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(a) Rain

(b) Rain + PGD

(c) Derain GT

(d) Seg GT (e)-ii Derain + Seg (f)-ii NAT (g)-ii PEARL (Ours) (h)-ii +AMA (Ours)

(e)-i Derain + Seg (f)-i NAT (g)-i PEARL (Ours) (h)-i +AMA (Ours)

Figure 1: The visualization results of image deraining and semantic segmentation tasks among the baseline (Derain + Seg) and
our proposed NAT framework, PEARL framework and PEARL with AMA generator (denoted as +AMA) with the influence of
both degradation factors, i.e., rain streaks and PGD attacks. It can be obviously seen that our proposed framework obtains
derained images with higher quality which also leads to more accurate segmentation labels.

ABSTRACT
In light of the significant progress made in the development and
application of semantic segmentation tasks, there has been increas-
ing attention towards improving the robustness of segmentation
models against natural degradation factors (e.g., rain streaks) or
artificially attack factors (e.g., adversarial attack). Whereas, most
existing methods are designed to address a single degradation fac-
tor and are tailored to specific application scenarios. In this work,
we present the first attempt to improve the robustness of semantic
segmentation tasks by simultaneously handling different types of
degradation factors. Specifically, we introduce the Preprocessing
Enhanced Adversarial Robust Learning (PEARL) framework based
on the analysis of our proposed Naive Adversarial Training (NAT)
framework. Our approach effectively handles both rain streaks
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and adversarial perturbation by transferring the robustness of the
segmentation model to the image derain model. Furthermore, as
opposed to the commonly used Negative Adversarial Attack (NAA),
we design the Auxiliary Mirror Attack (AMA) to introduce positive
information prior to the training of the PEARL framework, which
improves defense capability and segmentation performance. Our ex-
tensive experiments and ablation studies based on different derain
methods and segmentation models have demonstrated the signif-
icant performance improvement of PEARL with AMA in defense
against various adversarial attacks and rain streaks while maintain-
ing high generalization performance across different datasets.
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1 INTRODUCTION
Semantic segmentation [28, 52, 55], which is regarded as pixel-wise
dense classification tasks to clarify each part of an image based on
what category or object it belongs to, have achieved great advances
with the development of deep learning networks and high-quality
collected data. Meanwhile, the significant performance improve-
ment of segmentation models also boost its application to satisfy
various real-world demands [16, 33, 39, 61], e.g., self-driving sys-
tems, virtual reality, etc. Whereas, as various adversarial attacks
and variations have been explored, the vulnerability of deep neu-
ral networks to these adversarial examples [25, 45, 57] also have
attracted much attention. By introducing imperceptible adversar-
ial perturbation to the input of semantic segmentation model, the
segmentation results [2, 21, 47, 48] could be badly corrupted and
results in serious safety issues. Moreover, since most existing meth-
ods [8, 53] developed their approaches relying on assumption of
degradation-free scenarios [9], the performance of segmentation
model has no guarantee under bad imaging conditions or adverse
weather such as rain and fogs.

From the perspective of improve robustness against artificially
generated adversarial perturbation, a series of attack and defense
methods have been developed. As a special case of the classification
tasks, the results of segmentation model will also be degraded by
the classical adversarial attacks for image classification tasks, such
as FGSM [17], PGD [34] and their variations [10, 46, 59]. Besides,
another line of work [1, 18] has explored the difference between
semantic segmentation and image classification to design task-
specific segmentation attack methods and generate more effective
adversarial examples. As one of most effective defense strategy,
Adversarial Training (AT) [26, 40, 43] addresses the vulnerability
of segmentation model by incorporating the adversarial example
during the training process, which can be further formulated as
the minimax optimization problem. In addition to few AT based
methods [51] for semantic segmentation, several works also apply
teacher-student structure [4] andmultitask learning [35] to improve
the robustness of segmentation model.

To improve the limited performance of semantic segmentation
under extreme weather, recently proposed methods have explored
various techniques for low-level tasks. Take the rainy weather as
an example, Single Image Deraining (SID) [11, 15] aims to remove
the degradation noise from the input rainy images and retains
as much context details as possible, which could be embedded as
the low-level preprocessing procedure to benefit the downstream
segmentation tasks. In comparison with the optimization based
methods [24, 31, 50, 56], varieties of deep learning based meth-
ods [14, 22, 29] explore different network structures to obtain signif-
icant performance based on massive training data. Besides, several
methods [31, 58] have also incorporated the high-level semantic
knowledge as efficient feedback to facilitate the deraining process.

Whereas, the above methods essentially focus on eliminating a
specific influence factor such as bad weather or adversarial attacks
to enhance the adaptability or robustness of segmentation model in
real-world applications, while implying no uniform understanding

of these degradation factors which influence the performance of
high-level tasks. To be general, the environmental degradation
phenomenon and artificially introduced adversarial perturbation
share similar principles for semantic segmentation tasks, and could
be regarded as some specific form of degradation factors added to
the input of the segmentation input. From this new perspective, we
make our attempt to design a novel framework to jointly handle
both types of degradation factors without introducing additional
network parameters or task-specific loss functions.

Firstly, we introduce theNaiveAdversarial Training (NAT) frame-
work, which improves the robustness of segmentation model based
on AT while handling the rain streaks by embedding extra image
deraining module. Whereas, separately removing the rain steaks
and defending adversarial perturbation will deteriorate the derain
model and introduce residual perturbation to the output of the de-
rain model, which finally affects the downstream tasks. Inspired by
the idea which designs specialized transformation module concate-
nated to the original classification model to defend adversarial ex-
amples, we here propose to transfer the robustness of segmentation
model to the derain model, and design the Preprocessing Enhanced
Adversarial Robust Learning (PEARL) framework to simultaneously
deal with both adversarial perturbation and rain streaks. Moreover,
as opposed to the Negative Adversarial Attack (NAA), we propose
the Auxiliary Mirror Attack (AMA) to introduce "positive" infor-
mation prior of the adversarial attack to the supervised training
of derain model, which enhances the defense capability of derain
model and improves the segmentation results eventually. Experi-
mentally, we conducted extensive experiments and ablation studies
to demonstrate the performance improvement of both derain and
segmentation results with quantitative and visualization results.
Moreover, we also verify the generalization performance of our
framework across different datasets.

The main contributions of this paper are summarized as follows.

• To the best of our knowledge, we make the first attempt
delving into downstream semantic segmentation tasks influ-
enced by both natural degradation factor (e.g., rain streaks)
and artificially generated degradation factors (e.g., adver-
sarial attacks), and significantly improve the downstream
task performance under bad weather while retaining the
robustness against adversarial attacks.
• In contrast with the proposed Naive Adversarial Training
(NAT) framework, we introduce our Preprocessing Enhanced
Adversarial Robust Learning (PEARL) framework to trans-
fer the robustness of segmentation model, aiming to obtain
high-performance robust derain model, which can effectively
eliminate the influence of both degradation factors on the
segmentation attacks.
• We design another Auxiliary Mirror Attack (AMA) as op-
posed to the Negative Adversarial Attack (NAA) to embed
positive perturbation to the proposed PEARL framework,
which facilitates the robust learning to improve the defense
capability and leads to better segmentation results.
• Extensive experimental results and ablation studies on dif-
ferent derain and segmentation models have demonstrated
the effectiveness of PEARL framework and AMA module
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to enhance the robustness against various degradation at-
tacks and improve the deraining performance. Besides, we
also verify the generalization performance of our proposed
framework based on different datasets.

2 RELATEDWORKS
2.1 Image Deraining for Semantic Segmentation
High-level Segmentation Task. As a specific form of pixel-level
dense classification tasks, semantic segmentation have been well
developed to explore the contextual dependencies and capture the
long-range relationship. Chen et.al. [6] proposed DeepLab, which
introduces the atrous convolution for explicit resolution control and
uses spatial pyramid pooling for multi-scale objective segmentation.
Then they developed the DeepLabv3 [7] for further improvements
to atrous convolution and atrous spatial pyramid pooling mod-
ules and also incorporates image-level features for global context.
Zhao et. al. [60] presents PSPNet which exploits global context
information and pyramid pooling module to improve segmenta-
tion performance on various scene parsing datasets. Xie et.al. [49]
proposed SegFormer to unifiy Transformers with lightweight MLP
decoders and achieves state-of-the-art performance with simple
and efficient design. Practically speaking, the above methods have
spared efforts to work on degradation-free scenes, which may faces
serious performance decrease under adverse weather.

Low-level Deraining Task. Single Image Deraining (SID) [11,
15] has been well developed to deal with different rain streaks and
improve the downstream tasks for practical applications. Typically,
Li et.al. [31] proposed RESCAN to incorporate dilated convolu-
tional neural networks and recurrent neural networks to remove
rain streaks in multiple stages. Ren et.al. [38] constructs a better and
simpler baseline deraining network, called PReNet, which provides
consistent improvements of the architecture and loss functions. Za-
mir et.al. [54] introduces a multi-stage architecture called MPRNet
to progressively learn restoration functions for degraded inputs
and balances the competing goals of spatial details and high-level
contextualized information in image restoration tasks. Recently,
Valanarasu et. al. [44] proposed transformer-based model with a
single encoder and a decoder that can restore an image degraded
by any weather condition. Besides, a line of works [23, 29] also
explore the high-level semantic information, such as the detection
and segmentation results, to guide the optimization of deraining
process. Note that our propose training framework of image de-
raining implies no explicit requirements of the network structure
or design of loss functions, which makes it capable to incorporate
recent-proposed methods to obtain higher performance.

2.2 Adversarial Attacks and Defenses
Adversarial Attacks. It has been investigated [2, 48] that the
segmentation model also shows vulnerability to these artificially
introduced adversarial examples. Generally speaking, the adversar-
ial attacks include two categories, i.e., black-box attacks [36] and
white-box [3] attacks. Here we focus on the gradient-based white-
box attack which is capable to access full knowledge of the model
under attack (known as target model), and generated imperceptible
perturbations by computing the gradient of target model. Several
commonly used adversarial attack methods include FGSM [17]

and PGD [34], which generated single-step and multi-step pertur-
bation for the input image. Based on two basic attacks, different
attack methods have been explored by introducing practical tech-
niques [12, 59]. kurakin et.al. [27] proposed BIM attack and demon-
strates that machine learning systems are vulnerable to adversarial
examples even in physical world scenarios. Carlini et.al. [5] chal-
lenges the effectiveness of defensive distillation and introduces the
optimization based attack method denoted as CW. In addition to
the above general-purpose attacks, several works [1, 18] also con-
duct impressive investigation on the robustness of segmentation
and introduce effective improvements of the PGD attack, which
also shows its necessity of training robust segmentation model for
better defense against the adversarial degradation factors.

Adversarial Defense.Generally speaking, Adversarial Training
(AT) [26, 43] trains the model to defend the adversarial example
by minimizing the attack objective, which also make it more time-
consuming due to generation of adversarial example and tasks
more epochs to converge. Whereas, few works have explored the
effectiveness of AT on the segmentation model tasks. Practically,
by setting additional branches in the target model during training
and dividing pixels into multiple branches, Xu et.al. [51] proposed
DDC-AT for improving the robustness of deep neural networks
on semantic segmentation tasks. In addition, another branch of
defense methods have investigated different transformations, such
as image compression and pixel deflection [37, 41], embedded to
preprocess the input, thus remove the adversarial perturbation.
There also has been a lack of research in recent years that have
continued to investigate this direction. Instead of directly using
AT to handle different degradation factors, we here employ the
preprocessing based idea to construct the robust learning process
with embedded derain model, which is supposed to jointly handle
both rain streaks and adversarial attacks. Besides, our framework
retains more flexibility to be further improved with task-specific
model design and additional loss functions.

3 PROPOSED METHOD
In this section, we first provide simplified problem definition of
different degradation attacks factors and AT to derive the Naive
Adversarial Training (NAT) framework for improving robustness
of image segmentation model. With analysis of the limitation of
NAT, we further propose our Preprocessing Enhanced Adversar-
ial Robust Learning (PEARL) framework with designed Auxiliary
Mirror Attack (AMA) generator, by which simultaneously remove
the rain streaks and improve the robustness to defend downstream
adversarial attacks.

3.1 Naive Adversarial Training Framework
Against Degradation Attacks

In this work, we consider an image segmentation model S(·|𝝎)
parameterized by 𝝎. Given a training dataset Dtr with labeled
data pairs, the segmentation output can be represented as Ỹ =

S(C|𝝎), whereC denotes the input image, and Ỹ denotes the output
label of segmentation. Therefore, this downstream task aims to
optimize the following objective:min𝝎 Lseg (Ỹ,Y), whereY denotes
the groundtruth label of segmentation.
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Figure 2: The first three subfigures illustrate the Naive Adversarial Training (NAT) training framework for handling rain streaks
and adversarial attacks for image segmentation model, our Preprocessing Enhanced Adversarial Robust Learning (PEARL)
framework and its whole pipeline with proposed Auxiliary Mirror Attack (AMA) technique. The last subfigure describes the
training strategy for NAT, PEARL and PEARL with AMA. We use gray, green and purple lines to denote the optimization cycle
of attack, defense and additional flow introduced by the AMA module.

Typically speaking, the adversarial attack is supposed to deterio-
rate the output label of segmentation model by introducing visually
imperceptible perturbation, i.e., 𝜹 to the input image, which can be
reformulated as

𝜹 = argmax
𝜹,∥𝜹 ∥𝑝≤𝜖

L𝑎𝑡𝑘 (S(C + 𝜹 |𝝎),Y), (1)

where 𝜹 is usually bounded with 𝜖-toleration ℓ𝑝 -norm, 𝜹 ∈ [0, 1],
and L𝑎𝑡𝑘 is the adversarial loss to measure the distance between
generated degraded example and ground truth. Typically, we could
consider the same form of Lseg to define the adversarial loss func-
tion. Based on the above formulation, when we apply 𝐾-step PGD
method to generate the adversarial example, the perturbation at
𝑘-th step can be denoted as

𝜹𝑘+1 ← Π𝜖 (𝜹𝑘 + 𝛼 · 𝑠𝑔𝑛(∇𝜹L𝑎𝑡𝑘 (S(C + 𝜹𝑘 |𝝎)),Y)), (2)

where 𝑘 = 0, . . . , 𝐾−1, 𝛼 is the step size for perturbation generation,
Π𝜖 (·) and 𝑠𝑔𝑛(·) denotes the projection operation and element-
wise 𝑠𝑖𝑔𝑛 operation, respectively. The initial perturbation 𝜹0 is
sampled from uniform distribution 𝑈 (−𝜖, 𝜖). In the following, we
use 𝜹𝑛 to represent the adversarial attack 𝜹𝐾 generated by a specific
Negative Adversarial Attack (NAA) generatior denoted as 𝜹𝑛 =

G𝑛 (L𝑎𝑡𝑘 (S(C + 𝜹 |𝝎),Y) |𝜹), (e.g., PGD), in order to distinguish
them from the auxiliary mirror attacks we introduced later.

As it is mentioned above, AT have been extensively investigated
to defend the adversarial attacks by solving the following minimax
optimization problem

minmize
𝝎

E(C,Y) ∈Dtr

[
maximize
𝜹,∥𝜹 ∥𝑝≤𝜖

L𝑎𝑡𝑘 (S(C + 𝜹𝑛 |𝝎),Y)
]
. (3)

By alternatively optimizing 𝝎 and generating new perturbation 𝜹𝑛
with G𝑛 (·|𝜹), the robustness of segmentation against adversarial
samples generated by different types of NAAs can be consistently
improved. The objective of adversarial defense for the segmentation
model is denoted as L𝑑𝑒𝑓 , which is usually defined as the same
form of L𝑎𝑡𝑘 .

Whereas, we consider more general setting where the manually
designed adversarial attack is essentially regarded as one of the
specific form of degradation attacks factors. In this case, we are
allowed to consider various degradation factors such as inevitable
noises caused by extreme weather, e.g., rain and fog, which are
prior existing parts of the original input C. Here we consider the
degraded factors as rainstreaks, and denote the degraded rainy
image as I when the rain streaks exist in the input.

(a) I + 𝜹𝑛 (c) F(I + 𝜹𝑛 |𝜽 ) (e) F(I + 𝜹𝑛 |𝜽 )

(b) Clean GT (d) Pretrained F(· |𝜽 ) (f) F(· |𝜽 ) of PEARL

Figure 3: We compare the processed heat maps of pretrained
derain model and our proposed framework to show the dif-
ference between derain results and groundtruth with both
rain streaks and BIM attack (𝜖 = 4/255).
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To alleviate the negative impact of both degradation attacks, i.e.,
the rain streaks and adversarial perturbation, we first propose the
Naive AT (NAT) framework, which can be illustrated in Fig. 2(a). It
first embed pretrained derain model (denoted as F (·|𝜽 ), where 𝜽
denotes the parameters of derain model) to remove the rain streaks,
and retain the robust segmentation model to handle the adversarial
attacks for downstream tasks. Whereas, since the derain model
encompasses little prior of the adversarial distribution, the pertur-
bations added in the rainy image may deteriorate the deraining
results seriously. In Fig. 3, we analyze the heatmap of deraining
results processed with pretrained derain model and the one trained
with our proposed framework. As it can be observed, when the
perturbation generated to attack the segmentation model exists
in the rainy image I, it will also severely degrade the derain re-
sult and leave imperceptible disturbance in the output, which is
a mix of multiple degradation factors. Consequently, the residual
perturbation and rain streaks left in C̃ = F (I+𝜹𝑛 |𝜽 ) also results in
the performance decrease of robust segmentation model to defend
the adversarial attacks, which increases the difficulty of AT based
framework. As one of the most significant contributions, we fully
explore the potential capability of embedded derain model, and
design the following Preprocessing Enhanced Adversarial Robust
Learning (PEARL) framework to effectively defend both manually
designed attack and natural degradation attacks.

3.2 Preprocessing Enhanced Adversarial Robust
Learning (PEARL) Framework

To be general, the decomposition mapping function of derain model
could be rationally reformulated as: I = C + R, where C and R rep-
resent the clean background and rain layers extracted from the
degraded input. According to the above formulation of adversarial
attacks, the degraded input with the adversarial perturbation is de-
noted as I+𝜹𝑛 . In this case, the introduced adversarial perturbation
may be regarded as certain noises added to the clean image to some
extent. Typically, the denoising task aims to learn the following
denoising mapping function: C̃ → C, where C̃ and C denote the
input image with noises and clean image. From this perspective,
the rain streaks and adversarial perturbation can be all treated as
noises, which could be further removed by embedding denoisers.

Inspired by the preprocessing based methods [19, 32] which re-
move the adversarial noise by designing specific transformation
modules, we here make our attempt to transfer the robustness
of segmentation model against adversarial attacks to the embed-
ded derain model. In this case, we no longer follow the AT based
formulation in Eq. (3) to implement NAT framework in Fig. 2(a),
and introduce the following Preprocessing Enhanced Adversarial
Robust Learning (PEARL) framework:

min
𝜽
L𝑑𝑒𝑓 (F (I + 𝜹𝑛 |𝜽 ),C)

𝑠 .𝑡 .𝜹 ∈ argmax
𝜹,∥𝜹 ∥𝑝≤𝜖

L𝑎𝑡𝑘 (S(I + 𝜹𝑛 |𝝎),Y), (4)

where L𝑑𝑒𝑓 could be specified as the objective function of derain
model. Besides, we can introduce additional regularization terms
to L𝑑𝑒𝑓 as task priors of downstream segmentation tasks based on
the output of derain model. As described in Fig. 2(b) and Eq. (4), the

degraded example is still generated by adding adversarial perturba-
tion to the rainy image, while we replace the outer minimization
optimization of S(·|𝝎) in Eq. (3) with training derain model to
learn the following decomposition mapping function:

I + 𝜹𝑛 → C̃ + (R + 𝜹𝑛), (5)

where C̃ is approximated by minimizing L𝑑𝑒𝑓 (C̃,C).
Practically, we simply restore the segmentation weights pretri-

aned based on the clean images, and optimize the negative attack
generator and derain model in an alternative manner. The derain
model trained with PEARL framework is supposed to jointly re-
move the rain streaks and adversarial noise, thus make the derain
results, i.e., F (I + 𝜹𝑛 |𝜽 ), closer to the clean image. Consequently,
the preprocessed results have weakened the negative influence
of both degradation attack factors, which also enhance the down-
stream segmentation tasks to a great extent. In the next subsection,
to make the utmost of generated adversarial noise based on the
inner maximization, we introduce another auxiliary mirror attack
to mimic the deterioration process of adversarial attack, and incor-
porate the generated positive perturbation to facilitate the noise
decomposition of derain model.

3.3 Auxiliary Mirror Attack (AMA)
In this subsection, we propose another enhancement technique to
assist the optimization of derain model and further improve the per-
formance of downstream segmentation tasks. Based on previous def-
inition of G𝑛 , the generated perturbation 𝜹𝑛 = G𝑛 (L𝑎𝑡𝑘 (Ỹ,Y) |𝜹)
is added to the input of derain model to involve the degraded attack,
as illustrated in Fig. 2(b). By minimizing the outer objective L𝑑𝑒𝑓
in Eq. (4), we have injected the noise distribution of adversarial
attack into the derain model such that F (·|𝜽 ) generalize to this
decomposition mapping task and minimize the distance between C̃
and C. Whereas, it has been investigated [30] that due to limited
hardware support and influences of inevitable adverse shooting
conditions, the given ground truth may also contain unpredictable
biases, which misguide the derain tasks even the downstream tasks.
The above phenomenon enlightens us to rethink the supervised
clean data and refine them with the proposed auxiliary mirror
attack.

Specifically, inspired by the idea [42] which establishes the cor-
relation between restoration and objective detection tasks by gener-
ating pseudo ground truth for upstream restoration tasks, we here
design an Auxiliary Mirror Attack (AMA) generator denoted as
G𝑚 (·|𝜹) to generate the mirror attack of NAA aiming to minimize
the attack objective L𝑎𝑡𝑘 . In comparison with the negative impact
of 𝜹𝑛 generated by G𝑛 (·|𝜹), G𝑚 (·|𝜹) is supposed to dynamically
adjust the derain results with attack prior of the inner maximization
objective, and add the “positive” perturbation to the clean image.
Then the objective of PEARL framework with AMA can be further
reformulated as:

min
𝜽
L𝑑𝑒𝑓 (F (I + 𝜹𝑛 |𝜽 ),C + 𝜹𝑚)

𝑠 .𝑡 .𝜹 ∈ argmax
𝜹,∥𝜹 ∥𝑝≤𝜖

L𝑎𝑡𝑘 (S(I + 𝜹𝑛 |𝝎),Y), (6)

where 𝜹𝑚 = G𝑚 (L𝑎𝑡𝑘 (S(I + 𝜹𝑛 |𝝎),Y) |𝜹). We describe the whole
pipeline of our PEARL framework with AMA in Fig. 2(b). In some
degree, PEARL intends to train the derain model to decompose



MM ’23, June 03–05, 2018, Woodstock, NY Trovato et al.

Table 1: Evaluation results with both natural and artificial degradation factors on synthesized Cityscapes dataset. Adversarial
attack is generated by BIM (𝐾 = 3, 5, 10), PGD10 and CW, respectively. We report the defense results with perturbation value
𝜖 = 8/255, and more results for the perturbation 𝜖 = 4/255 can be found in the supplementary materials.

Methods
Rain+BIM3 Rain+BIM5 Rain+BIM10 Rain+PGD10 Rain+CW

mIoU allAcc PSNR mIoU allAcc PSNR mIoU allAcc PSNR mIoU allAcc PSNR mIoU allAcc PSNR

Seg 2.81 31.36 17.44 2.46 27.61 17.39 2.41 27.40 17.39 2.42 27.87 17.39 1.80 21.74 17.41
Robust Seg 2.16 38.32 17.37 2.08 38.02 17.28 2.06 37.93 17.23 2.05 37.91 17.22 2.09 38.04 17.29
Derain + Seg 9.31 38.28 29.46 3.79 20.02 28.83 1.90 13.56 28.24 1.92 12.84 28.25 3.12 15.13 28.83

NAT 38.39 85.03 29.78 34.31 82.00 28.80 31.37 79.24 28.08 31.31 79.10 28.08 34.57 82.12 28.68
PEARL(Ours) 47.81 88.80 32.62 44.70 87.10 32.31 41.03 83.86 31.86 41.69 84.44 31.88 46.16 87.12 32.30
+AMA(Ours) 48.55 88.81 32.56 46.14 87.55 32.21 43.75 85.95 31.74 44.60 86.34 31.77 47.73 87.84 32.20

the clean image, thus defend the adversarial attack generated by
G𝑛 (·|𝜹), while AMA moves one more step to interpolate the mirror
attack of G𝑛 (·|𝜹) to the ground truth. Consequently, by minimizing
L𝑑𝑒𝑓 (C̃,C + 𝜹𝑚), our proposed framework with AMA turns the
decomposition mapping in Eq. (6) to the following one:

I + 𝜹𝑛 → C̃ + (R + 𝜹𝑛) ⇒ I + 𝜹𝑛 → (C + 𝜹𝑚) + (R + 𝜹𝑛)
⇒ I + 𝜹𝑛 → (C + R) + (𝜹𝑛 + 𝜹𝑚).

(7)

It can be observed that the generated 𝜹𝑚 added in C serves as
distribution prior of 𝜹𝑛 , which facilitates the robust learning of
derain model in Eq. (6) based on its original decomposition function.
Meanwhile, since AMA introduces the information of adversarial
attack on segmentation model to the ground truth of derain model,
the output results will consistently benefit the segmentation tasks
to some extent.

In comparison with the NAT framework in Fig. 2 (a), which forms
two cycles by alternatively optimizing the attack generator and
segmentation model with L𝑎𝑡𝑘 and L𝑑𝑒𝑓 , our complete pipeline
with both PEARL framework and AMA generator creates a new
cycle by introducing AMA to the optimization of deraining model
in Fig. 2 (c). Besides, we also analyze the difference of training
strategies between NAT frameworks and our PEARL with AMA to
help understand how to update the attack and defense module in
Fig. 2 (d). In the next section, we will demonstrate the significant
performance improvement and generalization performance of this
new framework with different quantitative and qualitative metrics
on derain and segmentation tasks.

4 EXPERIMENTS
4.1 Experimental Settings

Dataset and Model. We implement our experiments based on
two popular semantic segmentation datasets, including Cityscapes [9]
and PASCAL VOC 2012 [13]. In the following, we train the model
based on the training dataset of Cityscapes, while both datasets
are used for testing to verify the performance improvement and
generalization ability of the proposed framework. Here we employ
two widely used models, i.e., PSPNet [60] and DeepLabv3 [7] for the
downstream segmentation task. ResNet50 [20] is adopted as back-
bone feature extractor, and we follow the default setting of model

configuration for training and testing. As for the derain models, we
implement four mainstream deraining models, TransWeather [44],
MPRNet [54], PReNet [38] and RESCAN [31] to verify the consis-
tent performance of PEARL framework and its insensitivity to the
architecture of derain model.

Degradation factors and Metrics. For natural degradation
factor (i.e. rain streaks), we manually synthesize rain streaks based
on original Cityscapes and VOC dataset( the initial PSNR and SSIM
are 17.45 / 0.5566). For artificially generated degradation factor
(i.e. adversarial attack), we use BIM attack for training, while BIM,
PGD, CW are used for testing the defense performance (𝜖 = 4/255,
8/255). As for the metrics, two type of pixel-wise Accuracy (overall
accuracy allAcc and mean of class-wise accuracy mAcc) and mean
of class-wise Intersection over Union (mIoU) are used to evaluate
the performance of segmentation, which also reflects the robustness
against different degradation factors. In addition, PSNR and SSIM
are used for the low-level restoration tasks. More implementation
details could be found in the supplementary materials.

4.2 Experimental Results
We first evaluate the performance of different strategies when both
rain streaks and adversarial perturbation exists in the segmentation
input. Generally speaking, we consider several basic strategies and
our proposed framework to address this challenging task. We use
Seg, Robust Seg and Derain + Seg to represent the basic model
trained with clean image and two models for only handling rain
streaks or adversarial examples. Meanwhile, we test the perfor-
mance of our proposed NAT framework, PEARL framework and
PEARL with AMA generator (denoted as +AMA).

In Tab. 1, we consider BIM (𝐾 = 3, 5, 10), PGD and C&W attack
constrained by ℓinf norm together with the rain streaks to attack the
segmentaion task on synthesized Cityscapes dataset. As it can be ob-
served, both degradation factors could incur a sharp decline in the
performance of downstream segmentation task. When the attack
intensity is weak (𝜖 = 4/255, the results can be found in the sup-
plementary material), embedding the pretrained derain model may
help protect the segmentation tasks to some extent. Whereas, once
the attack intensity increases to 8/255, the deraining model with
little attack prior will also be affected by the perturbation, which
causes serious performance decrease. Besides, as the adversarial
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(a) Rain (e) Derain GT(c) Rain + PGD (g) Seg GT

(b)-i Derain + Seg (d)-i NAT (f)-i PEARL (h)-i +AMA

(d)-iii NAT (f)-iii PEARL (h)-iii +AMA

(b)-ii Derain + Seg (d)-ii NAT (f)-ii PEARL (h)-ii +AMA

(b)-iii Derain + Seg

Figure 4: Comparison of the deraining and segmentation results among different methods on synthesized Cityscapes dataset.
The second to fourth rows of images represent the deraining results, heat map of the difference between the derained image
and clean image, and the segmentation labels.

robustness of the segmentation model improves, the perturbation
generated by the same attack method also becomes stronger, which
can be reflected in the decline of PSNR.

In contrast, the three proposed solutions, which take into account
both factors, significantly promote the defense capability of seg-
mentation tasks. Among these three solutions, PEARL framework
(with AMA) gains much more improvement on both derain and seg-
mentation metrics. Under a relatively weak attack (𝜖 = 4/255), the
effectiveness of AMA can not be clearly verified. As the intensity of
adversarial attack increases (𝜖 = 8/255), with a slight trade-off on
deraining performance (0.1 decrease of PSNR), AMA enables better
performance of downstream segmentation task on both mIoU and
allAcc metrics. It is also worth noting that for unseen attacks (PGD
and CW attack), PEARL framework together with AMA assistance
still maintains a stable defense effect.

Furthermore, we also show the visualization results in Fig. 4
to demonstrate that our PEARL framework helps obtain higher
quality derained images and effectively facilitates the downstream
segmentation tasks to defend two degradation factors, which leads
to better segmentation results. From the processed heat maps in
the third row, it can be clearly seen that the output of deraining
model trained by PEARL left much less noise than other solutions,
which also demonstrates the effectiveness of PEARL framework to
obtain derain images with better visual effects.

Figure 5: We illustrate the performance improvement of our
PEARL Framework on PSNR and SSIM based on different
attack intensities (𝐾 = 5, 7, 9) and derain models, including
RESCAN, PReNet, MPRNet and Transweather.

Then we adopt four state-of-the-art deraining methods to verify
the insensitivity of PEARL framework to the architecture of derain
models, and the results are shown in Fig. 5. We train these four
models with the same strategy of PEARL with AMA in Fig. 2 (d). It
can be seen that our framework can not only improve the PSNR
of these methods under different intensities of attack factors, but
also significantly improve the downstream segmentation tasks to a
large margin.

Finally, we fix the trained deraining model and replace the PSP-
Net model with DeepLabv3 to show the generalization performance
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Table 2: Reporting the defense performance of NAT, PEARL,
and PEARL with AMA on the synthesized Cityscapes dataset.

Methods
Rain Rain + BIM Rain + PGD Rain + CW

mIoU PSNR mIoU PSNR mIoU PSNR mIoU PSNR
NAT 51.94 31.38 33.58 28.03 43.92 30.15 30.89 27.59
PEARL 58.39 33.08 43.70 30.16 52.35 32.77 38.02 31.90
+AMA 57.86 33.12 52.51 32.77 53.68 32.74 41.24 31.76

Figure 6: Illustrating themIoU and allACCof different classes
for NAT, PEARL and Pearl with AMA based on DeepLabv3.

of derain model trained with PEARL to handle the adversarial at-
tacks for the segmentation model. The results under different at-
tacks and the segmentation results of different classes are shown in
Table 2 and Figure 6 respectively. It can be seen that in the face of
new downstream architecture, except for the unknown attack (CW),
the deraining model trained by the PEARL framework and the AMA
assistant can achieve a defense effect so close to the original PSPNet
model.

4.3 Ablation Study
In essence, the motivation of PEARL framework together with AMA
is to protect the downstream segmentation tasks from the impact
of both natural degradation factor and artificially generated degra-
dation factors. Here we conduct ablation experiments to analyze
the practical effect of our framework to defend these degradation
factor separately.

Table 3: Results of different metrics with single degradation
factor, i.e. rain streak.

Methods mIoU mAcc allAcc PSNR SSIM
Derain+Seg 37.52 39.64 97.00 31.41 90.87
PEARL 31.96 36.37 96.01 33.13 92.69
+AMA 31.79 36.10 96.53 33.06 93.05

Specifically, we first validate the deraining model trained by our
framework on images with only rain streaks in Tab. 3. It can be
observed that the trade-off between accuracy on clean data and

the robustness to defend adversarial attacks also influences the
performance of derain model trained by PEARL and PEARL with
AMA. When only the rain streaks exist in the input, the model
trained by our framework also gains worse performance on these
images without adversarial perturbation. But we are also surprised
to find that the derain performance are further improved as extra
bonus to obtain better visualization results.

Figure 7: Illustrating the evaluation results of Derain + Seg,
PEARL and PEARL with AMA under different attack inten-
sities of BIM (𝐾 = 3, 5, 7).

As for Fig. 7, it comes to a conclusion that our framework in-
deed enables the deraining model to obtain the ability to eliminate
adversarial perturbation under different attack intensity to a great
extent, and AMA also further improved the segmentation results
and quality of restored images when the rain no longer exists.

4.4 Extension
Last but not least, we also validate the generalization performance
of the proposed framework across different datasets. Specifically,
we transfer the deraining model in Table 1 (trained on PSPNet
and Cityscapes by PEARL framework) directly to PASCAL VOC
dataset (the segmentation modeltrained on PASCAL VOC are also
employed), and report the results in Table 4. It can be seen that even
in the face of unseen input data distribution and new downstream
segmentation model, PEARL framework with the assistance of
AMA, can still obtain significant performance in comparison with
NAT.

Table 4: Results of the defense performance on PASCAL VOC
dataset. The derain model is the same as the one used in
Table 1, while the segmentation model was replaced.

Methods
Rain Rain + BIM Rain + PGD Rain + CW

mIoU Acc mIoU Acc mIoU Acc mIoU Acc
NAT 53.05 79.71 36.59 66.62 36.28 66.03 36.28 65.91
PEARL 58.41 72.84 43.16 73.50 43.32 73.89 43.41 73.86
+AMA 58.38 72.89 43.54 73.95 43.88 74.42 43.87 74.22

5 CONCLUSION
In this paper, we have addressed the robustness of semantic segmen-
tation tasks in a general application scenario where the input image
is affected by both natural degradation factors (i.e., rain streaks) and
artificially generated degradation factors (i.e., adversarial attacks).
Based on the unified understanding of the above degradation fac-
tors and analysis of proposed NAT framework, we introduced the
PEARL framework, which leverages the adversarial robustness by
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transferring it to the derain model to simultaneously eliminate the
influence of both rain streaks and adversarial perturbation. More-
over, we introduced the AMA generator to the PEARL framework,
which provides positive information prior for the defense update
as opposed to the NAA generator. We have shown the significant
performance improvement of the PEARL framework for handling
both types of degradation factors based on different derain and
segmentation models. Furthermore, we have verified the general-
ization performance of the PEARL framework with AMA across
different datasets.
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