
Uni-paint: A Unified Framework for Multimodal Image
Inpainting with Pretrained Diffusion Model

Shiyuan Yang
City University of Hong Kong

Hong Kong SAR, China

Xiaodong Chen
Tianjin University
Tianjin, China

Jing Liao∗
City University of Hong Kong

Hong Kong SAR, China

Figure 1: Uni-paint allows users to perform unconditional, text-guided, stroke-guided, exemplar-guided or mix-guided inpaint-
ing on a single provided image within one unified framework.

ABSTRACT
Recently, text-to-image denoising diffusion probabilistic models
(DDPMs) have demonstrated impressive image generation capa-
bilities and have also been successfully applied to image inpaint-
ing. However, in practice, users often require more control over
the inpainting process beyond textual guidance, especially when
they want to composite objects with customized appearance, color,
shape, and layout. Unfortunately, existing diffusion-based inpaint-
ing methods are limited to single-modal guidance and require
task-specific training, hindering their cross-modal scalability. To
address these limitations, we propose Uni-paint, a unified frame-
work for multimodal inpainting that offers various modes of guid-
ance, including unconditional, text-driven, stroke-driven, exemplar-
driven inpainting, as well as a combination of these modes. Fur-
thermore, our Uni-paint is based on pretrained Stable Diffusion
and does not require task-specific training on specific datasets, en-
abling few-shot generalizability to customized images. We have
conducted extensive qualitative and quantitative evaluations that
show our approach achieves comparable results to existing single-
modal methods while offering multimodal inpainting capabilities
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not available in other methods. Code will be available at https:
//github.com/ysy31415/unipaint.

1 INTRODUCTION
Large-scale language-image models such as denoising diffusion
probabilistic models (DDPMs) [12, 31, 32, 35] have recently shown
impressive generation quality and domain generizibility surpass-
ing that of GANs. As a promising generative modeling paradigm,
diffusion models have also been applied to image inpainting. Cur-
rent diffusion-based inpainting methods can be divided into two
categories: training-based and few-shot methods. Training-based
methods involve either training an image-to-image diffusion model
[34] or modifying a pretrained text-to-image model [32, 43, 45, 48]
with additional conditioning (e.g., masked image). While these mod-
els have fast inference times, they suffer from several drawbacks.
Firstly, large-scale dataset acquisition can be challenging. Secondly,
these methods are less scalable for modal extension as they have
been specifically designed and trained for a certain modality. On the
other hand, few-shot methods directly leverage the powerful gener-
ative capability of an off-the-shelf pretrained model through model
prior [1, 24] or guided sampling [2], requiring no additional dataset
collection and training. This category offers higher flexibility and
scalability, making it preferred in our work.
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Despite the success of diffusion models in the inpainting task,
their potential has not been fully exploited yet. Current methods,
regardless of their category, have limited capabilities for modal
extension, supporting only unconditional inpainting [24] or single
modality guidance (text guidance [1, 32, 48], or exemplar-guidance
[47]). This lack of flexibility in general usage can be problematic,
as a combination of different interaction methods is often required
to achieve a satisfactory inpainting result. For example, while tex-
tual descriptions can be used to describe high-level semantics to
be inpainted, they may struggle to accurately convey the user’s
intentions for object shape, color, and customized attributes. This
can be addressed by providing an additional reference image (exem-
plar) or drawing rough color strokes. As shown by the cat at upper
right corner in Fig. 1, generating such cat with specific identity,
predetermined colors, and gestures is much easier using multiple
guidance rather than relying solely on text. Therefore, a framework
that enables multimodal conditions for image inpainting is a natural
choice, but existing methods do not support it.

In this work, we present Uni-paint, the first unified framework
for multimodal image inpainting that supports both unconditional
and conditional controls, including text, stroke, exemplar, and a
combination of them, as shown in Fig. 1. To achieve this, we first
finetune a pretrained Stable Diffusion model [32] unconditionally,
requiring it to generate images that are only faithful to the known
part of the input image, which we refer to as masked finetuning.
Since the Stable Diffusion has been extensively pretrained on large
image datasets, it possesses the prior knowledge needed to gener-
ate plausible images. Our masked finetuning further enables the
model to generate context-plausible content in the unknown re-
gion unconditionally by leveraging its learned semantic awareness
of the known part. Furthermore, by exploiting the existing con-
ditional interface of a text-to-image diffusion model, conditional
inpainting with multiple modalities is also unified in this frame-
work. We identify two types of conditional interfaces: (1) the textual
interface, implemented through cross-attention, applicable for se-
mantic guidance like text and exemplar, and (2) the spatial interface,
achieved through image blending, suitable for spatial guidance like
stroke. These guidance modes can even be combined in the same
framework to perform mixed-modal inpainting.

Our Uni-paint is a few-shot method that differs from previous
approaches [32, 34, 48] that require training the model on large
datasets. Our method only requires finetuning on a single input
image, reducing the dependency on data collection and eliminat-
ing restrictions to training domain. However, like other few-shot
inpainting methods [1, 2, 24], our approach needs to progressively
blend the inpainted content with the known regions of the in-
put image during the sampling process to keep the known region
untouched. A common issue in blending-based methods is that
the inpainted content may overflow the mask boundary and get
truncated after blending. To address this, we introduce a masked
attention control mechanism for cross-attention and self-attention
layers of the diffusion model to restrict the scope of the generated
content within the unknown area.

Our Uni-paint framework has undergone extensive qualitative
and quantitative evaluations that demonstrate its comparable re-
sults to existing single-modal methods while offering multimodal

inpainting capabilities that are not available in other methods. In
summary, our contributions are as follows:
• We propose the first unified framework for multimodal image
inpainting based on pretrained diffusion model.

• We introduce few-shot masked finetuning on a single image
with null conditioning, making the inpainting scalable to other
modalities and generalizable to customized image inputs.

• We introduce a masked attention mechanism to alleviate the
potential leakage of inpainted content to known areas.

2 RELATEDWORK
Image inpainting. Early methods relied on borrowing the low-
level texture patches from known regions [3, 6, 9], but struggled
with complex semantic scenes like face completion. This problem
was not solved until ContextEncoder [29], the first GAN-based
model was proposed. Subsequent CNN/GAN-based works achieved
improved results by incorporating various modules like Partial
Convolution [22], Contextual Attention [49], Fourier Convolution
[38], etc. Others works used multi-stage pipelines like edge-guided
[27, 46], coarse-to-fine [37, 42, 50], progressive [20, 51], and re-
current [21] networks. The recent RePaint method [24] leveraged
DDPM priors and repetitive sampling for promising results. How-
ever, these unconditional methods do not support user guidance.
Text-driven image editing. As a user-friendly guidance modality,
text-driven editing has been gaining popularity. Early GAN-based
method like StyleCLIP [28] achieved human face editing by lever-
aging pretrained StyleGAN [15] and CLIP [30]. Recently, the rise
of large text-to-image diffusion models [31, 32, 35, 48] has paved
a promising way for high-quality, high-diversity text-driven gen-
erative modeling. These works can be roughly divided into three
categories: (1) Guided Sampling: by introducing various guidance
functions during sampling, such as CLIP guidance [2], style guid-
ance [23], edge guidance [41], and attention guidance [5]. (2) Atten-
tion Control: Works like Prompt-to-Prompt[10] and shape-guided
editing [14] manipulate the attention layer for impressive editing
results. (3) Training/Finetuning: InstructPix2Pix [4] trained a model
on generated image-prompt pairs for fast editing with user instruc-
tions. Few-shot editing can also be achieved by finetuning themodel
[17, 40], optimizing the text embedding [7, 26], or both [16]. Text-
driven image editing with diffusion models has also been applied
to image inpainting by altering a pretrained text-to-image model to
enable masked image conditioning [32, 43, 45, 48], but these meth-
ods require large training datasets. Alternatively, Blended Diffusion
[1, 2] achieved zero-shot inpainting by utilizing background blend-
ing. However, the blending strategy does not expose the model to
full context and may fail to handle semantic transitions near the
hole boundary. In contrast, our method employs masked finetun-
ing and attention control, ensuring global context awareness and
improved texture transitions.
Exemplar-driven image editing. Exemplar-driven image edit-
ing is a relatively new topic, which allows users to synthesize
customized objects using provided exemplars. Textual inversion
[7] captures new concepts from exemplars by optimizing token
embedding. DreamBooth [33] generates personalized outputs by
finetuning the model on exemplar images. Follow-up works like
CustomDiff [19], SVDiff [8], and ELITE [44] further accelerate the
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process by finetuning the model’s cross-attention layer, singular
values of the weights, and learning a mapping encoder, respectively.
Paint-by-Example [47] first achieved exemplar-driven inpainting
by trading textual conditioning for image conditioning, leading to a
lack of text guidance support. Also, its generalization to unseen ob-
jects may also be limited by the training dataset. Our approach mit-
igates these issues by extending a pretrained text-to-image model
for user-specific sample finetuning without modifying the model
structure.

3 METHOD
In our inpainting task, given an incomplete input image 𝑥𝑖𝑛 with
a binary mask𝑚 indicating its known region. Our uni-paint aims
to inpaint its unknown part and outputs inpainted image 𝑥𝑜𝑢𝑡
unconditionally or conditioned on multimodal guidance, including
text prompt𝑤 , exemplar image 𝑥𝑟𝑒 𝑓 , stroke map 𝑥𝑠𝑡𝑘 , or even a mix
of them, all based on a model parameterized by 𝜃 . This high-level
process can be formulated as:

𝑥𝑜𝑢𝑡 = Unipaint𝜃 (𝑥𝑖𝑛,𝑚, [𝑤, 𝑥𝑟𝑒 𝑓 , 𝑥𝑠𝑡𝑘 ]), (1)

where [·] denotes optional conditional inputs. Technically, we im-
plemented it through an iterative deterministic DDIM denoise sam-
pling [36] based on Stable Diffusion [32], where each denoise step
𝑝 (𝑥𝑡−1 |𝑥𝑡 , 𝑐) is formulated as:

𝑥𝑡−1 =
√
𝛼𝑡−1

(
𝑥𝑡 −

√
1 − 𝛼𝑡𝜖𝜃 (𝑥𝑡 , 𝑐, 𝑡)√

𝛼𝑡

)
+
√
1 − 𝛼𝑡−1 · 𝜖𝜃 (𝑥𝑡 , 𝑐, 𝑡) ,

(2)
where 𝛼𝑡 is time-dependent hyperparameter, 𝜖𝜃 is the noise pre-
dictor (i.e., the model) which takes current sampled image 𝑥𝑡 , text
embedding 𝑐 , timestep 𝑡 as inputs, and predicts the noise for de-
noising sampling. The initial image 𝑥𝑇 is sampled fromN(0, I) and
the final denoised image 𝑥0 will act as the output 𝑥𝑜𝑢𝑡 .

3.1 Overview
To leverage such model 𝜖𝜃 for inpainting, first we need to preserve
the known region of 𝑥𝑜𝑢𝑡 as in 𝑥𝑖𝑛 . A simple way is to blend the
known part with 𝑥𝑡 during sampling as done in [1, 2]. However, we
found this is insufficient since the known information is inserted
externally rather than generated by the model itself, the model lacks
full context awareness, potentially causing incoherent semantic
transitions near hole boundary. As such, we additionally finetune
the model weights 𝜃 → 𝜃∗ such that it can inherently reconstruct
the known region, as shown on left side of Fig. 2. We demonstrate
its superiority over direct blending in ablation study.

The finetunedmodel 𝜖𝜃 ∗ is aware of the known region. To achieve
multimodal inpainting in unknown region, according to Eq. 2, we
can alter the sampling by injecting semantic guidance via 𝑐 , or
spatial guidance via 𝑥𝑡 , or not apply any guidance, depending on
specific needs, as summarized on the right side of Fig. 2. We inject
the conditional information accordingly:
(1) Unconditional inpainting can be achieved by leveraging model’s
own prior without any conditions (𝑐 is set to null text ∅), formulated
as 𝜖𝜃 ∗ (𝑥𝑡 , ∅, 𝑡), as illustrated in Uncond. block in Fig. 2.
(2) Given text𝑤 , we obtain its embedding 𝑐 through a text encoder𝐶 ,
the sampling is conditioned on 𝑐 via semantic interface, formulated
as 𝜖𝜃 ∗ (𝑥𝑡 ,𝐶 (𝑤), 𝑡) as shown by Text block in Fig. 2.

(3) Given exemplar 𝑥𝑟𝑒 𝑓 , despite being in image format, it is fun-
damentally different image composition. We expect the model to
represent its distinct semantic features with some variation rather
than naive copy-and-paste. Therefore, we associate 𝑥𝑟𝑒 𝑓 with an
auto-selected token 𝑣∗ and inject it through semantic interface 𝑐 ,
formulated as 𝜖𝜃 ∗ (𝑥𝑡 ,𝐶 (𝑣∗), 𝑡), as shown by Exemplar block.
(4) Given stroke map 𝑥𝑠𝑡𝑘 , since it only requires color and spatial
alignment while permitting ambiguous semantic interpretation,
and text is struggled to deliver spatial information, so the best
choice is to spatially inject 𝑥𝑠𝑡𝑘 into 𝑥𝑡 to obtain modified 𝑥 ′𝑡 (see
Stroke block). The model operates as 𝜖𝜃 ∗ (𝑥 ′𝑡 , ∅, 𝑡).

These modalities can be used individually for single modality
inpainting, or combined for multimodality inpainting, which we
will introduce next.

3.2 Unconditional inpainting
We begin with unconditional inpainting as it serves as the founda-
tion for conditional guidance.
Masked Finetuning. Stable Diffusion has a strong generative
prior learned from extensive pretraining, we leverage such prior
for unconditional completion by introducing masked finetuning,
where the model is finetuned to reconstruct the known part of the
image. The masked finetuning enables the model to leverage its
learned semantic understanding of the known areas, resulting in a
plausible completion in unknown region.

Specifically, we adopt a typical training scheme as used in stable
diffusion [32], which reduces the computational load by first having
an encoder map the input image to low-dimension latent map (for
the rest of this paper, notation 𝑥 refers to latent representation).
The noising-denoising process is then performed in latent space,
supervised by a simple noise loss derived in DDPM [12]. The differ-
ence is that we only calculate the loss on known region (specified
by𝑚). Our masked finetuning loss ℓ𝑏𝑔 is defined below:

ℓ𝑏𝑔 = E𝜖,𝑡

𝑚 ⊙ 𝜖 −𝑚 ⊙ 𝜖𝜃
(
𝑥𝑖𝑛𝑡 , ∅, 𝑡

)2
2
, (3)

where 𝑥𝑖𝑛𝑡 is noised 𝑥𝑖𝑛 at timestep 𝑡 : 𝑥𝑖𝑛𝑡 =
√
𝛼𝑡𝑥

𝑖𝑛 +
√
1 − 𝛼𝑡𝜖 (𝜖 ∼

N(0, I)), 𝜖𝜃 is the predicted noise from the model, ∅ is the null text
embedding. Even if there is no explicit constraint on unknown area,
the model is still able to complete missing area in the sampling stage.
This can be attributed to the natural coherence of the pre-training
images, as well as the inherent inductive bias of convolution and
self-attention layers to extend and replicate textures.
Sampling with blending.

While finetuning the model helps memorize semantic content
in known regions, yet does not guarantee perfect reconstruction,
unless we overfit the known region through excessive finetuning,
which can negatively impact the model’s generative ability. To
preserve the known region and the editability, we also employ
blending technique, where the known part of sampled latent 𝑥𝑡 is
replaced by noised 𝑥𝑖𝑛 after each sampling step. This helps preserve
the known region with much fewer iterations and less tuning on
weights.
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Figure 2: Pipeline overview of Uni-paint. Themodel is finetuned on the known area of the input with null text. During sampling,
unconditional, text-driven, stroke-driven and exemplar-driven inpainting can be achieved by conditioning on null text, text,
stroke map, and exemplar’s subject token, respectively.

3.3 Text-driven inpainting
Once the model has been finetuned on known region, it will be
immediately available for text-driven inpainting by conditioning
on a text prompt𝑤 . Classifier-free guidance [13] is also applied to
boost the fidelity:

𝜖𝜃 ∗ (𝑥𝑡 , 𝑐, 𝑡) = 𝜖𝜃 ∗ (𝑥𝑡 , ∅, 𝑡) + 𝑠 (𝜖𝜃 ∗ (𝑥𝑡 , 𝑐, 𝑡) − 𝜖𝜃 ∗ (𝑥𝑡 , ∅, 𝑡)) , (4)

where 𝑐 = 𝐶 (𝑤) is the embedding of𝑤 , 𝑠 is the guidance scale. Since
we do not apply constraint on unknown region when finetuning,
thus the model tends to respond to text roughly in the unknown
area. Applying masked attention can bring more accurate control
to editing scope, which will be discussed later.

3.4 Exemplar-driven inpainting
Exemplar-driven inpainting allows the user to provide an exemplar
image 𝑥𝑟𝑒 𝑓 containing a subject, and the model should inpaint the
subject in the unknown region while maintaining a reasonable
semantic relationship with the background. Unlike image compo-
sition, the inserted subject should have the same identity as the
exemplar but with variations rather than a simple copy-and-paste.
Therefore, this is more challenging as it requires the model to re-
member exemplar’s key semantic features.

To achieve this, we finetune the model on exemplar conditioned
a class token 𝑣∗ that roughly corresponds to the subject. This pro-
cess is performed in parallel with the unconditional finetuning by
appending the following reference loss ℓ𝑟𝑒 𝑓 :

ℓ𝑟𝑒 𝑓 = E𝜖,𝑡

𝜖 − 𝜖𝜃 (
𝑥
𝑟𝑒 𝑓
𝑡 ,𝐶 (𝑣∗), 𝑡

)2
2
, (5)

where 𝑥𝑟𝑒 𝑓𝑡 is noised exemplar at timestep 𝑡 , 𝐶 (𝑣∗) returns the
embedding of 𝑣∗. We do not include prior-preservation loss as done
in DreamBooth [33] since this can be unnecessary in our task, if
users want to generate non-customized instances of a class, text-
driven inpainting is a better alternative. To accelerate convergence
and bring more diversity to object scale and position, we apply the
augmentation by randomly scaling and shifting the exemplar image

inside the unknown area’s bounding box, and only calculate the
loss on valid region. During the inference, conditioning on 𝐶 (𝑣∗)
allows the model to represent the subject.
Automatic subject identification. In normal penalization works
[7, 33], users first need to manually specify an initial subject token
that roughly describes the exemplar. Here we provide an alternative
to automatically obtain the subject token 𝑣∗, which can be useful
when users are unsure about the subject category or in automated
scenarios. Since Stable Diffusion uses CLIP text model [30] as its
text encoder, we use the corresponding CLIP image encoder to
retrieve the token 𝑣∗ that best matches the exemplar. We represent
this process as follows:

𝑣∗ = arg max
𝑣𝑖 ∈V

(
𝐸𝑇 (𝑣𝑖 ) · 𝐸𝐼 (𝑥𝑟𝑒 𝑓 )

)
, (6)

whereV is the set of all tokens, 𝐸𝑇 (𝑣𝑖 ) is the CLIP text embedding
of 𝑣𝑖 , 𝐸𝐼 (𝑥𝑟𝑒 𝑓 ) is the image embedding of 𝑥𝑟𝑒 𝑓 . In practice, embed-
ding set {𝐸𝑇 (𝑣𝑖 )} can be pre-computed and stored, only a single
inference of 𝐸𝐼 (𝑥𝑟𝑒 𝑓 ) is needed which costs negligible of time. We
visualize such process in appendix Sec. A.2.

3.5 Stroke-driven inpainting
Stroke-driven inpainting aims to generate real objects in unknown
area that have a consistent shape and color with the user’s stroke
map. A finetuned model is also immediately available for stroke
inpainting. To achieve this, we spatially blend the stroke latent
𝑥𝑠𝑡𝑘 with sampled latent 𝑥𝑡 to obtain modified latent 𝑥 ′𝑡 at a certain
intermediate timestep 𝜏 during the sampling, the blending operation
𝐵 is formulated as follows:

𝑥 ′𝑡 = 𝐵(𝑥𝑠𝑡𝑘 , 𝑥𝑡 , 𝑡) =
{
𝑥𝑡 ⊙ (1 −𝑚stk) + 𝑥𝑠𝑡𝑘𝑡 ⊙𝑚𝑠𝑡𝑘 if 𝑡 = 𝜏
𝑥𝑡 otherwise

(7)
where 𝑥𝑠𝑡𝑘𝑡 is noised stroke latent at time 𝑡 ,𝑚𝑠𝑡𝑘 is stroke mask
derived from 𝑥𝑠𝑡𝑘 . It is noteworthy that our approach does not
require users to scribble over the entire unknown area, but only the
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desired object, surrounding region will be completed automatically,
benefiting from masked finetuning.

3.6 Multimodal inpainting
Our method supports inpainting with a mixture of the aforemen-
tioned guidance. Mixed semantic guidance (text + exemplar) can be
achieved by simply conditioning on the embedding 𝑐 of combined
exemplar token 𝑣∗ and text 𝑤 , i.e., 𝑐 = 𝐶 (𝑤, 𝑣∗). Mixed semantic-
spatial guidance can be performed by additional stroke blending.
Specifically, we begin by conditioning on null text ∅ in the early
stages (𝑡 > 𝜏 ), where null text helps with unconditional completion
at these steps. When 𝑡 = 𝜏 , we perform spatial stroke blending
as described in Eq. 7, followed by semantic conditioning 𝑐 for re-
maining steps (𝑡 ≤ 𝜏). By adjusting 𝜏 , we can control the trade-off
between realism and stroke-faithfulness.We show additional results
in ablation study.

3.7 Masked attention control
While the model is finetuned to reconstruct the known region, we
have observed an issue that the inpainted object may exceed the
hole boundary and bleed into the known region, which may get
truncated after blending, resulting in noticeable edge artifacts.

To mitigate this issue, we introduce masked attention control,
the general idea is to restrict text attention with the known region
in cross-attention layers in the diffusion model, and restrict the in-
painted region’s attention with the known region for self-attention
layers, as illustrated in Fig. 3. Specifically, recall that in normal
attention, query𝑄 , key 𝐾 and value𝑉 are mapped from image fea-
tures for self-attention, while for cross-attention, 𝐾 , 𝑉 are mapped
from textual features. Based on this, we introduce attention mask
𝑀𝑎𝑡𝑡𝑛 , and our masked attention is computed as follows:

MaskedAttn(𝑄,𝐾,𝑉 ) =
[
softmax

(
𝑄𝐾𝑇
√
𝑑

)
⊙ 𝑀𝑎𝑡𝑡𝑛

]
×𝑉 (8)

where 𝑑 is the dimension of 𝐾 and 𝑉 . Let 𝑛 be the image feature
size and 𝑙 be the text feature length, and I be the set of known
pixels’ indices.

For cross-attention,𝑀𝑎𝑡𝑡𝑛 has the size of 𝑛2×𝑙 . Here,𝑀𝑎𝑡𝑡𝑛 [𝑖, 𝑗]
denotes whether the 𝑗𝑡ℎ textual token is allowed to attend to the
𝑖𝑡ℎ image pixel. To prevent text from affecting known region, we
set𝑀𝑎𝑡𝑡𝑛 [𝑖, 𝑗] as follows:

𝑀𝑎𝑡𝑡𝑛 [𝑖, 𝑗] =
{
0, if 𝑖 ∈ I
1, if 𝑖 ∉ I

(9)

For self-attention,𝑀𝑎𝑡𝑡𝑛 has the size of 𝑛2 × 𝑛2.𝑀𝑎𝑡𝑡𝑛 [𝑖, 𝑗] in-
dicates whether the 𝑗𝑡ℎ image pixel is allowed to attend to the 𝑖𝑡ℎ
image pixel. To prevent inpainted pixels from leaking into known
region, we set𝑀𝑎𝑡𝑡𝑛 [𝑖, 𝑗] as follows:

𝑀𝑎𝑡𝑡𝑛 [𝑖, 𝑗] =
{
0, if 𝑗 ∉ I and 𝑖 ∈ I
1, otherwise

(10)

We show in ablation studies that enabling masked attention
control effectively prevents the generated object from overflowing
outside the mask, thus avoiding truncation during blending.

“a vase of
flower”

Masked Cross-Attn

Unknown region Known regionAttn on Attn off

Masked Self-Attn

Figure 3: Illustration of masked attention control. For cross-
attention (left), text can only attend to the unknown re-
gion but not the known region. For self-attention (right),
inpainted content can only attend to the unknown region
but not the known region.

4 EXPERIMENTS
4.1 Experiment setup
Implementation details. Our method is based on Stable Diffusion
(sd-v1-4 checkpoint). We finetuned the model for 100 iterations
using Adam optimizer [18] with default parameters, and a learning
rate of 1e-5. We use the DDIM sampler [36] with 50 steps and a
classifier-free scale of 8 [13].
Datasets. Our image samples were obtained from multiple sources,
including: (1) EditBench [43], a systematic benchmark for text-
driven image inpainting. We used its natural images and simple
prompts as these are closer to practical use. (2) The Unsplash web-
site. (3) Images captured by ourselves. (4) Images from other papers.
Evaluation metrics. We used the following popular quantitative
metrics: (1) Neural Image Assessment (NIMA) [39]: a model-based
reference-free perceptual image quality metric. (2) Text-to-image
alignment (T2I) [11]: evaluates text-image CLIP similarity in text-
driven inpainting. (3) Image-to-image alignment (I2I): evaluates
the image-image CLIP similarity in exemplar-driven inpainting.
(4) Root mean squared error (RMSE): assesses the faithfulness of
the inpainted object to stroke color in stroke-driven inpainting.
For these metrics, the test sample number varies from 50 to 120,
depending on different tasks, and each sample’s statistic is averaged
from 8 diverse outputs. (5) Human preference: 55 participants were
presented with 80 side-by-side result comparisons from different
methods. To mitigate the choice bias, the order of the displayed
options was randomized for each comparison. Participants were
encouraged to vote for their most preferred result, but multiple
selections were allowed (no more than half of the available options)
if they found it hard to decide.
Baselines.We compared ourmethodswith state-of-the-art diffusion-
based inpainting methods. For unconditional and text-driven in-
painting, we compared with RePaint [24] (unconditional only),
SD-inpaint [32], GLIDE-inpaint [48], and Blended Latent Diffusion
(BLD) [1]. For stroke-driven inpainting, we compared with SDEdit
[25]. For exemplar-driven inpainting, we compared with Textual
Inversion (TxtInv) [7] and Paint-by-Example [47].

4.2 Text-driven/unconditional inpainting
Qualitative comparison.We present a side-by-side visual compar-
ison with related baselines in Fig. 4. As can be seen, our method is
able to generate more plausible results than GLIDE-inpaint, BLD,
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and RePaint. GLIDE-inpaint exhibits some artifacts along the hole
boundary (as seen in the cheese cake example), while BLD tends
to fit the mask shape, sometimes leading to unnatural transitions
with the background (as seen with the over-sized leopard head).
RePaint’s repetitive sampling harmonizes the transitions but some-
times leads to incorrect inpainted semantics (see the bird with
human head), since the image semantic is still not globally per-
ceived by the model in essence. SD-inpaint and our method achieve
comparable visual quality, but ours does not require training on a
massive dataset.
Quantitative comparison.We report T2I (which reflects faith-
fulness to text), NIMA (which focuses on technical quality but is
agnostic to aesthetics), and human votes (which reflect individual
subjective preference, as a complement to NIMA) of different meth-
ods in Tab. 1. As can be seen, BLD obtains the highest T2I score but
the lowest NIMA score, suggesting that it responds more strongly to
the text, but sometimes this response is locally excessive and lead to
unnatural oversized objects. Our method shows comparable NIMA
with other methods, but differs in the image-specific optimization,
thus was favored by most human evaluators. Moreover, we noticed
that SD-Inpaint shows lesser text-image alignment compared to
SD base model (as its T2I score is lower than ours). This is because
SD-Inpaint was trained with randomly generated masks, which
often cover image region unrelated to the text prompt. Training
on such masked images encourages the model to ignore the text,
resulting in a reduced or even absent textual responses, especially
when the masked regions are small. This finding is also revealed
by recent studies [43, 45]. Therefore, our work builds on SD base
model for its superior textual capability, which also brings more
potential to other modalities.

Table 1: Quantitative comparison on text-driven and uncon-
ditional (in parentheses) inpainting.

T2I NIMA Human votes

RePaint [24] - (4.48) (26.73%)
BLD [1] 26.71 4.25 (4.21) 29.64% (15.73%)
SD-Inpaint [32] 25.68 4.63 (4.53) 32.82% (36.73%)
GLIDE-Inpaint [48] 22.95 4.51 (4.45) 27.09% (21.00%)
Ours 26.48 4.59 (4.49) 38.64% (56.82%)

4.3 Exemplar-driven inpainting
Qualitative comparison. We compared our results with Paint-
by-Example [47], and the combined implementation of TxtInv and
BLD as done in [7], denoted as TxtInv+BLD. Our subject tokens
were automatically determined using Eq. 6. The results are shown
in Fig. 5, where we can see our method can better retain details
from the exemplar. Paint-by-Example achieves plausible results for
commonly-seen concepts (e.g., cat and dog) but falls short when
presented with less common or customized objects that may not
appear in their training dataset. TxtInv+BLD inherits the similar
truncation issues from BLD, and produces less aligned results than
ours. We attribute this to the fact that fine-tuning the model nor-
mally has a stronger fitting ability compared to solely optimizing
the word embedding.

Quantitative comparison. We use I2I score to measure the image
similarly between the inpainted part and the exemplar image. We
also report NIMA score and human preference in Tab. 2. While
all these methods generate images of comparable quality, ours
excels at capturing the semantics of the exemplar, particularly for
personalized concepts, resulting in higher scores for both the I2I
metric and human votes.

Table 2: Quantitative results on exemplar-driven inpainting.

I2I NIMA Human votes

TxtInv.+BLD [1, 7] 78.24 5.25 9.36%
Paint-by-Ex. [47] 77.75 5.32 21.27%
Ours 78.41 5.28 69.36%

4.4 Stroke-driven inpainting
Qualitative comparison. Since there is no stroke-driven inpaint-
ing baseline so far, we compared our method with the combined im-
plementation of SDEdit [25] and BLD [1], denoted as SDEdit+BLD.
As shown in Fig. 6, SDEdit+BLD succeeds in generating objects
that are well-aligned with the strokes. However, it fails to fill the
remaining unknown area with plausible content where stroke hints
are absent (see the apples in Fig. 6). In contrast, our approach ac-
complishes both stroke faithfulness and background completion,
enabling users to focus on their interested objects without having
to scribble over the entire missing area. This reveals that the pro-
posed masked finetuning helps the model gain awareness of image
semantics, bringing plausible completion in the unknown region.
Quantitative comparison. Fig. 7 presents quantitative statistics
on two aspects: color faithfulness to stroke, measured by 1-RMSE
(flipped RMSE), and image quality, measured by NIMA score. There
exits a trade-off between them when choosing different stroke
blending timestep 𝜏 . As can be seen, at the same level of stroke
faithfulness, our results generally have a better quality. We attribute
this to better background preservation and higher degree of editing
in our approach. For human evaluation, our method received 54.64%
of the votes as opposed to 45.36% of SDEdit+BLD.

4.5 Inpainting with mixed guidance
Uni-paint stands out from previous approaches by supporting the
use of mixed multimodal guidance for inpainting task. We demon-
strate this capability in Fig. 8, where text or exemplar are used
to deliver the subject’s semantic attributes and stroke is used to
determine its color and layout. By sampling from different initial
noise, our method can generate diverse outputs given the same
input and guidance.

4.6 Ablation studies
We conduct ablation studies on several settings used in our work.
Masked finetuning. To demonstrate the benefits of masked fine-
tuning, we present visual examples with different finetuning itera-
tions in Fig. 9. Without masked finetuning (0 iters), the model only
focuses on the local region and disregards the context, resulting
in noticeable stitching artifacts. This issue is mitigated after 75
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Figure 4: Qualitative comparison on unconditional (col.2-6) and text-driven (col.7-10) inpainting with related methods.

Figure 5: Qualitative comparison on exemplar-driven inpaint-
ing with related methods.

Figure 6: Qualitative comparison on stroke-driven inpaint-
ing.

iterations of finetuning. This suggests that masked finetuning helps
the model gain semantic awareness in the known region, leading
to coherent texture transitions in inpainted region.
Masked attention control. We introduce masked attention con-
trol mainly to suppress over-sized inpainted content from leaking
into the known area. To demonstrate this effect, we generate images

Figure 7: Quantitative comparison of inpainting quality
(NIMA score) and stroke-alignment (1-RMSE) on stroke-
driven (left) and stroke+text-driven (right) inpainting with
different 𝜏 . Upper right corner indicates a better trade-off.

of tigers with and without applying masked attention in two sce-
narios: free-generation and inpainting, as shown in Fig. 10. In the
free-generation case, enabling masked attention control effectively
constrains the generation scope within the masked region. In the
inpainting case, disabling masked attention control can sometimes
result in over-sized inpainted content, which may get truncated af-
ter background blending. This suggests that restricting the attention
flow can be useful in local editing tasks like inpainting.
Stroke blending timestep. In stroke-driven inpainting, threshold
𝜏 adjusts the balance between realism and stroke-faithfulness, we
show a series of visual results with different choices of 𝜏 in Fig. 11,
quantitative statistics can be found in Fig. 7. Generally, larger 𝜏 leads
to more realistic but less aligned results, 𝜏 ∈ [0.5𝑇, 0.6𝑇 ] normally
yields a balanced effect (𝑇 is the total number of timestep).

5 CONCLUSION
We propose Uni-paint, a unified multimodal inpainting framework
supporting unconditional, text, stroke, and exemplar guidance. Our
unconditional and text-driven inpainting results are competitive
with recent works without large-scale training. For exemplar-driven
inpainting, our few-shot approach achieves improved customiza-
tion effects. Stroke guidance on regions of interest is also integrated
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Figure 8: Diverse inpainting results under mixed guidance from a combination of text, stroke, and exemplar.

Figure 9: Effect of masked finetuning with different itera-
tions. Applyingmasked finetuning enhancesmodel’s context
awareness and brings better texture transition.

Figure 10: Examples of generation/inpainting of tiger
with/without masked attention control. Applying masked
attention control effectively constrains generation scope.

Figure 11: Effect of different 𝜏 on stroke-driven inpainting.
Larger 𝜏 leads to more realistic but less aligned results.

Figure 12: Failure cases: (a) Unnatural stitching. (b) Failed to
obey conflicting guidance (stroke shape and exemplar)

in our framework. Moreover, our method supports inpainting with
mixed guidance, which is not available in existing methods.

However, our method still encounters some limitations. First,
when there is a large gap between the exemplar and the input (e.g.,
cartoon vs. real images), our method may fail to fully harmonize the
gap, resulting in unnatural stitching (see Fig.12a). Second, conflicts
may occur when mixing guidance from different modalities. For
example, in Fig.12b, the hamburger-shaped stroke is far different
from the exemplar, making it challenging to find an appropriate
𝜏 that simultaneously respects both the stroke and the exemplar
guidance. Note this issue can be avoided with careful interactions.

Our future work aims to address these limitations and explore
additional modalities, further investigating the potential of diffusion
models in image inpainting.
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Appendix
In this appendix, we provide additional details and results of

our approach. We present more implementation details in Sec. A.
Additional human evaluation details are given in Sec.B. We also
provide more visual result of unconditional, text-driven, stroke-
driven, exemplar-driven, and multimodality inpainting in Sec. C.

A IMPLEMENTATION DETAILS
A.1 Masked finetuning
We introduced our general motivation and core steps of masked
finetuning in Sec. 3.2 of the main paper. Here we present more
detailed process in pseudo code format in Algorithm 1.

Algorithm 1Masked finetuning

Require: Input image 𝑋 𝑖𝑛 , binary mask 𝑀 , exemplar 𝑋𝑟𝑒 𝑓 (op-
tional), pretrained stable diffusion model 𝜖𝜃 , text encoder 𝐶 ,
image encoder 𝐸.

1: Get image latent 𝑥𝑖𝑛 = 𝐸 (𝑋 𝑖𝑛 ⊙ 𝑀)
2: Get latent mask𝑚 = Resize(𝑀) s.t.𝑚 has the same size as 𝑥𝑖𝑛
3: Get null text embedding ∅ = 𝐶 ("")
4: Get exemplar token 𝑣∗ from Eq. 6 if 𝑋𝑟𝑒 𝑓 exists
5: while 𝑖𝑡𝑒𝑟 < 𝑡𝑜𝑡𝑎𝑙_𝑖𝑡𝑒𝑟𝑠 do
6: 𝑡1 ∼ U(0,𝑇 )
7: 𝜖1 ∼ N(0,I)
8: 𝑥𝑖𝑛𝑡1

=
√
𝛼𝑡1𝑥

𝑖𝑛 +
√︁
1 − 𝛼𝑡1𝜖1

9: ℓ𝑏𝑔 =

𝑚 ⊙ 𝜖1 −𝑚 ⊙ 𝜖𝜃
(
𝑥𝑖𝑛𝑡1

, ∅, 𝑡1
)2

2
10: if exist(𝑋𝑟𝑒 𝑓 ) then
11: 𝑡2 ∼ U(0,𝑇 )
12: 𝑋𝑟𝑒 𝑓 , 𝑀𝑟𝑒 𝑓 = RandomShiftAndScale(𝑋𝑟𝑒 𝑓 )
13: 𝑥𝑟𝑒 𝑓 = 𝐸 (𝑋𝑟𝑒 𝑓 )
14: 𝑚𝑟𝑒 𝑓 = Resize(𝑀𝑟𝑒 𝑓 )
15: 𝜖2 ∼ N(0,I)
16: 𝑥

𝑟𝑒 𝑓
𝑡2

=
√
𝛼𝑡2𝑥

𝑟𝑒 𝑓 +
√︁
1 − 𝛼𝑡2𝜖2

17: ℓ𝑟𝑒 𝑓 =

𝑚𝑟𝑒 𝑓 ⊙ 𝜖2 −𝑚𝑟𝑒 𝑓 ⊙ 𝜖𝜃
(
𝑥
𝑟𝑒 𝑓
𝑡2

,𝐶 (𝑣∗), 𝑡2
)2

2
18: else
19: ℓ𝑟𝑒 𝑓 = 0
20: end if
21: ℓ = ℓ𝑏𝑔 + ℓ𝑟𝑒 𝑓
22: 𝜃 = 𝜃 − 𝑙𝑟 · ∇𝜃 ℓ
23: end while

Return Finetuned model 𝜖𝜃 ∗

A.2 Auto-subject token visualization
In Sec. 3.4, we developed a CLIP-based method for automatically
obtaining the initial subject token 𝑣∗ from a given exemplar, which
can be useful in cases where the user is uncertain about the subject
category or in automated application scenarios. Note that before
finetuning the model, 𝑣∗ only provides a rough initial approxima-
tion but not perfect alignment to the exemplar. We present some
visualization examples of this approach in Fig. 13. In these exam-
ples, the bottom-row images are generated conditioned on 𝑣∗ by an

un-tuned model obtained from the top-row exemplar images. We
found that for well-known concepts such as the Statue of Liberty, 𝑣∗
is directly capable of reproducing the exemplar. For less-common
concepts (e.g., cartoon characters Stitch and Minion), while the
details are not perfectly preserved, 𝑣∗ still provides a rough ini-
tial approximation for capturing the exemplar concepts. After the
model is fine-tuned, 𝑣∗ will be bound with exemplar and is able to
produce aligned results.

A.3 Computational speed
With a batch size of 1, our model takes roughly 98 seconds for
finetuning with 100 iterations, and 4.8 seconds for inference with
50 DDIM steps on a NVIDIA A6000 GPU, which is the typical speed
of official released stable diffusion model without using acceleration
strategy or model compression. Note that the speed can be further
accelerated by using more advanced sampler (e.g., DPM-Solver++)
or toolbox (e.g., xFormers).

B HUMAN EVALUATION DETAILS
B.1 Setup
As described in Sec. 4.1 in themain paper, we conducted a user study
in questionnaire format to determine which method produces the
best results in terms of human perception. We invited a total of 55
participants. None of the participants were involved in this research
in part or in whole, or had any conflicts of interest. The question-
naire consists of 4 sections for 4 different guidance: unconditional
inpainting, text-driven inpainting, exemplar-driven inpainting, and
stroke-driven inpainting, respectively. Each section has 20 side-by-
side comparisons of different methods. To mitigate the potential
choice bias, the displayed order of options was randomly shuffled
for each question and each participant. For each question, partici-
pants were encouraged to choose their most preferred option, but
in case they found it hard to decide, they were allowed to make
multiple choices but no more than half of the available options
(i.e., up to 2 options for unconditional and text-driven tasks, and 1
option only for exemplar-driven and stroke-driven tasks). Fig. 14
shows some example questions from our questionnaire.

B.2 Statistics
We also show detailed human evaluation statistics from two aspects:
votes percentage per question (refers to the percentage of votes
received by a method, relative to the total number of votes for
a question), and votes percentage per participant (refers to the
percentage of votes received by a method, relative to the total
number of votes cast by a participant), as demonstrated in Fig. 15.
As can be seen, our unconditional and text-driven inpainting results
are roughly comparable to SD-Inpaint, with a slight numerical
advantage. Our exemplar-driven and stroke-driven results received
more votes in a greater number of questions and were favored by
more of voters.

C ADDITIONAL VISUAL RESULTS
We provide additional visual comparison with the same baseline
methods as in the main paper. We show more unconditional, text-
driven, exemplar-driven and stroke-driven result comparison in
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Figure 13: Visualization examples of automatic subject token identification. The bottom-row images are generated by un-tuned
model conditioned on subject token 𝑣∗ obtained from the top-row exemplar images, suggesting that 𝑣∗ is able to provide a
rough initial approximation to the exemplar.

Figure 14: Interface of human evaluation questionnaire,
these are four example questions of four different inpainting
task: (a) Unconditional inpainting, (b) Text-driven inpainting,
(c) Exemplar-driven inpainting, (d) Stroke-driven inpainting.
Participants can select up to 2 options for (a) and (b), and 1
option only for (c) and (d).

Fig. 16, 17, 18, and 19, respectively. We also present additional
results of mixed guidance in Fig. 20.
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Figure 15: Detailed human evaluation statistics. (a) presents the votes percentage of each question. (b) presents the votes
percentage of each participant.
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Figure 16: Additional unconditional inpainting results.
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Figure 17: Additional text-driven inpainting results.14



Figure 18: Additional exemplar-driven inpainting results.
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Figure 19: Additional stroke-driven inpainting results.
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Figure 20: Additional inpainting results of mixed-guidance.
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