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Figure 1: Temporal relations alignment (prior works) vs. spatial relations alignment (our work). Compared to temporal
inconsistency in (a), the spatial misalignment issue in (b) is more common.

ABSTRACT
Deep learning has achieved great success in video recognition, yet
still struggles to recognize novel actions when faced with only a
few examples. To tackle this challenge, few-shot action recognition
methods have been proposed to transfer knowledge from a source
dataset to a novel target dataset with only one or a few labeled
videos. However, existing methods mainly focus on modeling the
temporal relations between the query and support videos while
ignoring the spatial relations. In this paper, we find that the spatial
misalignment between objects also occurs in videos, notably more
common than the temporal inconsistency. We are thus motivated
to investigate the importance of spatial relations and propose a
more accurate few-shot action recognition method that leverages
both spatial and temporal information. Particularly, a novel Spatial
Alignment Cross Transformer (SA-CT) which learns to re-adjust
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the spatial relations and incorporates the temporal information
is contributed. Experiments reveal that, even without using any
temporal information, the performance of SA-CT is comparable to
temporal based methods on 3/4 benchmarks. To further incorpo-
rate the temporal information, we propose a simple yet effective
Temporal Mixer module. The Temporal Mixer enhances the video
representation and improves the performance of the full SA-CT
model, achieving very competitive results. In this work, we also ex-
ploit large-scale pretrained models for few-shot action recognition,
providing useful insights for this research direction.
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1 INTRODUCTION
The massive amount and ever-growing video data demand auto-
mated video recognition techniques to analyze video content effec-
tively for a multitude of multimedia applications. Powered by deep
neural networks (DNNs), the performance of this task has been
greatly improved in the past few years [5, 10, 23, 27, 40]. However,
most of the mainstream video recognition methods rely heavily
on the availability of massive labeled training data for improved
performance. This is to assume that each target action has a large
number of labeled examples. Unfortunately, such an assumption
does not always hold in real-world applications. For example, it
is unrealistic to collect videos for the actions of drowning, failing,
etc. Recognizing actions in such a low-sample regime is thus of
great importance—a challenging task also known as few-shot action
recognition (FSAR).

Given a novel action with only a few labeled examples (also
called support videos), the goal of FSAR is to classify the unseen
query video according to the support videos. A body of work has
been proposed to achieve accurate FASR from different perspec-
tives [2, 3, 15, 26, 37, 44, 45, 52], amongst which exploiting the
temporal relations between the query and the support videos is the
latest and most effective approach. Representative methods include
TAM [3], MTFAN [45], TRX [26], and STRM [37]. They all empha-
size the importance of temporal relations and aim to match the
support and query videos by aligning the temporal frames. How-
ever, in this paper, as depicted in Fig. 1, we reveal that the spatial
misalignment of key objects also occurs in FSAR and is even more
common than the temporal inconsistency, an important observa-
tion that has been neglected in previous works. This motivates
us to re-examine the importance of spatial relations for few-shot
action recognition, by answering the two questions: 1) Could spatial
relations alone be sufficient for recognizing few-shot actions? and 2)
Can temporal information be simply utilized as a boost to the final
video representations?

To answer the first question, we propose a novel spatial cross-
attention (SCA) module to model the spatial relations between the
query and support videos. Specifically, we first split the whole video
frames into patches of equal size and then learn the similarities
between the support and query patches via cross-attention. By
matching those patches, objects of interest can be aligned even
if they appear at different spatial locations. Through the aligned
spatial relations, we turn the original support features into query-
specific support features, eliminating the negative effects caused
by the spatial misalignment. Experimentally, we find that our SCA
module alone without integrating any temporal information is
already very competitive. On three out of four benchmarks, the SCA
module achieves comparable or even better results than the current
SOTAs. This indicates that the spatial relations play a central role
in FSAR.

For the second question, we explore an alternative approach to
exploit the temporal information, i.e., using it to boost the represen-
tations rather than temporally (and expensively) aligning the query
and support videos as it did in prior works. Instead of designing
sophisticated algorithms to match the temporal frames [2, 3], we
explore a simple Temporal Mixer (TMixer) module for integrating

the temporal information. We build the TMixer with several MLPs
which is quite simple.

With the SCA module and the TMixer module, we are able to
build a new state-of-the-art for FSAR.

Formally, a novel SpatialAlignmentCross Transformer (SA-CT)
is proposed for few-shot action recognition. Our SA-CT is mainly
composed of a feature extractor, a spatial cross-attention (SCA)
module, and a Temporal Mixer (TMixer) module. Given a query
video and a set of support videos, a feature extractor is first applied
to extract the frame patch representations. The TMixer module
is then employed to enrich the representations. The SCA module
matches the patch representations between the query and support
to construct query-specific support representations for classifica-
tion. With SA-CT and its modules, we reveal that: 1) modeling the
spatial relations alone can achieve comparable or even better re-
sults in most cases; 2) the temporal information can be effectively
exploited as a temporal boost to the representations via a mixer
module.

In addition, inspired by the recent success of large-scale pre-
trained models (LSPMs), we take a step further to explore several
popular LSPMs including CLIP [28], DINO [4], and DeiT [39] for
FSAR. Concretely, we leverage the backbones of these models as fea-
ture extractors to extract more enriched representations for videos.
We empirically verify the benefit of using LSPMs for FSAR along
with several useful insights. These explorations and analyses could
help the community build more accurate FSAR models.

To summarize, wemake the following contributions. 1)We reveal
the importance of spatial relations for FSAR, a long-overlooked
aspect in the literature, and propose a novel spatial cross-attention
(SCA) module to model the spatial relations for more accurate
FSAR. 2) We propose to use a Temporal Mixer (TMixer) module to
integrate the temporal information into the representations as a
complementary and boost to the spatial information. 3)We combine
the SCA and TMixer module into a unified Spatial Alignment Cross
Transformer (SA-CT) architecture which achieves very competitive
results for FSAR. 4)We also provide the extensive exploration of
LSPMs as more powerful feature extractors for FSAR.

2 RELATEDWORK
Few-Shot Learning (FSL). Typical FSL methods can be roughly di-
vided into three categories: model-based [25, 30], metric-based [20,
32, 34, 42] and optimization-based [11, 29]. Model-based methods
aim to quickly update the parameters on a small number of samples
through the design of the model structure, and directly establish the
mapping function between the input instances and the predictions.
Metric-based methods measure the distances (e.g., cosine similarity)
between the samples in the support set and query set. More recent
FSL methods [8, 12, 14, 35, 36, 47–49, 51, 53] include HyperTrans-
former [51], Meta-FDMixup [12], STraTA [43], CrossTransform-
ers [8], MetaQDA [49], PMF [19], and StyleAdv [14]. Among them,
CrossTransformers [8] is the most related work to ours, which uses
the attention mechanism to find spatial correspondence between
the query and the labeled images. However, CrossTransformers
was proposed for image few-shot learning, while we tackles the
more challenging problem of video few-shot learning.
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Few-Shot Action Recognition (FSAR). FSAR aims to recognize
unseen videos with only a few labeled samples. Prior works have
made certain progresses via including compound memory net-
work [52] for optimal video representations, synthesizing additional
examples for novel categories [22], leveraging synthetic videos as
data augmentation [13], and introducing extra multimodal informa-
tion [15]. More recent works focus on utilizing temporal informa-
tion. Inspired by the text sequence matching task, TARN [2] regards
videos as segment-level sequence data and matches the query with
the support videos. OTAM [3] aligns query and support videos
temporally by calculating frame similarities. In order to align sub-
sequences of actions at different speeds, TRX [26] constructs video
representations from ordered tuples of varying numbers of frames.
MTFAN [45] explored the task-specific motion modulation and the
multi-level temporal fragment alignment. HyRSM [44] brought up
hybrid relation module and set matching metric. By adding spatial
and temporal enrichment module to TRX [26], STRM [37] achieves
impressive performance in FSAR.
Cross-Attention for Few-Shot Learning. One core challenge of
few-shot learning lies in matching the support and query instances.
Following this, several methods [8, 18, 26, 37, 50] have been pro-
posed to explore cross-attention for improved alignment of the
image/video instances. Among them, TRX [26] and STRM [37]
are the two most related works to us. Specifically, TRX shows its
potential in matching actions at different speeds. Based on TRX,
STRM reaches very competitive performance by further adding a
self-attention module on spatial patchs. Different from TRX and
STRM which both tackle FSAR from a temporal perspective, our
work investigates the importance of spatial relations to FSAR and
proposes to align the spatial objects between videos to achieve more
accurate FSAR. Note that STRM also handles the spatial relation,
but via self-attention applied on patches within a single video. By
contrast, we apply cross-attention to interact patches between the
support and query videos.
Large-Scale Pretrained Models (LSPMs). Previous works have
shown the significant impacts of LSPMs to various downstream
tasks [4, 9, 24, 28, 39]. Those LSPMs exceed the CNN network in
a number of vision tasks. A recent work [19] shows that a sim-
ple transformer-based pipeline can boost the performance of FSL.
However, applying LSPMs for FSAR is still underexplored. Existing
FSAR methods [3, 15, 26, 37] mainly focus on a few standard CNN
architectures (e.g., ResNet-50 pretrained on ImageNet). In this pa-
per, we explore whether FSAR can also benefit from LSPMs and to
what extent LSPMs can boost the performance of our model.

3 PROPOSED METHOD
3.1 Problem Formulation
Given 𝐶 action classes each containing only 𝐾 (a small number
like 5) labelled instances as the ‘support set’, the task of FSAR is
to classify an unlabelled query video into one of the classes in the
‘support set’. Following the episodic training paradigm in prior
works [3, 11, 42, 46], we use episodic training in which few-shot
tasks are sampled randomly from the training set. In each episode,
we learn a 𝐶-way 𝐾-shot classification task. We denote a query
video of 𝐿 frames as𝑄 = {𝑞1, · · · , 𝑞𝐿}. For each class 𝑐 ∈ {1, · · · ,𝐶},

we denote the support videos of this class as 𝑆𝑐 . Specifically, 𝑆𝑐
contains 𝐾 videos, for the 𝑘𝑡ℎ video, we have 𝑆𝑐

𝑘
= {𝑠𝑐

𝑘1, · · · , 𝑠
𝑐
𝑘𝐿

}.
3.2 Method Overview
Motivated by the observation that the spatial misalignment of key
objects is oftentimes more severe than the temporal inconsistency,
we introduce a novel Spatial Alignment Cross Transformer (SA-
CT) to better handle the spatial misalignment by readjusting the
spatial relations between two videos. The overall architecture is
shown in Fig. 2. First, a feature extractor is leveraged to encode
the video frames in the support and query sets. The frame features
are then passed through the TMixer module to fuse higher-order
temporal information as well as to reduce the number of video
frames. Next, the SCA module is employed to match the spatial
patches between the query and support set, and construct the query-
specific prototypes for classification. Finally, distances are passed
as logits for training and inference steps.

3.3 Spatial Cross-Attention Module (SCA)
Cross-attention mechanism, initially introduced in [41], has shown
its ability in aligning images and videos [3, 15, 26, 37]. We employ
thismechanism in our SA-CT to align the spatial objects in the query
and support set. The procedure is illustrated in Fig. 3. Specifically,
we define the query feature of the 𝑖𝑡ℎ (𝑖 ∈ [1, 𝐿]) frame at the spatial
position 𝑝 as:

𝑞𝑓𝑖𝑝 =

[
Φ (𝑞𝑖 )𝑝 + CPE

(
Φ (𝑞𝑖 )𝑝

)]
, (1)

where Φ : R𝐻×𝑊 ×3 ↦→ R𝑃2×𝐷 represents a feature extractor that
extracts the latent features of 𝑃2 patches (i.e., spatial position 𝑝 ∈
[0, 𝑃2]), and CPE(·) is a conditional positional encoding of a frame
feature [6]. Similarly, the feature at spatial position 𝑚 of the 𝑖𝑡ℎ
(𝑖 ∈ [1, 𝐿]) frame of video 𝑘 in the support set of class 𝑐 is:

𝑠 𝑓 𝑐
𝑖𝑘𝑚

=

[
Φ
(
𝑠𝑐
𝑖𝑘

)
𝑚

+ CPE
(
Φ
(
𝑠𝑐
𝑖𝑘

)
𝑚

)]
. (2)

After generating the features of the query and support videos,
the similarity between the query and support at the 𝑖𝑡ℎ (𝑖 ∈ [1, 𝐿])
frame can be calculated as:

𝑎𝑐
𝑖𝑘𝑚𝑝

= 𝐿𝑁

(
𝑊𝑞 · 𝑠 𝑓 𝑐

𝑖𝑘𝑚

)
· 𝐿𝑁

(
𝑊𝑘 · 𝑞𝑓𝑖𝑝

)
, (3)

where 𝐿𝑁 (·) is the standard layer normalization [1], and𝑊𝑞 ,𝑊𝑘

are learnable projections of the features into the query and key
embeddings used in the attention mechanism [41].

For spatial alignment, each of the support videos is fully utilized,
i.e., patches in the query video are matched with those at different
locations of all the videos in support class 𝑐 . The attention map can
thus be derived by applying the Softmax operation along patches
of videos in a support class:

𝑎𝑐
𝑖𝑘𝑚𝑝

=

exp
(
𝑎𝑐
𝑖𝑘𝑚𝑝

/𝜏
)

∑
𝑙,𝑛 exp

(
𝑎𝑐
𝑖𝑙𝑛𝑝

/𝜏
) , 𝜏 = √︁

𝑑𝑘 . (4)

The above attention map represents the correspondences be-
tween different spatial locations in the query and support videos.
This allows the module to readjust the support features into a
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Figure 2: The architecture of our proposed Spatial Alignment Cross Transformer (SA-CT), illustrated in a 1-way 2-shot case. It
consists of a 1) feature extractor that extracts the features for both the support set and the query; 2) a TMixer module that
integrates the higher-order temporal information; and 3) a SCA module that aligns the spatial patches between the query and
support set, and construct the query-specific prototypes for classification.
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Figure 3: The architecture of the SCA module. Each corre-
sponding frame of patches in the query and support videos
are first passed through the Linear weights to compute
their cross attention. A query-specific prototype is then con-
structed based on the attention map. Finally, a mean distance
value is computed by averaging over the distances of all video
frames.
query-specific prototype for better spatial alignment as follows:

t𝑐𝑖𝑝 =
∑︁
𝑘𝑚

𝑎𝑐
𝑖𝑘𝑚𝑝

·
(
Wv · Φ

(
𝑠𝑐
𝑖𝑘

)
𝑚

)
, (5)

where,Wv represents the attention value weights.
Finally, the module calculates the distances between the query-

specific prototypes and the query using squared Euclidean distance,
and parses the distances as logits to represent the distribution over
the classes:

𝑑
(
𝑄, 𝑆𝑐

)
=

1
𝑃2

∑︁
𝑝

 1
𝐿2

∑︁
𝑖

(
𝒕𝑐𝑖𝑝 −

(
Wv · Φ (𝑞𝑖 )𝑝

))2
2
. (6)

The same value weight 𝑊𝑣 is applied to both the query and
support features to ensure that the distances calculated above could
measure the similarities between the query and support videos. We
also set the query weight𝑊𝑞 and key weight 𝑤𝑘 to be the same,
which could maximize the attention value for the corresponding
spatial locations.
3.4 Temporal Mixer Module (TMixer)
The SCA module enables our SA-CT to align objects in the query
and support videos. In addition to spatial relations, we explore
a TMixer module that modifies two MLP-mixer [38] layers to in-
tegrate the temporal information in a more efficient manner. A
standard MLP-Mixer consists of two types of MLP layers: channel-
mixingMLPs and token-mixingMLPs. Themain purpose of channel-
mixing MLPs is to facilitate communication between different chan-
nels, which inspires us to integrate the inter-frame relations with a
global reception field. In our TMixer module, we regard frames of a
video as different channels. Frame features are thus able to interact
with each other and be enriched globally with high-order temporal
information. An illustration of this module is depicted in Fig. 4.
Concretely, consider the feature 𝑓𝑖 obtained by a backbone at the
𝑖𝑡ℎ (𝑖 ∈ [1, 𝐿]) frame, then the concatenated feature representations
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Figure 4: The architecture of the TMixer module. The frame
representations are passed through fourMLPs, each of which
consists two layers. The first two MLPs integrate the tem-
poral information by allowing the frames to interact with
each other. The last two MLPs are employed to reduce the
number of frames, thus decreasing the computational cost
and accelerating the model.
of an entire video are denoted as F = [f1; · · · ; f𝐿] ∈ R𝐿×𝑃

2×𝐷 . We
employ two MLPs, to interact frames of a single video:

U𝑖,∗,∗ = F𝑖,∗,∗ +W2 · 𝜎
(
W1 · F𝑖,∗,∗

)
, 𝑖 = 1 . . . 𝐿, (7)

V∗,∗, 𝑗 = U∗,∗, 𝑗 +W4 · 𝜎
(
W3 · U∗,∗, 𝑗

)
, 𝑗 = 1 . . . 𝐷, (8)

where, 𝜎 denotes the ReLU non-linearity, andW1,W2 ∈ R𝐿×𝐿 ,W3,
W4 ∈ R𝐷×𝐷 are all learnable weights.

We have enriched the video features globally following the idea
of frame mixing, and now we further extend this idea to reducing
the frames. Concretely, the following two MLPs are used to reduce
the frames and accelerate the aforementioned SCA modules:

Y∗,∗,∗ = W6 · 𝜎
(
W5 · V𝑖,∗,∗

)
, 𝑖 = 1 . . . 𝐿, (9)

Z∗,∗, 𝑗 = Y∗,∗, 𝑗 +W8 · 𝜎
(
W7 · Y∗,∗, 𝑗

)
, 𝑗 = 1 . . . 𝐷, (10)

where, 𝜎 denotes the ReLU non-linearity, and W5 ∈ R𝐿×𝐿/2 W6 ∈
R𝐿/2×𝐿/2,W7,W8 ∈ R𝐷×𝐷 are all learnable weights. After passing
through these two MLPs, 𝐿 frames in each video are reduced to 𝐿/2
frames, we will empirically verify the effectiveness of this operation
in Sec. 4.4.

Note that this module is applied on both the query and the
support features before passing through the SCA module. As such,
features of one single frame are enabled to incorporate high-order
temporal information of the whole video.

3.5 Relation to Prior Works
The recent works TRX [26] and STRM [37] both explore using cross-
attention to address FSAR tasks. TRX [26] focuses on aligning sub-
sequences of videos. On the other hand, STRM [37] incorporates
spatial information by employing self-attention on individual video

frames, enriching them locally, and then passing these enriched
frames into a modified TRX module (named TRM) for recognition.
Despite this, the core concept of STRM remains similar to TRX,
as it still involves video sub-sequences matching. In contrast, our
approach differs from TRX and STRM. We utilize cross-attention to
match patches in both support and query video frames, enabling an
interaction between all the support and query patches. This enables
our proposed SA-CT model to spatially align videos effectively.

4 EXPERIMENTS
4.1 Experimental Setup

Datasets. We evaluate our method on four action recognition
datasets, including HMDB51 [21], UCF101 [33], Kinetics [5], and
Something-Something V2 (SSv2) [16]. UCF101 dataset contains 101
action categories of over 13,320 short trimmed videos; HMDB51
dataset has 6,849 videos from 51 action categories; Kinetics con-
tains 400 types of human actions and each video lasts around 10
seconds; SSv2 is the largest dataset containing over 220k videos.
One common characteristic of the UCF101, HMDB51, and Kinet-
ics datasets is that the semantic concepts (e.g., objects and back-
grounds) are more related to the action categories. However, for
SSv2, a large proportion of the categories are more related to the
temporal information [31]. As for the specific splits of training,
validation, and testing sets, for UCF101 and HMDB51, we use the
splits as in ARN [46]. For Kinetics, we follow the splits proposed in
CMN [52], in which 100 classes are selected to split into 64/12/24
classes for train/val/test, respectively. For SSv2, we follow the same
splits as in OTAM [3], which also define 64/12/24 action classes for
train/val/test sets.

Implementation Details. For fair comparison, following previ-
ous works [3, 15, 26, 52], we adopt the ResNet-50 [17] pretrained
on ImageNet [7] as our backbone. We remove the last two layers
of ResNet-50 to extract feature maps of size 7 × 7 × 2048 for video
frames. The extracted feature maps can support our cross-attention
operation on patches. For each video (in both the query and support
set), we uniformly sample 8 frames, i.e., 𝐿 = 8. We first re-scale the
height of the frames to 256 and then crop the frames to 224 × 224.
Common data augmentations like random cropping and horizontal
flipping are also used during model training. The SGD is used as
the optimizer for the meta-train stage. For UCF101, HMDB51, and
Kinetics, the learning rate is set to 0.0005; while for SSv2, we use
a learning rate of 0.005 due to its larger number of videos. During
training, the validate set is used to determine the hyper-parameters
with the best are then adopted for testing. For testing, we randomly
select 10,000 meta-tasks from the test set and report the average
accuracy as the final performance metric.

4.2 Comparison with SOTAs
To show the effectiveness of our SA-CT, we first compare our
method with the most representative and SOTA methods, including
the CMN [52], TRAN [2], Embodied [13], ARN [46], OTAM [3],
AmeFu-Net [15], TRX [26], and STRM [37]. Our main results for
5-way 1-shot and 5-way 5-shot FSAR tasks are reported in Tab. 1.

Results without the TMixer. Wefirst compare our SA-CTwhen
the TMixer module is removed so as to verifies the importance of
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Method Backbone UCF101 HMDB51 SSv2 Kinetics

1 shot 5 shot 1 shot 5 shot 1 shot 5 shot 1 shot 5 shot
CMN [52] ResNet-50 - - - - - - 60.5 78.9
TARN [2] ResNet-50 - - - - - - 64.8 78.5

Embodied [13] ResNet-50 - - - - - - 67.8 85.0
ARN [46] ResNet-50 66.3 83.1 45.5 60.6 - - 63.7 82.4
OTAM [3] ResNet-50 - - - - 42.8 52.3 73.0 85.8

AmeFu-Net [15] ResNet-50 85.1 95.5 60.2 75.5 - - 74.1 86.8
TRX [26] ResNet-50 - 96.1 - 75.6 - 64.6 - 85.9
STRM [37] ResNet-50 - 96.9 - 77.3 - 68.1 - 86.7

SA-CT w/o TMixer (ours) ResNet-50 - 96.4 - 77.8 - 61.4 - 86.4
SA-CT (ours) ResNet-50 85.4 96.4 60.4 78.3 48.9 69.1 71.9 87.1
SA-CT (ours) ViT-base - 98.0 - 81.6 - 66.3 - 91.2

Table 1: Comparisons with SOTAs. We hightlight that: 1) our “SA-CT w/o TMixer” that without any temporal information
used outperforms the TRX and is comparable to the STRM on UCF101, HMDB51, and Kinetics. This reveals the importance of
the spatial relation; 2) Our full SA-CT model improves the “SA-CT w/o TMixer” and achieves very competitive results. This
indicates that the temporal information could be well utilized via a simple temporal module.

spatial relation (captured by the SCA module). As shown in "SA-CT
w/o TMixer" in Tab. 1, surprisingly, our SA-CTwithout utilizing any
temporal information (i.e., “SA-CT w/o TMixer (ours)”) without uti-
lizing any temporal information achieves very competitive results
to the current SOTAs on three out of four datasets. Particularly,
compared with TRX that only tackles the temporal misalignment,
our “SA-CT w/o TMixer" performs better on UCF101, HMDB51, and
Kinetics datasets. This indicates that, on relatively common video
datasets, aligning the spatial semantic concepts is more important
than fixing the temporal inconsistencies. Even when compared
with the STRM method which upgrades TRX by using the spatial
information as a supplement, our results are still comparable on
this three datasets. On HMDB51, we can even surpass STRM by
0.5%. Note that AmeFu-Net also reaches very competitive results,
however, AmeFu-Net additionally introduces the depth modality
while we only require the RGB frames. These results confirm the
importance of modeling spatial relations for FSAR. Our “SA-CT
w/o TMixer" does not work well on SSv2, which we conjecture
is caused by the complicated temporal information contained in
SSv2 videos. Arguably, such cases are relatively less common in
real-world applications. The limitation on SSv2 in turn motivates
us to incorporate the temporal information into our SA-CT by the
TMixer to in turn boost the spatial relation.

Results of the Full SA-CT. Equipped with the TMixer, our full
SA-CT model outperforms the baselines by a considerable margin
consistently across different datasets and settings. Specifically, 1)
under the 5-way 1-shot setting, SA-CT achieves an accuracy of
85.4%, 60.4%, 48.9%, and 71.9% on the UCF101, HMDB51, SSv2, and
Kinetics, respectively. We improve the ARN model by up to 19.1%,
14.9%, and 8.2% respectively on UCF101, HMDB51, and Kinetics
datasets. The superiority in such a low data regime indicates the effi-
ciency of our SA-CT approach in capturing and aligning the spatial
relations between the query and support videos. 2) Under the 5-way
5-shot setting, our SA-CT also achieves good results. On HMDB51,
SSv2, and Kinetics, we outperform the best baseline STRM by 1.0%,
1.0%, and 0.4%, respectively. Though the performance improvement

may numerically seems minor when compared with the improve-
ment achieved under the 1-shot setting, we highlight that both TRX
and STRM are well-developed and sophisticated FSAR algorithms
that work really well under the 5-shot setting, and it is notably
hard to exceed the two methods under this relatively data sufficient
regime. 3) By employing the ViT-base architecture, we are able to
achieve new state-of-the-art (SOTA) results on three benchmark
datasets: UCF101, HMDB51, and Kinetics. The obtained accuracies
for these datasets are 98.0%, 81.6%, and 91.2%, respectively. For a
comprehensive analysis of various backbones and their impact on
performance, please refer to Sec. 4.3.

4.3 Learning From LSPMs.
In this section, we investigate the benefit of using LSPMs for FSAR.
Besides the ResNet-50 that has been widely used for FSAR [3, 15, 26,
37], here we first explore different pretrained vision transformers
as the feature extractors. We build our SA-CT method upon those
extractors and use different LSPMs, including DINO [4], CLIP [28],
DeiT [39], and supervised training method (abbreviated as “SL”)
to initialize the backbones. We conduct experiments on both fix-
ing and freeing the extractor parameters. In addition, to evaluate
the representations extracted by different extractors, we further
introduce the ProtoNet (PN) [32] as a FSL classifier to build simple
baselines. Concretely, PN is a non-prametric FSL method which
classifies the query actions by ranking the feature similarities be-
tween instances. Thus, we form the “PN-FSAR" by simply averaging
the frames features and then feeding the averaged features into PN.
The 5-way 5-shot results are reported in Tab. 2. From the results,
we summarize the following observations:

• A new SOTA (highlighted in green) can be achieved by building
our SA-CT upon the ViT-base (SL/IN21K). On UCF, HMDB, and
Kinetics, the new SOTA accuracy reaches 98.0%, 81.6%, and
91.2%, respectively. Compared to our prior SA-CT (ResNet-
50)(SL/IN1K) which is highlighted in orange, the perfor-
mances on UCF, HMDB, and Kinetics are improved by up to
1.6%, 3.3% and 4.1%, respectively. These results confirm that
FSAR task can indeed be improved by using LSPMs.
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Extractor Pretrain Fix Method UCF HMDB SSv2 Kinetics

ResNet-50 SL/IN1K ✓ PN-FSAR 88.8 61.1 39.9 76.7
ResNet-50 SL/IN1K ✓ SA-CT 94.2 73.7 59.5 85.3
ResNet-50 SL/IN1K - SA-CT 96.4 78.3 69.1 87.1
ResNet-50 DINO/IN1K ✓ PN-FSAR 91.3 66.9 40.3 78.2
ResNet-50 DINO/IN1K ✓ SA-CT 93.4 75.2 57.6 84.3
ResNet-50 DINO/IN1K - SA-CT 95.0 75.4 65.2 85.8
ResNet-50 CLIP/YFCC ✓ PN-FSAR 91.3 70.6 36.5 82.2
ResNet-50 CLIP/YFCC ✓ SA-CT 96.0 79.0 61.2 87.8

ViT-small DINO/IN1K ✓ PN-FSAR 93.2 69.0 42.9 82.8
ViT-small DINO/IN1K ✓ SA-CT 93.3 70.6 63.2 78.5
ViT-small DINO/IN1K - SA-CT 95.4 72.2 61.0 82.8
ViT-small DeiT/IN1K ✓ PN-FSAR 91.8 64.2 36.8 82.7
ViT-small DeiT/IN1K ✓ SA-CT 93.0 72.1 58.1 83.7
ViT-small DeiT/IN1K - SA-CT 95.7 77.8 66.1 86.1

ViT-base SL/IN21K ✓ PN-FSAR 96.7 76.3 41.4 90.3
ViT-base SL/IN21K ✓ SA-CT 96.3 77.6 51.8 88.6
ViT-base SL/IN21K - SA-CT 98.0 81.6 66.3 91.2
ViT-base DINO/IN1K ✓ PN-FSAR 94.4 70.5 43.2 84.7
ViT-base DINO/IN1K ✓ SA-CT 94.6 72.6 63.3 81.2
ViT-base DeiT/IN1K ✓ PN-FSAR 92.8 67.0 35.2 82.0
ViT-base DeiT/IN1K ✓ SA-CT 95.1 75.1 55.5 85.2

Table 2: Learning from LSPMs. The 5-way 5-shot results are reported here. The “PN-FSAR” denotes the simple baseline that
takes the non-parametric protonet as the FSL classifier. It basically evaluates the ability of LSPMs. Both the ResNet-50 and ViT
are investigated with different pre-training methods. Compared to our method (based on typical ResNet-50 (IN1K), highlighted
in orange), a new SOTA (highlighted in green) is achieved by employing the ViT-base (ImageNet21k).

• ViT has advantages over the ResNet-50 on extracting richer
representations for video frames. Generally, with the same
“DINO/IN1K” as pretraining, comparing the results of PN-
FSAR, the ViT-base performs the best, followed by the ViT-
small, while ResNet-50 performs the worst.

• Supervised training vs. self-supervised training. Overall, though
the new SOTA is achieved by the ViT-base pretrained under
supervised learning (SL), we notice that the self-supervised
learning (SSL) pretraining methods (e.g. DINO) also achieves
good results. Specifically, taking ResNet-50 as the extrac-
tor, the SSL based “DINO/IN1K” is competitive to “SL/IN1K”.
For the ResNet-50 with PN-FSAR, the “DINO/IN1K” even
outperforms the “SL/IN1K”.

• Finetuning the extractor improves performance. Comparing
the results of fixing the extractor or not, we find that finetun-
ing plays an important role in improving FSAR. Considering
the potential data shifts between the pretraining and testing
datasets, such an improvement is somewhat expected. That
is, finetuning the base model on the specific testing data can
help alleviate distributional shifts and improve performance.

• SSv2 is an exception. Interestingly, among all the testing
datasets, the UCF, HMDB, and Kinetics all benefit from
LSPMs more or less, while SSv2 is the only exception. This
reflects different properties of the testing datasets, i.e., com-
pared to other datasets, SSv2 has a higher demand for tem-
poral information [31]. Unfortunately, the LSPMs were all
pretrained on images thus become less effective on datasets
like SSv2. This calls for dedicated LSPMs for video tasks.

4.4 Ablation Study
The impact of TMixer. In Fig. 5, we demonstrate that the

TMixer module significantly improves SA-CT performance. On

UCF101 HMDB51 SSv2 Kinetics
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Figure 5: The impact of TMixer. The simple TMixer module
improves the SA-CT steadily.

HMDB51 and Kinetics, accuracy increases from 77.8% and 78.3%
to 87.1% and 87.1%, respectively. On SSv2, TMixer improves the
performance from 61.4% to 69.1%, with a 7.7% gain. These results
confirm the effective utilization of temporal information using a
simple MLP-based module. TMixer also adds MLP3 and MLP4, re-
ducing video frames from 8 to 4. This decreases the total Multi-Adds
of SAC by up to 38.5% (from 5.48G to 3.37G), as shown in Tab. 3.
The additional two MLPs contribute only 419.64M Multi-Adds. This
demonstrates that TMixer is a simple and efficient module for uti-
lizing temporal information and reducing computational costs.

Frames Total Multi-Adds of SAC Total Multi-Adds of TMixer

8 5.48G 419.64M
4 3.37G 839.28M

Table 3: TMixer accelerates the model. The Multi-Adds of
SAC is decreased by 38.5% (from 5.48G to 3.37G).

Varying the number of patches. Here we study the impact
of varying number of patches on HMDB51 dataset. In Fig. 7, the
horizontal axis represents the number of patches in each row (e.g. 7
means each row has 7 patches, and one video frame has 7 × 7 = 49
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Jumping Into Pool

Playing Ukulele

Dribbling Basketball
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Query

Correspondence in support set Correspondence in support set 

Query

Figure 6: Visualizations of our spatial alignment. Four examples are given. The horizontal and vertical axes represent the
support and query patches, respectively. The brighter the color, the higher the similarity. We downsample the total patches
from 7 × 7 = 49 patches to 3 × 3 = 9 patches for better visualization. Results show that our SA-CT successfully aligns the related
regions of the support and query videos.
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Figure 7: Ablation study on the number of patches. We con-
duct experiments on HMDB51 with the number of patches in
a row set varying from 1 to 7. SA-CT achieves the best result
when the frames are split into 7 × 7 = 49 patches.

patches), while the vertical axis represents the accuracy of the
model. Generally, we observe that the accuracy of the performance
improves as the number of patches increases with exceptions on
3 patches and 6 patches. Critically, our SA-CT achieves the best
performance when the number of patches is set as 7; and the perfor-
mances are relatively poor when the number of patches is smaller
than 4. This indicates that with more fine-grained patches, the
benefits of our SCA module are maximized.

4.5 Visualization
In this section, we visualize four examples of correcting the spatial
misalignment in Fig. 6 to help understand the working mechanism
of our SA-CT. Each example consists of a query frame image and a
few support frame images, and the corresponding attention maps.

We downsample the total patches from 7 × 7 = 49 patches to
3×3 = 9 patches for better visualization. The vertical axis represent
the query patches (3 × 3 grid, flatten to 9 patches), and horizontal
axis represent support patches (3 × 3 grid, flatten to 9 patches).
The brighter the color, the higher the similarity. The visualized
examples show clearly the advantage of our SA-CT in aligning the
objects of interest from different locations. Taking “playing ukulele”
as an example, our model successfully matches the “ukulele” patch
even when it appears at different spatial locations of the two videos.
These results well indicate the effectiveness of our SCA module.

5 CONCLUSION
In this paper, we re-examined the role of spatial relations for Few-
Shot Action Recognition (FSAR), and experimentally revealed its im-
portance for accurate FSAR via a proposed Spatial Cross-Attention
(SCA) module. With SCA, we introduced a novel Spatial Alignment
Cross Transformer (SA-CT) which better handles the spatial mis-
alignment by re-adjusting the spatial relations between two videos.
Further equipped with a simple but effective Temporal Mixer mod-
ule, our SA-CT achieves state-of-the-art results across different
benchmark datasets and settings. We also conducted extensive ex-
periments to explore the potential of LSPMs for FSAR. Our work
contributes to the field with a new SOTA method and useful under-
standing for future research.
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