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ABSTRACT
Autonomous obstacle avoidance is of vital importance for an intelli-
gent agent such as a mobile robot to navigate in its environment. Ex-
isting state-of-the-art methods train a spiking neural network (SNN)
with deep reinforcement learning (DRL) to achieve energy-efficient
and fast inference speed in complex/unknown scenes. These meth-
ods typically assume that the environment is static while the ob-
stacles in real-world scenes are often dynamic. The movement of
obstacles increases the complexity of the environment and poses a
great challenge to the existing methods. In this work, we approach
robust dynamic obstacle avoidance twofold. First, we introduce
the neuromorphic vision sensor (i.e., event camera) to provide mo-
tion cues complementary to the traditional Laser depth data for
handling dynamic obstacles. Second, we develop an DRL-based
event-enhanced multimodal spiking actor network (EEM-SAN) that
extracts information from motion events data via unsupervised
representation learning and fuses Laser and event camera data
with learnable thresholding. Experiments demonstrate that our
EEM-SAN outperforms state-of-the-art obstacle avoidance methods
by a significant margin, especially for dynamic obstacle avoidance.

CCS CONCEPTS
•Computingmethodologies→Vision for robotics;Reinforce-
ment learning; Spiking neural networks.
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1 INTRODUCTION
In robotics, obstacle avoidance is a fundamental yet challenging
task of satisfying the control objective subject to non-intersection or
non-collision position constraints. Autonomous obstacle avoidance
is of vital importance for an intelligent agent such as a mobile robot
to navigate in its environment and attracts more and more research
attention in recent years [28, 30, 54, 55] due to the growing need of
practical usages such as post-disaster rescue [40] and subterranean
detection [15]. In order to be able to perform tasks in some high-risk
or inaccessible scenarios instead of humans, the mobile robot needs
to possess strong capabilities of robust and efficient autonomous
navigation and dynamic obstacle avoidance.

A dependable autonomous navigation and obstacle avoidance
algorithm, unlike the path planning method which involves the
pre-computation of an obstacle-free path, needs to be implemented
as a reactive control law and should be energy-efficient due to
the limited computational resources on the mobile robots. As to
the former, deep reinforcement learning (DRL) techniques [27] are
widely used to train an agent to make good obstacle avoidance
decisions in complex/unknown environments [46]. As to the latter,
the biologically realistic spiking neural network (SNN) [4] in which
neurons compute asynchronously and communicate through spikes
is leveraged by existing state-of-the-art methods to achieve low
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Figure 1: Illustration of obstacle avoidance using different sensors: (a) Laser can help detect large static objects but fails to
perceive fast-moving objects; (b) event camera DVS excels to capture moving objects but cannot provide depth information to
avoid large textureless obstacles; and (c) combining Laser and DVS achieves robust obstacle avoidance.

power consumption and low latency obstacle avoidance [1, 6, 43].
With recent advances in deep learning, training SNN with RL for
obstacle avoidance becomes the mainstreammethod in the field and
achieves promising results. However, existing methods typically
assume that the environment is static [2, 33] while in real-world
scenes such as malls and streets, the obstacles (e.g., pedestrians and
vehicles) are not always static but often dynamic. The movement
of obstacles makes the scene become more complex and leads to
a faster relative speed between the agent and the obstacle, which
requires the agent to make decisions and take avoidance actions in
a shorter time, posing a great challenge to the existing methods.

In this work, we strive to embrace challenges toward robust
dynamic obstacle avoidance. We approach this twofold. First,
based on that the neuromorphic event camera called Dynamic Vi-
sion Sensor (DVS) [10, 20] can record a high-frequency stream of
asynchronous brightness change events with extremely low latency
(in the order of 𝜇s) and low power consumption, we for the first
time introduce the two-dimensional DVS event modality into the
SNN-based obstacle avoidance framework to provide motion cues
complementary to the traditional Laser depth data for handling
dynamic obstacles, building an omni perception of scenes, similar
to human stereo vision [24]. Second, we develop an event-enhanced
multimodal spiking actor network (EEM-SAN) that achieves dy-
namic obstacle avoidance in a deep reinforcement learning manner.
EEM-SAN is built on three key modules: (i) a hybrid spiking varia-
tional autoencoder (HSVAE) that extracts information from DVS
event data via unsupervised representation learning; (ii) a popu-
lation coding (PC) module that combines population coding [44]
and Poisson coding [43] to decode information from the activity
of neurons; and (iii) a middle fuse decision module with learnable
thresholding (MFDM-LT) designed for multimodal data fusion.

We perform extensive experiments to demonstrate the efficacy
of our method and show that DVS events provide a powerful and
complementary cue for dynamic obstacle avoidance (Figure 1). In
summary, our contributions are:

• the first solution to solve the challenging dynamic obsta-
cle avoidance problem using a deep-reinforcement-learning-
based spiking neural network with robot state and both Laser
and DVS data as input, action decision as output;

• a novel hybrid spiking variational autoencoder that decou-
ples the representation learning of DVS event data from
the whole reinforcement learning and greatly facilitates the
training process;

• a new middle fuse decision module with learnable thresh-
olding to robustly integrate Laser and DVS data.

2 BACKGROUND AND RELATEDWORK
Leaky Integrate-and-Fire (LIF) spiking neuron model. A spiking

neural network (SNN) is a bio-plausible neural network that sim-
ulates biological information processing: neurons exchange infor-
mation through spikes (or action potentials). Many different math-
ematical spiking neuron models have been developed, spanning
from the simplest Integrate-and-Fire (IF) [32] to sophisticated Spike
Response Model (SRM) [11]. Our approach leverages the Leaky
Integrated-and-Fire (LIF) model [12], a simplified variant of SRM
model. We can define an 𝑛𝑙 -layer feedforward SNN architecture
with LIF neurons. Given 𝑁 𝑙 incoming spike trains at layer 𝑙 , 𝑠𝑙

𝑖
(𝑡),

the SNN forward propagation is mathematically defined as:

𝑣𝑙+1𝑖 (𝑡) =
𝑁 𝑙∑︁
𝑗=1

𝑤𝑖 𝑗𝑠
𝑙
𝑗 (𝑡)+

𝑣𝑙+1𝑖 (𝑡 − 1) 𝑓𝑑
(
𝑠𝑙+1𝑖 (𝑡 − 1)

)
+ 𝑏𝑙+1𝑖 ,

𝑠𝑙+1𝑖 (𝑡) = 𝑓𝑠
(
𝑣𝑙+1𝑖 (𝑡)

)
,

𝑓𝑑 (𝑠 (𝑡)) =
{
𝐷 𝑠 (𝑡) = 0
0 𝑠 (𝑡) = 1

, (1)

where𝑤𝑖 𝑗 is the synaptic weight between the 𝑗-th neuron on the
𝑙-th layer and the 𝑖-th neuron on the layer 𝑙 +1; 𝑏𝑙+1

𝑖
is an adjustable

bias, and 𝐷 is a constant. The operator 𝑓𝑠 (·) is a spike function
defined as:

𝑓𝑠 (𝑣) : 𝑣 → 𝑠, 𝑠 (𝑡) := 𝑠 (𝑡) + 𝛿 (𝑡 − 𝑡 (𝑓 +1) ), (2)

𝑡 𝑓 +1 = min{𝑡 : 𝑣 (𝑡) = Θ, 𝑡 > 𝑡 (𝑓 ) }, (3)

where 𝑠 (𝑡) is a sequence of spikes called a spike train, 𝛿 is a math-
ematical function whose value is zero everywhere except at zero
and whose integral over the entire real line is equal to one, and Θ
is the membrane potential threshold which is static and the same
for all neurons in the network [41].

Dynamic Vision Sensor. DVS is a bio-inspired sensor that reports
per-pixel brightness changes in log scale as a stream of asynchro-
nous events [10, 25]. Compared to conventional frame-based cam-
eras, DVS offers a very high dynamic range (140 dB versus 60 dB)
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and high temporal resolution (in the order of 𝜇s). An event, 𝑒 , en-
codes three pieces of information: the pixel location, (𝑥,𝑦), of an
event, the timestamp, 𝑡 , records the time when the event is trig-
gered, and the polarity, 𝑝 ∈ {−1, 1}, of an event, which reflects the
direction of the changes. Formally, a set of events can be defined as

E = {𝑒𝑘 }𝑁𝑘=1 = {[𝑥𝑘 , 𝑦𝑘 , 𝑡𝑘 , 𝑝𝑘 ]}
𝑁
𝑘=1 . (4)

In constant lighting conditions, events are triggered by moving
edges (e.g., object contour and texture boundaries), making the
DVS a natural edge extractor. However, this attractive feature also
poses a unique challenge since events predominantly stem from
edges, making the measured events inherently sparse. Asynchro-
nous and sparse events cannot be effectively handled by CNN-based
approaches designed for conventional frames.

DVS-based Robot Control. Most robotics applications use tradi-
tional frame-based cameras as their perception devices. However,
frame-based cameras have inherent characteristics such as high data
volume, low temporal resolution, and high latency, which weakens
their ability to perceive fast-moving objects and greatly limit the
robot’s manipulation capabilities. In this context, event cameras
have attracted the attention of scholars in the field of robotics. By
combining event cameras with robot perception and control, a se-
ries of breakthroughs in robot control has emerged, overcoming the
limitations of traditional frame-based cameras. [29] is the first work
to use DVS to avoid high-speed moving objects. To further explore
the advantages of DVS, Falanga et al.[8] conducted experiments on
UAVs equipped with three sensors: monocular, stereo frame-based
cameras, and DVS. The results showed that the DVS (2 ∼ 4 𝑚𝑠)
had significantly lower delay than the monocular (26 ∼ 40𝑚𝑠) and
stereo frame-based cameras (17 ∼ 70𝑚𝑠) when operating within
the perception range of 2𝑚. Sanket et al.[34] used a artificial neural
network (ANN) to segment independent moving objects from event
streams, and reasoned about their 3D motion to perform evasion
tasks. Most of these methods rely on hand-crafted features or priors
(e.g., Kalman filter [29], optical flow [8], and the obstacles [34])
to perform obstacle reasoning and avoidance. Our method differs
from the above works in that we combine DRL and SNN with DVS
to achieve robot control, enabling continuous autonomous robot
navigation and robust yet efficient dynamic obstacle avoidance.

SNNs for Multimodal-Based Sensing. SNNs have not been widely
explored for multimodal-based sensing [52, 53]. A few attempts
have been made to combine image and audio modality. Liu et al.[22]
developed a weighted-sum-based attention scheme to fuse image
and audio modalities. The weights for each modality are dynami-
cally decided. In the same vein, Jia et al.[13] proposed an MR-SNN
algorithm to fuse the same two modalities using a fusion mask. MR-
SNN learns a Motif mask for each modality and generates a fusion
mask by averaging the two learned masks. Instead of learning in
a supervised manner, Rathi et al.[31] proposed an unsupervised
multimodal learning method, which combines the image and audio
modality by learning cross-modal connections enabled by the Spike
Timing Dependent Plasticity (STDP) algorithm. All these methods
assess their effectivenesses with a simple MNIST classification task.
We validate our multimodal-based SNN approach with a more com-
plex practical problem (i.e., obstacle avoidance), under both static
and dynamic conditions.

SNNs for Robot Control. SNNs get substantial attention from the
robot control community due to their high energy efficiency when
deployed on neuromorphic hardware. A thread of work leverages
SNNs for robot obstacle avoidance tasks [23, 33, 43]. Tang et al.[43]
proposed a hybrid framework SDDPG for mapless navigation tasks.
The SDDPG framework consists of an SNN-based actor network
and a CNN-based critic network, where the two networks are co-
trained together. Ding et al.[7] proposed a bio-inspired dynamic
spiking threshold scheme to enhance SDDPG’s homeostasis in
obstacle avoidance tasks under normal and degraded conditions.
Later, Tang et al.[44] extended their approach to continuous control
tasks and proposed the PopSAN method. An essential contribution
introduced by PopSAN is the population-coding scheme, which ef-
fectively addresses the high-dimensional state problem presented in
continuous control tasks. Recently, Zhang et al.[51] combined mul-
tiscale dynamic neurons coding and population coding to improve
the performance of a spiking actor network. A critical difference
between our approach and these methods is that we leverage two
modalities for robot control instead of one.

3 METHODOLOGY
Figure 2(a) illustrates the diagram of our proposed event-enhanced
multimodal spiking actor network (EEM-SAN) that is trained with
reinforcement learning. First, the DVS sensor mounted on the
agent records a high-frequency stream of brightness change events
which is then encoded by a hybrid spiking variational autoencoder
(HSVAE) (Figure 2(b)) into a one-dimensional vector (i.e., DVS State).
Then, the obtained DVS state, together with the robot state and
Laser state, is processed by a population coding (PC) module (Fig-
ure 2(c)) that can decode information from the activity of neurons.
Finally, a middle fuse decision module with learnable thresholding
(MFDM-LT) (Figure 2(d)) is used to fuse multimodal data and out-
put obstacle avoidance decision which will be decoded into actual
control action by Algorithm 1.

3.1 Hybrid Spiking Variational Autoencoder
To exploit useful motion cues embedded in DVS event data, a key
problem is how to effectively and efficiently learn its feature repre-
sentations. Variational Autoencoder (VAE) [18] is a powerful tool
to extract the high-level embeddings of the input data. It typically
consists of an encoder and decoder networks and is trained by:

𝐿𝑜𝑠𝑠 =
1

𝑤 × ℎ

𝑤,ℎ∑︁
𝑖, 𝑗

(𝑥𝑖, 𝑗 − 𝑥𝑖, 𝑗 )2 +
∫

𝑝 (𝑥)𝑙𝑜𝑔𝑝 (𝑥)
𝑞(𝑥) , (5)

where the first item is the mean squared error (MSE) between the
original input image 𝑥 and the reconstruction 𝑥 , and the second
item measures how the latent vector 𝑝 (𝑥) matches a unit Gaussian
𝑞(𝑥) by Kullback-Leibler (KL) divergence. W and h represent the
width and height of the event frame, respectively. VAEs have stable
learning abilities in generative models and can be applied to various
tasks. Recently, a series of works have attempted to use SNNs to
create VAEs and make validation on classification datasets [36,
38, 42]. To take full advantage of the event-based nature of the
continuous DVS stream and its rich temporal features, we design a
novel hybrid spiking variational autoencoder (HSVAE) that contains
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Figure 2: Overview of EEM-SAN (a) and its three main components: (b) a Hybrid Spiking Variational Autoencoder (HSVAE)
module, (c) a Population Coding (PC) module, and (d) a Middle Fuse Decision Module with Learnable Thresholding (MFDM-LT).

an SNN encoder and ANN decoder. The architecture details of
HSVAE are shown in Table 1. Unlike traditional spiking neural
networks that reset the membrane potential, our method records all
SNN-related states during one episode of simulated environment
interaction. We record the current value, membrane potential and
spike value of every neuron during one episode for the complete
backpropagation chain. During deployment, we only need to record
the relevant states at the last moment.We verified that SNNs trained
in this way can integrate more temporal information to make better
decisions. A single SNN layer of our HSVAE is shown in Figure
2(b) where refractory states are omitted for clarity. As illustrated,
a stream of events recorded by the event camera mounted on a
mobile robot is fed into SNN that can encode the spatio-temporal
features of the input data into a latent state 𝑧. In Figure 2(b), 𝑃 is
pre-synaptic potential, 𝐶 is current value and 𝑉 is the membrane
potential of the spiking neuron. The training process of HSVAE is
presented in Algorithm 2.

Table 1: Architecture of our Hybrid Spiking VAE (HSVAE).

Layer Kernel Output Layer Type
input 128×128×1 DVS128
1 16c4p1s2 64×64×16
2 32c4p1s2 32×32×32 SNN LIF Encoder
3 16c4p1s2 16×16×16
4 1c4p1s2 8×8×1
5 - 64 Flatten()
6 - 64 𝜇 = FC(𝑉 𝑡 )
7 - 64 𝜎 = FC(𝑉 𝑡 )
8 - 8×8×1 UnFlatten()
9 16c4p1s2 16×16×16
10 32c4p1s2 32×32×32 ANN Decoder
11 16c4p1s2 64×64×16
12 1c4p1s2 128×128×1 Event Frame
Notation: XcYpZsS represents channel X convolution filters

(YxY) with padding 𝑍 and stride 𝑆 .
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Algorithm 1 Forward propagation through EEM-SAN
Ensure: Left and right wheel speeds 𝑣𝐿 , 𝑣𝑅
Require: Min and max wheel speeds 𝑣𝑚𝑖𝑛 , 𝑣𝑚𝑎𝑥

Require: Robot State, Laser State, Event frame Deque:
𝐷𝐸 = (𝐸1, · · · , 𝐸5)

Require: Learnable encoding means 𝜇𝜇𝜇 and standard deviations 𝜎𝜎𝜎
for all populations

Require: Middle Fuse Module:𝑀𝐹 and total timestep T
DVS state generated by the Spiking Encoder of HSVAE: DVS
State = HSVAE (𝐷𝐸 )
Input Multimodal Observation 𝑂 = [Robot State, Laser State,
DVS State]
Spikes generated by the population coding module:
𝑋𝑋𝑋 = PC (𝑜𝑜𝑜 , 𝜇𝜇𝜇, 𝜎𝜎𝜎)
for 𝑡 = 1, · · · ,𝑇 do

Laser spikes from populations at timestep 𝑡 :
𝑆𝑆𝑆
(𝑡 ) (0)
𝐿

=𝑋𝑋𝑋 (𝑡 ) (𝑂0 · · ·𝑂𝐿 )

DVS spikes from populations at timestep 𝑡 :
𝑆𝑆𝑆
(𝑡 ) (0)
𝐷

=𝑋𝑋𝑋 (𝑡 ) (𝑂𝐷 · · ·𝑂𝑒𝑛𝑑 )

Fuse spikes from Middle Fuse Module:
𝑆𝑆𝑆
(𝑡 ) (0)
𝑀

=𝑀𝐹 (𝑆𝑆𝑆 (𝑡 ) (0)
𝐿

, 𝑆𝑆𝑆
(𝑡 ) (0)
𝐷

)
for 𝑘 = 1, · · · , 𝐾 do

Update LIF neurons in layer 𝐾 at timestep 𝑡 based
on spikes from layer 𝑘-1:
𝑐𝑐𝑐 (𝑡 ) (𝑘 ) = 𝑑𝑐 · 𝑐𝑐𝑐 (𝑡−1) (𝑘 ) +𝑊𝑊𝑊 (𝑘 )𝑠𝑠𝑠 (𝑡 ) (𝑘−1) +𝑏𝑏𝑏 (𝑘 ) ;
𝑣𝑣𝑣 (𝑡 ) (𝑘 ) = 𝑑𝑣 · 𝑣𝑣𝑣 (𝑡−1) (𝑘 ) · (1 − 𝑠𝑠𝑠 (𝑡−1) (𝑘 ) ) + 𝑐𝑐𝑐 (𝑡 ) (𝑘 ) ;
𝑠𝑠𝑠 (𝑡 ) (𝑘 ) = 𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 (𝑣𝑣𝑣 (𝑡 ) (𝑘 ) );

end for
SpikeCount𝑡 = SpikeCount𝑡−1 + 𝑠𝑠𝑠 (𝑡 ) (𝑙 )

end for
Action = SpikeCount(𝑇 )/𝑇
𝑣𝐿 = Action[0] ∗ (𝑣𝑚𝑎𝑥 − 𝑣𝑚𝑖𝑛) + 𝑣𝑚𝑖𝑛

𝑣𝑅 = Action[1] ∗ (𝑣𝑚𝑎𝑥 − 𝑣𝑚𝑖𝑛) + 𝑣𝑚𝑖𝑛

3.2 Population Coding
Neurons in the brain often use population coding and it isn’t easy to
decode correct information from the activity of a single neuron [39].
Hence, some researchers have begun to use populations of neurons
to encode information into spike trains fed into SNNs instead of
simple frequency encoding (e.g., Poisson coding) [44, 51]. To en-
code each dimension of the state, we created a population with 10
neurons, where each neuron has a Gaussian receptive field with
two parameters: mean and standard deviation. These parameters
were learned with surrogate backpropagation. Since SAN adopts
the Poisson encoding, we apply the group encoding method com-
bined with Poisson coding as PopSAN method in our experimental
comparison. For a fair comparison, our method takes the same
population and Poisson coding. Formally, the population coding
function can be formulated as:{

𝐴𝑃𝑖,𝑗 = 𝐸𝑋𝑃 (−1/2 · ((𝑠𝑖 − 𝜇𝑖, 𝑗 )/𝜎𝑖, 𝑗 )
2)

A𝑃 = [𝐴𝑃1,1 , · · · , 𝐴𝑃𝑖,𝑗 , · · · , 𝐴𝑃𝑁,𝐽
]

, (6)

𝑃 (𝑂𝑘,𝑡 = 1) = 𝐶𝑟𝑅𝐴
𝑟
𝑃𝑘
(1 −𝐴𝑃𝑘 )

𝑅−𝑟 , (7)

Algorithm 2 Spiking Neural Network Encoder Training
Initialize the memory 𝐷 to store event frame observations,set
the episode number 𝑇 , set 𝑒_𝑛𝑢𝑚 = 0;
Start the simulation environment;
while 𝑒_𝑛𝑢𝑚 < 𝑇 do

Randomly set the start and goal locations in our training
environment;

while 𝑛𝑜𝑡 𝑐𝑜𝑙𝑙𝑖𝑠𝑖𝑜𝑛 do
Capture the Event frame 𝑋𝑡 ,store 𝑋𝑡 in 𝐷𝑇 ;
Move with the linear and angular velocity ;

end while
end while
for 𝑒𝑝𝑜𝑐ℎ = 1,𝑇 do

Initialize the SNN state 𝐶𝑖 ,𝑉𝑖 , 𝑆𝑖 in every layer;
for 𝑋𝑡 = 1, 𝐷𝑡 do

Update 𝜃0 through on the loss defined in formula (4) and
update SNN state 𝐶𝑖 ,𝑉𝑖 , 𝑆𝑖 through STBP algorithm;

end for
end for

where 𝑖 is the index of the input state (𝑖 = 1, ..., N), 𝑗 is the index
of neurons in a population (j = 1, ..., 𝐽 ), and 𝐴𝑃 is the stimula-
tion strength after population coding, used for drawing the binary
random number [51].

3.3 Middle Fuse Decision Module with
Learnable Thresholding

The middle fuse decision module consists of a middle fuse (MF)
module and a decision module (DM). In MF, two modalities are first
transformed to a one-dimensional vector with a length of 20 by
two fully connected layers composed of LIF neurons, respectively,
and the two obtained one-dimensional vectors are then fused via
the element-wise addition. DM contains four fully connected SNN
layers and its forward propagation process is presented in Algo-
rithm 1. Since the threshold function of SNNs is non-differentiable,
many methods focus on how to learn and tune it [5, 37, 50]. Among
them, the approximate backpropagation method is widely due to its
efficiency and flexibility. Here, we adopt the STBP [47] algorithm
which uses the rectangular function to approximate the gradient of
a spike as follows:

𝑧 (𝑉 ) =
{
1 if |𝑉 −𝑉𝑡ℎ | < 0.5
0 otherwise

, (8)

where 𝑧 is the pseudo-gradient, 𝑉 is membrane potential, and 𝑉𝑡ℎ
is the threshold.

Several dynamic thresholding schemes have been developed
in recent years to make neuronal thresholds learnable and varied
throughout the network. However, most existing methods require
strict prerequisites or are not based on the gradient descent method,
which results in a higher computational load or makes it difficult to
migrate to other SNNs [16, 26]. A few attempts have been made to
integrate with the existing back-propagation-based training algo-
rithms on classification tasks [45, 49]. Following the path, we further
explore the performance of learnable thresholds under multimodal
reinforcement learning tasks. We use the learnable thresholding
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mechanism in our MFDM. This mechanism is endowed with param-
eter optimization capability through STBP. By doing so, all neurons
have different thresholds in the same network. This means the neu-
ron’s response depends not only on its internal state but also on
the threshold level. The key idea of the learnable thresholding is
to find the comprehensive gradient of the loss function, and then
the weight𝑊 and the neuron’s threshold 𝐻 are simultaneously
updated until convergence. From Eq. 1 and 8, the threshold’s partial
derivatives of the loss function can be calculated as follows:

𝜕𝐿

𝜕𝐻𝑛
=

𝑇∑︁
𝑡=1

𝜕𝐿

𝜕𝑠𝑡,𝑛
𝜕𝑠𝑡,𝑛

𝜕𝐻𝑛 . (9)

To ensure that the threshold remains within the appropriate
area, we create a new parameter 𝑟 to define 𝐻 using hyperbolic
tangent relation, formulated as 𝐻 = tanh (𝑟 ). With this, Eq. 9 can
be expressed as:

𝜕𝐿

𝜕𝑟𝑛
=

𝑇∑︁
𝑡=1

𝜕𝐿

𝜕𝑠𝑡,𝑛
𝜕𝑠𝑡,𝑛

𝜕𝐻𝑛

𝜕𝐻𝑛

𝜕𝑟𝑛

= −
𝑇∑︁
𝑡=1

𝜕𝐿

𝜕𝑠𝑡,𝑛
𝑓
′
(𝑣𝑡,𝑛 − 𝑡𝑎𝑛ℎ(𝑟𝑛)) (1 − 𝑡𝑎𝑛ℎ2 (𝑟𝑛)) .

(10)

Improved in this way, the threshold 𝐻 of the neurons can be
iteratively trained using the backpropagation method and will be in
the range (-1, 1). In this context, we apply the learnable thresholding
scheme to MFDM and let neurons in the same layer share the same
threshold to reduce learnable parameters.

4 EXPERIMENTS AND EVALUATION
We evaluate the obstacle avoidance capabilities of the proposed
EEM-SAN using success rate (SR) as a metric. SR is the percentage
of successful passes among 200 trials. A successful pass is a trial in
which a robot can reach the destination without touching any static
or dynamic obstacles within 1000 steps. Our evaluation baseline
model and test environment are modified variants of the SAN [43]
and its original simulated test environment, respectively.

4.1 Experimental Settings
Implementation Details. We integrated the EEM-SAN with the
deep reinforcement learning algorithm DDPG [21]. We repeated
each experiment three times to obtain the mean success rate. The
frequency of the Laser sensor and DVS are set to 20 Hz and 100 Hz,
respectively. The timestep of MFDM-LT is set as 5. The number of
groups in the population coding is set as 10. The neuron current
decay constant and the voltage decay constant are set as 0.5 and
0.75, respectively. During the training process, we set the batch size
to 256 and the learning rate to 0.0001.
Simulator Setup. Our experiments are based on the Gazebo sim-
ulator [19]. Both the training and testing use the robot operating
system (ROS) as a middleware. The testing environment was set to
be different from the training environment for better validating the
generalization capability of a method. Following existing methods
SAN [43], PopSAN [44], and BDETT [7], we developed and tested
our method in the same environment and with the same random
seeds. Our testing environments are set to be very challenging to

better validate the robustness of an obstacle avoidance method.
The challenges of our testing environments are in the following
aspects: (i) densely and highly dynamic obstacles (eleven dy-
namic obstacles, all set to higher than the maximum speed of the
robot); (ii) faster robot speed (the maximum speed of the robot
is twice that in SAN); and (iii) narrower traversal passages and
more densely organized static obstacles. We have experimen-
tally demonstrated in Table 2 that the existing SOTA method SAN
[43] has a significant accuracy drop (i.e., from 97.8% to 58.0%) when
transferred from common scenes to our challenging scenes. More
details about training and testing environment can be found in
Appendix and SAN [43].

4.2 Evaluation
We extensively compare the effectiveness of our proposed EEM-
SAN to three state-of-the-art methods including SAN [43], PopSAN
[44], and BDETT [7] across two different test maps [7, 43] under
both dynamic and static conditions. The experimental results are
reported in Table 2 and Figure 3.

Dynamic Conditions. To ensure the diversity and challenge of the
scene, we set up eleven dynamic obstacles that reciprocate linearly
along different trajectories at different speeds, and the speed of all
moving obstacles is set to slightly higher than the maximum speed
of the robot. From the results in Table 2, we can see that our EEM-
SAN outperforms all competing methods by a significant margin.
For example, compared with the state-of-the-art method BDETT
[7], our method improves 𝑆𝑅 by 10.8% and 11.8% on the two testing
maps, respectively. This clearly demonstrates the effectiveness of
our method for dynamic obstacle avoidance.

Static Conditions. Although our method was originally designed
for dynamic obstacle avoidance, we also tested its performance in
static conditions to see its robustness. From Table 2, we observe
that: (1) our method still performs the best among all the compared
methods for static obstacle avoidance; (2) when varying the max-
imum robot speed from 1.0 m/s to 0.5 m/s, all the methods get
significant performance improvement. This is because a robot with
a slow-moving speed has more time to make a decision and take
action, which greatly decreases the difficulty of obstacle avoidance.
Under such a condition, our method achieves very robust avoid-
ance, i.e., the success rate 𝑆𝑅 is up to 1.000; (3) compared to SAN
[43], the PopSAN [44] which is based on SAN [43] but equipped
with population coding method instead of frequency coding per-
forms better, especially for the robot with a maximum speed of
1.0 m/s. This indicates that the population coding method is more
suitable for handling rapidly changing scenes than the frequency
coding method; and (4) by comparing the results of BDETT [7]
and PopSAN [44], the obvious performance improvement can be
found under dynamic conditions but not under static conditions.
This reveals that the dynamic thresholding scheme developed in
BDETT [7] benefits much from the dynamic scenes but little from
static conditions. By contrast, our method can significantly improve
obstacle avoidance performance in both dynamic and static con-
ditions. Furthermore, Figure 3 visualizes an example that clearly
shows that the existing methods often fail around the right-angle
turn while our method can achieve robust obstacle avoidance.
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(a) SAN

success failuresuccess failure

(a) SAN

success failure

(b) PopSAN

success failure

(b) PopSAN

success failure

(c) BDETT

success failure

(c) BDETT

success failure

(d) Ours

success failure

(d) Ours

success failure

Figure 3: Success and failure trajectories of the four methods at the same 200 randomly sampled start and goal locations. The
blue dot represents the starting point, the red dot represents the target point, and the green dot represents the overtime case.

Table 2: Quantitative performance of obstacle avoidance in
both dynamic and static conditions on two different maps.

Methods

Dynamic Conditions Static Conditions

Max Robot Speed
1.0 m/s

Max Robot Speed
1.0 m/s

Max Robot Speed
0.5 m/s

Map 1 SR↑ / Map 2 SR↑ Map 1 SR↑ / Map 2 SR↑ Map 1 SR↑ / Map 2 SR↑

SAN 0.580 / 0.577 0.645 / 0.560 0.978 / 0.966

PopSAN 0.598 / 0.618 0.805 / 0.718 0.983 / 0.973

BDETT 0.657 / 0.625 0.735 / 0.728 0.975 / 0.923

Ours 0.7650.7650.765 / 0.7430.7430.743 0.8700.8700.870 / 0.8480.8480.848 1.0001.0001.000 / 0.9850.9850.985

Table 3: Quantitative ablation results indicate that each com-
ponent in EEM-SAN contributes to the overall performance.

Laser Only Laser + DVS Event SR ↑
PopSAN E2E HSVAE MFDM-LT

(a)
√

0.598
(b)

√ √
0.705

(c)
√ √

0.728
(d)

√ √ √
0.7650.7650.765

4.3 Ablation Study
To analyze our EEM-SAN, we investigate (a) the importance of DVS
event cues; (b) the effectiveness of HSVAE; (c) the effectiveness of
MFDM-LT; and (d) the efficiency advantage of SNN over ANN.
Table 3, 4, 5, and Figure 4, 5 summarize our findings.

Importance of DVS Event Cues. We conduct an experiment to bet-
ter understand the benefit of including DVS event cues for dynamic
obstacle avoidance. Based on the baseline method PopSAN [44]
(Table 3 (a)), we introduce the DVS event modality and implement
an end-to-end (E2E) framework with naive modality fusion (i.e.,
addition). The 𝑆𝑅 of (b) is much higher (i.e., 10.7%) than that of (a),
indicating DVS event is a strong cue for robust dynamic obstacle
avoidance.

Effectiveness of HSVAE. Based on “E2E” (Table 3 (b)), adopting
our proposed HSVAE (Table 3 (c)) improves the 𝑆𝑅 from 0.705 to
0.728. This demonstrates that our HSVAE can better extract infor-
mation from DVS events frame for the decision making in obstacle
avoidance. Furthermore, our HSVAE can be trained independently
in advance and can be embedded in EEM-SAN with fixed weights
during the reinforcement learning process. Without the need of
saving/updating intermediate states like the DVS information ex-
traction encoder in “E2E”, our HSVAE can help save lots of GPU

Table 4: Performance comparison between different DVS
information encoding methods.

Methods AVAE FSVAE HSVAE (ours)

SR↑ 0.677 0.673 0.7280.7280.728

Table 5: Comparison of the average amount of computation
required to infer single state to action during one episode.

Architecture Computational Complexity
HSVAE MFDM-LT Addition Multiplication

(i) SNN SNN 1.33 × 1071.33 × 1071.33 × 107 0.52 × 1070.52 × 1070.52 × 107

(ii) ANN SNN 5.87 × 107 5.78 × 107

(iii) SNN ANN 1.63 × 107 0.85 × 107

(iv) ANN ANN 6.16 × 107 6.11 × 107

memory consumption and speed up the reinforcement learning
process. Our HSVAE consists of an SNN encoder equipped with
temporal information integration and an ANN decoder. It accommo-
dates SNNs and ANNs in different layers, enabling the benefits of
SNNs for sparse event data processing and ANNs for maintaining
performance. The reason for using a hybrid architecture is that
the spike activities decrease significantly as the network depth
increases and the ANN decoder does not need to run during deploy-
ment. The experimental results in Table 4 show that our HSVAE
performs better than its ANN counterpart (AVAE) and the Fully
Spiking Variational Autoencoder (FSVAE) [14] whose encoder can
not integrate temporal spikes information. This demonstrates that
(i) the SNN encoder is more suitable for DVS information extraction
than the ANN encoder; (ii) the temporal information integration is
needed in the SNN encoder for the continuous obstacle avoidance
decision; and (iii) the ANN decoder yields better results than the
SNN decoder.

Effectiveness of MFDM-LT. Based on Table 3 (c), replacing the
naive addition modality fusion with our designed MFDM-LT (Ta-
ble 3 (d)) can greatly enhance the performance. To explore how
the MFDM-LT works, we visualize the learned threshold values
of different layers in the MFDM-LT module under different initial
training threshold settings in Figure 4. We can see that the learned
thresholds of Laser and DVS layers are not equal. This shows that
the Laser and DVS modalities contribute differently to the obstacle
avoidance action. Besides, the learned threshold of DVS layer is
higher than that of Laser layer for all the initial training threshold
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Figure 4: Comparison between learned thresholds in different MFDM-LT layers under different initial training thresholds.

settings. The reason behind this may be (i) the DVS modality gen-
erates larger amount of data and thus a higher threshold is needed
to filter out the useless spikes and (ii) lower threshold in Laser
layer enables more depth information to pass through to dominate
the action decision at the startup phase of the robot when lots of
DVS events noise would be generated to interfere with decision
making. Another interesting finding is that the threshold values
in the decision layers increase as the network goes deeper. This
phenomenon can be explained as the modality-fused data can fire
neurons in shallow layers easily to maintain sufficient information
which would be filtered by deep-layer neurons strictly to extract
most informative data for the final action decision. Furthermore,
we fix the learnable thresholds in MFDM-LT during the training
process (Figure 5 MFDM) and find that the performance degrades
dramatically. And this can be a strong evidence to demonstrate the
effectiveness of the learnable threshold scheme in our MFDM-LT.

S
R

0.5

0.7

0.6

0.3 0.70.4 0.5 0.6

Initial Threshold

MFDMMFDM

MFDM-LTMFDM-LT

Figure 5: Performance comparison between MFDM variants
with andwithout learnable threshold scheme under different
initial training thresholds settings.

Efficiency Advantage of SNN over ANN. Both HSVAE and MFDM-
LT modules in our EEM-SAN are implemented by SNN, but not
ANN. To show the advantage of such a choice, we compare the su-
perior computational efficiency of our fully-SNN-based EEM-SAN
against its ANN variants in terms of addition and multiplication
FLOPs in Table 5. We can observe that, compared with the fully-
SNN-based architecture (Table 5 (i)), much more computations
are required when adopting ANN-based HSVAE (ii), ANN-based
MFDM-LT (iii), or fully-ANN-based network (iv). For example, the
ANN version of EEM-SAN (iv) is 4.63 and 11.66 times more ex-
pensive than the SNN version (i) in terms of addition and mul-
tiplication operations, respectively. Prior works [14, 17, 48] have

demonstrated that the computing complexity of the network is
positively correlated with inference speed and energy consump-
tion, especially when the network is implemented in neuromorphic
device [3, 35, 43]. Therefore, our fully-SNN-based EEM-SAN can
achieve much faster inference with much lower energy consump-
tion than its ANN counterpart.

4.4 Limitations
In this work, we make the first attempt to connect multi-sensor rep-
resentation and fully-SNN-based DRL towards robust and efficient
robot control in extreme navigation scenarios with both static and
fast-moving dynamic obstacles. Testing our method on different
robot platforms (e.g., unmanned aerial vehicles) with more real
challenging scenes (e.g., subterranean) would be a promising future
work but out of focus of this work. Besides, our EEM-SAN has only
been tested in a realistic simulator and has not been implemented
on a real robot due to the unavailability of neuromorphic hardware.
To conduct such an engineering verification, we are actively seek-
ing permission from the Intel Neuromorphic Research Community
(INRC) to use the neuromorphic chip Loihi. We will perform such
an interesting verification once the hardware becomes available.

5 CONCLUSION
In this paper, we presented an event-enhanced multimodal spiking
actor network (EEM-SAN) for autonomous navigation and depend-
able obstacle avoidance. Our solution is the first to introduce the
Dynamic Vision Sensor (DVS) to provide motion cues that com-
plement the traditional Laser depth data for handling dynamic
obstacles. EEM-SAN consists of two main modules: a hybrid spik-
ing variational autoencoder (HSVAE) which encodes the DVS event
data through unsupervised representation learning, and a middle
fuse decision module with learnable thresholding (MFDM-LT) de-
signed for multimodal data fusion. Through extensive validation
and ablation studies, we demonstrate the value of DVS event cues,
as well as the effectiveness and robustness of our EEM-SAN. In the
future, we plan to deploy our method on neuromorphic devices to
maximize its advantages in terms of computational efficiency and
energy consumption.
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In the appendix, we first present more evaluation results under
both dynamic and static conditions in Section A, and then detail
more experimental settings in Section B.

A MORE EVALUATION RESULTS
Figure 6 visualizes an example which clearly shows that the existing
methods fail more times while our method can achieve robust
obstacle avoidance in the dynamic condition. The comparison under
the static condition is shown in Figure 7 from which we can observe
that our method still performs more robustly than the existing
methods.

B MORE EXPERIMENTAL SETTINGS
Implementation Details. The robot utilizes a Robo Peak LIght

Detection And Ranging (RPLIDAR) system as its sensing device
to detect obstacles, offering a field of view of 180 degrees with 18
range measurements. Each topic subscribed from gazebo contains
18-dimensional Laser data and 5 frames (128 × 128) of DVS data
that are continuous in time. The event frame is generated from the
DVS events stream through Algorithm 3. EEM-SAN was trained
in conjunction with a deep critic network. More implementation
details and hyperparameter configurations for our EEM-SAN were
shown in Table 6.

Algorithm 3 Converting events steam into event frame

Require: a stream of event (𝑒𝑡 = (𝑡, 𝑥,𝑦, 𝑝)),𝑡𝑛 ,𝑊 ,𝐻
Initialize 𝑠𝑛 ← 𝑂𝐻,𝑊

Extract a subset of events 𝐸 ← {𝑒𝛾 |𝑡𝑛−1 ≤ 𝛾 ≤ 𝑡𝑛}
Initialize 𝑠_𝑞𝑢𝑒𝑢𝑒 = (5, 𝑑𝑛)
while event stream not stop do

for 𝑒𝑡 ∈ 𝐸 do
𝑡, 𝑥,𝑦, 𝑝 ← 𝑒𝑡
𝑠_𝑛(𝑥,𝑦) ← |𝑝 |
𝑠_𝑞𝑢𝑒𝑢𝑒.𝑎𝑝𝑝𝑒𝑛𝑑 (𝑠𝑛)
𝑠_𝑞𝑢𝑒𝑢𝑒.𝑝𝑜𝑝𝑙𝑒 𝑓 𝑡 ()

end for
end while

Table 6: Hyperparameter configurations.

Parameters Values

Neurons per hidden layer for critic net 512,512,512
Actor learning rate 1e-4
Critic learning rate 1e-4

Reward discount factor 0.99
Maximum length of replay buffer 1e5

(a) SAN (b) PopSAN

(c) BDETT (d) Ours

success failuresuccess failure success failure

success failure success failure

Figure 6: Success and failure trajectories of the four methods
at the same 200 randomly sampled start and goal locations
in dynamic condition. The blue dot represents the starting
point, the red dot represents the target point, and the green
dot represents the overtime case.

(a) SAN

(c) BDETT (d) Ours

success failuresuccess failure success failure

success failure
(b) PopSAN

success failure

Figure 7: Success and failure trajectories of the four methods
at the same 200 randomly sampled start and goal locations
in static condition. The blue dot represents the starting point,
the red dot represents the target point, and the green dot
represents the overtime case.

Simulator Setup. During our training phase, we utilized the same
form of curriculum training method as in SAN [43], which has been
proven to result in better generalization and faster convergence [9].
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For our evaluation phase, we assessed our method in the Gazebo
simulator [19] within a 20𝑚 × 20𝑚 test environment (Figure 8). The
velocity of all moving obstacles within the test environment is listed
in Table 7. To ensure comprehensive evaluation, we generated 200
start and goal locations, which were uniformly sampled at random
from all parts of the test environment, with a minimum distance
of 6𝑚. We used the same start and goal locations to evaluate our
method, as well as all the comparedmethods (i.e., SAN [43], PopSAN
[44], and BDETT [7]).

Table 7: The speed of all dynamic obstacles in the evaluation
environment.

Dynamic Obstacle # 1 # 2 # 3 # 4 # 5 # 6 # 7 # 8 # 9 # 10 # 11

𝑉𝑥 (m/s) 1.4 1.4 1.4 1.2 0 0 0 1.4 1.3 1.4 0

𝑉𝑦 (m/s) 0 0 0 1.2 1.4 1.4 1.4 0 1.3 0 1.4

Static Obstacle Dynamic Obstacle Trajectory

Figure 8: A testing environment containing both static and
dynamic obstacles, with blue representing static obstacles of
different shapes and red lines representing the movement
trajectory of dynamic obstacles.
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