images from the training set and 50%
of the sub-test set for validation. Here we only focus on instance-
sensitive edges following SEAL and STEAL.

Cityscapes. It contains 2,975 road images for training, 500 for
validation, and 1,525 for testing. SEAL provided edge labels. We test
on the validation set following SEAL. Since Cityscapes is annotated
by experts, it contains much less label noise than SBD. Consid-
ering that Cityscapes does not provide clean labels, we evaluate
performance on noisy labels with relaxed criteria following SEAL.

4.2 Evaluation Metrics
We employ the same metrics as SEAL and test on clean labels. We
report maximum F-measure at optimal dataset scale (ODS-F) and
mAP, and set the matching tolerance to 0.0075 (≈4 pixels) for SBD
and 0.0035 (≈8 pixels) for Cityscapes. Following SEAL, we employ
two settings: 1) “Thin" for matching the thinned prediction with
ground truth, and 2) “Raw" for matching the raw prediction with
ground truth. Our method does not employ NMS post-processing.
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Setting Metric Method aero bike bird boat bottle bus car cat chair cow table dog horse mbike person plant sheep sofa train tv AVG.

Thin

ODS-F

CASENet 0.743 0.597 0.732 0.478 0.668 0.787 0.673 0.760 0.475 0.696 0.361 0.756 0.726 0.613 0.746 0.425 0.715 0.487 0.716 0.552 0.635
CASENet-S 0.759 0.663 0.755 0.519 0.664 0.798 0.710 0.788 0.501 0.698 0.397 0.772 0.746 0.649 0.769 0.471 0.727 0.515 0.727 0.573 0.658

SEAL 0.781 0.659 0.767 0.524 0.684 0.800 0.706 0.796 0.500 0.726 0.414 0.782 0.750 0.655 0.784 0.492 0.730 0.522 0.739 0.582 0.669
STEAL† 0.790 0.658 0.773 0.546 0.686 0.815 0.711 0.784 0.523 0.737 0.428 0.792 0.764 0.668 0.782 0.491 0.752 0.500 0.749 0.594 0.677
Ours 0.787 0.680 0.770 0.547 0.697 0.813 0.714 0.786 0.503 0.750 0.436 0.779 0.757 0.666 0.784 0.518 0.784 0.516 0.748 0.608 0.682

mAP

CASENet 0.537 0.444 0.479 0.309 0.489 0.596 0.523 0.629 0.360 0.494 0.253 0.591 0.498 0.423 0.599 0.272 0.531 0.409 0.490 0.374 0.465
CASENet-S 0.677 0.519 0.690 0.406 0.627 0.735 0.636 0.753 0.409 0.606 0.304 0.722 0.654 0.558 0.730 0.332 0.630 0.449 0.671 0.484 0.580

SEAL 0.733 0.568 0.720 0.426 0.661 0.754 0.661 0.781 0.420 0.659 0.334 0.757 0.689 0.575 0.764 0.376 0.675 0.468 0.692 0.513 0.611
STEAL† 0.747 0.595 0.742 0.436 0.658 0.775 0.677 0.774 0.428 0.707 0.315 0.775 0.750 0.607 0.773 0.381 0.701 0.389 0.714 0.503 0.622
Ours 0.750 0.619 0.728 0.440 0.673 0.761 0.665 0.771 0.412 0.699 0.334 0.753 0.725 0.606 0.781 0.429 0.714 0.434 0.699 0.541 0.627

Raw

ODS-F

CASENet 0.657 0.514 0.649 0.429 0.572 0.682 0.582 0.659 0.453 0.597 0.329 0.640 0.657 0.524 0.654 0.408 0.650 0.428 0.613 0.477 0.559
CASENet-S 0.689 0.557 0.709 0.473 0.619 0.715 0.647 0.712 0.480 0.648 0.372 0.691 0.688 0.581 0.702 0.442 0.687 0.461 0.657 0.525 0.603

SEAL 0.753 0.605 0.752 0.512 0.654 0.761 0.679 0.760 0.497 0.694 0.399 0.747 0.728 0.621 0.741 0.482 0.723 0.492 0.705 0.566 0.644
STEAL† 0.709 0.559 0.716 0.476 0.616 0.726 0.646 0.702 0.475 0.674 0.373 0.706 0.694 0.591 0.692 0.443 0.691 0.426 0.677 0.535 0.606
Ours 0.766 0.660 0.767 0.543 0.673 0.776 0.696 0.766 0.505 0.734 0.423 0.758 0.751 0.644 0.771 0.517 0.781 0.493 0.717 0.598 0.667

mAP

CASENet 0.668 0.509 0.596 0.346 0.510 0.675 0.563 0.680 0.416 0.547 0.263 0.657 0.668 0.480 0.701 0.348 0.618 0.390 0.615 0.423 0.534
CASENet-S 0.755 0.575 0.750 0.455 0.625 0.755 0.662 0.762 0.456 0.657 0.309 0.738 0.730 0.598 0.763 0.391 0.701 0.420 0.700 0.504 0.615

SEAL 0.810 0.634 0.792 0.496 0.668 0.794 0.699 0.810 0.472 0.705 0.344 0.797 0.766 0.633 0.803 0.449 0.736 0.452 0.739 0.539 0.657
STEAL† 0.756 0.559 0.749 0.432 0.619 0.751 0.653 0.746 0.419 0.677 0.287 0.744 0.736 0.592 0.740 0.382 0.695 0.354 0.710 0.493 0.605
Ours 0.790 0.662 0.774 0.492 0.664 0.784 0.688 0.797 0.434 0.727 0.335 0.775 0.762 0.634 0.801 0.477 0.769 0.414 0.736 0.555 0.653

Table 1: Comparisons with previous SOTA methods on the re-annotated SBD test set. “AVG.” and † denote category-averaged
performance and using NMS for post-processing, respectively.

4.3 Implementation Details
Following SEAL, we crop images by 472 × 472 for training and
employ scaling and random flipping. We initialize CASENet with
pre-trained parameters provided by SEAL and randomly initialize
PSL module. For warm-up training, we employ a learning rate 5e-
8/2.5e-8 and train 30 epochs for SBD/Cityscapes with batch size 8
and learning rate decay. For training PSL, we set the learning rate
as 1e-6 and freeze CASENet. We train PSL module for 10 epochs
and decay the learning rate by 0.1 every 10𝑘 . For joint training,
we initialize CASENet with warm-up parameters and freeze PSL
module. Then we change the learning rate to 1e-9 and train for
another 10 epochs while keeping other settings the same. For hyper-
parameters, we empirically set 𝜏 = 0.1, 𝛼1 = 0.01, 𝛼2 = 1, 𝛼3 =

0, 𝛼4 = 3 according to Sec. 4.6. All experiments are conducted on
NVIDIA GeForce RTX 3090 using PyTorch.

4.4 Memorization Effect in Edge Detection
We first revisit memorization effect in edge detection. Since clean
training samples are required for evaluation, we divide the re-
annotated SBD test set into 847/212 images for train/test and train
CASENet-S with noisy labels. Fig. 5 reports the performance on
noisy and clean labels. While metrics on noisy labels keep increas-
ing, metrics on clean labels only increase at early stages. It verifies
detectors first fit clean labels and then memorize noisy labels.

Moreover, we notice a rapid increment of ODS-F and mAP on
noisy labels at about 20 epochs when metrics on clean labels are

Figure 5: Evaluation protocols on the sub-test of SBD that
validate the memorization effect in edge detection.

saturated. According to ADELE [17], we select the warm-up model
with the rapid increment of metrics on the training set. We further
check the performance of models at around 20 epochs and find they
perform well on clean labels, which validates the rationality of this
strategy. For Cityscapes without clean labels, we employ the same
setting and select models around 20 epochs as our warm-up model
which also performs well on the test set.

4.5 Comparison with previous SOTA Methods
We compare our method with CASENet, SEAL, and STEAL on SBD
and Cityscapes. The baseline is CASENet-S, i.e., CASENet with the
class-unweighted loss. Note that SEAL, STEAL, and our method
are all built on CASENet-S with the ResNet-101 backbone. Our
PNT-Edge model does not employ NMS for post-processing, as we
only observe very slight improvements in our experiments. More
discussions about the impact of NMS can be found in our Appendix.

Performance on SBD. The performance on re-annotated test set
is reported in Tab. 1. Our method achieves the highest ODS-F under
both settings, surpassing the baseline by 2.4% and 4.7%. It also
outperforms SEAL ODS-F by 1.3% and mAP by 1.6% under “Thin”
setting. Under “Raw” setting, our method obtains 2.3% higher ODS-
F but lower mAP than SEAL (0.653 v.s. 0.657). Since SEAL generates
thicker edges than ours as shown in Fig. 6, it causes better recall but
worse precision. Moreover, our method obtains competitive results
with STEAL which employs NMS for post-processing. Qualitative
results in Fig. 6 further validate the effectiveness of our method.
Fig. 8 visualizes predicted noise transitions, i.e., displacement fields.

Performance on Cityscapes. Following SEAL, we test on original
labels that contain low-level label noise. The results are listed in
Tab. 2. Under “Thin” setting, our method obtains competitive per-
formance on ODS-F compared with the baseline and previous SOTA
approaches because of little label noise on the Cityscapes. But we
notice that PNT-Edge surpasses the baseline mAP enormously by
4.7%. This is because our method can fit ground truth better with
few blurs as visualized in Fig. 7. Moreover, our method achieves the
best performance on both ODS-F and mAP under “Raw” setting,
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Image Orig.Anno. Re.Anno. CASENet-S SEAL STEAL Ours

Figure 6: Example results on SBD. Our method generates more precise edge maps with clear details.

Setting Metric Method road sidewalk building wall fence pole t-light t-sign veg terrain sky person rider car truck bus train motor bike AVG.

Thin

ODS-F

CASENet 0.862 0.748 0.748 0.482 0.468 0.729 0.703 0.735 0.794 0.567 0.865 0.806 0.666 0.883 0.495 0.672 0.498 0.566 0.718 0.684
CASENet-S 0.876 0.771 0.762 0.492 0.467 0.755 0.715 0.753 0.806 0.597 0.867 0.817 0.683 0.893 0.513 0.688 0.442 0.552 0.726 0.693

SEAL 0.878 0.777 0.763 0.481 0.468 0.756 0.713 0.754 0.810 0.602 0.873 0.819 0.690 0.891 0.508 0.690 0.450 0.540 0.727 0.695
STEAL† 0.879 0.777 0.773 0.494 0.491 0.790 0.746 0.764 0.821 0.597 0.881 0.808 0.701 0.836 0.519 0.675 0.531 0.557 0.742 0.704
Ours 0.878 0.775 0.766 0.494 0.473 0.787 0.734 0.756 0.810 0.591 0.866 0.820 0.705 0.887 0.482 0.680 0.433 0.552 0.741 0.696

mAP

CASENet 0.542 0.640 0.661 0.393 0.372 0.580 0.606 0.680 0.693 0.477 0.737 0.697 0.583 0.672 0.406 0.550 0.387 0.492 0.603 0.567
CASENet-S 0.894 0.757 0.736 0.438 0.390 0.665 0.672 0.745 0.774 0.541 0.822 0.785 0.619 0.884 0.449 0.688 0.360 0.485 0.675 0.651

SEAL 0.772 0.762 0.759 0.433 0.401 0.657 0.684 0.762 0.788 0.565 0.824 0.809 0.639 0.859 0.459 0.688 0.384 0.488 0.705 0.655
STEAL† 0.907 0.800 0.801 0.409 0.413 0.800 0.755 0.778 0.848 0.569 0.900 0.835 0.687 0.831 0.436 0.660 0.457 0.511 0.757 0.692
Ours 0.905 0.800 0.796 0.432 0.419 0.794 0.749 0.782 0.842 0.578 0.880 0.859 0.705 0.920 0.445 0.690 0.373 0.525 0.774 0.698

Raw

ODS-F

CASENet 0.641 0.585 0.664 0.311 0.325 0.712 0.621 0.645 0.708 0.438 0.782 0.722 0.565 0.753 0.328 0.471 0.281 0.431 0.609 0.558
CASENet-S 0.774 0.692 0.704 0.358 0.351 0.740 0.654 0.680 0.747 0.512 0.804 0.759 0.596 0.829 0.358 0.528 0.293 0.424 0.643 0.602

SEAL 0.822 0.717 0.728 0.356 0.353 0.762 0.665 0.694 0.773 0.538 0.830 0.777 0.620 0.850 0.367 0.544 0.308 0.424 0.662 0.620
STEAL† 0.758 0.685 0.699 0.349 0.361 0.734 0.668 0.677 0.735 0.497 0.787 0.729 0.591 0.765 0.353 0.528 0.377 0.438 0.638 0.598
Ours 0.807 0.730 0.763 0.367 0.373 0.785 0.701 0.727 0.804 0.524 0.837 0.805 0.657 0.866 0.347 0.542 0.288 0.449 0.714 0.636

mAP

CASENet 0.479 0.568 0.684 0.228 0.236 0.741 0.624 0.653 0.744 0.380 0.797 0.766 0.565 0.721 0.215 0.364 0.202 0.382 0.647 0.526
CASENet-S 0.819 0.732 0.755 0.287 0.254 0.798 0.686 0.716 0.810 0.489 0.813 0.816 0.598 0.893 0.255 0.499 0.185 0.367 0.698 0.604

SEAL 0.780 0.740 0.777 0.277 0.256 0.796 0.686 0.732 0.834 0.508 0.825 0.828 0.621 0.888 0.257 0.507 0.195 0.356 0.717 0.609
STEAL† 0.811 0.728 0.750 0.263 0.263 0.791 0.693 0.719 0.799 0.472 0.804 0.788 0.581 0.811 0.244 0.490 0.278 0.377 0.683 0.597
Ours 0.818 0.745 0.793 0.258 0.271 0.817 0.708 0.752 0.846 0.477 0.830 0.837 0.645 0.911 0.254 0.492 0.187 0.373 0.755 0.619

Table 2: Comparisons with previous SOTA methods on Cityscapes. “AVG.” and † denote category-averaged performance and
using NMS for post-processing, respectively.

Image GT CASENet-S SEAL STEAL Ours

Figure 7: Example results on Cityscapes. Our method obtains much thinner and more accurate edge maps than other methods.

which proves PNT-Edge can produce precise edge maps even with-
out post-processing. Our method performs best under even stricter
criteria as delivered in Sec. 4.7.

4.6 Ablation Study
We validate the impact of hyper-parameters and training strategies
on SBD. We conduct experiments on the original validation set (Val-
noisy) with noisy labels and a 50% random sampled re-annotated
test set (Val-clean) with clean labels. The baseline is CASENet-S.

Impact of confident threshold 𝜏 and loss weight 𝛼4 for 𝐿𝑑𝑛𝑠 . To
analyze the effect of confident-sample extraction and local edge

density regularization, we experiment with different settings of 𝜏
and 𝛼4 and report in Tab. 3. For one thing, a lower 𝜏 leads to higher
ODS-F on both noisy and clean labels, but a too-low 𝜏 degrades
mAP remarkably, especially on clean labels. The reasons are two
folds. First, the confidence of predicted edge maps is relatively
low because of unweighted loss functions. Second, more confident
examples help learn better noise transitions, but too low 𝜏 would
introduce noisy examples and degrade performance. For another,
when 𝛼4 increases, ODS-F increases consistently. However, mAP
improves first and then decreases on Val-noisy and Val-clean. To
make a trade-off between ODS-F and mAP on the clean labels,
we choose 𝜏 = 0.1, 𝛼4 = 3 for experiments, where our method
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𝜏 𝛼4
Val-noisy Val-clean

ODS-F mAP ODS-F mAP
Baseline 0.722 0.710 0.653 0.579

0.01

0.0 0.736 0.719 0.672 0.590
1.0 0.729 0.721 0.669 0.613
2.0 0.729 0.721 0.669 0.612
3.0 0.729 0.720 0.666 0.607
5.0 0.729 0.717 0.659 0.586

0.1

0.0 0.717 0.706 0.652 0.605
1.0 0.718 0.709 0.651 0.607
2.0 0.723 0.717 0.662 0.626
3.0 0.727 0.723 0.666 0.623
5.0 0.727 0.721 0.669 0.621

0.2 0.0 0.691 0.677 0.617 0.560

Table 3: Discussions of confident threshold 𝜏 and loss weight
𝛼4 for 𝐿𝑑𝑛𝑠 . Red indicates the trade-off setting.

Strategy Val-noisy Val-clean
ODS-F mAP ODS-F mAP

Label Correction 0.678 0.653 0.610 0.537
Joint Training 0.717 0.706 0.652 0.605

Table 4: Comparison of different training strategies on SBD.

outperforms the baseline ODS-F by 1.3% and mAP by 4.4%. This
fact verifies the effectiveness of our method. Note that though better
performance on noisy labels indicates probably better performance
on clean labels, it is not always the fact. It is possible to take metrics
on noisy labels for reference only when clean labels are unavailable
and the label noise is at a low level.

Joint Training v.s. Label Correction. To further validate the effec-
tiveness of our method, we compare two kinds of training strategies:
joint training and label correction. The joint training is delineated
in Sec. 3.2. For label correction, we employ 𝜙−1 to refine noisy
labels and then train CASENet-S with refined labels. Referring to
Tab. 4, joint training is proved to be more effective than label cor-
rection. Because PSL module would dynamically adapt noisy labels
through joint training. Besides, generating refined labels for the
whole dataset is time-consuming. As a result, we employ the joint
training strategy in PNT-Edge.

Effect of loss functions. As Tab. 5 shows, all loss functions help
improve the performance on Val-clean and Val-noisy, but smooth
loss 𝐿𝑠𝑚𝑡ℎ shows useless. Because the local edge density regulariza-
tion, which encourages similar displacements on pixels with similar
local edge densities, also works for smooth regularization. Tab. 5
also verifies the effectiveness of the proposed local edge density
regularization term in pixel-level noise-transition identification.
Moreover, the unmatched loss plays an important role in producing
precise edge maps with high mAP.

4.7 Discussions
Noise-transition error analysis. To analyze the error of the pre-

dicted noise transition, i.e., displacement field 𝜙 , we first compare
with the min-distance-matching result on SBD. The error histogram
in Fig. 9(a) reports an average error of 2.71 pixels. It is reasonable
because of the gaps between min-distance-matching results and the
ideal ground-truth transitions. Furthermore, considering that ideal
transitions will produce high-quality predictions of the noisy label

PSL Joint Val-noisy Val-clean
𝐿𝑠𝑢𝑝 𝐿𝑠𝑖𝑚 𝐿𝑠𝑚𝑡ℎ 𝐿𝑑𝑛𝑠 𝐿𝑒𝑑𝑔𝑒 𝐿𝑢𝑚 ODS-F mAP ODS-F mAP
✓ ✓ ✓ 0.679 0.659 0.603 0.538
✓ ✓ ✓ ✓ ✓ 0.716 0.703 0.642 0.586
✓ ✓ ✓ ✓ ✓ 0.726 0.720 0.668 0.627
✓ ✓ ✓ ✓ ✓ 0.717 0.706 0.652 0.605
✓ ✓ ✓ ✓ ✓ 0.723 0.461 0.659 0.369
✓ ✓ ✓ ✓ ✓ ✓ 0.727 0.723 0.666 0.623

Table 5: Effects of loss functions. We are more concerned
about the results on Val-clean since our goal is to predict
clean edges. Red indicates our experiment setting.

Figure 8: (a) SBD examples with both clean(green) and noisy
labels(red). (b) Visualized pixel-level noise transitions.

Figure 9: Error analysis. (a) Error histogram between pre-
dicted transitions with min-distance-matching results. (b)
Comparison of transformed prediction ˆ̄𝑌 and noisy label 𝑌 .

𝑌 , we compare the transformed edge prediction ˆ̄𝑌 with noisy label
𝑌 . The ODS-F of ˆ̄𝑌 achieve 0.790 under “RAW” setting, indicating
the predicted transition 𝜙 models label corruption well as shown
in Fig. 9(b). Visualized displacement fields refer to Fig. 8.

5 CONCLUSION
This paper proposes PNT-Edge to tackle label noise for edge de-
tection via modeling label corruption. To achieve it, we develop a
PSL module to learn pixel-level noise transitions. And a local edge
density regularization is proposed to help estimate such transitions
via prior knowledge. Our method outperforms SEAL ODS-F by 1.3%
and mAP by 1.6% on SBD and obtains competitive ODS-F and 4.3%
higher mAP than SEAL on Cityscapes. The proposed PNT-Edge
proves to be effective in relieving the impact of label noise and
producing more precise edge maps.
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A APPENDIX
A.1 The Overall Pipeline of PNT-Edge
We summarize the overall training pipeline of our PNT-Edge in
Alg.1. It consists of three steps: a) warm-up training of the edge
detector with noisy labels, b) training the PSL module with reliable
examples to model the label corruption of noisy labels, and c) joint
training of the edge detector and PSL with noisy labels.

A.2 More Discussions
Discussion of NMS Post-processing. To validate that PNT-Edge

can generate crisp edge predictions without NMS, we further con-
duct experiments with NMS and report the results in Tab.6. While
STEAL employed NMS, our method outperforms STEAL by 0.5%
ODS-F and 0.5% mAP on SBD under the ‘Thin’ setting without
NMS. Moreover, we find NMS brings limited increments to our
method, which indicates our method directly generates crisp edge
predictions without NMS post-processing. On the other hand, since
NMS helps to relieve the blurred edge predictions caused by label
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Algorithm 1 PNT-Edge for noisy edge labels learning
Input: Noisy training set 𝐷̄ = {𝑋𝑖 , 𝑌𝑖 }𝑁𝑖=1, threshold 𝜏 .
Output: Noise-robust edge detector 𝑓 (𝑋 ;𝜃 ).
1: // Step 1: Warm-up training
2: Train the edge detector on the noisy dataset 𝐷̄ to obtain the

initial detector 𝑓 (𝑋 ;𝜃0) with Eq.8.
3: // Step 2: Train the PSL module
4: for 𝑖 = 1 to 𝑁 do
5: Extract confident labels 𝑌𝑆

𝑖
as Eq.5 with 𝑓 (𝑋 ;𝜃0);

6: Generate field 𝜙 and transformed output ˆ̄𝑌 as Eq.6;
7: Compute the loss as Eq.12;
8: Optimize the parameter𝜓 by SGD;
9: end for
10: return𝜓

11: // Step 3: Train the edge detector with PSL
12: for 𝑛 = 1 to 𝑁 do
13: Generate predictions 𝑌𝑖 , ˆ̄𝑌𝑖 by 𝑓 ◦ 𝑔 as Eq.4 and Eq.6;
14: Compute the loss as Eq.15;
15: Optimize the parameter 𝜃 by SGD;
16: end for
17: return 𝜃

Method ODS-F mAP

STEAL (NMS) 0.677 0.622
Ours (w/o NMS) 0.682 0.627
Ours (NMS) 0.685 0.627

Table 6: Model size and computational complexity for train-
ing. PNT-Edge does not bring additional cost for inference.

Threshold Method ODS-F(%) mAP(%)

0.00175

CASENet 0.420 0.343
CASENet-S 0.457 0.436

SEAL 0.487 0.466
STEAL† 0.444 0.413
Ours 0.526 0.521

0.000875

CASENet 0.372 0.285
CASENet-S 0.404 0.359

SEAL 0.427 0.380
STEAL† 0.396 0.347
Ours 0.453 0.418

Table 7: Performance comparison under stricter criteria on
Cityscapes. Ourmethod achieves the best performance under
stricter criteria, i.e., lower matching threshold.

Method Params(M) FLOPs(G)

CASENet-S 42.44 175.6
Ours 42.60 202.6

Table 8: Model size and computational complexity for train-
ing. PNT-Edge does not bring additional cost for inference.

noise, the results further validate the effectiveness of our method
in relieving the impact of label noise.

Performance under stricter criteria. To illustrate advances of our
method, Tab. 7 compares the performance under stricter criteria
i.e., lower matching threshold as 0.00175(≈ 4 pixels) and 0.000875(≈
2 pixels) with previous approaches on Cityscapes. Our PNT-Edge
achieves SOTA on both settings, surpassing the baseline ODS-F by
6.9% and mAP by 7.5% impressively under a 0.00175 threshold. Un-
der an even stricter threshold of 0.000875, our method also obtains
the best performance. These results prove our method produces
crisp and precise edge maps effectively.

Model size and computational complexity. Since PSL is only an
auxiliary module for tackling label noise via modeling label cor-
ruption during the training process, our method does not bring
additional computation for inference. Tab. 8 compares the model
size and computational complexity with the baseline CASENet-S
for model training. Our PNT-Edge provides an effective training
strategy to tackle noisy edge labels at the cost of negligible 0.16M
more parameters and 15.4% FLOPs additional computation.

B GENERAL EDGE DETECTION
B.1 Apply PNT-Edge to General Edge Detection
In our paper, we mainly focus on semantic edges for a fair compar-
ison with previous works on noisy edges, i.e., SEAL and STEAL.
Since our method is edge-detector-agnostic, it is also easy to apply
our method to general edge detection. Here is an instruction.

(1) Replace the semantic edge detector (i.e., CASENet) with the
general edge detector (i.e., HED and RCF).

(2) Use the general edge detection loss function, i.e., binary
cross-entropy loss, instead of the multi-classification loss.
And no more changes are needed.

(3) Follow the same training procedure as Alg.1, and implement
warm-up training, PSL-module training, and joint-training
of the edge detector with PSL step by step.

B.2 Results on BSDS500
We conduct experiments on BSDS500 to explore the effectiveness
of our PNT-Edge in general edge detection for label noise. Since
BSDS500 does not provide clean labels for test, we empha-
size that the experimental results here, which are calculated
under a matching tolerance with the ground truth, just give
a reference for the performance of our method in detecting
general edges with label noise.

BSDS500 Dataset. BSDS500, which is released by Berkley in 2013,
is the most widely used benchmark for general edge detection. It
contains 200 train images, 100 validate images and 200 test images.
Each image contains 5 to 7 annotations by different annotators. So,
it contains misaligned edge labels and annotator bias. Note that
BSDS500 does not provide clean labels. The train-val set is used for
training. And the data augmentation is the same as HED.
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Method Thin Raw
ODS-F OIS-F mAP ODS-F OIS-F mAP

HED 0.756 0.774 0.665 0.600 0.619 0.601
HED-PNT 0.767 ↑ 0.011 0.786 ↑ 0.012 0.734 ↑ 0.069 0.654 ↑ 0.054 0.665 ↑ 0.046 0.698 ↑ 0.097

RCF 0.765 0.781 0.676 0.627 0.642 0.637
RCF-PNT 0.771 ↑ 0.006 0.787 ↑ 0.007 0.723 ↑ 0.047 0.642 ↑ 0.015 0.651 ↑ 0.009 0.684 ↑ 0.047

Table 9: Performance comparison of our method, i.e., HED-PNT and RCF-PNT, with their baseline models on BSDS500. Our
method brings consistent improvements to the baseline under all settings for the general-edge detection task.

Image GT HED HED-PNT RCF RCF-PNT

Figure 10: Example results of our PNT-Edge model and the baseline on BSDS500. Our method can produce more precise edge
maps for general edge detection by relieving the label noise issue.

Experimental Settings. To verify the effectiveness of relieving the
label-noise impact, we choose two representative methods, HED
and RCF, as our general-edge detectors on BSDS500. We first train
HED and RCF with class-unweighted loss following discussions in
SEAL as baseline. Note that we employ labels from all annotators
for training. For comparison, we follow the instructions in B.1
and employ the proposed PNT-Edge method to learn the label
corruption and finetune the baseline model, i.e., HED and RCF,
to produce label-noise-robust general-edge detectors, denoted as
HED-PNT and RCF-PNT. We randomly crop the image by 512×512
for training. For evaluation, we set the matching tolerance to 0.0075

following HED and report the performance under “Thin” and “Raw”
settings without NMS.

Performance on BSDS500. As reported in Tab. 9, our method
brings consistent improvements to both HED and RCF under all
evaluation settings, especially on mAP. Take HED for example. Our
PNT-Edge improves the ODS-F, OIS-F and mAP by 1.1%, 1.2% and
6.9% respectively under “Thin” setting. It also brings 5.4% ODS-F,
4.6% OIS-F and 9.7% mAP increments under “Raw” setting. These
results further prove that our method can generate more precise
edge maps without NMS by relieving the impact of noisy labels. The
visualization results shown in Fig. 10 also verify the effectiveness of
our method in dealing with label noise for general edge detection.
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