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ABSTRACT
Visual storytelling aims to generate a narrative based on a sequence
of images, necessitating both vision-language alignment and co-
herent story generation. Most existing solutions predominantly
depend on paired image-text training data, which can be costly
to collect and challenging to scale. To address this, we formulate
visual storytelling as a visual-conditioned story generation prob-
lem and propose a text-only training method that separates the
learning of cross-modality alignment and story generation. Our
approach specifically leverages the cross-modality pre-trained CLIP
model to integrate visual control into a story generator, trained
exclusively on text data. Moreover, we devise a training-free visual
condition planner that accounts for the temporal structure of the in-
put image sequence while balancing global and local visual content.
The distinctive advantage of requiring only text data for training
enables our method to learn from external text story data, enhanc-
ing the generalization capability of visual storytelling. We conduct
extensive experiments on the VIST benchmark, showcasing the
effectiveness of our approach in both in-domain and cross-domain
settings. Further evaluations on expression diversity and human
assessment underscore the superiority of our method in terms of
informativeness and robustness.
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Captions:
(a) A group of people waiting near a street.
(b) A group of veterans in uniform are walking in a parade.
(c) A parade with student wearing blue walking by.
(d) The color guard is showing their flag twirling prowess.
(e) Several people are riding in an older blue model convertible.

(a) (b) (c)

(d) (e)

Story:
We all waited anxiously for the parade to start. The vfw led it
off with the flags. Then came our high school marching band.
The color guard did an awesome job. The grand marshal
finished the parade up in a beautiful classic car.

Figure 1: Example difference between image captioning and
visual storytelling. Words highlighted in red represents con-
tents in the corresponding image, and words highlighted in
green represents subjective expressions and information rea-
soned from other images.

1 INTRODUCTION
Visual storytelling [1], a task aimed at generating narratives based
on image sequences, has received significant interest due to its
potential applications in diverse domains such as advertising, enter-
tainment, and education. In comparison to other vision-to-language
generation tasks, such as visual captioning [2], visual storytelling
presents unique challenges stemming from its subjective and imagi-
native nature. As illustrated in Fig. 1, to create a coherent story that
aligns with the visual input, each sentence must not only describe
the corresponding image, but also maintain logical connections to
both preceding and subsequent sentences. This dual requirement
of ensuring cross-modality consistency while preserving narrative
coherence constitutes the primary challenge of visual storytelling.

Existing works often require large amounts of labeled data and
attempt to learn both cross-modality alignment and story coher-
ence simultaneously through end-to-end training. By training on
large manually annotated data, these models are capable of gen-
erating coherent and visual-related stories. Subsequent advance-
ments, such as the incorporation of external knowledge [3] and
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scene graphs [4], have further enriched generated stories with ad-
ditional details. More recently, the employment of large pre-trained
Transformer-based language models has led to considerable im-
provements in visual storytelling [5]. Nevertheless, the substantial
cost associated with annotating and training extensive datasets
remains a significant bottleneck, limiting the scalability of visual
storytelling approaches.

On the other hand, the burgeoning capabilities of pre-trained
models offer potential for leveraging thesemodels to transfer knowl-
edge to downstream tasks such as visual storytelling, facilitating
more data-efficient learning. To this end, some prior works have
combined generative language models [6–8] with cross-modality
pretrained models [9] to explore text-only training for image cap-
tioning [10, 11]. However, while these cross-modalitymodels trained
on paired image-text data successfully align text with individual
images, they are limited in their capacity to comprehend the tempo-
ral structure of image sequences—an essential component of visual
storytelling.

Motivated by the observations discussed above, we propose a
novel framework that leverages pretrained generative language
models and cross-modality models for data-efficient visual story-
telling. We formulate visual storytelling as a visual-conditioned
story generation task. As shown in Fig. 2, we first fine-tune a pre-
trained language model using only textual data to develop a story
generator. Then, we incorporate visual clues during the generation
process. Specifically, at each decoding step, we use a pretrained
cross-modality model CLIP [9] as a visual discriminator to compute
a matching score between candidate text and input images. A vi-
sual condition planner is then designed to aggregate the matching
results of the input images, emphasizing semantics in the corre-
sponding image while retaining information from other images.
Finally, the aggregated result is incorporated into the decoding
probability distribution to guide the generation of the next token,
resulting in a coherent and visually aligned story.

To demonstrate the effectiveness of our proposed method, we
conduct extensive experiments on the widely-used VIST bench-
mark [1]. The results show that our approach achieves state-of-the-
art performance on various evaluationmetrics including comparing-
based automatic metrics, statistics-based metrics, and human evalu-
ation. Additionally, our method exhibits impressive generalization
ability in domain-transfer experiments, suggesting its potential for
real-world applications.

We summarize the major contributions of this work as follows:

• We formulate visual storytelling as a visual-conditioned gen-
eration problem and propose a data-efficient framework
which is trained solely on text-only data by leveraging pre-
trained CLIP model.

• We introduce a visual condition planner which is free of
training. The planner aggregates sequential visual inputs to
provide local details while maintaining the global theme of
the image album, thereby improving the quality of generated
stories.

• Extensive experiments on VIST benchmark demonstrate the
effectiveness of our proposed method, as evidenced by its
superior performance compared to existing methods in both
automatic metrics and human evaluations.

2 RELATEDWORK
The main idea of our work is to model visual storytelling as a
controlled text generation task, and exploit large pretrained models
to reduce the cost of cross-modality training. In this section, we
provide a brief review of the related areas.

2.1 Visual Storytelling
Visual storytelling was first introduced by Huang et al.[1], which
involves the use of a sequence of images to convey a narrative,
necessitating reasoning over temporal context rather than merely
understanding a static moment. Early approaches expanded upon
conventional image captioning models by learning contextualized
image representations[12] and incorporating global visual infor-
mation [13]. Additionally, reinforcement learning was employed
to learn an implicit reward function through adversarial reward
learning, optimizing the policy model to better align with human
demonstrations [14]. Hierarchical architectures [15] and hierarchi-
cal reinforced training [16] have also demonstrated effectiveness
in learning high-level semantics.

Given the imaginative nature of storytelling, external knowledge
graphs have been integrated to introduce fictional concepts not
present in images [3, 17, 18]. To provide richer stories with greater
visual detail, Wang et al.[4] incorporated scene graph generation,
while Li et al.[19] learned cross-modal rules for mining visual con-
cepts. Braude et al.[20] proposed an ordered image attention ap-
proach to enhance story coherence through consistent grounding
across sequenced images. Furthermore, Transformer-based frame-
works have demonstrated capabilities in modeling spatial relation-
ships between objects in images[21]. In light of the proliferation of
large pre-trainedmodels, several studies have focused on leveraging
pre-trained models (PTMs) for visual storytelling. Strategies include
fine-tuning pre-trained Transformer encoders [22, 23] and jointly
tuning pre-trained language generation models with pre-trained
image encoders [5].

While the aforementioned approaches have demonstrated im-
provements in generated stories by incorporating external models,
knowledge, and annotations, they also result in a significant in-
crease in computational cost. In contrast, our proposed method
circumvents the challenges associated with cross-modality training
and annotation expenses by exclusively focusing on training using
a text corpus.

2.2 Controlled Text Generation
In natural language generation, incorporating controllable con-
straints for open-ended text generation is both important and fun-
damental [24]. With the advancements in pretraining, recent ef-
forts have primarily concentrated on adapting pre-trained language
models (LMs) to various attributes. A straightforward approach
involves fine-tuning a pre-trained LM to generate text with specific
attributes [25–28]. Alternatively, it is feasible to design new large
LM architectures or retrain large conditioned LMs from scratch [29–
31]. Recently, the exponentially increasing scale and capacity of
pre-trained LMs have made it more viable and promising to fix pre-
trained parameters and guide generation through post-processing.
Dethathri et al.[32] first proposed this paradigm as Plug-and-Play
language models, wherein an attribute discriminator updates LM
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Figure 2: The training and inference pipeline of our method. During training, we only train the language generator on a story
dataset without visual information. Then, at inference time, we utilize a pretrained CLIP model as a visual discriminator to
align images with candidate tokens. Additionally, we introduce a visual condition planner that aggregates image sequences,
and the output visual control is then incorporated into the generation process.

hidden states through back-propagation for attribute-controlled
text generation. To reduce the computational cost associated with
classifier-like discriminators ranking generated text, fine-tuned
small LMs have been employed as generative discriminators to
guide the generation of large pre-trained LMs[33–36]. Pascual et
al. [37] extended the plug-and-play method to keyword constraints
and designed a distribution shifting strategy to augment the decod-
ing probability of keywords.

Guided decoding methods have demonstrated remarkable flexi-
bility in accommodating various constraint types and hold consid-
erable potential due to their independence from language models.
In this work, we model visual storytelling as a visual-conditioned
story generation task and propose a visual-linguistic discriminator
to guide the generation process.

2.3 Large Pretrained Models
Generative language models. Taking advantage of the paral-
lelism in the Transformer architecture [38], generative language
models have shown a remarkable improvement in their capabilities
in the past few years. These models can be broadly classified into
two categories based on their network architecture: Decoder-Only
models [6, 8] and Encoder-Decoder models [39, 40]. Pretrained
on large corpora, these models can effectively transfer to various
language generation tasks, such as summarization, question an-
swering, and story generation, with limited or even no supervised
data.
Cross-modality pretrained models. As the foundation of visual-
language understanding, the idea to align the two modalities and
learn a joint embedding space has been investigated extensively
in the past decade [41–44]. In recent years, large cross-modality
aligning models based on Transformers have gained considerable

attention [9, 45, 46]. A representative work is CLIP [9], which trains
two encoders for image and text inputs using a contrastive loss.
With 400 million data pairs for training, CLIP has demonstrated
remarkable zero-shot capabilities on multiple downstream tasks.

3 PRELIMINARIES
A standard generative language model predicts the probability
distribution of the next token based on previous inputs, which
can be formulated as 𝑃𝐿𝑀 (𝑥𝑡 |𝑥<𝑡 ). As a result, the probability of a
text sequence 𝒙 = {𝑥1, . . . , 𝑥𝑇 } can be modeled as follows:

𝑃𝐿𝑀 (𝒙) = Π𝑇𝑡=1𝑃𝐿𝑀 (𝑥𝑡 |𝑥<𝑡 ) . (1)
In order to incorporate controls during the generation process, a
constraint 𝑐 can be added to form a conditioned language model.
This model generates the probability distribution of the next token
based on the history inputs and the control constraint, and can be
formulated as:

𝑃 (𝒙 |𝑐) = Π𝑇𝑡=1𝑃 (𝑥𝑡 |𝑥<𝑡 , 𝑐) . (2)
Krause et al. [33] designed a generative discriminator to predict

the probability that every candidate text sequence corresponds to
the given constraint, which is given as:

𝑃𝜃 (𝑐 |𝑥𝑡 , 𝑥<𝑡 ) =
𝑃 (𝑐)Π𝑇

𝑡=1𝑃 (𝑥𝑡 |𝑥<𝑡 , 𝑐)∑
𝑐′∈{𝑐,𝑐 } 𝑃 (𝑐′)Π𝑇𝑡=1𝑃 (𝑥𝑡 |𝑥<𝑡 , 𝑐′)

(3)

where 𝜃 represents the learned parameters of the discriminator.
Then, based on the Bayes rule, the conditioned language model can
be decoupled as:

𝑃 (𝑥𝑡 |𝑥<𝑡 , 𝑐) ∝ 𝑃𝐿𝑀 (𝑥𝑡 |𝑥<𝑡 )𝑃𝜃 (𝑐 |𝑥𝑡 , 𝑥<𝑡 ) . (4)
Therefore, each step of the generation process is implemented by

combining an unconditioned language modeling 𝑃𝐿𝑀 (𝑥𝑡 |𝑥<𝑡 ), and
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an attribute discriminator 𝑃𝜃 (𝑐 |𝑥𝑡 , 𝑥<𝑡 ) with the guided decoding
strategy as described in Eq. (4). Here the discriminator is trained
externally and can be easily used with any language generator in a
plug-and-play manner.

4 METHOD
Given a sequence of images I = {𝐼1, . . . , 𝐼𝑁 }, a visual storytelling
approach aims to generate a multi-sentence story 𝒙 by predicting
the probability 𝑃 (𝒙 |I). To achieve this, we propose a framework
that combines a text-only trained language generator, a pretrained
visual discriminator, and a visual condition planner. Fig. 2 illus-
trates the training and inference pipeline of our method. During
the training phase, we fine-tune the language generator using story
text, while in the inference phase, we employ the pre-trained vi-
sual discriminator and the visual condition planner to guide the
generation process.

4.1 Text-Only Training
Compared to other supervised visual storytelling methods, our ap-
proach offers a notable advantage in that it requires training only
on a text corpus, resulting in significant cost reductions in both
training and annotation efforts. Specifically, we fine-tune a Trans-
former decoder-based language model on a text story corpus to
bridge the gap between pretraining on generic text and generating
coherent stories. Given a narrative text sequence 𝒙 = {𝑥1, . . . , 𝑥𝑇 },
the language model is fine-tuned by minimizing the maximum
likelihood estimation (MLE) loss:

L𝑀𝐿𝐸 = − 1
𝑇

𝑇∑︁
𝑡=1

log 𝑃𝐿𝑀 (𝑥𝑡 |𝑥<𝑡 ) (5)

Inspired by Su et al. [47], we incorporate an additional contrastive
objective L𝐶𝐿 to encourage the generation of diverse and distinct
expressions. The objective is defined as:

L𝐶𝐿 =
1

𝑇 (𝑇 − 1)

𝑇∑︁
𝑖=1

𝑇∑︁
𝑗=1, 𝑗≠𝑖

max(0, 𝜖 − 𝑠 (𝑥𝑖 , 𝑥𝑖 ) + 𝑠 (𝑥𝑖 , 𝑥 𝑗 )), (6)

where 𝜖 is a predefined margin, and 𝑠 is the cosine similarity be-
tween tokens, defined by:

𝑠 (𝑥𝑖 , 𝑥 𝑗 ) =
ℎ𝑇𝑥𝑖ℎ𝑥 𝑗

|ℎ𝑥𝑖 | |ℎ𝑥 𝑗 |
. (7)

The overall training objective of the language generator is the
combination of the above two losses:

L = L𝑀𝐿𝐸 + 𝛼L𝐶𝐿, (8)

where 𝛼 is a hyper-parameter to balance the loss items.
After fine-tuning on a text story corpus, the language generator

is able to generate coherent stories in a style that is aligned with
the training data. However, since the generation process of the
language generator is solely based on textual input, it may not take
into account any visual content or the desired topic of the story.
To address this, we introduce a visual discriminator and a visual
condition planner to control the story topic and add details to the
generated sentences.

Sentence 1

Sentence 5

Sentence 2

Sentence 3

Sentence 4

ΠPow Pow Pow Pow Pow

Figure 3: Illustration of the visual condition planner.

4.2 Visual Discriminator and Story Planning
As previously mentioned, we consider visual storytelling as a visual-
conditioned story generation task, and employ the guided decoding
paradigm to integrate visual controls into the language generator.
To achieve this, we introduce a visual discriminator and a visual
condition planner to score candidate sequences during generation.
The visual discriminator is implemented using a pretrained visual-
linguistic aligning model, while the visual condition planner is a
training-free weighting model which aggregates the text matching
results of different images.

During each generation step 𝑡 , our language generator predicts
a probability distribution 𝑃𝐿𝑀 (𝑥𝑡 |𝑥<𝑡 ) over the vocabulary 𝑉 of
possible next tokens, based on the context 𝑥<𝑡 . To guide the selec-
tion of candidate tokens, we employ a pretrained CLIP [9] model
as a visual discriminator D. Although the CLIP model has been
pretrained on a large-scale dataset of paired visual and textual data,
the pretraining process does not specifically involve annotations
for visual storytelling. Therefore, by utilizing the pretrained CLIP,
our method does not require cross-modality training and is capable
of handling open-domain visual input. This makes our approach
data-efficient and more scalable than previous methods.

Specifically, we feed each candidate token 𝑥𝑡 into the text en-
coder of CLIP along with the context tokens 𝑥<𝑡 to obtain a textual
representation 𝑓𝑥1:𝑡 . For each image 𝐼 𝑗 in the input album, we ex-
tract a visual representation 𝑓𝐼 𝑗 using the visual encoder of CLIP,
where 𝑗 ∈ 1, . . . , 𝑁 . Then, the cosine similarity of 𝑓𝑥1:𝑡 and 𝑓𝐼 𝑗 is
computed as:

D(𝑥1:𝑡 , 𝐼 𝑗 ) =
𝑓𝑥1:𝑡 𝑓𝐼 𝑗

|𝑓𝑥1:𝑡 | |𝑓𝐼 𝑗 |
, 𝑗 ∈ {1, . . . , 𝑁 }. (9)

As the CLIP model is trained to map visual and textual input rep-
resentations into a sharing space, the matching score D(𝑥1:𝑡 , 𝐼 𝑗 )
measures the relevance between candidate sequence 𝑥1:𝑡 and the
input image 𝐼 𝑗 .
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Method METEOR BLEU-1 BLEU-2 BLEU-3 BLEU-4 ROUGE_L CIDEr
Fully-Supervised Methods

INet [48] 35.6 64.4 40.1 23.9 14.7 29.7 10.0
TAPM [5] 37.2 - - - - 33.1 13.8

OIAVist [20] 36.8 68.4 42.7 25.2 15.3 30.2 10.1
KAGS [18] 36.2 70.1 43.5 25.2 14.7 31.4 11.3

Text-Only Trained

Top-𝑘 20.3 40.0 15.6 5.6 2.2 15.7 0.6
Nucleus 19.6 38.6 14.2 4.9 1.9 15.5 0.5
MAGIC 20.3 41.2 16.1 5.9 2.8 16.0 1.3
Ours 23.0 43.7 20.2 9.2 4.5 17.3 1.2

Table 1: Comparison with existing methods on VIST test set. “Fully-Supervised” methods are trained on paired data, “Text-Only
Trained” methods are trained on the textual stories of VIST. The best results under each metric are highlighted in bold.

Method ROCStories WritingPrompts

M B-1 B-2 B-3 B-4 R_L C M B-1 B-2 B-3 B-4 R_L C
Top-𝑘 15.3 28.6 9.5 2.5 0.7 12.1 0.2 15.0 26.8 8.0 2.0 0.4 12.2 0.2
Nucleus 15.0 28.4 9.0 2.4 0.7 12.0 0.3 14.3 25.6 7.3 1.5 0.3 11.9 0.2
MAGIC 16.4 29.7 10.1 2.7 0.7 12.6 0.1 15.4 27.8 9.6 2.9 0.5 12.8 0.2
Ours 16.6 28.6 11.5 3.8 1.2 12.9 0.2 16.2 28.8 9.9 2.9 0.9 13.7 0.2

Table 2: Domain transfer results of text-only trained methods. The best results under each metric are highlighted in bold.

To ensure that the generated story aligns with the visual input
fine-level semantics of the corresponding image to the sentence
being generated and maintains the overall theme, we propose a
visual condition planner. It aggregates the scores of the input images
to derive a visual control for the current decoding step. Inspired
by the work of Lin and Riedl [36], the planner does not require
any training and achieves both global and local alignment through
weighting and multiplication operations.

As depicted in Fig. 3, the visual condition planner computes a
control weight for each input image based on the position of current
sentence in the story. More precisely, the weight 𝜔 𝑗 for image 𝐼 𝑗 is:

𝜔 𝑗 = 𝐶 exp(− (𝑖 − 𝑗)2
2𝜎2

), (10)

where 𝑖 ∈ {1, . . . , 𝑁 } represents the position of current sentence in
the story, and 𝐶 is a constant to normalize the weights and insure∑𝑁
𝑗=1 𝜔 𝑗 = 1. When 𝑖 = 𝑗 , the current sentence should be the exact

description of image 𝐼 𝑗 , while remaining coherent to other images
𝐼𝑘≠𝑗 . Therefore, the weight of 𝐼 𝑗 is the largest, and weight of 𝐼𝑘
descends as the distance |𝑘 − 𝑗 | grows. Finally, the planner applies
weighted multiplication on the scores of different images to obtain
a unified matching score between the candidate sequence 𝑥1:𝑡 and
the input images I. Formally,

𝑃𝑤 (I|𝑥𝑡 , 𝑥<𝑡 ) = Π𝑁𝑗=1D(𝑥1:𝑡 , 𝐼 𝑗 )𝜔 𝑗 . (11)

It is worth noting that in our experiments, the aforementioned
process is applied to a subset of the entire vocabulary, thereby re-
ducing the computational cost of encoding and aligning candidate
text. Specifically, we select the top 𝐾 tokens predicted by the lan-
guage generator as the subset 𝑉𝐾(𝑡 ) . Moreover, to eliminate the bias

of the cross-modality alignment results, we normalize the scores
among candidate tokens. The final output of the visual condition
planner can be written as:

𝑃 (I|𝑥𝑡 , 𝑥<𝑡 ) =
𝑒 (𝑃𝑤 (I |𝑥𝑡 ,𝑥<𝑡 ) )∑

𝑥𝑖 ∈𝑉𝐾(𝑡 )
𝑒 (𝑃𝑤 (I |𝑥𝑖 ,𝑥<𝑡 ) )

. (12)

4.3 Visual-Conditioned generation
Given the token probability predicted by the language generator and
the aggregated cross-modality matching score, visual storytelling
can be decoupled into the combination of language modeling and
cross-modality aligning. Similar to Eq. (4), the probability of next
token 𝑥𝑡 can be decoupled as follows:

𝑃 (𝑥𝑡 |𝑥<𝑡 ,I) ∝ 𝑃𝐿𝑀 (𝑥𝑡 |𝑥<𝑡 )𝑃 (I|𝑥𝑡 , 𝑥<𝑡 )𝛾 , (13)

where the hyper-parameter 𝛾 controls the weight of visual infor-
mation in the language generation process. While a higher value
of 𝛾 can improve the alignment of visual semantics, it may also
adversely affect the quality of the generated language. Finding the
right balance between language and visual information is crucial
for achieving high-quality visual storytelling.

Furthermore, inspired by Su et al. [49], we incorporate a degen-
eration penalty into Eq. (13) to prevent the repetitive degeneration
problem. The final probability of visual-conditioned is formulated
as:

𝑃 (𝑥𝑡 |𝑥<𝑡 ,I) =𝑃𝐿𝑀 (𝑥𝑡 |𝑥<𝑡 )𝑃 (I|𝑥𝑡 , 𝑥<𝑡 )𝛾−
𝛽 (max(𝑠 (𝑥𝑡 , 𝑥 𝑗 ), 𝑗 ∈ {1, . . . , 𝑡 − 1}), (14)

where 𝛽 is a hyper-parameter to control the degeneration penalty
strength, and 𝑠 (𝑥𝑖 , 𝑥 𝑗 ) is defined in Eq. (7).
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Method VIST-Text ROC WP

D-1 D-2 D-1 D-2 D-1 D-2
MAGIC 2.4 6.6 0.8 1.3 1.1 2.5
Ours 4.7 17.2 5.5 18.8 7.4 26.5

Table 3: Diversity evaluation results. “VIST-Text”, “ROC”,
“WP” represents the training of language generator is con-
ducted on the text part of VIST dataset, ROCStories, and
WritingPrompts, respectively. “D-𝑛” refers to “Distinct-𝑛”.
The best results for each metric are highlighted in bold.

5 EXPERIMENTS
Dataset. We make evaluation on the widely-used VIST bench-
mark [1] for visual storytelling. VIST contains 210,819 images from
10,117 Flickr albums. Each sample in VIST contains five images
selected from an album, and a five-sentence story is annotated as
ground truth. After excluding broken images, the dataset contains
40,098, 4988, and 5050 samples for training, validation, and test-
ing respectively. We use the test split of VIST as the evaluation
benchmark in all experiments. Following previous works [5, 14],
we evaluate at the album level, generating one story for each album
regardless of different selected images. During the training stage,
we use the text part of the VIST training split, where all names are
replaced with special placeholders.
Implementation Details. The language generator is initialized
with a pre-trained GPT-2 model, and fine-tuning is performed on 2
GTX3090 GPUs for 40,000 steps with batch size of 256. We set the
training loss weight 𝛼 to 1. To implement the visual discriminator,
we ultilize a pretrained CLIP with ViT-base architecture as the
image encoder. The visual-conditioned generation is performed on 1
GTX3090 GPU. In the reported results, we set the hyper-parameters
𝐾 , 𝛾 , and 𝛽 to 45, 1, and 0.01, respectively.
Evaluation Metrics. Following the existing works on the VIST
benchmark, we adopt a set of automatic evaluation metrics includ-
ing METEOR (M) [50], BLEU (B-n) [51], ROUGE_L (R_L) [52] and
CIDEr (C) [53]. METEORmeasures the semantic alignment between
generated and reference sentences by leveraging WordNet. BLEU
computes the unigram and n-gram overlap between generated and
candidate sentences. ROUGE_L measures sentence-level similarity
by computing the length of longest common subsequence. CIDEr
evaluates the consensus based on n-grams and weights n-grams
using Term Frequency Inverse Document Frequency (TF-IDF) to
emphasize informative content. However, we note that these met-
rics, as they rely on word correspondence with the ground truth,
may not fully capture the quality of open-ended generation tasks
such as storytelling.

5.1 Quantitative Results
Comparisonwith ExistingMethods.We compare the generation
quality of our method with a text-only trained methods. First, we
adopt top-𝑘 sampling [54] (𝑘 = 40) and nucleus sampling [55]
(𝑝 = 0.95). Since these sampling-based decoding strategy takes no
account of visual inputs, we consider them as the lower bound of the
text-only trained methods. We also include MAGIC [49], which was
proposed for image captioning and image-based story generation.

Concreteness

Ours MAGIC Tie

349

78

323

Relevance

(b) Relevance

298

127

325

Expressiveness

(c) Expressiveness

301

84

365

Concreteness

(d) Concreteness

Figure 4: Human evaluation results. “Tie” means the annota-
tor cannot choose the better story.

Method M B-1 B-2 B-3 B-4 R_L C
Ours-Max 22.6 41.8 18.9 8.5 4.1 17.0 0.9
Ours-Mean 22.8 43.2 20.0 9.1 4.4 17.2 1.3
Ours-Local 22.4 42.1 19.4 8.7 4.2 17.2 1.0

Ours-Planner 23.0 43.7 20.2 9.2 4.5 17.3 1.2
Table 4: Evaluation results of different image album aggre-
gation strategies. The best results for each metric are high-
lighted in bold.

MAGIC takes an image as input and generate text outputs by adding
CLIP similarity scores on language model predicted probabilities.
To extend MAGIC to the visual storytelling task, we average the
representation of input image sequence to form the visual input of
MAGIC. To provide a comprehensive comparison, we also report
results of several fully-supervised baselines. INet [48], TAPM [5],
OIAVist [20], and KAGS [18]

In Table 1, we present the comparison of our proposed method
with existing fully-supervised and text-only trained methods. As
expected, the fully-supervised methods trained on cross-modality
paired data exhibit better performance compared to the text-only
trained methods. However, our proposed method outperforms the
text-only trained baselines on almost all metrics by a considerable
margin, demonstrating the effectiveness of our visual-conditioned
generation strategy.
Cross-domain Transfer. In order to evaluate the generalization
ability of our method, we also explore cross-domain transfer by
using story datasets of different domains in the text-only train-
ing stage. Specifically, we use ROCStories [56] and Writing-
Prompts [54] for training. The training split of ROCStories dataset
contains 51,165 five-sentence commonsense stories. And the train-
ing split of WritingPrompts dataset contains 272,600 stories col-
lected from Reddit’s WRITINGPROMPTS forum1. The average
length of WritingPrompts stories is 734.5, and the average number
of sentences is 39.4, making it significantly larger than the VIST
dataset and introducing a larger domain gap. During training, we
exclude the story title and writing prompts to align with the VIST
evaluation process.

1www.reddit.com/r/WritingPrompts/
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Figure 5: Analysis of the effect of number of candidates 𝐾 .

In Table 2, we compare the cross-domain transfer ability between
our method and the text-only trained baselines. We observe a con-
siderable drop in performance for all methods when evaluated on
datasets from different domains. This is expected since the style,
theme and topic of the stories are different across datasets. However,
our method still outperforms others on most evaluation metrics,
demonstrating its superior generalization ability.
Diversity Evaluation. To further assess the expressive diversity
of the generated stories, we use Distinct-𝑛 which calculates the
number of distinct n-grams of all generated stories [57]. The value
is divided by the total number of generated tokens to avoid favor-
ing long sentences. The results presented in Table 3 demonstrate
that our method significantly outperforms the baseline in terms
of diversity. This can be attributed to the ability of our method
to attend to both global and local visual input, which results in
more informative and diverse expressions. Additionally, it can be
observed that the diversity of generated stories is relevant to the
training corpus, which suggests that the incorporation of external
text corpus can benefit visual storytelling.
Human Evaluation. As illustrated in previous works [14, 20], au-
tomatic evaluation metrics are insufficient for visual storytelling
due to its subjective and imaginative nature. To obtain more reliable
estimates, we also perform human evaluation. Following common
practice, we randomly selected 150 examples from the test set, and
invited 5 human annotators to rank generation results of different
methods. Specifically, the annotators were asked to evaluate the
stories based on three criteria: relevance, expressiveness, and con-
creteness. Relevance refers to whether the story covers the topic and
main objects in the images. Expressiveness refers to whether the
story is coherent, grammatically and semantically correct, and free
of repetition. Concreteness refers to whether the story is narrative
and concrete.

Fig. 4 shows the evaluation results of 5 human annotators. Our
method outperforms MAGIC by a large margin in all three aspects.
The dominance of our method is most significant in terms of Con-
creteness, indicating a greater ability to incorporate visual details
in the generated stories. The expressiveness of MAGIC is better
than the two other aspects, which reflects the fact that the language
quality of our method is slightly affected by introducing fine-level
visual control. Additionally, the “Tie” option is selected in a large
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Figure 6: Analysis of the effect of control weight 𝛾 .

percentage in all three criteria, which has not been reported in
previous methods [5, 18, 20, 48]. We believe the reason is that the
overall quality of stories generated by text-only trained methods is
lower than full-supervised methods, making it difficult to rank for
human annotators.

5.2 Ablation Study
Impact of Visual Condition Planner.We conduct ablation exper-
iments to analyze the effect of the visual condition planner, which
aggregates the cross-modality matching result of input images.
Specifically, we replace the aggregation process to three straight-
forward strategies: 1) choosing the maximum matching score in all
images, 2) averaging the scores of all images, and 3) using the score
of the corresponding image. The evaluation results in Table 4 indi-
cate that both strategies of viewing the images equally within the
album (“Ours-Max” and “Ours-Mean”) and focusing solely on the
corresponding local image (“Ours-Local”) have a negative impact
on the quality of the generated stories.
Impact of Hyper-parameters. During the visual-conditioned
generation, the selection of top-𝐾 candidate tokens to compute
cross-modality matching score with visual inputs and the addition
of visual control to the decoding process with a control weight 𝛾 in
Eq. (14) are governed by predefined hyper-parameters. Therefore,
it is important to analyze the influence of these hyper-parameters
on the quality of generated stories.

From the results in Fig. 5, we observe that the performance
improves with 𝐾 when 𝐾 < 30, and remains relatively stable when
𝐾 continues to increase. However, when 𝐾 is too large (> 60),
the performance slightly decreases as 𝐾 keep increasing. It is also
worth noting that the inference time significantly increases as 𝐾
increases. Therefore, we choose 𝐾 = 45 in our experiments as it
strikes a balance between performance and efficiency. The results
in Fig. 6 demonstrate the significant impact of the control weight 𝛾
on the generation process. Specifically, when the control weight is
too small, the generated stories tend to be disconnected from the
visual input, while an excessively large control weight will lead to
a disruption in the decoding process, thus deteriorating the overall
quality of the generated text. These experimental findings align
with our initial intuition and suggest the importance of selecting
an appropriate control weight in the visual-conditioned generation.
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MAGIC
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after that.  

there were fireworks in 

the sky. 
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the night.  

my friend and i sat on the 
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it's halloween and a group 
of friends are dressed up 

for the party.  

the girl is dressed as a 
witch and the guy is 

dressed as a zombie.  
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everyone is having a great 

time. 

after the party, everyone 
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house.  

at the end of the night, 
everyone drinks and has a 
great time.
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GT
a group of family 
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dinner. 

the brother of the family is 

anxious for dinner to start. 
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served at the end. 

the family poses for a 

photo together.

MAGIC

[male] invited us to dinner 
a few rows down the 

street.  

we started with steaks and 

onion rings.

here's the waiter standing 

at the table serving beer.  

of course, dinner was 

served hot from the grill.  

all in all, it was a great 

night.

Ours
i invited all of my friends 

over for dinner.  

we had a great time 

talking and eating.  

some of the food was very 

good. 

at the end of the night, we 
all got together for a 

group photo.  
it was a great night.

0

(b)

Figure 7: Qualitative comparison between our method and MAGIC. Words highlighted in red represents exact description of
corresponding image, and words highlighted in green represents information from other images.

5.3 Qualitative Results
Fig. 7 presents two examples of generated stories by MAGIC and
our proposed method. The results show that our approach gener-
ates stories with more accurate semantics that correspond to the
images, as indicated by the red highlights. Moreover, the visual
condition planner enables the generation of sentences that are rel-
evant to the other images in the input sequence, as shown by the
green highlights. Our method outperforms the baseline method in
capturing visual contents within a single image and maintaining
the theme of the album, resulting in stories of higher quality.

6 CONCLUSION AND DISCUSSION
In this paper, we propose a novel approach for visual storytelling
that only requires textual story data for training. By leveraging the
capabilities of pretrained cross-modality models such as CLIP, we
model the visual storytelling task as a visual-conditioned genera-
tion problem. We adopt a guided decoding paradigm and design

a visual condition planner to aggregate the input visual sequence.
Our method is evaluated on the VIST benchmark through exten-
sive experiments, which demonstrate its effectiveness in generating
high-quality visual stories.

Although the proposed method avert the cost of cross-modality
annotated data, the training-free visual condition planner does have
its limitations in understanding the complex temporal structures
of visual input, which may affect the complexity of the generated
story. In future work, it may be worth exploring few-shot learning
methods to aggregate aligning results of image sequence to generate
more informative and narrative stories.
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